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Summary

The presented study contributes in solving the causes of cathodoluminescence (CL) of quartz.

For this purpose a variety of quartzes from different geological environments has been

systematically studied. The results have been applied to a number of granitic systems for the

understanding of the textural evolution, intrusion mechanism, and the phasing of magmatic

events of felsic igneous melts.

The spectral response of the CL of quartz in the range of visible light is characterised by

emission bands between 1.7 – 2.2 eV (red) and 2.4 – 3.1 eV (blue) resulting in blue, violet,

and red-brown colours. The emission bands with characteristic (relative) intensities, positions,

and half-widths have been mathematically captured. The intensity of CL normally changes

during electron radiation, whereby the blue emission decreases and the red emission

increases, indicating that the luminescence centres are unstable. The decay and generation of

luminescence centres during electron radiation have been quantified by recording time-

resolved spectra and by using the kinetic law. The concentration of unstable luminescence

centres is highest for quartz formed at low temperatures. In order to study the stability of

luminescence centres at different temperatures a number of heating experiments have been

carried out. Four emission bands (1.73, 1.85, 1.96, and 2.96 eV) are more intense after

heating, whereas a band at 2.48 eV disappears. Studies of samples with different polishing

qualities show that the CL intensity is reduced for rough surfaces, but the time-dependent

ratios of the emission bands remain unchanged. Besides radiation the CL intensity is

influenced by the temperature (quenching) during the measurement. Also this correlation has

been described here with the kinetic law.

A part of the study deals with the correlation between the CL properties and trace element

contents (mainly Al, Ti, Li). Analytical conditions for EPMA, LA ICP-MS, SIMS were

carefully chosen in order to achieve the highest possible sensitivity of these microanalytical

methods applied to quartz analysis. Trace element line profiles explained the growth and

alteration zones visible in CL. The average Fe concentration increases with the quartz

formation temperature. Therefore, the Fe content can be used to distinguish magmatic and

hydrothermal quartz. Substitutional incorporation of Fe3+ in the quartz lattice causes CL

emission at 1.73 eV. The increase of the 1.85 and 1.96 eV CL emissions during electron

radiation is explained by the abundance of hydroxyl defects in the quartz lattice. Upon
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electron radiation H+ diffuses away and forms non-bridging oxygen hole centres, resulting in

higher CL intensity. This increase is steeper for hydrothermal and granitic (“wet”) quartzes

and is flatter for rhyolitic (“dry”) quartz. The 2.15 eV CL emission (yellow) is characteristic

for some granitic quartzes with high Mn (3 – 6 ppm). The 2.48 eV CL emission (turquoise) is

typical for hydrothermal quartz, which shows a high Li-associated 3474 cm-1 IR absorption

band. The 2.58 eV, 2.68 eV emissions occurring in spectra of all investigated quartzes may be

caused by intrinsic defects such as oxygen vacancies. Hydrothermal quartz may contain high

Al concentrations up to up to 5000 ppm; magmatic quartz shows Al concentrations up to 200

ppm. The hydrothermal quartz is characterised by a blue “flash” at initial electron radiation

caused by the 2.79 eV CL emission. It is assumed that this CL emission is related to the

positively charged interstitial cations H+, Na+, Li+ and K+ which compensate substitutional

Al3+. However, the concentrations of these trace elements do not simply correlate with the CL

intensity. Besides the unstable blue CL, we found also a more stable CL emission at a slightly

different wavelength (2.96 eV) in quartz phenocrysts in rhyolite and granite. This

luminescence could be related with Ti (up to 130 ppm) and is responsible for the contrasting

of growth zoning.

Based on the CL properties and trace elements, magmatic quartz has been subdivided into (1)

euhedral quartz phenocrysts showing stable, dominantly blue CL and growth zoning related to

Ti distribution and (2) anhedral matrix quartz with unstable red-brown CL and homogeneous

trace element distribution. The red-brown CL is related to the concentration of OH- and

molecular H2O in the crystal lattice. Rhyolitic and granitic quartz phenocrysts show similar

growth textures and trace element signatures indicating a similar low to mid-crustal

crystallisation environment. The phenocrysts are characterised by a fine-scale oscillatory

zoning (2 - 20 µm width), within super-ordinate stepped zoning (50 - 1000 µm width),

resorption surfaces, diffusion-induced wavy surfaces, and growth impediments. Except for the

oscillatory zoning, formed by self-organising growth, all growth textures formed by external

physico-chemical changes (temperature, pressure and magma composition) which result in

abrupt changes of the Ti concentration in the quartz crystals. The Ti content in the quartz

phenocrysts increases with increasing growth rate. Whereas the properties of the quartz

phenocryst point at low to mid-crustal origin, the matrix quartz must have been formed during

the conditions of magma emplacement.

Hydrothermal quartz shows similar growth patterns as magmatic quartz, but stepped zoning is

dominant here. This indicates quartz crystallisation in a disturbed (open) system. A
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characteristic feature of hydrothermal quartz is the so-called sector zoning caused by different

impurity concentrations dependant of the growth direction. The zoning patterns in

hydrothermal quartz are explained by the distribution of Al-defects. The Al uptake is mainly

controlled by the pH of the aqueous solution; high pH (=5) results in high Al concentrations

in the quartz lattice. Additionally, the charge compensating ions H+, Li+, Na+, and K+

stimulates the Al3+ uptake.

Besides primary growth textures both magmatic and hydrothermal quartz mostly show a large

variety of secondary structures, which formed during retrograde processes. These processes

include (1) micro cataclasis, (2) healing, (3) diffusion, and (4) a-radiation. Based on the CL

measurements, we proposed a classification in (a) secondary structures with reduced defects

and (b) secondary structures with induced defects. Secondary structures with reduced defects

are basically the result of healing, dissolution-precipitation and diffusion, typically occur in

micro shear zones, along grain boundaries, and as halos around fluid inclusions.

Decrepitometry studies of fluid inclusions with halos of secondary non-luminescent quartz

showed they hold anomalous high fluid pressure on heating. The formation of secondary

quartz around fluid inclusions indicates the healing of defect structures and are possibly

initiated by the local increase of stress in part due to pressure gradients between fluid

inclusion and host quartz. Structures with higher defect concentrations are the result of natural

a–radiation and trace element diffusion and comprise bright CL halos around radioactive

mineral inclusions, diffusion rims along grain boundaries, and radiation-induced non-

luminescent spots. The radiation-induced spots are interpreted as aggregations of aqua

complexes with a gel-like structure, i.e. regions with a high local concentration of H2O and

substitutional Al compensated by hydroxyl groups. Non-luminescent spots and secondary

quartz around fluid inclusions are frequent in granitic matrix quartz and less common or

lacking in phenocrysts.

Cathodoluminescence has been applied to granitic systems from 2 magmatic provinces: the

Krušne Hory/Erzgebirge (Czech Republic/Germany) and the Eastern Lachlan Fold Belt

(Australia). In this way, the reconstruction of petrogenetic processes during granitic melt

generation, ascent and emplacement and related fractionation, could be achieved. The quartz

phenocrysts occurring in the F-Li-enriched granites of the Krušne Hory/Erzgebirge show

distinct contrasted growth zoning, being more common for phenocrysts in rhyolites.

Similarities in grain size, grain shape and growth texture found for phenocrysts in different
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granite varieties of a intrusion complex proof a common history during the earliest stage of

crystallisation. The CL properties of different quartz generations in granite reflect the change

of the water content of the melt. During the early crystallisation stage the magma contained

<2.5wt% H2O and produced euhedral phenocrysts with stable CL and growth zoning. During

magma evolution the water content of the melt increases until about 5wt% H2O. At the latter

stage anhedral matrix quartz was formed. The quartz phenocrysts from different complexes of

F-Li-enriched granites may show different trace element contents (Ti/Al ratios). However, the

magmatic rock textures, quartz generations, growth patterns observed in CL are very similar

for all rocks. These similarities suggest that the magmatic quartz textures in the granite and

the phenocryst growth patterns found in Krušne Hory/Erzgebirge province are typical for F-

Li-enriched melts which are related to Sn-W-mineralisations.

Snowball-textured quartz phenoblasts occur common in highly evolved F-Li-enriched granites

and represent a late-magmatic solidification texture. Contrary to the rhyolitic quartz

phenocrysts these snowball quartzes show red CL. A trigonal habit of the zoning in the

phenoblasts indicates crystallisation temperatures <600°C (at <1 kbar). The irregular zoning is

explained due to periodic degassing during melt cooling in the granite roof. We found that

snowball quartz is a textural indicator for fluid-saturated, F-Li-enriched melts of alkali

feldspar granites with sub-volcanic (shallow) emplacement. Furthermore, it serves as an

indirect indicator for Sn-W-mineralisation.

The application of CL to greenschist facial deformed quartz of granites from the Eastern

Lachlan Fold Belt, Australia showed that magmatic undeformed and deformed quartz can be

easily distinguished based on CL properties. Deformed quartz exhibits structures of newly

formed (secondary) quartz with weak red-brown CL whereas undeformed quartz shows blue

to violet CL. The secondary quartz is depleted in trace elements. In deformed magmatic

quartz the unstable 1.85 and 1.96 eV CL emissions related to water-bearing defects remain

constant during electron radiation, indicating that the interstitial molecular water has been

removed from the quartz lattice during deformation and subsequently was incorporated into

muscovite micro flakes.
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1   Introduction

1.1   The application of cathodoluminescence to the study of quartz

The electron-excited luminescence, or cathodoluminescence (CL), is an efficient technique

for the visualisation of intra-granular growth textures and alteration structures in quartz. A

distinction is made between growth textures such as zonation, resorption, incrustation,

cementation, etc., and secondary, late-formed structures such as alteration halos along grain

boundaries, healed microcracks formed by brittle deformation and healing structures around

fluid inclusions (Behr and Frentzel-Beyme, 1988; Behr, 1989). In the following the term

“primary CL textures” is used for intra-granular growth patterns developed during crystal

growth which is in agreement with the general application of the term “growth textures” for

crystal arrangements and zoning patterns in igneous rocks (e.g. Bard, 1986; Shore and Fowler,

1996; Watt et al., 1997). The term “secondary CL structures” is used for the wide variety of

structures formed during alteration, healing, and retrograde processes.

These structures which become visible using CL are principally based on the distribution of

trace elements and defects in the crystal lattice. The CL depends on the kind of chemical

bond, lattice defects (vacancies), and impurity elements which can act as activators,

sensitizers, and quenchers. Changes in the quantity and quality of defects in a mineral

revealed by CL and complementary microanalytical methods reflect physico-chemical

changes of melts and fluids (nature, concentration and oxidation state of trace elements,

temperature and pH of solutions etc.) during crystal growth, deformation or alteration, or

post-crystallisation dose rates of natural α- and γ-irradiation. However, the relationship

between the CL emission and the defect structures of quartz are complex, most still not

completely understood. Therefore, CL microscopy has been underused for the reconstruction

of geological processes so far. The presented study contributes in solving the causes of the CL

of quartz and uses CL for the interpretation of rock-forming processes.

The CL of minerals was studied more than a hundred years ago by Crookes (1879), who

observed that “substances known to be phosphorescent shine with great splendour when

subjected to the negative discharge in high vacuum”. The first report about

cathodoluminescence of quartz was given by Goldstein (1907). The possibilities afforded by

the microscopic examination of minerals under electron bombardment was not explored until

the 1960’s when the luminescence was studied since introduction of the electron microprobe.
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Smith and Stenstrom (1965) and Long and Agrell (1965) independently made luminescence

microphotographs by illuminating the surface of thin sections with a electron beam (~1 mm

diameter). The results clearly showed the correlation between luminescence colour and

brightness and the concentration of trace elements in quartz and zoned calcite. Sippel (1965)

and Smith and Stenstrom (1965) used CL for the distinction of detrital quartz grains of

igneous or metamorphic origin and cement quartz. During the last 30 years, the application of

quartz CL in geosciences has grown in both extent and diversity. Major contributions pointing

out the use of CL as a petrologic tool have been published by Smith and Stenstrom (1965),

Remond (1977), Zinkernagel (1978), Hagni (1984, 1987), Walker (1985), Marshall (1988),

Remond et al. (1992), and Pagel et al. (2000).

Applications of CL in geosciences with special emphasis to quartz and quartz-bearing rocks

are summarised as follows:

1. CL facilitates the rapid characterisation of modal mineralogy and the identification of

economic or pathfinder minerals. It is possible to distinguish mineral constituents by

colour contrast, even in fine-grained rocks like sandstone or quartzite (e.g. Magnus and

Götze, 1998).

2. CL is well suitable to distinguish between different mineral generations of quartz and

carbonate. It enables the distinction of detrial quartz and cement quartz in siliciclastic rock

(e.g. Sippel, 1968) or of different quartz generations in igneous rocks (D’Lemos et al.,

1997; Müller et al., 2000). CL imaging clearly yields superior quantification of quartz

cement volumes in siliciclastic rocks (e.g. Evans et al., 1988). It has been suggested that

CL colours and structures visible in CL in detrial quartz grains may be used as provenance

indicators in study of siliciclastic rocks (Matter and Ramseyer, 1985; Owen, 1991;

Kennedy and Arikan, 1990; Milliken, 1994).

3. CL is a sensitive method for revealing growth zonation, twinning patterns, grain shapes

and secondary overgrowths which are not distinguishable in transmitted or polarised light

(e.g. D’Lemos et al., 1997; Watt et al., 1997). Zoning patterns result from the combination

of progressive growth, boundary layer effects and episodes of crystal-melt/fluid

disequilibria caused by fluctuations in temperature and melt/fluid composition during

crystallisation. The intragranular growth textures yield important information about the

nature and evolution of the crystal-forming melt/fluid.

4. The distribution of luminescence colours reveals alteration patterns in crystals, like grain

boundary alteration. The knowledge of the alteration pattern is important, for instance, for

the interpretation of oxygen isotope distribution in quartz crystals (Valley and Graham,
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1996). In ore exploration CL studies of alteration structures facilitates the delineation of

the alteration zones affected by mineralising fluids and therewith of the size of ore bodies

(Hagni, 1984; 1987).

5. Alteration and deformation (secondary) structures like healed micro-fractures and

recrystallised phases can be easily detected in quartz by CL. This structures are indicators

for the paleopermeability and paleoporosity of crustal rocks, which are of particular

interest for oil exploration (e.g. Behr and Frentzel-Beyme, 1988; Laubach, 1997). Boiron

et al. (1992) and Winslow et al. (1994) demonstrated that CL can be used to distinguish

between different inclusion generations. Furthermore, CL investigations of secondary

structures contribute in solving the problem of fluid loss and re-equilibration of fluid

inclusions in quartz (e.g. Audétat and Günther, 1999).

6. CL spectroscopy provides information about the impurity and defect centre quality of a

crystal. For example, in carbonate REE can be measured by CL analysis of carbonate at

levels down to 0.1 ppm (Habermann et al., 2000). In some cases, CL spectrometry allows

the semi-quantitative analysis of trace elements (Townsend and Rowlands, 2000). Defect

identification of silicates by CL are also of interest for material sciences e.g., semi-

conductor industry, silicate technique, optical industry, and for the protection of historical

monuments i.e. the study of weathering of building materials like marble and limestone.

Despite considerable benefits of the phenomenological investigation of CL colours in quartz,

the causes of CL have not been resolved. This is partly due to the complex CL spectrum,

about 12 emission bands were detected in quartz (Kalceff and Phillips, 1995 and references

therein), and partly to the fact that the incorporation of trace elements and natural irradiation

causes a great number structural defects which strongly influence the quartz CL (e.g. Richter

and Zinkernagel, 1975; Zinkernagel, 1978; Sprunt, 1981; Ramseyer et al., 1988; Owen, 1988;

Ramseyer and Mullis, 1990; Perny et al., 1992; Kalceff and Phillips, 1995). The

determination of trace element distribution is impeded by the general low trace element

content of quartz which is in the range of the detection limits of micro analytical techniques.

Furthermore, the structure of the defects in the quartz lattice is partly unknown.

Trace elements in quartz which substitute for Si4+ are Al3+, Fe3+, Ti4+, Ge4+, P5+, 4H+ and Ga3+

ordered of average frequency (e.g. Bambauer, 1961; Lehmann, 1975; Lehmann and

Bambauer, 1973; Nuttall and Weil, 1980; Maschmeyer and Lehmann, 1983a and 1983b;

Weil, 1984). Cations such as H+, Li+, Na+, K+, Fe2+, Cu+, and Ag+ function as compensators of

the electric charge at interstitial positions. It has been striven to obtain quantitative analysis of
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trace elements in quartz at the ppm level and with high spatial resolution. Variations in trace

element concentrations proved to be useful as petrogenetic indicators. Earlier studies showed

a large variation in the chemistry of quartz crystals from different environments (e.g. Suttner

and Leininger, 1972; Schrön et al., 1988; Blankenburg et al., 1994 and references therein,

Müller et al., 2000). Several authors have tried to relate specific trace elements and the related

defect structures in quartz to the formation environment and to a genetic interpretation.

Examples are given by Dennen et al. (1970), Siebers (1986), Ramseyer and Mullis (1990),

Gerler (1990), and Perny et al. (1992) for hydrothermal quartz, and Suttner and Leininger

(1972), Schrön et al. (1988), and Watt et al. (1997) for magmatic quartz. Dennen et al. (1970)

proposed a geothermometer based on the incorporation of Al in hydrothermal quartz as a

function of formation temperature. Using the electron paramagnetic resonance (EPR)

technique, Agel and Petrov (1990) confirmed that the concentration of [AlO 4]0 centres in

quartz increases with increasing crystallisation temperature. The concentration of

paramagnetic Ti and Al-related defect centres created by natural irradiation can be used for

rock dating (e.g Grün et al., 2000). Schrön et al. (1988) grouped pegmatitic, granitic, and

rhyolitic quartz according their Ge – Ti – Al contents.

A number of trace elements have been found to activate CL in quartz: Ti (Sprunt, 1981;

Kerkhof et al., 1996), Fe (Pott and McNicol, 1971; Sprunt, 1981; Gorobets et al., 1989), Al

(Grant and White, 1978; Perny et al., 1992), H and Li (Matter and Ramseyer, 1985; Perny et

al., 1992), Mn (Richter and Zinkernagel, 1975; Dudley, 1976), OH- and H2O (Behr, 1989;

Kalceff and Phillips, 1995), Ge (Luff and Townsend, 1990), and Ga (Dudley, 1976). There

are only a few studies about the CL of quartz in comparison with trace element studies which

have been done to visualise intra-granular growth patterns, to distinguish different quartz

generations and to explain crystallisation processes e.g. Sprunt (1981), Ramseyer and Mullis

(1990), Perny et al. (1992), Demars et al. (1996), Bruhn et al. (1996), and Watt et al. (1997).

The heterogeneous distribution of the trace elements (growth zoning) reflects the physico-

chemical variations of the fluid or the melt during crystal growth (e.g. Ramseyer and Mullis,

1990; Watt et al., 1997). Structural and/or chemical variations within crystals, which may

relate to crystal growth zones, can be identified by spatial variations in wavelength and

intensity of CL (e.g Waychunas, 1988; Marshall, 1988). CL-contrasted growth zoning are

observed e.g., by Ramseyer et al. (1988), Ramseyer and Mullis (1990) and Perny et al. (1992)

in hydrothermal quartz and e.g., by Schneider (1993) and Watt et al. (1997) in rhyolitic quartz

phenocrysts. Retrograde processes (alteration) may change CL properties resulting in the

creation of secondary CL structures may caused by the redistribution of defects. Most
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secondary structures represent migration pathways of fluids which migrate along grain

boundaries, microcracks, or channelways by pore overpressure or tectonic strain (Behr and

Frentzel-Beyme, 1988; Behr, 1989). In spite of the fact that quartz is one of the common rock-

forming minerals, yet the relation between its CL properties, trace element distribution, and

petrogenesis is far from be solved.

1.2 Aims of the study

The aim of this study is to better explain the causes for the CL properties of quartz and to find

the petrological significance of structures visible in CL. The study is subdivided in 2 parts. In

the first part (chapters 2-6) defect structures of quartz are characterised and quantified by CL

microscopy, spectroscopy and complementary micro-analytical studies. In the second part

(chapters 7-10) CL-studies are applied of the results from the first part to mineralised granitic

systems on the hand of examples from the magmatic provinces Krušne Hory/Erzgebirge

(Czech Republic/Germany) and the Eastern Lachlan Fold Belt (Australia).

Part I - CL properties and defect structures in quartz

The first part of the study deals with the CL of quartz and its correlation with defect

structures. The defect structures in quartz are characterised and their formation during

crystallisation and re-distribution during retrograde processes are discussed. Quartz samples

from Upper Carboniferous granite intrusions in Germany and related rhyolitic dykes, flows

and domes of the Permian continental crust and hydrothermal quartzes of the Upper

Proterozoic Damara Orogen of Namibia were taken for the studies of the CL of quartz . The

main characteristics of the samples are summarised in table 1.1.

Defect structures in quartz are unstable under electron radiation bombardment resulting in

changes of the CL. Looking at the problem of the mathematical capturing of CL parameters

like beam energy, radiation time, and sample temperature have been considered. Time-

resolved CL spectra with high resolution of the emitted wavelength were recorded to detect

the intensity, position and half-width of the emission bands and their changes during electron

radiation. In order to establish the parameters which may effect the CL of quartz the spectra

were recorded using different beam currents, sample surface roughness, and also by the study

of heat-treated samples. Temperature measurements were carried out to determine
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temperature changes of the sample during electron radiation. For the quantification of the CL

emission spectra were resolved by best fitting with Gaussian curves.

A larger part of the study comprises the correlation between CL properties of quartz and trace

element distribution. Electron probe micro analysis (EPMA), laser ablation - inductively

coupled plasma mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry

(SIMS) were used for the determination of trace elements. Since the determination of trace

elements in quartz is not a routine analysis, the sensitivities of the different microanalytical

methods were investigated. Furthermore, the defect centres were characterised by using

electron paramagnetic resonance spectroscopy (EPR). Fourier transform infra-red (FTIR)

spectroscopy facilitates the qualitative characterisation of crystallographic bound water.

Water occurs in quartz as different modifications: as hydroxyl groups related to different

defect structures (e.g. with Al), as molecular water in micropores and in fluid inclusions.

During electron radiation and heating crystallographic bound water may change to molecular

water which concentrates in micro pores. These processes are not completely understood and

a main topic of this study.

After studying CL properties CL structures and processes responsible for trace element

distribution and defect structure formation were discussed. At first quartz growth textures

were classified. The rhyolites as well as a number of the granites contain euhedral quartz

phenocrysts showing a CL-contrasted complex growth pattern. The euhedral phenocrysts in

granite are recognisable only by using CL because they are overgrown and embedded in

homogeneous anhedral quartz. The euhedral quartz phenocrysts in granite showing CL-

contrasted growth textures have been described in a few cases (Frentzel-Beyme, 1989;

Seltmann, 1994; D’Lemos et al., 1997; Müller and Behr, 1997). The questions arise if these

phenocrysts have the same origin and formed at similar conditions like phenocrysts in

rhyolite. This important for the understanding Upper Carboniferous magma formation during

the Variscan orogeny. The development of growth zoning during magmatic crystallisation is

explained by a number of models (e.g. Sibley et al., 1976; Anderson, 1984; Fowler, 1990) that

have been derived from the zoning pattern of plagioclase. We apply these models to the

crystallisation of magmatic quartz having a similar growth pattern as plagioclase. The

classification of growth zoning helps in distinguishing between zoning caused by self-

organised growth and zoning caused by physico-chemical changes of external factors such as

temperature, pressure and magma composition (Bottinga et al., 1966; Allègre et al., 1981;

Shore and Fowler, 1996). The zoning caused by external factors is of interest for the

reconstruction of the crystallisation history of felsic melts (magma storage, ascent, mixing,
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emplacement, and cooling rate). In a further step the zoning of magmatic quartz was

compared with zoning observed in hydrothermal quartz. The differences between impurity

uptake in quartz crystals in a melt and in aqueous solutions were discussed.

In CL quartz shows secondary structures which formed during retrograde processes. Typical

secondary structures of quartz are healed veinlets and domains along micro shear zones, grain

and subgrain boundaries, diffusion rims at grain boundaries, patchy halos of secondary quartz

around fluid inclusions, radiation-induced non-luminescent spots, and halos around

radioactive inclusions. Mostly, secondary quartz shows a weak luminescence and is therefore

mostly easily distinguishable from the host crystal. The formation of secondary quartz may be

stimulated by fluid activity. The CL properties of the secondary quartz in comparison with the

host quartz indicate a redistribution of defect structures.

The study focuses on two types of secondary structures occurring in magmatic quartz: halos

of secondary quartz around fluid inclusions and non-luminescent spots with gel-like defect

structure. A wide variety of patchy halos around fluid inclusions have been observed by CL

since about one decade (Frentzel-Beyme, 1989; Behr, 1989; Kerkhof and Müller, 1999). The

CL-contrasted halos around fluid inclusions are assumed to be related to explosion and

implosion-decrepitation at changing PT conditions and to healing processes resulting in

volumetric and compositional changes of fluid inclusions. A better understanding of the

physical and chemical conditions leading to formation of halos of secondary quartz around

fluid inclusions is essential for a proper interpretation of fluid inclusion data. Non-

luminescent spots (1-5 µm) observed by SEM-CL become visible first in CL after a radiation

time of some minutes. The spots may be associated with larger defect clusters containing

structural water in the form of H+, OH-, and H2O.

Part II - CL applied to the study of granitic rocks

In the second part of the study (chapters 7-10) CL is applied to the study of quartz in granitic

rocks and comprises four papers. Two papers (chapter 7 and 8) have been published by

Müller, Seltmann, and Behr (2000) in “Mineralum Deposita” (vol. 35: pp. 169-189) and by

Müller and Seltmann (1999) in “Mineral Deposits: Processes to Processing” edited by Stanley

et al. (pp. 409-412). The other two papers (chapter 9 and 10) have been submitted by Müller,

René, and Behr to “Terra Nova” and by Müller, Trzebski, and Lennox to “Mineralogy and

Petrology”.

Samples were collected from two magmatic provinces, the Krušne Hory/Erzgebirge (Czech

Republic/Germany) and the Eastern Lachlan Fold Belt (Australia). The sample material used
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for the studies is described in § 7.4, 8.3, 9.3, and 10.3. Principally, in the four papers the

results of quartz CL and trace element analysis are utilised to reconstruct interactions at the

crystal-melt interface during crystal growth and the state and changes in chemistry and

physics of the melt (mixing, differentiation, pulsation, degassing). Complimentary analysis of

the magmatic textures (grain size distribution, grain shape, grain relationship) with special

emphasis to fabrics influenced by late-magmatic volatiles will provide information about

cooling rate of the melt, emplacement conditions, role of volatile. The studies links CL studies

with micro-analytical studies and provide principally a new level in the knowledge about

petrogenetic and metallogenetic processes in magmatic systems.

On the basis of field work, geochemical and textural investigations, and CL a model of the

quartz crystallisation history of the Schellerhau granite melt is presented in chapter 7 (Müller

et al., 2000a). The late-Variscan Schellerhau granite complex (Eastern Erzgebirge, Germany)

is characterised by the intrusion sequence of porphyritic (SG1) to weakly porphyritic

monzogranites (SG2) and mostly seriate albite granite containing snowball-textured quartz

(SG3) (e.g. Seltmann, 1994; Schilka and Baumann, 1996). The intrusions are related to Sn-W-

mineralisations. The source of magma and its physico-chemical evolution during ascent and

fractionation is of particular interest for the formation of Sn-W-deposits. In the first step

different quartz generations were distinguished based on CL studies and the grain size

distribution. The SG1 and SG2 contain euhedral phenocrysts overgrown by an anhedral quartz

phase (matrix quartz). The phenocrysts show distinct contrasted growth zoning, being

normally more common for rhyolitic phenocrysts (Schneider, 1993). On the base of

microthermometric studies of silicate melt inclusions, Thomas (1992) calculated the

crystallisation depth of granitic quartz phenocrysts of the Erzgebirge granites (e.g. Eibenstock

and Schellerhau granites) of up to 21 km. Beside the Schellerhau granites a number of the

other investigated granites (samples 6, 7, 8) show such quartz phenocrysts which are

overgrown by a younger euhedral quartz generation (matrix quartz). The study of CL

properties, growth zoning, and trace element distribution of the different quartz generations in

Schellerhau granites answered the following questions: 1) Are granitic phenocrysts

comparable with phenocrysts occurring in rhyolites and which crystallisation environment

they represent? 2) Which crystallisation conditions cause the differences in CL and trace

element distribution of quartz phenocrysts and anhedral matrix quartz? 3) Do the quartz CL

and trace element distribution of different quartz generations reflect different crystallisation

environments? 4) How does the volatile content of the melt effect the quartz CL and defect
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structure distribution? And 4) How can the analysis of growth zoning contribute to reconstruct

the melt crystallisation history?

The fluid saturation textures of the SG3 Schellerhau granite are discussed in chapter 8

(Müller and Seltmann, 1999). This chapter contributes to solving the problem of the formation

of snowball-textured alkali feldspar granites and their significance for genesis of Sn-W-

deposits. Snowball-textured quartz occurring in highly evolved alkali feldspar granites world-

wide are ellipsoidal phenoblasts up to 1 cm in size. They are characterised by zonal

arrangement of entrapped matrix minerals (albite, K-feldspar, mica) alternating with inclusion

free zones. Since long the origin and interpretation of snowball-texture are controversially

discussed and lacked application of CL based arguments. It is considered to be either

metasomatic (e.g. Beus et al., 1962; Sonyushkin et al., 1991), or magmatic origin (Kovlenko,

1977; Pollard, 1989; Yin et al., 1995; Renno, 1997; Poutiainen and Scherbakova, 1998).

Snowball-textured quartz occurs also in the roof of late Variscan tin-bearing alkali feldspar

granite stocks of the Krušne Hory/Erzgebirge. For textural, CL and trace element studies on

snowball quartz were chosen the third intrusion stage SG3 of the Schellerhau Granite

Complex (Eastern Erzgebirge/Germany) and the Podlesi dyke granite (Western Krušne

Hory/Czech Republic). The problem of magmatic or metasomatic origin is discussed on the

base of the analysis of the growth zoning visible by CL and the trace element distribution.

Chapter 9 discusses the significance of Ti distribution in quartz phenocrysts for the

interpretation of growth patterns on the example of the topaz-bearing granites of Hub Stock,

Slavkovsky Les Mountains, Czech Republic (Müller and René, 2000). The Hub Stock hosts

the Sn-W deposit Krásno on the SE margin of the Krušné Hory/Erzgebirge Batholith. The

trace element signature and growth patterns of quartz phenocryst of the different granite

intrusions are compared. The study is focused on high-resolution CL spectroscopy of the

quartz CL. Finally, similarities between quartz crystallisation history derivable from the

quartz CL and trace element distribution of the Schellerhau and Hub stock tin granites are

discussed.

In chapter 10 the significance of quartz CL for reconstruction of magma crystallisation,

emplacement and deformation of S- and I-type granites in the Eastern Lachlan Fold Belt is

discussed (Müller et al., 2000b). The samples were collected from Carcoar, Barry and Sunset

Hills granites. In contrary to the investigated granites of Krušné Hory/Erzgebirge the three
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Australian granites are less fractionated and can be subdivided into the metaluminous I-type

Carcoar and Barry granodiorites and the peraluminous S-type Sunset Hills Granite. They were

intruded in the Late Ordivician-Early Silurian into Ordovician graywacke and volcaniclastic

rocks and were subsequently repeatedly deformed. In this paper quartz CL has been applied to

qualify and quantify the conditions of emplacement and deformation of the Carcoar and Barry

granodiorites and the Sunset Hills Granite with special emphasis on the macro- and

microtextures, trace element distribution of quartz, Al-in-hornblende barometry, and whole

rock geochemistry. Structural analysis of granites with a polyphase deformation history often

faces the difficulty in discriminating between generations of magmatic and deformation

fabrics. The application of quartz CL enables easily the distinction between magmatic and

deformation fabrics. Furthermore, the study demonstrates how the quartz CL properties and

quartz textures reflect the temperature and pressure conditions during magmatic

crystallisation and subsequent greenschist facial deformation. High-resolution spectroscopy is

used to show differences in CL of deformed and undeformed magmatic quartz. The causes of

this differences which may associated with crystallographic bound water in the quartz lattice

are discussed.

1.3   Sample material

As study objects we have chosen samples for which an extensive state of knowledge based on

mapping, chemical and petrographical data already exists but some petrogenetic questions are

unsolved. The quartz samples and quartz-bearing rocks were taken from 4 regions (table 2.1).

Damara Orogen

The first sample group is represented by hydrothermal quartzes from the southern margin of

the Upper Proterozoic Damara Orogen of Namibia. Previous fluid inclusion studies on this

quartzes were done by Behr and Horn (1982), Behr et al. (1983), Schmidt-Mumm et al.

(1986), and Behr and Schmidt-Mumm (1987) who contributed to the understanding of the

formation and activity of tectonic brines during the Proterozoic Damara Orogen (Namibia).

The name “megaquartz” (sample 1) came from mega quartz crystals, which are outstanding,

up to 60 m high monoliths in the Hakos Mountains. The quartz bodies are intergrown with

dolomite and are emplaced tectonically during an early deformation event of the Damara

Orogen. This event was characterised by thrusting of nappes over a fluvial-lacustrine and
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evaporitic metaplaya sequence (Behr and Schmidt-Mumm, 1987). The fluids forming this

quartz-dolomite body are related to dehydration and leaching of evaporitic hydrate minerals

of the metaplaya sequence and had salinities of up to 69 wt% total salt content revealed from

fluid inclusion studies sequence (Behr and Schmidt-Mumm, 1987). The formation

temperature, as determined in fluid inclusion studies, ranged from 150 to 250°C. The clear

fissile quartz (sample 2) representing a special variety of the megaquartz shows perfect

cleavage parallel to the positive rhombohedral faces {1011}. The oil-bearing quartz (sample

3) is a pebble found in the gravel plain around the Geelkop Dome and contains fluid

inclusions of higher hydrocarbons.

Krušné Hory/Erzgebirge

The second group of samples were taken from the magmatic province Krušne

Hory/Erzgebirge (Czech Republic/Germany) forming. The study of the granitic rocks with

special emphasis on quartz CL and textural analyses contributed to IGCP-373 project

“Correlation, anatomy and magmatic-hydrothermal evolution of ore-bearing felsic igneous

systems in Eurasia” (Seltmann et al., 2000). The project covers all aspects of the formation of

silicic igneous systems (plutonic to volcanic) and their magmatic evolution. Our contribution

is important for the understanding of textural evolution, physico-chemical balancing and

intrusion mechanism, temporal scale and phasing of magmatic events of Li-F-enriched melts.

The samples 4, 5, 6 represent felsic volcanics and subvolcanics of the Altenberg-Teplice

caldera (ATC) of the Eastern Erzgebirge/Germany. Neoproterozoic gneisses of the

metamorphic basement and volcano-sedimentary rocks form the host rocks of the 500 km2

large ATC. Late-collisional extensional tectonics and collapse of the Variscan orogen

controlled during the Upper Carboniferous the block and graben tectonics in the area, caldera

formation with pre-dominantly ignimbritic rhyolites (Schönfeld and Teplice rhyolite) and

porphyritic microgranites (Altenberg microgranite), and finally the post-tectonic multiple

intrusion of tin granites of the Schellerhau Granite Complex (SGC) into a subvolcanic level.

The volcanogenic fill of the ATC is divided into four volcanic phases two of which have been

sampled: The Schönfeld Rhyolite (sample 4) as the oldest phase and the effusive-subvolcanic

Teplice Rhyolite (phase 2; TPR2), the youngest phase. The grey-greenish Schönfeld Rhyolite

contains only a few quartz phenocrysts (<3 vol.%) showing an amoebic and skeletal shape.

The Teplice Rhyolite (sample 5), volcanic fill of the ATC is the largest outcropping

Carboniferous volcanic suite of the Bohemian Massif (Hoth et al., 1995). TPR2 displays

hiatalporphyric texture with euhedral quartz (2-3 mm), anhedral alkalifeldspar and few biotite
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phenocrysts, sometimes also plagioclas. The caldera collaps was later followed also by a

multiple intrusion of highly differentiated Schellerhau granites hosting Sn-W-mineralisations

(Breiter et al., 1991). The subvolcanic Schellerhau Granite Complex (SGC) belongs to the

highly evolved younger intrusion complex (YIC) of the Erzgebirge batholith (e.g. Tischendorf

and Förster, 1990). The SGC is characterised by the intrusion sequence of porphyritic (SG1)

to weakly porphyritic monzogranites (SG2) and mostly seriate albite granite (SG3). The SG1,

SG2 and SG3 chemically represent the suite of P-poor, Li-F-enriched A-type series

leucogranites. They are weakly peraluminous (A/CNK ≤ 1.2), enriched in HREE, Y, Th, Hf,

Zr, Sc, Nb, Ta, U and display from SG1 towards SG3 elevated abundances especially of Rb,

Li, F, and Sn. There is only a moderate chemical contrast between SG1 and SG2. The SG3 is

more highly evolved as to be seen also from fluid saturation textures. NW- and NE-striking

faults with vertical dislocations of several hundred metres form the SGC as horst and as a

result some deeper pluton parts are uncovered by erosion within the ATC. The granite variety

SG2 (sample 6) was selected for investigations in part I (see also § 7.4 and 7.5). The SG2

exhibits a weak hiatalporphyritic texture. Euhedral quartz phenocrysts with an average size of

2.6 mm are overgrown by an anhedral quartz phase with an average grain size of 0.7 mm.

The Eibenstock granites (sample 7) are related to the younger intrusive complex (YIC) of the

Krušné Hory/Erzgebirge Batholith in Western Erzgebirge (Lange et al., 1972; Fiala, 1968).

The batholith extends over an area of about 6000 km2, belongs to the largest Variscan granite

bodies of the Variscan Orogen. The sample 7 represents the first intrusion phase of the

Eibenstock granites and is characterised by a coarse grained, perthitic texture with porphyritic

kalifeldspars (3 cm). The porphyritic two mica Aue Granite (sample 8) which forms small

satellite intrusions located northwestern of the Eibenstock Granite Massif belongs to the older

intrusion complex (OIC) of the Krušné Hory/Erzgebirge Batholith.

In chapter 9 the study is focused on the topaz-bearing granites of the Hub Stock hosting the

Sn-W deposit Krásno, Slavkovský Les Mountains, Czech Republic (Jarchovský et al., 1994;

René, 1998). The Hub stock is situated at the SE margin of the Krušné Hory/Erzgebirge

Batholith. The porphyritic topaz-albite granite (sample Ju-10) comprises fine-grained

equigranular groundmass containing a phenocryst population dominated by quartz (2-5mm),

platy zinnwaldite, and sparse K-feldspar (0.5-2 cm). Topaz-albite microgranites (sample Ju-

20) found in the upper part of the Hub stock form the matrix to the intrusion breccias. The

hydrothermal vein quartz (sample 9) originates from a post-Variscan mylonite zone situated

in Hub stock granites.
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Oberpfalz/NW Saxony/Harz/Odenwald

The third group is represented by Permo-Carboniferous granites and rhyolites from different

localities of the Variscan Orogen of Germany (Oberpfalz, NW Saxony, Harz, Odenwald).

This group includes rocks which were investigated with CL by Schneider (1993). In our study

the trace element analysis of these samples facilitates a better understanding of the

phenomena described by Schneider (1993). Furthermore, this samples were chosen to

compare the quartz properties of the magmatic rocks of the Krušné Hory/Erzgebirge with

other magmatic provinces of the Variscan Orogen.

The Wachtelberg Rhyolite (sample 10) intruded metamorphic units of the Variscan

Frankenberg – Hainichener Zwischengebirge at the Northern edge of the Erzgebirge. The

Frankenberg – Hainichener Zwischengebirge is part of the SW-NE striking Central Saxonian

Lineament. The intrusion marks the intersection of Central Saxonian Lineament with the

Flöha Lineament.

The Beucha Rhyolite (sample 11) belongs to youngest subvolcanics of the Permo-

Carboniferous Volcanic Complex of Northwest Saxony. The rhyolite is characterised by the

inhomogeneous occurrence of xenolithes and pyroxenes indicating assimilation of lower and

mid-crustal rocks. Mineral framework indicates a strong whole rock alteration: discordant

calcite veins, apatite in opaque biotites, sericitised and kaolinised orthoclas and plagioclas,

and pyroxenes dulled by iron oxides.

The medium-grained two-mica Flossenbürg Granite (sample 12) intruded Moldanubian

paragneisses of the Northern Oberpfalz/Germany. The anhedral quartz fills irregular cavities

between the subhedral to euhedral feldspar and mica. Sample 21 is a clear, pegmatoid quartz

lens (leucosome quartz) of migmatitic, Variscan HT-LP-paragneisses of the Northern

Oberpfalz. During the Variscan peak metamorphism the Proterozoic educts were overprint at

temperatures around 600°C and pressures between 2.5 and 4 kbar. The sample locality, the

quarry Böhmischbruck, is about 15 km southern of the Flossenbürg Granite.

The subvolcanic Ramberg Granite (sample 14) is beside the Brocken Granite the most

northern exposed Variscan granite in Germany situated in the Rhenoherzynian zone of the

Harz Mountains. The sample represents the medium-grained variety of the locality

Rosstrappe. The medium-grained variety occurs in the western and eastern part of the massif,

whereas a porphyritic type forms the central part of the pluton.

The Weinheim Rhyolite (sample 15) is situated in the Southern part of the Odenwald

Mountains/Germany, which forms part of the Mid-German Crystalline Rise (MGCR) within

the Saxothuringian zone of the Variscan Orogen. The magma formation of the near-surface
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intruded rhyolite is explained by lower crustal anatexis and assimilation of upper crystal

rocks. Secondary processes lead to the pneumatolytic hydrothermal alteration of the rhyolite

(Flick, 1986; Arikas, 1964).

Eastern Lachlan Fold Belt

Granite samples collected from the Eastern Lachlan Fold Belt/Australia form the fourth

group. The study of these samples contributes to the DFG project “Morphogenesis and

tectonic setting of magma emplacement in the Eastern Lachlan Fold Belt, Australia” in co-

operation with the University of New South Wales, Sydney, Australia (Trzebski et al., 1999).

The northern part of the eastern Lachlan Fold Belt evolved in an island-arc setting during the

lower Palaeozoic (Powell, 1984; Coney, 1992; Collins and Vernon, 1992; Gray et al., 1997).

The Carcoar, Barry and Sunset Hills granites intruded the multiply deformed Ordovician

metasedimentary and volcaniclastic rocks during the Silurian.

The I-type Carcoar Granodiorite is a fine- to medium-grained, enclave-containing,

hornblende-biotite granodiorite to tonalite. The I-type Barry Granodiorite is a meridionally

elongated body (5 x 12 km), consisting mainly of hornblende and biotite granodiorite of

tonalitic composition with minor microtonalite enclaves (Lennox et al., 1998). The Sunset

Hills Granite shows an S-type aluminium saturation index (Wyborn and Henderson, 1996)

and contains 40-50% quartz, 30-40% plagioclase, 10-20% biotite and less than 10%

muscovite (Lennox et al., 1998). All three granites show a pervasive tectonic caused by the

multiple deformation during the Early Devonian Bowning, late Middle Devonian

Tabberabberan and Early Carboniferous Kanimblan events (Lennox et al., 1998; Trzebski et

al., 1999).
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Table 1.1    Reference list of the sample material with origin and characteristics.

Damara Orogen

No. Sample name Lokality Formation
process

Age Formation
temperature

Specific features

1 megaquartz Hakos Mts./
Namibia

hydro-
thermal

Upper
Proterozoic

150-250°C Megacrystals up to 60 m

2 fissile quartz Hakos Mts./
Namibia

hydro-
thermal

Upper
Proterozoic

150-250°C perfect cleavage parallel to
the positive rhombohedral
faces {1011}

3 oil-bearing
quartz

Geelkop
Dome/
Namibia

hydro-
thermal

Upper
Proterozoic

150-250°C oil-bearing inclusion

Krušne Hory/Erzgebirge

No. Sample
name

Lokality Formation
process

Age Formation
temperature

Specific features

4 Schoenfeld
Rhyolite

Eastern
Erzgebirge/
Germany

magmatic 310±5 Ma >850°C phenocysts

5 Teplice
Rhyolite
(TPR2)

Eastern
Erzgebirge/
Germany

magmatic 308±2 Ma
(Lobin
1983)

>850°C phenocysts

SH22 SG1
Schellerhau
Granite

Eastern
Erzgebirge/
Germany

magmatic 300±5 Ma >650°C phenocrysts overgrown by
matrix quartz

6;
SH16,
SH32

SG2
Schellerhau
Granite

Eastern
Erzgebirge/
Germany

magmatic 300±5 Ma >650°C phenocrysts overgrown by
matrix quartz

SH18 SG3
Schellerhau
Granite

Eastern
Erzgebirge/
Germany

magmatic 300±5 Ma >500°C Snowball-textured quartz

Podlesi
dyke granite

Krušne Hory
/ Germany

magmatic 300±10 Ma >500°C Snowball-textured quartz

7 Eibenstock
Granite

Western
Erzgebirge/
Germany

magmatic 300±10 Ma 695±6 °C1

(Solidus-
temp.;
Thomas
1994a)

phenocrysts over-grown by
matrix quartz

8 Aue Granite Western
Erzgebirge/
Germany

magmatic 325±5 Ma
(Förster
and
Tischendor
f 1994)

>650°C phenocrysts over-grown by
matrix quartz

Ju 10 Krásno
Granite

Hub Stock,
Slavkovský
Les
Mts./Czech
Republic

magmatic Upper
Carbo-
niferous

>650°C phenocrysts overgrown by
matrix quartz
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Krušne Hory/Erzgebirge

No. Sample
name

Lokality Formation
process

Age Formation
temperature

Specific features

Ju14 Krásno
Micro-
granite

Hub Stock,
Slavkovský
Les
Mts./Czech
Republic

magmatic Upper
Carbo-
niferous

>650°C phenocrysts overgrown by
matrix quartz

9 vein quartz Hub Stock,
Slavkovský
Les
Mts./Czech
Republic

hydro-
thermal

<300 Ma <500°C Berg crystals (3 mm)

Oberpfalz/NW Saxony/Harz/Odenwald

No. Sample name Lokality Formation
process

Age Formation
temperature

Specific features

10 Wachtelberg
Rhyolite

Frankenberg
Mts./German
y

magmatic Rotliegen-
des

>850°C phenocrysts

11 Beucha
Rhyolite

NW Saxonia/
Germany

magmatic Rotliegen-
des

>850°C phenocysts

12 Flossenbuerg
Granite

Oberpfalz/
Germany

magmatic 312±3 Ma
(Rb/Sr WR;
Siebel et al.
1997)

>650°C euhedral matrix quartz

13 leucosome
quartz

Oberpfalz/
Germany

pegmatitic ~320 Ma
(Peak meta-
morphose)

~600°C clear crystals

14 Ramberg
Granite

Harz/
Germany

magmatic 290 - 295
Ma
(Rb/Sr WR;
Schust et
al. 1991)

>650°C phenocrysts over-grown by
matrix quartz

15 Weinheim
Rhyolite

Odenwald/
Germany

magmatic Rotliegen-
des

>850°C phenocyst

Eastern Lachlan Fold Belt

No. Sample
name

Lokality Formation
process

Age Formation
temperature

Specific features

AU4-
AU7

Barry
Granodiorite

Eastern
Lachlan Fold
Belt/Australia

magmatic Early
Silurian

752±37°C phenocrysts overgrown by
matrix quartz

AU9-
AU16

Sunset Hills
Granite

Eastern
Lachlan Fold
Belt/Australia

magmatic Early
Silurian

>700°C phenocrysts overgrown by
matrix quartz

AU28-
AU55

Carcoar
Granodiorite

Eastern
Lachlan Fold
Belt/Australia

magmatic Early
Silurian

766±36°C euhedral matrix quartz
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2   Fundamentals of cathodoluminescence

The term cathodoluminescence (CL) designates the luminescence induced by electron

bombardment. The interaction of the electron beam with the sample gives rise to a number of

effects: the emission of secondary electrons (SE), back-scattering of electrons (BSE), electron

absorption (“sample current”), characteristic X-ray, and CL emission (Fig. 2.1). Most energy

of the beam is converted into heat. The penetration depth of electrons and accordingly, the

excitation depth depends on the energy of the electrons (10-20 keV) and is in the range of 2-8

µm (e.g. Marshall, 1988).

Luminescence can be divided into two: intrinsic CL which is characteristic of the host lattice

and extrinsic CL which results from impurities. Larger defects such as dislocations and

clusters may also effect the CL.

Intrinsic luminescence is enhanced by non-stoichiometry (vacancies), structural imperfections

(poor ordering, radiation damage, shock damage), and impurities (non-activators), which

distort the crystal lattice. Some trace elements like Ti may provoke both intrinsic and extrinsic

CL. However, the role of Ti in enhancing intrinsic CL is a matter of discussion. Ti-rich

feldspar and quartz show blue CL, but the effective state of Ti charge and lattice position is

thin section

Auger
electrons

X-rays

cathodoluminescence

incident electron beam

heat

backscattered
electrons

secondary
electrons

sample
current

unscattered
electrons

elastically
scattered
electrons

inelastically
scattered
electrons

Fig. 2.1 Schematic representation

of processes resulting from electron

bombardment (modified after Potts

et al., 1995). Note that the

emissions come from different

depths, e.g. CL and X-rays are

emitted from deeper section levels

than secondary electrons.
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not answered (Marshall, 1988). Both the use of the term “activator” and the term “intrinsic”

have been used to characterise the CL of minerals containing Ti.

The impurities, responsible for the extrinsic luminescence, are called activators. Elements are

referred to as sensitizers when their presence is necessary to create a luminescence centre with

an activator. The latter is transferred into an excited state which results in a sensitized

luminescence (e.g. Waychunas, 1988; Remond et al., 1992). The luminescence properties are

mostly the result of luminescence-activating ions such as transition metals, rare-earth

elements or actinides. Changes of the crystal field properties i.e., field strength, site

symmetry, and coordination number, cause differences in the magnitude of the energy levels

of the activator elements and also the splitting of closely spaced levels. Therefore the CL

spectrum is not a characteristic property of the activator but a property of the mineral. The CL

intensity generally increases with the concentration of the activator to a maximum and then

decreases. This decrease is referred to as concentration quenching (self-quenching). It can be

explained by the transfer of a part of the excitation energy to other activator ions which is

more effective than luminescence emission. Some ions (quenchers) such as Fe3+, Fe2+, Co2+,

and Ni3+ show broad and intense charge transfer bands in the absorption spectrum and cause

quenching of the luminescence of activators with interfering emission bands. The quenching

by ions with intense charge transfer bands especially influences the visible and near UV

spectral ranges, whereas luminescence emissions in the IR are more or less unaffected.

Apparently, the quenchers cause new closely-spaced energy levels so that the electron can

easily return to the ground state with the emission of low-energy photons (IR) or by losing

heat energy (Marshall, 1988).

Quenching due to lattice defects may occur if the crystal structure is damaged by mechanical

processes, radiation, growth defects or impurities. These lattice defects create new energy

levels between the conduction and the valence bands resulting in absorption of the excitation

energy, non-luminescent energy transfer or low frequency emission.

Another process which may be responsible for lowering the luminescence intensity is thermal

quenching. Principally, heating of a sample results in the release of electrons and accordingly

in the excitation of thermoluminescence. During irradiation of a sample with high-energy

particles (e.g., electrons, ions) a part of the energy can be transformed into heat which

influences the energy transfer and non-luminescent transitions. As a consequence, the

luminescence intensity decreases during electron bombardment and then stabilises.
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Cathodoluminescence is considered to form in 3 steps: (1) the absorption of excitation energy

and stimulation of the atoms into an excited state, (2) transformation and transfer of the

excitation energy, and (3) emission of light and relaxation to a non-excited state (Marfunin,

1995). The first two steps mainly depend on the mode of excitation, whereas the third step

depends on the character of specific luminescence centres.

In crystals, complex interaction between atoms leads to the broadening of the energy levels

into bands. In insulators like quartz, a broad gap, called the forbidden gap, exists between the

valence band and the conduction band. A precondition for cathodoluminescence is the

existence of activators (impurity ions, lattice defects), which cause and occupy discrete

energy levels in this forbidden zone. Luminescence centres can be differentiated by their

energy position within the forbidden gap and divided into into electron traps near the

conduction band (donor level) and recombination sites in the vicinity of the valence band

(acceptor level) (e.g. Marfunin, 1979).

Fig. 2.2   Processes of charge transfer and luminescence production in crystals after Krbetschek et al. (1997).

CL involves electron radiation induced excitation of an electron from the ground state to an

excited state. The following de-excitation leads to a state of lower energy within the forbidden

gap. Excitation results in the trapping of an electron or in the recombination with a

luminescent or a non-luminescent centre (Fig. 2.2a). In the case of a luminescent transition, a

photon is emitted. If the atom or ion is placed in a crystal lattice, non-luminescent transitions

are possible due to absorption or emission of lattice vibrations. A trapped electron can be

excited again, transits into the conduction band and may recombine with an activator element

level under emission of a photon (Fig. 2.2b). In the case of a small energy difference between

electron trap and activator level, a direct luminescent transition of the electron to the

conduction band

forbidden
    gap

valence band

luminescence luminescence luminescence

a b c d
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recombination centre is possible (Fig. 2.2c). In figure 2.2d the excitation of several energy

levels and the subsequent relaxation and luminescence emission of a single activator is

shown.

2.1   Point defects in quartz

Quartz lattice defects can be grouped into three types according to their structure and size: 1)

point defects (most important for luminescence studies), 2) dislocations, 3) inclusions and

clusters of foreign minerals and volatiles. During crystallisation the impurity and lattice

defects are generally incorporated as charge compensated, diamagnetic defect centres. Natural

radioactivity as well as the electron radiation during experiments causes the transformation of

diamagnetic precursor centres into paramagnetic centres. The irradiation changes the defects

by trapping an electron or creating a hole at the site of a precursor defect. Additionally,

Fig. 2.3   Synopsis of the most common lattice defects in quartz modified after Götze (2000).

atomic displacements from the normal bonding (defect-free) sites may form by radiolysis

processes (Kalceff and Phillips, 1995).

EPR studies have identified about 20 different paramagnetic defect centres in quartz which

can be divided into 2 main types: 1) vacancy centres, which are subdivided into electron
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centres (oxygen vacancies) and hole centres (silicon vacancies) and 2) impurity centres which

are subdivided into electron centres (M4+ + e-) and hole centres (M3+, M2+ ions, as well as

atomic hydrogen). (e.g. Marfunin, 1979; Kostov and Bershov, 1987; Agel, 1992; table 2.1).

The type 2 has different varieties, depending on the kind of ion-charge compensator in

structural channels, such as H+, Li+, Na+, as well as on the position of the compensator.

The paramagnetic vacancy centres are represented by the frequent E’ centre (≡Si⋅), the

peroxy radical (≡Si-O-O⋅), and the nonbridging oxygen hole centre (NBOHC) (≡Si-O⋅) (e.g.

Weeks, 1956; Weil, 1984; Marfunin, 1979; Griscom, 1985; Kalceff and Phillips, 1995; Fig.

2.3). The non-paramagnetic oxygen vacancy (Si-Si) and the trapped electron centre (≡Si:) are

possible precursors for an E’ centre and the peroxy linkages (Si-O-O-Si) for a peroxy radical

and/or the NBOHC. The paramagnetic O- and O3-
2 centres represent different types of

NBOHC in tetrahedra with silicon vacancy (e.g. Bershov et al., 1978; Serebrennikov et al.,

1982).

Table 2.1    Common paramagnetic centres of quartz after Plötze (1995).

Impurity centres Vacancies

Si4+ substitution Interstitial Oxygen
vacancies

Silicon vacancies

Electron centres
(+e-)

[TiO4]-

[TiO4/M+]0

[GeO4]-

[GeO4/M+]0

M+ = H+, Li+

M+ = H+, Li+

E’ centres:
[SiO3]3-

Metastable

Electron centres
(-e-)

[AlO4]0

[FeO4]0
O- centres:
O-, O2

3-, O2
3—M+

Stable
(paramagnetic without
 charge receive)

[FeO4/M+]0

?[FeO4]-

(precursor for
[FeO4]0

M+ = Na+, Li+,
Fe3+

Impurity ions enter either interstitial or substitutional positions in the quartz lattice depending

on ion radius and charge. The number of ions which can substitute for the silicon atom in the

quartz lattice is limited because of the small ionic radius of Si4+ compared to its 4-valency.

Typical substitutes are Al3+, Ti4+, Fe3+, Ge4+, P5+, and Ga3+ (Xn+; order of average frequency)

(e.g. Bambauer, 1961; Lehmann, 1975; Lehmann and Bambauer, 1973; Maschmeyer and

Lehmann, 1983b; Weil, 1984). Nuttall and Weil (1980) and McLaren et al. (1983) reported a
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hydrogenic trapped hole-center with four hydrogen atoms on a silicon position. Large open

channels (smallest O-O diameter 3.55 ? ) thread through the quartz structure parallel to the c-

axis and offer locations for interstitial cations such as H+, Na+, K+, Li+, Fe2+, Cu+, Co2+, Ag+

... (Mn+; order of average frequency). They act as charge compensators for the substitutional

X3+ and X5+ ions. The possible incorporation of other cations in interstitial position (e.g. Ni2+,

Al3+, Fe3+, Co3+, Cr3+, Ti4+) is a matter of discussion (Lehmann and Bambauer, 1973a, b;

Weil, 1984).

The paramagnetic impurity centres which are built by tetravalent ions (mostly Ti4+ and Ge4+)

cause the formation of the diamagnetic [XO4]0 centres. These centres act as a precursor for the

paramagnetic [XO4]-, which develops during ionisation irradiation (table 2.1). At room

temperature these centres bind diffusing M+ cations such as H+, Li+, Na+ forming a

paramagnetic [XO4/M+]0 centre (Wright et al., 1963; Rinneberg and Weil, 1972; Mackey,

1963; Rakov et al., 1985; Agel, 1992; Weil, 1993). The trivalent ions build up diamagnetic

[YO4/M+]0 centres associated with an adjacent charge compensating cation M+ (H+, Li+, Na+).

The paramagnetic defects are metastable and decay depending on the temperature. The

closure temperature varies e.g. 55-82°C for the [TiO 4/M+]0 centre and 49-64°C for the [AlO 4]0

centre (Grün et al., 2000).

2.2   The state of water in quartz

Apart from Al, bonded water in the quartz lattice in the form of H+, OH- and H2O is the most

important impurity. Brunner et al. (1961) proposed that water can be incorporated into the

quartz lattice according to the reaction: -Si-O-Si- + H2O = -Si-OH + HO-Si-. This is a

preferred stress-induced mechanism and referred to as “hydrolytic weakening” (e.g. Griggs

and Blacic, 1965; Griggs, 1967; Fig. 2.4a). Calculations of total energy indicate that this

reaction which uses an energy of ~0.1 eV is spontaneous for a Si-O bond stretched beyond

4% of its normal bond length (Heggie, 1992). Another possible configuration is described by

Nuttall and Weil (1980) and McLaren et al. (1983), who assumed that hydrogen is
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Fig. 2.4   Models of the structural state of water in the quartz lattice. a – hydrolytic weakening according to

Griggs (1967); b - (4H)Si defects according to McLaren et al. (1983) where 4H+ substitutes for Si4+; c- model of

aqua complexes after Stenina et al. (1988). The incorporated water molecule forms weak donor-acceptor and

hydrogen bonds with the surrounding matrix. This bonds break during electron radiation.
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incorporated in the quartz structure by means of (4H)Si defects where 4H+ substitutes for Si4+

(Fig. 2.4b). The infrared absorption spectra of natural quartz crystals typically exhibit sharp

absorption peaks between 3000 and 3700cm-1 which are associated with hydrogen and

hydroxyl acting as a charge compensator of Al3+/Mn+ (e.g. Brunner et al., 1961; Kats, 1962;

Bambauer et al., 1963). Kronenberg et al. (1986) showed that the solubility of water in the

quartz lattice depends on the Al content. Maschmeyer and Lehmann (1983a) proposed a

model where two OH goups are neighbouring substitutional X3+ and interstitial Mn+. Based on

transmission electron microscopy (TEM), X-ray microanalysis and EPR Stenina et al. (1988,

1995) showed that the trace substitutional X3+ and related compensating Mn+ create parts of

aqua complexes and clusters in the form of 2SiO 3-H2O-Mn+2Xm+O4, where Xm+ is mostly Al3+

and Fe3+ and Mn+ mostly Li+ and Na+ (Fig. 2.4c). The tetrahedrally charged water molecule is

built between two defective positively charged SiO 3
+ tetrahedra and the two defective

negatively charged [Xm+O4] tetrahedra. Mn+ cations enter interstitial position as charged

compensators. This scheme of heteroisomorphic substitution Mn+Xm+ for Si4+ is typical for

quartz. The incorporated water molecule forms weak donor-acceptor and hydrogen bonds

with the surrounding matrix. This tetrahedrally-charged water can be revealed in the IR-

spectrum as molecular water and hydroxyl. Under electron beam irradiation the aqua

complexes become visible by TEM in form of several microns small, non-crystalline (gel

like) micro-areas with diffuse boundaries.
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3   Cathodoluminescence equipment

3.1   Sample preparation

In this CL study thin sections with a thickness of 250 µm were used so as to provide

demountable thin sections on which to carry out LA-ICPMS, FTIR spectroscopy, EPMA, and

CL on the same area of the quartz samples. The laser of the ICPMS ablated craters 100 – 150

µm in depth and for the FTIR spectroscopy demounted thin sections polished on both sides

are necessary.

The first stage of sample preparation consists of cutting the section, which was mounted on a

glass slide with epoxy resin. Subsequent polishing was carried out with progressively finer

grades of abrasive (carborundum). The final stage involves polishing with diamond paste with

a grade of 0.3 µm. The samples were thoroughly cleaned. The polished surface was mounted

on a standard glass slide (48x24x2.8 mm) with Akemi Mamorkitt 1000. The other glass slide

was removed and the procedure of polishing was repeated until a section thickness of 250 µm

was reached. For sample temperature measurements during CL and FTIR spectroscopy the

section was removed from the glass slide with Xylol. In addition, a number of thin sections

were chemically polished with a OP-S suspension of different granularities (1 µm and 3 µm)

in order to test the effect of the surface quality on the CL properties.

Quartz being a non-conductor, requires a conductive coating to prevent charging under

electron bombardment. The preferred coating for CL studies is carbon. It is also the best

choice for X-ray analysis, because has a minimal effect on the X-ray spectrum. However, it is

not ideal for SEM imaging, owning to its low secondary electron field. The coating was done

at standard conditions to a thickness of about 15nm to avoid variations in CL-intensity.
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3.2   Optical CL

Cathodoluminescence microscope HC3-LM

The commercially produced hot-cathodoluminescence microscope (HC1-LM) after Neuser et

al. (1995) is provided with a high-vacuum chamber (<10-5 mbar) and uses an acceleration

voltage of 14keV (Fig. 3.1). The HC1-LM is a development of the prototype constructed at

the IGDL Göttingen 1987 (Neuser, 1988) according to the model of Zinkernagel (1978). The

electron gun operates as a “hot cathode”, i.e. the electrons are emitted from a heated filament.

In a “cold cathode” CL microscope the electron beam is generated during discharge between

the cathode and anode in an ionised gas. The hot-cathode technique provides a considerably

greater beam stability and CL intensity than the cold cathode instruments and thus is suitable

for investigation of the weakly luminescent quartz. The electron gun directs a focused beam

upwards onto an inverted thin section; the CL is viewed through the sample from above. The

electron beam with a diameter of ca. 4.8 mm irradiates the thin section surface with a current

density of ca. 10 mA/mm2. The basis of the HC3-LM is a polarisation microscope model

OLYMPUS BX30M with some modifications, for instance, the vacuum sample chamber is

mounted in place of the sample stand. The polarisation objectives have a

magnification/numerical aperture of 5x/0.15, 10x/0.30, 20x/0.40. The high vacuum of the

sample chamber is attained by a Diffstak oil diffusion pump combined with an Edwards

rotary vane pump.

The TRIAX 320 Spectrograph

CL spectra were recorded with a triple-grating spectrograph TRIAX 320 provided with a

liquid N2-cooled Charge Coupled Device (CCD) camera (Fig. 3.2). The system is well suited

to applications with very low signals such as the CL of quartz. The spectrograph is attached to

the CL microscope ocular with a quartz fibre guide of 1.5 m length (transmission range 200-

900 nm). The quartz fibre guide is coupled via a fibre optic interface to the entrance slit of the

TRIAX 320. The system is controlled by an external PC using the software programs

HWINIT for hardware initialisation and SpectraMax for Windows for data processing.

The triple-grating spectrograph is equipped with one ruled grating (100 lines/mm) and two

blazed holographic gratings (1200 and 1800 lines/mm) which are mounted on a rotating triple

grating turret. The higher spectral resolution obtained with the 1200 and 1800 lines/mm

gratings results in small ranges of the recorded spectra, namely 70 nm and 40 nm, respectively

(Table 3.1).
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Table 3.1    Specification of the used optical gratings.

Grating 100 lines/mm 1200 lines/mm 1800 lines/mm
Working range 250 – 900 nm 190 – 1200 nm 250 – 900 nm
Scanning range per recording 1000 nm 70 nm 40 nm
Spectral resolution 0.5 nm 0.06 nm 0.02 nm
Wavelength position accuracy 1 nm 0.3 nm 0.1 nm

The back-illuminated CCD camera with UV-AR-coating has a spectral response between 200

and 1050 nm (Fig. 3.3). The CCD detector array is built up of an area of silicon photodiodes

divided into a 2-dimensional matrix of pixels. Each pixel integrates a charge arising from the

photoelectric effect caused by the incident light. The charges of adjacent pixels are kept

separated by a grid of electrodes that confine the changes by electrostatic force. The pixel

charge is controlled and read out by the detector interface unit (DIU). The signal from the

CCD is processed, amplified and converted to digital datapoints by electronics in the DIU and

transferred to the host PC.

1800

100

triple-grating 
turret

LN  cooled CCD 
camera

2 focus mirror

torroidal 
collimating 
mirror

quartz glass 
guide

fiber optic 
interface

stepper motor

The CCD array head is cooled by liquid nitrogen which works with a temperature below –

140°C. The cooling is necessary to lowering the dark current and to obtain a better

signal/noise ratio at low photon emission rates.

Fig. 3.2   Top view of the
Spectrum One TRIAX
320 spectro-graph.
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A mercury lamp was attached to the entrance slit of the spectrometer in order to calibrate the

wavelength. A difference between the position of the measured peak and the known mercury

peak at 546.1 nm was corrected by setting the wavelength difference into the lines

“MultiAUtoCaloffset 0 =” (1200 lines/mm grating), “MultiAUtoCaloffset 1 =” (1800

lines/mm grating), and “MultiAUtoCaloffset 2  =” (100 lines/mm grating) of the file

MONO1.ini.

The CL spectra were recorded for the same instrumental setting: a filament current of 0.18 nA

using the objective 20x/0.40. The analysed area was 800 µm in diameter. The 100 lines/mm

grating was used to fully detect the emitted spectra of visible light between 400 and 900 nm

(3.1 - 1.4 eV). The 1200 lines/mm grating provided high-resolution spectra of 70 nm width

sectors. The high wavelength resolution obtained by using the 1800 lines/mm grating was not

suitable as the half-width of the quartz CL bands varies between 20 and 100 nm.

The time-resolved spectra were recorded within 40 s (100 lines/mm grating) and of 60 s (1200

lines/mm grating) using the maximum entrance slit width of 2 mm and an acquisition time of

20 and 30 s, respectively. The system needed twice the acquisition time to accumulate the low

emission intensity and to measure the background. The intensities are integrated over the

duration of exposure. The first spectrum was recorded immediately after the initialisation of

the electron bombardment because of drastic CL change of quartz during the first seconds of

radiation (Fig. 3.4). Subsequent spectra were recorded in steps of one minute or several

minutes.

The change of the CL intensity of the 1.96 and 2.79 eV emissions during electron radiation

was measured with the f/3.4 Grating Monochromator at a speed of 10 mm/min using the CL

Fig. 3.3 Spectral
sensitivity of the TRIAX
320 CCD-camera
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microscope after Zinkernagel (1978) at the University Göttingen (10 keV, 0.2 nA). In

contrary to the TRIAX 320 the monochromator allows the record of the CL intensity change

from time zero of electron radiation. The CL intensity drastically changes during the first

seconds of electron radiation and its recording is of interest for solving the causes of CL.

The photographic documentation was carried out by a NIKON Microflex UFX-II system

equipped with a NIKON FX-35A reflex camera (Fig. 3.1). Colour slides of the luminescent

images were taken with high-sensitive films KODAK Ektachrome 400 HC (400 ASA) and

KODAK Ektachrome 1600 (1600 ASA). High-sensitive films were chosen because of the low

CL intensities. The exposure times were of 100 – 250 s for the 400 HC and of 10 – 30 s for

the 1600 using the 10x/0.30 objective.

Fig. 3.4   Used time
steps for time-resolved
spectrum recording with
the 100 lines/mm (a) and
1200 lines/mm grating
(b). The grey squares
represent the duration
which is necessary for
spectrum acquisition.
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3.3 The scanning electron microscope (SEM) CL

The scanning electron microscope (SEM) is along with the light microscope the most

important imaging instrument. The scanning electron microprobe utilises a scanned electron

beam with a small spot size normally around 2 µm in diameter. By scanning the electron

beam, synchronized with the X, Y deflection of a display oscilloscope, and modulating the

display oscilloscope intensity with the photomultiplier output, a magnified map of the CL of

the specimen is obtained. Total photomultiplier output intensities were used for the intensity

function.

The SEM-CL offers advantages over the conventional (optical) CL microscopy for CL studies

(Grant, 1978; Tovey and Krinsley, 1980). The main advantage is the larger spatial resolution

of ≤1µm2. Other advantages are the higher magnification, the capability of combining CL and

SEM investigations like back scattered electron (BSE) imaging and microanalytical analysis

on the same area. The possibility of increasing the power density over small sample areas is

useful for samples with low CL intensity like quartz. A disadvantage is the monochromatic

(grey scale) image.

Two scanning electron microscopes equipped with different CL detectors, the Cambridge

Instruments 250-MK3 with a S20-Extended photomultiplier and the JEOL JXA 8900 with a

CLD40 R712 photomultiplier, were used for the study of internal growth patterns and

secondary CL structures within individual quartz crystals. The voltage and sample current for

both SEM was 15 keV and 5-15 nA. A quartz glass lens in front of the S20-Extended detector

collects the emitted light of the sample; the photomultiplier of the JEOL system works

without additional lenses and mirrors. Images were collected from the JEOL system using

slow beam scan rates of 20 s at processing resolution of 1024x860 pixels and 256 grey levels.

The documentation of the CL images at the 250-MK3 were carried out with a photocamera

with Agfapan APX 25 films and by using slow beam scan rates of 250 sec.

The detectable wavelength for both photomultipliers ranges from 380 to 850 nm. The lower

limit of detection is 380 nm, which is determined by the absorption of the lead glass plate in

front of the photomultipliers. The maximum wavelength responses are at 600 nm for the

CLD40 R712 and at 420 nm for the S20-Extended photomultiplier. The spectral sensitivity of

both photomultipliers are shown in the figure 3.5.

Remarkable differences between the images produced by the photomultipliers have been

found (Fig. 3.6). The S20 Extended photomultiplier is more sensitive for blue emissions and

was therefore used for imaging of samples with dominant blue luminescence, whereas the
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CLD40 R712 photomultiplier was preferred to contrast reddish luminescent secondary

textures. Dark contrasted areas of quartz SEM-CL images always correspond to red to reddish

brown CL-colours and bright areas correspond to blue to violet colours. The luminescence

colours were checked by optical CL prior to or after SEM-CL investigations.
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Fig. 3.5   The spectral

sensitivity characteristics of the

Cambridge Instruments S20

Extended and the JEOL CLD40

R712 photomultipliers.

Fig. 3.6   Unprocessed SEM-CL
images of a vein quartz (sample 9)
using different photomultipliers. a -
Cambridge Instruments S20
Extended photomultiplier; b -
JEOL CLD40 R712
photomutliplier.
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Image processing was carried out using the software Optimas 6.0 for Windows. Starting with

an unprocessed CL image a typical sequence of processing steps was: (1) producing a grey

level histogram (2) selection of the grey level range responsible for contrasting of structures

within the quartz crystal (3) extension of the chosen grey level range to 256 grey levels (4)

treatment of the image with several filters for sharpening and smoothing (5) determination of

grey-scale profiles e.g. along trace element traverses of zoned quartz crystals, as shown in

figure.

3.4   Mathematical treatment of CL-spectra

Spectral data acquisition was carried out by using the software SpectraMax for Windows. The

emitted light was recorded in nanometer (nm). The emission bands are not immediately

obvious from visual inspection of the experimental data due to the close proximity of broad

emission bands which results in complex peak overlapping. The asymmetry of the broad

peaks and the shift in the different quartz samples suggests the presence of several bands. The

processing steps for spectra analysis were the following:

1) For processing of the spectra the data were exported as ASCII data into the EXCEL

program.

2) The spectra were corrected for the sensitivity of the spectrometer (Fig. 3.3). For that the

measured intensities were multiplied by the factor of efficiency.

3) Spectral emission bands normally have a Gaussian shape if plotted in energy space

(Kalceff and Phillips, 1995). Therefore, the data in nanometer (nm) were converted into

electron volts (eV) according: E = 1239.8/?, where E is the energy (eV), and ? the

wavelength (nm).

The shape of the intensity distribution of an emission band plotted versus the light energy

is described by the Gaussian function. The emission intensity I(E) at the energy E (eV) of

an emission band centred at a is described by the following equation:
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1 - (E – a)2/2 s 2

I(E)   =   If   ————   e                                                   (3.3)
          s  v 2p

where If = intensity factor; E = energy (eV); a = position of the maximum of the

Gaussian curveand centre of symmetry; s = distance from a to the turning point of

the Gaussian curve (Fig. 3.7).
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The position (a), width (s), and size (If) of the Gaussian curves were calculated and

adjusted in such a way that the sum of the individual components equals the recorded

spectrum. The band positions (a) were determined by manual setting of the peak

configurations using the high-resolution spectra recorded with the 1200 lines/mm grating.

The intensity factor If corresponds to the area under the Gaussian curve (the integral of

Gaussian distribution from - 8 to + 8 is 1). If was used to determine ratio and percentage

of the individual emission bands of the total spectra between 1.4 and 3.1 eV recorded with

the 100 lines/mm grating.

Fig. 3.7   Gaussian curves for a =

0, If = const., and different s (0.2,

0.5, and 1).
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4   Microanalysis of trace elements and defect centre

characterisation in quartz

Amongst the suite of microanalytical techniques commonly used for trace element

determination, secondary ion mass spectrometry (SIMS), electron probe micro analysis

(EPMA), and laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) can

provide element analysis data with a high sensitivity and a high spatial resolution, which

allows the determination of element zoning of crystals. Therefore, the three methods were

chosen for the determination of the trace element distribution in quartz. The electron

paramagnetic resonance (EPR) and the Fourier-transform infrared (FTIR) spectroscopy are

powerful techniques available for the characterisation of defects centres in quartz. Clearly, no

single instrument gives a complete characterisation of a mineral, but if the five techniques are

employed in a complementary fashion, the chances for success are better.

The LA ICP-MS has the potential to determine most elements of the periodic system at the

part-per-million level in solids with a spatial resolution down to 20 µm. The instrument

allows fast and accurate analysis of most important trace elements in quartz (Li, Al, Ti, Cr,

Mn, Fe, and Ge). A laser beam with larger diameter and higher energy ablates more material

and results in lower detection limits. On the other hand the trace element distribution of zoned

quartz crystals requires highest spatial resolution. Therefore a compromise between detection

limit and spatial resolution has to be found. For a mean ablation crater size of about 20 µm the

detection limit for LA ICP-MS are comparable with those of EPMA.

The EPMA is based on X-ray emission of a solid bombarded with a focused electron beam.

Characteristic X-rays are analysed according to their wavelength, the peak intensity counted

relative to a standard. The main advantages of the EPMA are the high spatial resolution of ~4

µm and the capability of combining microanalytical analysis with CL and BSE imaging.

Trace and ultra-light elements (e.g. Li) which can not be measured by EPMA can measured

by the ion microprobe. The SIMS instrument uses a focused primary ion beam to perform in

situ microanalysis of minerals in samples prepared as gold coated polished thin sections. A

very small percentage of the sample material sputtered from the polished surface of the

sample is ionised, and these ions are accelerated into a mass spectrometer where they are

separated according to their mass. Nearly all elements from H to U can be detected and many

can be analysed quantitatively down to part-per-million levels, or lower. 16O- beam currents
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are required for trace element analysis and beam diameters of 30 µm allow the determination

of the chemical zoning of minerals.

The EPR is a powerful spectroscopic technique available for the detection and identification

of paramagnetic defects. Paramagnetic defects arising from impurities (Al, Ti, Fe, Ge, H, P,

Cu, Ag) and oxygen and silicon vacancies are induced by natural or artificial irradiation of the

quartz lattice. EPR describes the interaction between an electronic spin submitted to the

influence of crystal field and an external magnetic field. The technique based upon the

resonance absorption of induced magnetic microwaves caused by the magnetic moment of

unpaired electrons resulting from paramagnetic defects. The determination of centres were

made using powders.

The FTIR spectroscopy of quartz allows the qualification of structural bounded water in form

of H2O molecules, hydroxyl, hydrogen-compensated aluminium and lithium defects. Records

of spectra of single points and along profiles through quartz crystals were used to determine

variations of kind and quantity of water associated defects.

4.1   Electron probe microanalysis (EPMA)

Trace elements in quartz were determined by wavelength-dispersive Electron Probe Micro

Analysis (EPMA) on the JEOL JXA 8900 operating at an accelerating potential of 15 keV, at

a beam current of 120 nA on the Faraday cup, and with a beam diameter of 7 µm. Analyses

were performed for Al, Ti, K, and Fe. Raw intensities converted into concentrations, making

appropriate matrix corrections after the phi-rho-z method by Armstrong (1991).

Measurements were carried out as single point analysis, or as line scans, yielding distribution

profiles. CL imaging was performed prior and after EPMA analysis. In this way the

measurement points in relation to the CL textures can be exactly located.

Quartz contains trace elements of at such low concentrations that a quantification by EPMA

poses a major difficulty. Therefore, particular attention had to be paid to a number of

parameters: 1) long counting time, 2) high beam current, 3) precise background measurement,

4) high polishing quality of the sample surface, and 4) carbon coating with constant thickness.

The most decisive and often underestimated is the effect of the sample surface quality on the

sensitivity of the measurement (Fig. 4.1). The increase of the Al background between

measurement 39 and 48 during sample change is caused by sample surface contamination,
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Fig. 4.1   Variation of brutto intensities of the Al and Ti background measurements (upper minus lower

background) of three trace element profiles.

whereas the Ti background remains constant. This effect results in a decrease of the detection

limit for Al from 27 ppm to 50 ppm. Finally, for high precision and sensitivity, the high beam

current of 120 nA, the beam diameter of 7 µm, and the counting rate of 10 min per shot means

180 s per element were chosen.

The determination of element concentrations in analytical chemistry is based on repetitive

measurements and on the application of statistical methods (e.g. Miller and Miller, 1988;

Miller, 1991). In EPMA, concentrations are calculated from the difference between the

accumulated peak counts and the background (BG) at the position of the X-ray line

maximum. For extremely low concentrations only qualitative analysis is possible. The

concentration at the detection limit, CDL, as the lowest concentration of an analysed element

that can be distinguished with reasonable confidence from zero concentration of the analysed

element in a sample (blank). Ziebold (1967) suggested different definitions of the CDL, and

also Miller (1991) emphasises that a single, “correct”, definition of the limit of detection,

cannot be given and should be specified.

We used two definitions of the detection limit. The intensity (in counts) of the detection limit

(I1DL) is given in equation (4.1) (e.g. Merlet and Bodinier, 1990):
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I1DL = 3 σBG                                                         (4.1)

where σBG = standard deviation of the background.

To reach a probability of 95% that a peak is present, the peak counts must exceed three times

the standard deviation of the background, whereby the number of background measurements

n must be =5. I1DL was calculated for each trace element profile on the base of 12 background

measurements.

A second method for determining of the intensity of the detection limit (I2DL) is based on the

level of significance applied to Student’s t-distribution and the standard deviation obtained

from background measurements (Plesch, 1982):

I2DL = tz (P;f) s BG                                                          (4.2)

where sBG = standard deviation of the mean of the background; tz (P;f) = level of

significance of the Student’s t-distribution for binomial limitation determined by the

confidence level P and the degrees of freedom f = number of background measurements

n – 2.

For each trace element profile both I1DL and I2DL were determined. For the latter a confidence

level of 95% and 12 background measurements were used which result in the binomial level

of significance tz (P;f) of 2.228 (Table 4.1). The application of the equation (4.2) in this case

results in a lowering of IDL.

For the determination of the detection limit CDL the determination of the regression

coefficients a and b are necessary, which represent the gradients of the regression line

intensity vs. concentration of an element:

CDL = a + b IDL                                                            (4.3)

where a and b = the regression coefficients of the regression line intensity vs.

concentration.
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The regression coefficients a and b were determined by equation (4.4) and (4.5):

?  C  ?  I 2 - ?  C I  ? I
a =     —————————                                                  (4.4)

     n ?  I2 – (?  I )2

n ? C I  -  ?  I  ?  C
b =     ————————                                                      (4.5)

   n ?  I2 – (?  I )2

where I = intensity; C = concentration of measurements; n = number of measurements.

The regression lines of intensity vs. concentration for the elements Al, Ti, K, and Fe are

illustrated in figure 4.2. The regression coefficients a and b were calculated from 273

measurements for each element. The coefficient a represents the concentration for zero counts

and should be theoretically zero. But small systematic errors of the equipment result in a shift

of the regression line (a ? 0) for Al at about 19 ppm. Consequently, the Al content calculated

by the EPMA software is generally 19 ppm to high. For the other elements a is about zero.

The concentrations of the detection limit for Al, Ti, K and Fe calculated after the equations

(4.2) and (4.3) are shown in figure 4.3 and listed in table 4.2.

Table 4.1    Level of significance of the Student’s t-

distribution for binomial limitation (Plesch, 1982).

f tz (P;f)

P = 95% P = 99%

1 12.710 63.660
2 4.303 9.925
3 3.182 5.841
4 2.776 4.604
5 2.571 4.032
6 2.447 3.707
7 2.365 3.499
8 2.306 3.355
9 2.262 3.250
10 2.228 3.169
12 2.179 3.055
15 2.131 2.947
20 2.086 2.845
30 2.042 2.750
50 2.009 2.678
8 1.960 2.576



50

Fig. 4.2   Calculated regression coefficients a and b of regression lines of netto counts vs. element concentration.

Under ideal conditions a should be zero, but systematic errors of the equipment cause a shifting of the regression

line for Al at about 19 ppm.
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Table 4.2    Detection limits CDL (ppm) of EPMA calculated after the equations

(4.2) and (4.3) with a confidence level of 95%.

Profile
 number

n f Al Ti K Fe

1 12 10 41.8 10.9 9.1 9.1
2 12 10 27.9 11.2 5.5 11.2
3 12 10 51.3 7.3 13.0 14.5
4 12 10 66.4 13.0 5.7 7.4
5 12 10 32.2 6.8 5.6 8.0
6 12 10 32.1 12.1 5.7 12.7
7 12 10 28.6 9.5 5.4 7.7
8 12 10 27.2 6.5 6.4 6.4
9 12 10 26.0 5.9 5.8 8.6
10 12 10 23.6 6.2 6.7 8.1
11 12 10 50.2 9.7 3.6 6.6
12 12 10 25.2 6.7 8.3 9.1

4.2   Laser ablation - inductively coupled plasma mass spectrometry (LA ICP-MS)

The trace element composition of quartz grains has been determined using a Laser Ablation

microsampler coupled to an Inductively Coupled Plasma Mass Spectrometer (LA ICP-MS)

model FISONS PQ2+ with “S-option”. A Nd:YAG UV-laser (266 nm) model FISONS UV

Microprobe with a laser pulse repetition rate of 5 Hz was focused onto the surface of a

polished sample. Using a laser beam energy of 2.25 mJ, the middle aperture, and an

acquisition time of 40 s, the laser ablated craters 30 to 50 µm in diameter and between 100 to

150 µm deep. The ablated sample volume per shot amounted up to 300 000 µm3 of which

approximately 80% reached the mass spectrometer and was analysed. The determination of

the optimal laser configurations was carried out by several test measurements and varying

counting rates, to reach very low detection limits, to avoid sample outbreak during ablation,

and to get craters as small as possible for better spatial resolution of the trace element

distribution (Fig. 4.4). A laser beam with larger diameter and higher energy ablates more

material and results in lower detection limits which are inversely proportional to 3rd root of

the ablation volume (Potts et al., 1995). Nevertheless, the risk that micro-inclusions within

this volume were also analysed cannot be avoided.
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Fig. 4.4   BSE images of Nd-YAG laser ablation craters in quartz. a – Craters of a measurement profile through a

quartz phenocryst of the Schellerhau Granite (sample 6). b – A close view shows that the craters are surrounded

by wall of molten quartz glass.

The ablated material was swept by high purity Ar gas (flow rate 0.8-1.3 l/min) into an

inductively coupled plasma. Isotopic masses were analysed by an quadrupole mass filter.

Time resolved measurements showed that the plasma needed about 3 s before reaching the

mass spectrometer; during the following 5 s high count rates were detected. This may be

caused by sample outbreak and sample surface contamination. After 8 s a stable count rate

was reached, therefore, the counts of the first 8 s of the measurement were neglected.

Analyses were performed for the isotopes of 7Li, 23Na, 27Al, 29Si, 30Si, 44Ca, 49Ti, 53Cr, 55Mn,
57Fe, and 72Ge. The choice of the isotope of the element to be analysed depends on two

criteria: (1) interferences with masses of other isotopes should be avoided, and (2) the ratio

between intensity (peak) maximum of the isotope mass and the background should as high as

possible. Figure 4.6 shows the detection limits for the different isotopes. Note the detection

limit may highly vary for different isotopes of one element. For example, 7Li isotope has a

higher peak maximum/background ratio than 6Li resulting in a lower detection limit.

The data were calibrated against the NBS610 glass standard (external standard) and the

internal standard of the Si value (4.67 x 105 ppm = stoichiometric concentration of Si in

quartz). The element abundance of LA ICP-MS measurements were calculated by the

equation (4.6):
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cpselem
sample  ∗  cSi29

sample  ∗  cpsSi29
NSB

celem
sample =    ∗  celem

NSB                      (4.6)
cpsSi29

sample  ∗  cSi29
NSB     ∗  cpselem

NSB

where celem
sample = the concentration of the element of interest in the sample; cpselem

sample = count rate of

mass of element of interest in the sample; cSi29
sample = assumed concentration of the 29Si isotope in the

sample (21980 ppm); cpsSi29
NSB = count rate of mass of the 29Si isotope in the standard; cpsSi29

sample =

count rate of the 29Si isotope in the sample; cSi29
NSB = concentration of the 29Si isotope in the standard

(15305 ppm); cpselem
NSB = count rate of mass of element of interest in the standard; celem

NSB =

concentration of the element of interest in the standard.

The detection limit is influenced by the acquisition time, the volume of ablated sample

material, the flow rate of the Ar gas, and the isotope of the element. Furthermore, the

sensitivity of the ICP-MS may change during the course of one measurement day. This drift

found by standard and background measurements in regular time intervals was not a linear

function of time (Fig. 4.5). Therefore, the measurements were done in the sequence: five

background measurements – one standard measurements – ten sample analysis measurements.

Fig. 4.5   Fluctuation of standard (a) and background (b) count rates of LA ICP-MS measurements during one

measure day.

The mean and the standard deviation (σBG) were calculated for each sequence of background

measurements. These values were then used to calculated the intensity of the detection limits

(IDL) in accordance with the equations (4.1) and (4.2). The regression coefficient b was

determined from a single point calibration, assuming a linear calibration line which passes

through the origin of the intensity vs. concentration plot (Table 4.3). It follows from equation

(4.7):
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CDL = CSTD IDL/ISTD                                                    (4.7)

where ISTD = intensity of the standard measurement; CSTD = given concentration of the element in the

standard.

The high sensitivity of the ICP-MS for most trace elements in quartz leads to very low

detection limits shown in figure 4.6 and listed in table 4.3. Ca and Na cannot be measured

because the high detection limit. For Na it is mainly caused by molecular interferences with
12C32O2 which is present in small amounts in the sample chamber. The determination of Na is

general problem of micro beam analysis because its high volatility and frequency leads to a

omnipresent Na contamination.

4.3   Secondary ion mass spectrometry (SIMS)

The SIMS analyses were performed on a Cameca IMS-6f magnetic sector ion microprobe at

the GeoForschungsZentrum Potsdam by M. Wiedenbeck. The mass filtered beam had a

impact energy of 12.5 keV, a 40 nA primary current and was focused to a spot size of 25 µm.

The gold-coated polished samples were embedded in rings of one inch in diameter with a

vacuum compatible medium. During analysis, the material was gradually removed from the

sample surface by the incident primary 16O- beam in a process termed “sputtering”. After

selecting a position to analyse, a 50x50 µm area was pre-sputtered with the rastered primary

beam for 240 s to remove the gold coating and any surface contamination. Within any one set

Fig. 4.6   Detection limits of trace

elements in quartz for LA ICP-MS.

The detection limit C1DL bases on the

calculated intensity I1DL after equation

(4.1) and C2DL on the intensity I2DL

after equation (4.2). In the case of the

EPMA the C2DL is ca. 25% lower

than C1DL caused by the level of

significance which is lower than three

standard deviations.
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Table 4.3  Detection limits CDL (ppm) of LA ICP-MS calculated after the equations (4.2) and (4.7)

with a confidence level of 95%.

Number of
Sequence

n f Li Na Al Ca Ti Cr Mn Fe Ge

1 6 4 0.04 446 6.3 1383 13.8 16.3 0.66 32.9 0.46
2 6 4 0.12 189 2.3 239 4.4 2.0 0.42 24.9 1.59
3 6 4 0.10 95 2.7 382 4.2 7.8 0.72 7.2 0.57
4 6 4 0.10 132 1.3 273 4.8 4.8 0.80 13.6 0.87
5 6 4 0.08 190 2.5 1292 8.5 7.0 1.20 38.3 1.65
6 6 4 0.14 475 7.6 542 12.2 9.0 0.53 20.2 1.27
7 6 4 0.16 200 2.3 706 16.0 10.4 1.29 23.6 2.00
8 6 4 0.26 194 2.6 684 5.8 14.1 1.72 15.9 1.77
9 6 4 0.04 236 6.5 716 11.1 26.8 1.28 10.4 1.73
10 6 4 0.19 36 11.3 661 14.9 19.8 1.28 48.0 0.78
11 6 4 0.14 686 5.1 1133 15.6 11.3 1.12 34.4 1.22
12 6 4 0.14 352 3.5 712 20.2 13.0 1.52 44.0 1.78
13 6 4 0.22 647 12.4 1219 13.5 16.6 1.08 42.8 3.26
14 6 4 0.22 922 11.7 2017 7.0 12.2 1.38 40.6 2.27
15 6 4 0.08 1061 7.6 546 13.5 5.0 0.71 19.7 0.71
16 6 4 0.14 391 5.7 833 11.0 11.7 1.05 27.8 1.46
17 6 4 0.06 301 3.6 468 4.8 6.2 0.37 12.8 0.72

of analyses, the energy distribution stayed constant (±1 eV). The total counting time of one

analysis was 1240 s, composed of 20 cycles of 10 s for each isotope, except for Si with 2 s.

Li, Na, Al, Si, K, Ti, and Fe were measured on masses 6, 23, 27, 30, 39, 48, and 54,

respectively. These masses were selected either because they represent an abundant isotope of

the element in question or because interferences by molecular complexes would be at a

Fig. 4.7   BSE images of microcraters in quartz produced by primary 16O- beam. a –Measurement profile through

a quartz phenocryst of the Aue Granite (sample 8). b – Closer view of microcraters.
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Fig. 4.8   Plots of secondary ion intensity as a function of sputter time. a – Analysis of sample 8 (Aue Granite)

where a slight initial increase in 7 Li and a decrease in 23Na, 
39K, and 54Fe intensity with time have been observed.

This intensity change is a general phenomena of the measurements. b – Analysis of recrystallised quartz along a

fluid inclusion trail in sample 1 (megaquartz). Extreme changes of X/30Si ratios reflect analysed fluid or mineral

inclusions.

minimum. The beam produces a microcrater 25 µm in diameter and a depth ranging 5-20 µm

which allows subsequent verification of the spot location (Fig. 4.7). CL observations were

performed prior and after SIMS analysis. Measurements were carried out as single point

analysis and point traverses, yielding distribution profiles. The plot of secondary ion intensity

as a function of sputter time facilitated the quality control of the analysis. Figure 4.8b shows a

time resolved analysis in recrystallised quartz of a fluid inclusion trail in sample 1

(megaquartz). Extreme changes of X/30Si ratios reflect analysis of a fluid or mineral inclusion.

A slight initial increase in 7Li and a decrease in 23Na, 39K, and 54Fe intensity with time have

been observed in most measurements (Fig 4.8a; Aue Granite 8). Li+,  K+, Na+, and Fe2+ are

beside H+ frequent and relative mobile interstitials in the quartz lattice. The cause of this often

observed phenomena during SIMS analysis is controversial, and may be a consequence of

electromigration due to sample charging and heating and/or sample surface contamination

(e.g. Hughes et al., 1972; Wilson et al., 1989; Hervig and Peacock, 1989; Perny et al., 1992).

In our case, the previous treatment of the sample with an electron beam during CL

investigations may also result in a change of the element distribution at the sample surface.

The electron radiation during CL investigations causes radiation-induced bond breaking

resulting in impurity diffusion of interstitial ions which is additionally triggered by the sample

charging and heating (e.g. Remond et al., 1979). The diffusion direction of a given impurity
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from the bulk to the surface or vice versa is controlled by the surface potential distribution.

Nevertheless, the observed change in the line intensity with exposure time of alkalis and Li is

an often observed phenomena during SIMS measurements (e.g. Shimizu et al., 1978). The

electromigration near the surface will give low results for the Na, K, and Fe and high results

for Li. After ca. 500 s the count rates are nearly stabilised. Therefore, counts from the first 8

analytical cycles (496 s) were neglected. Because no standard was available the relative

intensities were given in X/30Si ratios.

4.4   Fourier-transform infrared (FTIR) spectroscopy

Transmission FTIR spectra of quartz were obtained using the Perkin Elmer 1760-X FTIR

spectrometer by S. Vaupel at the University Göttingen. The spectrometer can operate with an

internal ray path and a triglycine-sulphate-detector or an external microscope with a separate

mercury-cadmium-telluride-detector. The change between the two configurations is effected

by a swivelling mirror. The external microscope is supplemented with a vacuum sample

chamber (Dewar K-770-T) which is required for liquid N2-cooling of the sample and ray path

(–190 - –194°C) to avoid interference with atmospheric H2O and CO2. The cooling resulted in

a maximal signal/noise ratio of the detected spectra.

FTIR spectroscopy is the only method for the determination of the distribution and

specification of structural water in quartz crystals. The quartz wafer is penetrated by an

electromagnetic UV beam (wavelength = 2-25 µm). The radiation excites the vibration of the

atoms which lead to the absorption of distinct wavelengths depending on the kind of atoms

and their bonds.

The analysis were carried out on doubly polished wafers 250 µm in thickness. Prior to the

measurement the wafers were cleaned with acetone and dried for 10 h at 110°C. The spectra

were acquired in a range of wave numbers between 5000 to 2000 cm-1 with 200 scans in the

transmission modus. The resolution of the measurements was 4 cm-1. The spot size of the

beam on the sample was 40 µm in diameter which allows the recording of several spectra

along a traverse within one grain. Background were taken after each spectra. The spectrum

processing was carried out on a PC for baseline correction, sample thickness correction and

converting of the transmission spectrum to the absorption spectrum.
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4.5 Electron paramagnetic resonance (EPR)

The paramagnetic defect centres of the quartz samples were investigated by EPR at

frequencies of the X-band (9.5 GHz) at 20, 70, and 295 K using a Varian E-line spectrometer

at the Department of Mineralogy, University of Marburg. The measurements were carried out

by T. Scherer. The influence of technical parameters such as modulation amplitude,

microwave power, temperature, scan time, etc. on the spectra were checked for the optimal

settings for recording the spectra. These settings (modulation field HM = 1 G, temperature T =

295 K, microwave power p = 0.2 mW for E’ and HM = 1 G, p = 7 mW, T = 70 K for [AlO 4]0

centres) were kept constant throughout all the measurements to allow correct comparison

between the signal intensities of the different spectra.

The samples were crushed and quartz crystals were separated from the parent rock material by

hand-picking under binocular microscope. Isolated quartz was sieved to obtain the 63-125 µm

fraction, followed by a HF acid treatment at room temperature to remove feldspar (not

necessary for the hydrothermal quartz). Finally the fraction was treated with distilled water

and then air dried.

The specific peak positions of the paramagnetic centres were drawn from simulated spectra

and from literature data. The centres were calculated in relative intensities. For the calculation

of the relative intensity of the paramagnetic defect centres the following equation was used:

    Is ∗ 10000

Irel   =   ——————                                              4.8

       Gs ∗ ms

where Is = measured intensity of the EPR signal, Gs = intensification factor used during

spectrum recording, and ms = mass of the sample.
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5   Analytical results

5.1 Characterisation of the cathodoluminescence of quartz

The quartz CL spectra in the range of 1.4 to 3.1 eV generally consist of two broad emission

peaks at 1.7 – 2.2 eV (red emission) and 2.4 – 3.1 eV (blue emission; Fig. 5.1). The CL

colour, mostly shades of blue, violet, and red-brown is dependent on the ratio of the two main

emission peaks (Table 5.1). The peak ratio changes with the exposure time of electron

radiation, whereby the blue emission generally decreases and the red emission increases (Fig.

5.2). The maximum of the two peaks shifts for different quartz types indicating that the peaks

are built up of different emission bands of different stability. Nine emission bands have been

detected in all the spectra by fitting the spectra with Gaussian curves. Three emission bands

can be distinguished in the red emission range (1.73, 1.84, and 1.96 eV) and five bands in the

blue emission range (2.47, 2.58, 2.68, 2.79, and 2.96 eV) (Fig. 5.3). Additionally, a broad

band has been observed in the yellow range of the spectrum at 2.15 eV. Depending on the

quartz sample the emission bands show different intensities, half-width, and different stability

during irradiation. The parameters of CL emission bands obtained from best-fit listed in

Appendix A. Most CL band positions are consistent with the values reported in the literature

(e.g. Remond et al., 1992; Gorton et al., 1996; Kalceff et al., 2000 and references therein;

Table 5.2). Characteristics of the spectra can be summarised as follows (Fig. 5.1, 5.2, 5.3):

1. Nine emission bands are developed in the CL spectra of all samples.

2. The intensity of the blue emissions decreases whereas the intensity of red emission

generally increases during electron radiation. A frequently observed bright blue “flash” at

initial electron radiation is caused by the unstable blue emission at ~2.79 eV.

3. Dominant emission bands of rhyolitic quartz (samples 4, 10, 11, 15) are the 1.96, 2.58,

2.68, 2.79, and 2.96 eV band. The spectra are very similar although they originate from

different volcanic provinces. An exception is the quartz of the Teplice Rhyolite showing a

dominant 1.73 eV emission. The blue and red luminescent growth zones in quartz

phenocrysts are caused by the variation of the blue CL emission whereas the red CL

remains essentially constant (sample 10, 11, 15).

4. The 1.73 and 2.15 eV bands are characteristic for the granitic quartz and some rhyolites

(sample 5). The 2.15 eV emission is dominant in the quartz of the Aue and Eibenstock

granites form the Western Erzgebirge.
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5. Hydrothermal quartz (sample 1, and 3) exhibit a distinctive 2.47 eV band and sample 9 a

dominant 2.79 eV band. The bands are characterised by a fast intensity decrease during

electron exposure. The 2.47 eV emission causes a turquoise CL at initial electron radiation

(sample 1 and 3).

6. The 2.68 and 2.58 eV emission bands are developed with about constant peak area ratios

in all samples: 1 : 0.34±0.08. Similar observations were made for the 1.96 and 1.84 eV red

emission bands which show ratios of 1 : 0.51±0.17. The 2.58 eV and 2.68 eV emission are

not immediately obvious from visual inspection of the other 100 mm-grating spectra due

to the close proximity of more intense emissions, but the bands are detectable in spectra

recorded with the 1200 line/mm grating (Fig. 5.3).

Table 5.1    CL colours and structures revealed by CL.

No. Sample name Initial CL
colour

Duration of
initial
colour (s)

Final CL colour Primary CL structures Secondary CL
structures*

1 megaquartz intense turquoise 60 orange-brown - 3, 5
2 fissile quartz bright blue 30 red-brown - -
3 oil-bearing quartz intense turquoise 60 red-brown - -
4 Schoenfeld Rhyolite bright blue 120 blue-violet zoned phenocrysts 3, 4
5 Teplice Rhyolite (TPR2) bright blue1)

weak blue2)
301)

102)
violet-blue1)

dark red1)
zoned phenocrysts 2, 3, 4, 5

6 Schellerhau Granite bright blue1)

weak blue2)

bright blue3)

301)

52)

203)

violet-blue1)

red-brown2)

red-brown3)

zoned phenocrysts 1, 2, 3, 5

7 Eibenstock Granite bright blue1)

bright blue3)

301)

203)

violet-red-brown1)

red-brown3)
zoned phenocrysts 1, 2, 3, 5

8 Aue Granite bright blue 20 orange-brown zoned phenocrysts 1, 2, 3, 5
9 vein quartz intense blue 300 dark blue - -
10 Wachtelberg Rhyolite bright blue1)

weak blue2)
301)

102)
violet 1)

red-brown2)
zoned phenocrysts 3, 4

11 Beucha Rhyolite bright blue1)

bright blue2)
1201)

102)
blue-violet 1)

red-brown2)
zoned phenocrysts 2, 3, 4, 5

12 Flossenbuerg Granite bright blue 60 red-brown - 1, 2, 3, 5
13 leucosome quartz bright blue 20 red-brown - -
14 Ramberg Granite bright blue 30 red-brown zoned phenocrysts 1, 2, 3, 5
15 Weinheim Rhyolite bright blue1)

bright blue2)
1201)

102)
violet-blue1)

red-brown2)
zoned phenocrysts 3, 4

* Secondary CL textures (see chapter 7.3): 1 – micropores; 2 – patchy halos of secondary quartz around fluid
inclusions; 3 – veinlets of recrystallised quartz; 4 – diffusion rims along grain boundaries; 5 – bright halos
caused by radioactive inclusions and fluids;

1) Blue luminescent growth zones in magmatic phenocryst
2) Red luminescent growth zones in magmatic phenocryst
3) Magmatic matrix quartz
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Table 5.2    Comparison of frequently reported CL emissions of SiO2 and proposed associations and
identification (a-SiO2 = amorphous SiO2).

Wave-
length
(nm)

Energy
(eV)

Peak
position
(eV)

Specimen Association/
identification

References

775
763
751
740

1.60
1.625
1.65
1.675

1.65 – 1.8 Opal α-SiO2,
sandstone

Associated with Fe3 +

impurity
Pott and McNicol (1971), Sprunt (1981),
Kalceff et al. (1997), Bruhn et al. (1996)

729
719
708
698
689

1.70
1.725
1.75
1.775
1.800

~1.9 a- and α-SiO2 NBOHC (Si-O
precursor)

Oxygen vacancy

Remond et al. (1992), Kalceff and Phillips
(1995), Zinkernagel (1978), Friebele et al.
(1985)

Luff and Townsend (1990)
679
670
661
653

1.825
1.850
1.875
1.900

1.93 SiO2 Na impurity Remond et al. (1992); Khanlary et al.
(1993); Yang et al. (1994)

644
636
628

1.925
1.950
1.975

1.95 Hydrated a and
α-SiO2

NBOHC (-OH
precursor)

Kalceff and Phillips (1995), Koyama
(1980), Nishikawa et al. (1992)

620
612
605

2.000
2.025
2.050

2.1-2.4 a-SiO2,
irradiated α-SiO2

STE Kalceff et al. (1995), Itoh et al. (1990)

598
590
584

2.075
2.100
2.125

2.17 Ge doped α-SiO2 STE associated with
Ge

Luff and Townsend (1990)

577
570
564

2.150
2.175
2.200

2.25-2.8 Natural α-SiO2 Associated with
interstitial cations

Ramseyer and Mullis (1990)

557
551
545

2.225
2.250
2.275

2.4 Synthetic
amethyst

Fe impurity Ruppert (1987)

539
533
528

2.300
2.325
2.350

2.5 α-SiO2 Impurity Itoh et al. (1988), Kalceff and Phillips
(1995)

522
517

2.375
2.400

2.55 Smoky α-SiO2 (Al 3+)0  hole center Nassau and Prescott (1975)

511
506
501
496
491
485
481

2.425
2.450
2.475
2.500
2.525
2.550
2.575

2.6-2.8 α-SiO2, Opal,
rose quartz

STE

Ti, Ti3+ , interstitial
Ti3+ , TiO2 micro
inclusions

Remond et al. (1992), Kalceff and Phillips
(1995)

Sprunt (1981), Luff and Townsend (1990),
Kerkhof et al. (1996)

477
472
468

2.600
2.625
2.650

2.74 a-SiO2 Oxygen deficient
centre

Griscom (1991), Kalceff et al. (1997)

464
459
455

2.675
2.700
2.725

2.75 O implanted a-
SiO2

Oxygen related centre Hagni (1987)

451
447
443

2.750
2.775
2.800

~2.9 Natural α-SiO2 Substitutional Al and
cation

Ramseyer and Mullis (1990)

439
435
431

2.825
2.850
2.875

~2.95 α-SiO2 Intrinsic defect Alonso et al. (1983), Kalceff and Phillips
(1995), Gorton et al. (1996)

428
424
420

2.900
2.925
2.950

2.99 C implanted a-
SiO2

C impurity Koyama (1980)

417
413
410

2.975
3.000
3.025

3.0 a-SiO2 STE’s associated
with Ge, Al, H

Khanlary et al. (1993), Yang et al. (1994)

407
403
400
397
393
390
387
384

3.050
3.075
3.100
3.125
3.150
3.175
3.200
3.225

3.1-3.3 a and α-SiO2,
sandstone, opal

Al3 +-M+ (where M+ =
H+, Li+, Na+, or K+)

Impurity
incorporation during
growth

Ramseyer and Mullis (1990), Remond et al.
(1992), Khanlary et al. (1993), Kalceff and
Phillips (1995), Gorton et al. (1996)

Skuja and Trukhin (1989), Luff and
Townsend (1990)

381
379
376

3.250
3.275
3.300

~3.7 α-SiO2 in
sandstone

Associated with Al
and Li impurities

Demars et al. (1996)

373
370

3.325
3.350

4.3 α-SiO2 Na impurity Sprunt (1981)
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Fig. 5.1   Quartz CL spectra recorded with the 100 lines/mm grating after 0.5, 2, and 7 min electron radiation.

The 7-min-spectrum is fitted in Gaussian curves so that the sum of the Gaussian curves corresponds the recorded

spectra.
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Fig. 5.2   CL intensity change during 10 min electron radiation of the samples 1, 4, and 8. Note the high

instability of the blue emission of sample 1 and the dominance of the relative constant intensity of the yellow

2.15 eV band of sample 8.
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5.2 Instability of CL during electron bombardment

The blue emission (2.6 – 3.1 eV) is characterised by high intensity at initial electron

bombardment visible as a blue “flash”. The initial intensity of this blue emission, mostly

centred at ~2.8 eV may drop by 1/2 to 1/3 after a few seconds. The intensity is stabilised after

30 to 100 s of electron bombardment (Fig. 5.4). The steady state of CL-changes during

electron radiation points at a saturation effect. The saturation status is reached faster with

higher electron radiation dose. Figure 5.5 shows CL spectra of sample 12 after 2 minutes

electron beam exposure using different beam currents. Note that the intensity of blue emission

remains constant after 2-minutes spectra at beam currents =0.18 mA indicating a saturation

status. In the case of the megaquartz (sample 1) and oil-bearing quartz (sample 3) the initial

blue emission is centred at ~2.5 eV which causes turquoise CL at initial electron radiation.

In contrast to the blue emission, the red emission (1.75 – 2.2 eV) generally shows an intensity

minimum at initial electron bombardment followed by a steep parabolic increase during first

minute of electron radiation followed by a slight increase until saturation is reached. The

intensity increase of red CL together with the decrease of the blue CL causes a change from

initial blue/violet to red/red-brown CL. However, the decrease of blue and the increase of red

emission behave independently: in the case of the deformed magmatic quartz form the Eastern

Lachlan Fold Belt (see § 10.7) the red emission remains constant whereas the blue one

decreases.
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Fig. 5.3   Blue CL emission range
of several quartzes recorded 1200
lines/mm grating after 7 min
electron radiation. The spectrum
of the sample 12 is fitted in
Gaussian curves.
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Fig. 5.4   Intensity change of the 1.96 and 2.79 eV emission of some characteristic samples during the radiation

time of 10 min recorded with the f/3.4 Grating Monochromator using the CL microscope after Zinkernagel

(1978) at the University Göttingen (10 keV, 0.25 mA). The experimental curves are grey and the fitted curves

are black lines.
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The effect of temperature

Most of the energy of the electron beam is converted into heat in the sample near the surface

(e.g. Remond et al., 1992). After Reimer (1985) the portion of the converted beam energy into

heat amounts between ƒ = 40-80% (ƒ = degree of effectiveness); Castaing (1951) assumed an

average portion of ƒ = 70% which transforms into heat. The energy Q = ƒ ∗ U ∗ I ∗ t which

effects the samples measured here reaches Q = 2.016 J using a beam voltage U = 1.4 104 V,

current I = 1.8 10-4 A and ƒ = 0.8.

The heat production at the irradiated spot was calculated by several authors and several types

of equipment (Castaing, 1951; Friskney and Haworth, 1967; Dudek, 1970; Reimer, 1985).

These calculations, which give an idea about the maximum temperature of the sample,

assume, that firstly, the electron beam radius rb corresponds to the interaction depth of the

electron beam re in the sample. Secondly, the radius of the sample rs should be so large that

the external surface of the sample remains at ambient temperature (∆T = 0) meaning that rs >>

rb. Both conditions are not fulfilled for the used CL microscope: the electron beam radius rb

(2.4 mm) is ca. 500 times larger than the penetration depth of the electrons (re ~ 5 µm) and the

beam radius is so large that the temperature at the external sample surfaces rises considerably.

As a consequence the thin section turns hot after same minutes of electron radiation.

The heat developed in a cylindrical interaction volume is controlled by the thermal

conductivity of the sample (e.g. λquartz = 1.38 W m-1 K-1 or λgranite/rhyolite = 2.1 – 2.9 W m-1 K-1),

of the carbon coating (λgraphite = 169 W m-1 K-1), of the glass slide of the thin section (λwindow

glass = 0.7 W m-1 K-1), and of the sample holder (λbrass = 111 W m-1 K-1). The heat flow

problem is very complex due to the different thermal conductivities and thermal transition

coefficients, and the heterogeneous heat transmission. Therefore, temperature measurements

Fig. 5.5   CL spectra of sample

12 after 2 min electron beam

exposure using different beam

currents.
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were carried out to know the thermal changes of the sample during electron radiation. The

temperatures were measured with a sensor on the reverse of demounted thin sections about

250 µm away from the incident beam and by using different beam currents (Fig. 5.6a, b, c).

The measurements were corrected by the maximal temperature difference ∆T between the

target of the incident electron beam and the sensor:

∆T = ƒ ∗ U ∗ I ∗ l / λsample π  rb
2                                            5.1

where l = distance between temperature measure point and incident beam on the thin

section surface, λsample = thermal conductivity of the sample, and π  r2 = area of the

incident beam.

The temperature difference ∆T amounts 19.7 K by taking the electron beam voltage is U = 1.4

104 V, the current I = 1.8 10-4 A, ƒ = 0.8, the distance 2.44 104 m, the beam radius rb = 2.4 103

m, and λquartz = 1.38 W m-1 K-1.

Figures 5.6a, f, and k show the temperature increase in the target of the electron beam for the

samples 1, 4 and 8 during 600 seconds. The temperature increase is an exponential function of

the radiation time and shows a linear correlation with the beam current (Fig. 5.7). The plots

5.6b, g, and l show the CL intensity change of the single emission bands during the first

electron exposure and the plots 5.6d, i, and n during the second electron exposure of the same

sample area after 24 h. The emission band areas and their change were determined from time-

resolved spectra recorded with the 100 lines/mm grating of the TRIAX 320. Note, that the

spectrum recording with the TRIAX 320 does not allow the determination of the fast intensity

change during the first 30 s of electron beam exposure. The intensity change during the

second electron exposure is much lower than the change during the first electron exposure

indicating that 1) the CL is mainly caused by the electron radiation, 2) the temperature has a

low influence of the CL, 3) the electron exposure causes a permanent modification of

luminescence centres, and 4) the creation and destruction of luminescence centres take place

mainly during the first three minutes of electron radiation. In the plots showing CL intensity

change versus temperature (5.6c, e, h, j, m, and o) a clear mathematical correlation does not

exist demonstrating a low dependence of CL on the temperature.

However, thermoluminescence bands may have identical positions as the CL bands.

Characteristic thermoluminescence bands are the 2.95-2.85 eV, 2.21-2.14 eV and 2.00-1.98

eV bands (e.g. Jani et al., 1983; Yang et al., 1994; Zhang et al., 1994; Rink et al., 1993).
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Especially the latter is a frequent and intensive thermoluminescence band of natural quartz

(e.g. Rink et al., 1993). The intensity maximum of the 2.21-2.14 eV and 2.00-1.98 eV bands is

in the temperature range of the CL measurements. Therefore, the temperature should have a

secondary influence on the CL intensity and its change.

Fig. 5.6a-e    Plots of radiation time versus sample temperature and CL intensity change of the sample 8. a -

Change of the sample temperature in the target of the electron beam using different beam currents; b – Change of

CL band intensities given in percentage emission band area during the first electron exposure of 10 min using the

beam current of 0.18 mA; c – Plot of emission band area change versus sample temperature rise; d - Change of

CL band intensities given in percentage emission band area during the second electron exposure after 24 h using

the beam current of 0.18 mA; e – Plot of emission band area change versus sample temperature rise.
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Fig. 5.6f-j   Plots of radiation time versus sample temperature and CL intensity change of the sample 1. f -

Change of the sample temperature in the target of the electron beam using different beam currents; g – Change of

CL band intensities given in percentage emission band area during the first electron exposure of 10 min using the

beam current of 0.18 mA; h – Plot of emission band area change versus sample temperature rise; i - Change of

CL band intensities given in percentage emission band area during the second electron exposure after 24 h using

the beam current of 0.18 mA; j – Plot of emission band area change versus sample temperature rise.
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Fig. 5.6k-o   Plots of radiation time versus sample temperature and CL intensity change of the sample 4. k -

Change of the sample temperature in the target of the electron beam using different beam currents; l – Change of

CL band intensities given in percentage emission band area during the first electron exposure of 10 min using the

beam current of 0.18 mA; m – Plot of emission band area change versus sample temperature rise; n - Change of

CL band intensities given in percentage emission band area during the second electron exposure after 24 h using

the beam current of 0.18 mA; o – Plot of emission band area change versus sample temperature rise.
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CL of thermally treated quartz

The samples 1, 14, and 15 were thermally treated at 300°C and at 600°C for 24 hours. The

spectra of the thermally treated quartzes show the following changes in the emission

properties (Fig. 5.8, 5.9):

1) The treatment generally results in a significant increase of the 1.73 eV band after

300°C heating from room temperature and a sligth increase of both the 1.85 and 1.96

eV bands.

2) The initial peak observed at 2.48 eV is destroyed at > 600°C.

3) All three samples show a more or less intensive shift of the blue peak to higher energy

after 600°C heat-treatment, caused by the intensification of the 2.96 eV (sample 1, 14,

15) and of the 2.79 eV bands (sample 14).

The intensification of the 2.96 eV band in all three samples may indicate that this peak is

characteristic for quartz formed at high temperature, whereas the 2.48 eV band is typical for

hydrothermal quartz.

The effect of sample preparation on the CL of quartz

The method of specimen preparation (polishing) may affect the concentration of defects

participating in radiative and non-radiative processes in the surface regions (Ruppert, 1987).

The influence of specimen preparation and surface roughness on the CL signal of SiO 2 has

been mentioned in Sprunt (1981) and Ruppert (1987). In order to study the effect of sample

preparation spectra were recorded for (a) unpolished thin sections using different granularities

of carborundum (1 µm and 3 µm) and (b) thin sections polished chemically (OP-S

suspension) and compared with (c) the normally used polishing with diamond paste (0.3 µm).

As a result we found systematic lower CL intensities for rougher surfaces. However, the peak

area ratios of the emission bands and the stability of the CL-activator centres remained

unchanged.
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Fig. 5.8   Initial CL spectra (after 30 s electron radiation) of unheated, and at 300 and 600°C for 24 h treated

quartzes.
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Quantification of CL intensity change during electron radiation

The kinetic of physicochemical reactions in natural systems can be generally described by the

kinetic law c = c0 exp(-kt), where c = concentration of the component at time t, c0 =

concentration of the component at time t = 0, and k = velocity (equilibrium) constant. The

equation is the base for the determination of velocity constants (e.g. diffusion coefficients,

thermal conductivity). The equation was applied to quantify the decay of the blue intensity

and the simultaneously increase of the red emission intensity during electron radiation. The

latter may be described by the reverse equation of the kinetic law. Application of the equation

resulted in an approximate quantification of the intensity change as a function of time. A

complicating factor is the composite character of the blue emission intensities, which

subdivides into a fast decaying component and a slowly decaying component. Picouet (1999)

suggested an equation being the sum of two kinetic law equations:

Ib = Ibs + Ib1 ∗ exp(-t/kb1) + Ib2 ∗ exp(-t/kb2)                                         5.2

where Ib = intensity of blue CL at the radiation time t; Ibs = intensity of stable blue CL;

Ib1 = intensity of the slow decreasing CL component at t = 0; kb1 = velocity constant of

the slow decreasing CL component; Ib2 = intensity of the fast decreasing CL component

at t = 0; kb2 = velocity constant of the fast decreasing CL component; t = radiation time.
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This equation fits very well with the measured time-dependent intensity change (Fig. 5.4).

The increase of red emission between 1.75 to 2.2 eV may be described by the following

equation which is the reverse function of equation 5.2:

Ir = Irs - Ir1 ∗ exp(-t/kr1) - Ir2 ∗ exp(-t/kr2)                                      5.3

where Ir = intensity of red CL at the radiation time t; Irs = intensity of red CL for t ?  8 ;

Ir1 = intensity of the slow increasing CL component for t ?  8 ; kr1 = velocity constant of

the slow increasing CL component; Ir2 = intensity of the fast increasing CL component

for t ?  8;  kr2 = velocity constant of the fast increasing CL component; t = radiation

time.

The red CL emission is composed of a fast increasing component during the first minute of

electron radiation and a slowly increasing component. Figure 5.4 shows the intensity change

of the 1.96 and 2.79 eV emissions during 10 min electron beam exposure. The curves were

fitted using the equations 5.3 and 5.2, respectively. The samples 9 and 13 show a reverse time

–dependent behaviour of the CL signal.

The fitted parameters of the radiation-time-dependent intensities at 1.96 and 2.79 eV are given

in Appendix B. The velocity constants kr1, kr2, kb1, and kb2 are similar for all samples: namely

502±16, 24±11, 252±9, and 14±5, respectively. The lower the velocity constant the faster the

decay and formation of CL activator centres. That implies that the decay of the centres

causing blue CL is about 2 times faster than the formation of the activator centres causing red

CL.

The emission intensities I represent the concentration of luminescence centres in the

interaction volume of the electron beam. The parameters Irs, Ir1, Ir2, Ibs, Ib1, and Ib2 are intensity

portions of the respective emission, whereby Ir1, Ir2, Ib1, and Ib2 are intensity portions which

compose the changeable CL. These parameters are proportional to the concentration of

luminescence centres. The rhyolitic quartz has a low Ir2 and Ib2 indicating a more stable CL

(Fig. 5.10). The granitic and hydrothermal quartz exhibit a wide scattering of intensity

parameters which corresponds to unstable and highly variable CL. Particularly the high Ir1 and

Ir2 of granitic quartz demonstrates the high instability of the red CL. Generally, we conclude

that the higher the quartz formation temperature and pressure the lower is the concentration of

unstable luminescence centres.
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Fig. 5.10   Plots of fitted parameters Irs, Ir1, Ir2, Ibs, Ib1, and Ib2 of the equation 5.2 describing the decrease of 2.79

eV (blue) CL emission and of the equation 5.3 describing the increase of 1.96 eV (red) CL emission during

electron exposure. a – Plot of the stable blue CL intensity Ibs versus the intensity of red CL Irs for radiation time t

?  8  showing that samples with high intensity of blue CL exhibit also a high intensity of red CL; b – Plot of the

fast increasing red CL component Ir2 versus the slow increasing red CL component Ir1. There is no correlation

between the two components; c – Plot of the slow changing CL components of the blue CL Ib1and red CL Ir1; d –

Plot of the fast changing CL components of the blue CL Ib2 and red CL Ir2. Note, that rhyolitic quartz has a low

no fast changing CL.

5.3 Comparison of CL spectral and trace element analysis

EPMA, LA-ICPMS, and SIMS analysis

In order to measure trace element distributions complementary to the CL colours and spectra,

quartz has been analysed by LA-ICPMS and EPMA. SIMS analysis were carried out on a

selection of samples (megaquartz; Aue Granite; and Weinheim Rhyolite). The analysis were

performed by EPMA for Al, Ti, Fe, Mn, by LA-ICPMS for Al, Ti, Li, Ge, Fe, and by SIMS

for Li, Na, K, Al, Ti, and Fe. Trace element profiles traversing different growth and alteration

zones were measured (Fig. 5.11a, b, c; see also chapter 7, 8, 9, 10).

Quartz formed at high temperatures (=600°C) such as rhyolitic quartz shows an average high

Ti concentration up to 130 ppm (Fig. 5.11, 5.12a, 5.13). The growth zones are mainly

characterised by variations in Ti. The Ti concentration correlates exponentially with the
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intensity of the 2.96 eV emission (Fig. 5.14). The content of Ti in hydrothermal quartz is

always below 40 ppm. Magmatic quartzes show a maximal Al content of 200 ppm, whereas

hydrothermal quartz may contain much more Al e.g. up to 5000 ppm in vein quartz. The vein

quartz shows unstable CL at 2.79 eV of very high intensity, suggesting that this luminescence

is associated with Al defect structures. Large variations in Al between adjacent growth zones

of hydrothermal quartz have been found. Furthermore, Al concentration differs for the

rhombohedral faces z to r of the zoned hydrothermal α-quartz (Fig. 5.11b). The sum of Li,

Na, K, and Fe shows a good correlation with Al (Fig. 5.13). This confirms the general

assumption that Li, Na, K, and Fe act as interstitial charge compensators for substitutional Al

(e.g., Dennen, 1965; Smith and Steele, 1984).

Hydrothermal quartz exhibits elevated Ge concentrations, between 3-16 ppm (Fig. 5.12.). The

LA-ICPMS analysis shows a strong enrichment in Mn, Fe, Ge, and Cr. The enrichment of all

these element may caused by micro inclusions situated in the measured sample volume.

The quartz of the Erzgebirge Batholite (Eibenstock and Aue Granite) exhibits high Fe and

Mn. The CL spectra of these samples show a characteristic stable 2.15 eV band which is

possibly associated with Mn.

The average Fe concentration increases with the quartz formation temperature. Therefore, the

Fe content of quartz is a good criteria to distinguish quartz of different genesis. Pott and

McNicol (1971) and Kempe et al. (1999) found that high Fe3+ causes the 1.73 eV CL

emission. However, in our samples we found no correlation between the Fe concentration and

the 1.73 eV band intensity. The lack of correlation may be explained by the fact that Fe occurs

as divalent and trivalent ions. It was frequently observed that Fe increases towards the grain

boundary indicating a high diffusion rate of Fe in the quartz lattice (Fig. 5.11a, see also §

10.7). The preferred diffusing ion is likely to be the Fe2+ due to its smaller ion radius. Weak or

non-luminescent secondary quartz in healed microcracks, or formed around fluid inclusions is

typically depleted in all trace elements (Fig. 5.11c).

FT-IR spectroscopy

Spectra of quartz containing structural water in the form of H+, OH-, and H2O show

characteristic absorption bands between 3000-3700 cm-1. The absorption bands are caused by

stretching vibrations of H-related chemical bonds excited by electromagnetic UV radiation.

Generally two classes of absorption occur in the IR spectra: sharp absorption bands (low half

width) at 3305, 3365, 3425, and 3470 cm-1 and broad absorption bands (high half-width) at

3440 cm-1, 3220 cm-1 and 3110 cm-1 (Brunner, 1961; Kats, 1962; Aines and Rossman, 1984).
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Fig. 5.11a   Trace element profile of a quartz phenocryst of the Wachtelberg Rhyolite (sample 12) determined by

EPMA and compared with relative CL intensity (grey shade).
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Fig. 5.11b   Trace element profile of a Berg crystal (vein quartz; sample 9) determined by EPMA compared with

relative CL intensity (grey shade).
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Fig. 5.11c   Trace element profile of a quartz crystal of the Flossenbürg Granite (sample 12) determined by

EPMA compared with relative CL intensity (grey shade). The microprofile cuts a weak luminescent secondary

quartz (dark grey) around a fluid inclusion. The secondary quartz is depleted in trace elements.
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Fig. 5.12a, b   Plots of trace element concentration of quartz. a – Al vs Ti determined by EPMA. b – Li vs. Ge

determined by LA-ICPMS.
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Fig. 5.12c, d   Plots of trace element concentration of quartz. c – Fe vs. Cr determined by LA-ICPMS. d – Fe vs.

Mn determined by LA-ICPMS.
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Fig. 5.13   Variation diagrams of relative concentrations (X/30Si, where X = 6 Li, 23Na, 27Al, 39K, 54Fe, 48Ti) of

trace elements determined by SIMS.
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Fig. 5.14   Correlation of average Ti concentration with the peak area of the 2.96 eV emission.

A band with low half-width indicates a well definite bond, which is not effected by other bond

vibrations. Sharp bands are developed if H-related bonds are isolated and have a sufficient

large distance to similar bonds. The sharp peaks at 3365 and 3305 cm-1, attributed to proton-

compensated aluminium defects, are the most significant peaks in the hydroxyl band. The Al-

H-defects ([AlO 4/H+]0 centres) are very stable up to temperatures of 1000°C (Kats, 1962;

Schneider, 1993). The peak at 3474 cm-1 was assigned by Kats (1962) to proton-compensated

aluminium defect perturbed by Li+ (marked as “Li-H” in Fig. 5.15). This absorption band was

absent after >450°C quartz heating (Schneider, 1993).

Molecular water exists in the quartz lattice as micropores and fluid inclusions as well as

structural bound water. The vibrations of the water molecules affect one another which results

in broader absorbed wavelength ranges. At room temperature the broad absorption bands at

3440 cm-1 are caused by the asymmetrical stretching vibrations and the 3220 cm-1 and 3110

cm-1 bands by the symmetrical stretching vibrations of molecular water (Aines and Rossman,

1984). To distinguish fluid water from crystallographic bounded water, spectra are obtained at

cryogenic temperatures between -190 and -194°C. The change of the state from the water to

ice during sample cooling results in the quenching of the asymmetrical vibrations (3440 cm-1)

in the crystal lattice and the rise of the symmetric vibrations (3220 cm-1 and 3110 cm-1).
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Structural bounded OH-groups can not change into solid H2O (ice). The change into the solid

state of water presupposed, that the water molecules are able to built hydrogen bonds which

can be problematic if the number of water molecules is small (Aines and Rossman, 1984).

Fig. 5.15   Representative IR-absorption spectra of different quartz types measured at ~190°C.

The IR absorption spectra of one sample recorded along profiles are very homogeneous.

There is no variation of Al-H- and Li-H-defect concentrations found in different growth zones

of the rhyolitic phenocrysts (sample 11). The lack of correlation between spectroscopic data

and growth zoning in the quartz phenocrysts shows that neither proton-compensated Al nor

Li-defect concentrations control the luminescence contrast of this growth zones. Similar

observations were made by Liebetrau (1991) and Schneider (1993) in rhyolitic quartz

phenocrysts.

The associated 3365 and 3305 cm-1 absorption bands are found in all spectra and are

indicative for proton-compensated Al defects (Fig. 5.15). The bands are most intense in
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hydrothermal quartz (samples 1, 2, 3). However, the relative absorption intensities (integrated

peak areas) do not correlate with the Al concentrations.

Hydrothermal quartz (Fig. 5.12a) shows a high intensity of the Li-associated 3474 cm-1 band.

This quartz is characterised by a high intensity of the 2.48 eV CL emission (Fig. 5.1, 5.2). The

3474 cm-1 absorption band is thermally unstable at temperatures =450°C (Schneider, 1993).

The characteristics of the 2.48 eV CL band and of the Li-associated 3474 cm-1 absorption

band suggest an association with Li-defects.

Granitic (sample 8, 14) and rhyolitic quartz (sample 11) is characterised by high absorption

bands at ~3110 and 3220 cm-1. Granitic quartz shows a high number of small fluid inclusions

mostly <1 µm in the measured area. The quartz samples of the Beucha Rhyolite do not

contain fluid inclusions. However, the 3110 and 3220 cm-1 absorption bands indicate the

presence of molecular water in lattice.

Paramagnetic defect centres

The paramagnetic E‘, O2
3-, [AlO4]0, [TiO4/Li+]0, and [TiO 4/H+]0 centres were studied at the

University Marburg by T. Scherer using EPR spectroscopy. The relative intensities of the

defect centre concentration are listed in Table 5.3. The concentration of the paramagnetic

defect centres in quartz depends on the number of precursor defects, the post-crystallisation

dose rate and the duration of the natural radiation. The centres decay under UV radiation and

are stable at temperatures <100°C. The closing temperature varies between 55 and 82°C for

the [TiO4/Li+]0 centre and between 49 and 64°C for the [AlO 4]0 centre (e.g. Grün et al., 2000).

The relative intensities of [AlO 4]0 as well as [TiO4/Li+]0 centres systematically increase for

hydrothermal quartz (samples 1, 2, 3, 13) granitic quartz (samples 6, 8, 12, 14) and rhyolitic

quartz (samples 10, 11, 15), respectively (Fig. 5.16a). The Ti concentration correlates with the

absorption intensity of the [TiO 4/Li+]0 centre but there is no correlation between the Al

concentration and the intensity of the [AlO 4]0 centres. High concentrations of [TiO 4/Li+]0

centres are typical for magmatic quartz (Rakov et al., 1991; Agel, 1992; Plötze, 1995). The

lack of correlation between Al concentration and paramagnetic Al-defects may due to the fact

that paramagnetic Al-centres are less stable. The [TiO 4/H+]0 centres could not detected. They

are typical for metamorphic quartz (Rakov et al., 1991; Agel, 1992; Plötze, 1995).

The relative concentration of [AlO 4]0 centres in magmatic quartz shows a positive correlation

with the slow decaying component (Ib1; see § 5.2) of the blue 2.79 eV CL emission (Fig.

5.17a). The abundance of O2
3- centres exhibits a association with the fast increasing
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component (Ir2; see § 5.2) of the red 1.96 eV CL emission (Fig. 5.17b). This corresponds with

the general observation, that the 1.96 eV emission is associated with non-bridging oxygen

hole centres (NBOHC) with OH-precursor (e.g. Kalceff and Phillips, 1995). The

paramagnetic O2
3- centre is a kind of NBOHC (see chapter 2). Silanol groups (=Si-O-H) are

favourable precursors O2
3- centres in quartz. Upon irradiation H+ diffuses away and NBOHC

are formed (e.g. O-, O2
3-) resulting in an increase of the 1.96 eV CL emission.

Table 5.3    List of relative intensity of paramagnetic defect centres determined by EPR spectroscopy.

No
.

Sample name Quartz type ESR intensity of paramagnetic defect centres (a.u.)

[AlO4]0 [TiO4/Li+]0 O2
3- E’-centre

1 megaquartz hydrothermal 0.38 0 0.422 0.068
2 fissile quartz hydrothermal 0 0 0 0
3 oil-bearing quartz hydrothermal 0.691 0 0.68 0.68
4 Schoenfeld Rhyolite rhyolitic n.d.* n.d.* n.d.* n.d.*

5 Teplice Rhyolite (TPR2) rhyolitic 12.77 0.221 1.128 0.719
6 Schellerhau Granite granitic 11.689 0.948 0.906 0.329
7 Eibenstock Granite granitic 3.124 0.516 1.57 0.287
8 Aue Granite granitic 5.003 0.95 1.177 0.171
9 vein quartz hydrothermal n.d.* n.d.* n.d.* n.d.*

10 Wachtelberg Rhyolite rhyolitic 27.94 1.27 0.749 0.439
11 Beucha Rhyolite rhyolitic 14.03 1.499 0.302 0.801
12 Flossenbuerg Granite granitic 8.933 0.414 0.604/ 0.682 0.141
13 leucosome quartz pegmatoid 0.244 0.159 0 0
14 Ramberg Granite granitic 5.195 0.445 1.365 0.058
15 Weinheim Rhyolite rhyolitic 11.87 1.505 0.435 0.111
n.d.* - not determined

Fig. 5.16   Results of EPR spectroscopy. a - EPR intensity of the [AlO4]0 vs the [TiO4/Li+]0 centre of different

quartz types. High temperature formed quartzes exhibit the highest concentrations. b – Ti concentration vs EPR

intensity of the [TiO4/Li+]0 centre. Quartzes with high Ti content show a high the [TiO4/Li+]0 defect

concentration.
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Fig. 5.17   Comparison of intensities of paramagnetic defects and intensity parameters of the 1.96 eV and 2.79

eV CL emission. a - EPR intensity of the [AlO4]0 vs the slow decaying component (Ib1; see § 5.2) of the blue

2.79 eV CL emission. The regression line was calculated for the magmatic quartzes. b - EPR intensity of the O2
3-

vs the fast increasing component (Ir2; see § 5.2) of the red 1.96 eV CL emission.

Overview of CL emission lines of quartz

1.73 ± 0.1 eV emission

The dominance of the 1.73 eV band may be responsible for reddish luminescence (instead of

the frequent red-brown CL). The CL typically increases during radiation time. Thermal

treatment of some samples results in a significant increase of the intensity at 300°C for 24 h

(Fig. 5.8) indicating that the emission can be excited thermally.

The 1.73 eV emission line is caused by the substitutional incorporation of Fe3+ into the quartz

lattice (Pott and McNicol, 1971; Gorobets et al., 1989; Kempe et al., 1999). Fe3+ is an

important CL activator even when it is present in low concentration (<50 ppm) in the crystal

lattice (Marshall, 1988). The average Fe concentration increases with the quartz formation

temperature (Fig. 5.13). It was frequently observed that Fe increases at the grain boundary of

magmatic quartz which indicates a high diffusion rate of Fe in the quartz lattice at high

temperatures (Fig. 5.11a). However, a correlation between the Fe concentration and the 1.73

eV emission intensity could not be proofed. There are several 3 explanations: 1) the Fe

concentration lies mostly near the detection limit and inaccuracies do not allow any

correlation, 2) Fe occurs also as a divalent ion which enters interstitial positions (e.g.

Lehmann, 1975), 3) the Fe3+ can be incorporated into quartz structure also in interstitial

positions (e.g. Scala and Hutton, 1976).

0

5

10

15

20

25

30

0 5 10 15 20 25

Ib 1 (%)

hydrothermal quartz

granitic quartz
rhyolitic quartz

a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Ir2 (%)

b



90

1.85 ± 0.1 and 1.96 ± 0.2 eV emission

The dominant peak of the red emission range of most quartzes is given by the 1.96 eV band.

The weak 1.85 eV emission is associated with the 1.96 eV band as both emissions show a

constant peak area ratio (1.96 : 1.84 eV = 1 : 0.51±0.17). The emissions are characterised by

an parabolic increase during electron radiation. The only exception is the vein quartz (sample

9), for which no red CL emission was observed. The intensity increase is generally steeper in

quartz formed at low temperature and flatter in quartzes in rhyolite, where these lines show

already a high initial intensity. The 1.96 and 1.85 eV bands of the rhyolitic quartzes are often

very distinct as the neighbouring 1.73 and 2.15 eV emissions normally have low intensities.

The emission is slightly influenced by the sample warming during electron radiation (Fig.

5.6). Furthermore the heating at 300°C for 24 h results in an intensity increase of both 1.85

and 1.96 eV bands (Fig. 5.8). This is in agreement with Rink et al. (1993) who observed that

radiated rhyolitic quartz phenocrysts show an intense red thermoluminescence band centred at

1.96-2.0.

The concentration of O2
3- centres shows a weak association with the unstable component of

the 1.96 eV emission (Fig. 5.17b). This corresponds with the general observation, that the 1.96

eV emission is associated with non-bridging oxygen hole centres (NBOHC) like O2
3- and O-

centres (e.g. Siegel and Marrone, 1981; Kalceff and Phillips, 1995). OH-precursors are the

proposed cause for the creation of this NBOHC (e.g. Griscom, 1985; Friebele et al., 1985;

Kalceff and Phillips, 1995). Upon irradiation H+ diffuses away and NBOHC are formed

resulting in an increase of the 1.96 eV CL emission. According to Griscom (1985) the

paramagnetic E’centre (≡Si·) and/or the diamagnetic trapped-electron center (≡Si:) are

important causes for the emission at 1.96 eV besides the NBOHC. Defects related to

structural water have been assumed as possible precursor centres. Koyama (1980) assumed

that this emission may originate from hydrogen in the form of OH or adsorbed H2O in the

quartz lattice. The 1.85 eV band is similarly associated with NBOHC (Griscom, 1985; Kalceff

and Phillips, 1995). Possible precursors of the NBOHC are peroxy linkages, “strained”

silicon-oxygen bonds, and/or hydroxyl groups.

Greenschist facial deformed granitic quartz from the Lachlan Fold Belt (see § 10.7) show a

constant or decreasing 1.96 eV and 1.85 eV emissions during electron bombardment. This

quartz contains finely dispersed muscovite flakes of up to 0.5 µm in diameter, which are

arranged on micro-sliding planes. The flakes are interpreted as products of deformation. They

incorporated the stress-induced mobilised structural water of the quartz lattice. Therefore,
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nearly no interstitial bonded water occurs in the quartz lattice, which would have caused the

rise of red intensity during electron radiation due to the radiolysis of hydroxyl bonds.

Both 1.96 and 1.85 eV emissions do not generally correlate with the Al distribution. High Al

concentrations (>1000 ppm) are associated with the 2.79 eV emission (see below) and the

3.26 eV emission (Alonso et al., 1983; Luff and Townsend, 1990; Perny et al., 1992; Gorton

et al., 1996). This lack of correlation may explained as follows: 1) the substitutional position

compensated by hydroxyl defects may be occupied also by other ions like Fe3+, 2) Al may

occur also in interstitial sites (Cohen, 1960), and 3) Al is in part present in the form of micro-

inclusions (Blankenburg et al., 1994; Götze et al., 1999).

2.15 ± 0.2 eV emission

The 2.15 eV emission band (yellow) is dominant for granitic quartz (samples 7, 8, 12). It is

the only emission band whose intensity remains relatively constant during electron radiation

implying a stable luminescence centre. The quartz of the Eibenstock and Aue Granite

showing high-intensity 2.15 eV emission exhibit high Mn suggesting that the emission may

caused by Mn.

According to Lysakov (1978) Mn in quartz has characteristic CL at 1.92, 2.23, and 2,6 eV in

quartz. The latter peak is caused by the trivalent ion and the other two by the bivalent ion. The

2.15 eV band was observed by Itoh et al. (1990), Remond et al. (1992), Fuchs and Götze

(1996) and Götze et al. (1999). Rink et al. (1993) described a thermoluminecence peak

centred between 2.14 eV – 2.21 eV in natural quartz of hydrothermal origin. Itoh et al. (1990)

proposed that electron radiation of α-quartz generates pairs of E’ centres (≡Si⋅) and peroxy

radicals (≡Si-O-O⋅) showing luminescence at 2.1 eV as well as self trapped excitons (STE)

showing luminescence at 2.8 eV. However, an association of the the 2.15 eV and 2.79 eV

emission could not be detected. According to Fuchs and Götze (1996) and Götze et al. (1999)

the predominance of the 2.15 eV emission of some agates and of hydrothermal quartz is

associated with the high concentration of E’ centres. In this study a correlation between EPR

intensity of the E’ centre and the peak area of the 2.15 eV band has not been found.

2.48 ± 0.2 eV emission

Hydrothermal quartz (megaquartz and oil-bearing quartz) exhibit a significant 2.48 eV peak at

initial electron bombardment causing a turquoise CL at initial radiation. This emission rapidly

decays during the first minute of electron bombardment. The emission is thermally stable up

to 300°C, however it is destroyed after heating at 600°C for 24 h. The samples of
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hydrothermal quartz (Fig. 5.12a) show a high intensity of the Li-associated 3474 cm-1 band.

The decrease or disappearance of the Li-H absorption band after heating at 500°C (Schneider,

1993) is in accordance with the presently observed disappearance of the CL emission after

600°C heating (Fig. 5.8). The properties of the 2.48 eV band and of the Li-associated 3474

cm-1 absorption bands imply an association of this CL emission with Li-defects (Table 5.4).

Demars et al. (1996) established that the UV emission between 3.65 and 3.76 eV correlates

with high Al and Li concentrations. Pott and McNicol (1971), Itoh et al. (1988), and Luff and

Townsend (1990) proposed that the 2.48 eV band is caused by an impurity defect, but they

give different answers about the kind of impurity. Itoh et al. (1988) assumed the 2.5 eV

emission band is extrinsic due to the substitutional incorporation of impurity ions; according

to Pott and McNicol (1971) the intensity of the band is associated with Mn2+-defects, whereas

Luff and Townsend (1990) showed that Ge-doped quartz exhibits a thermoluminescence band

at 2.43 eV.

2.58 eV and 2.68 eV emissions

The narrow 2.58 eV emission and the 2.68 eV and the 2.79 eV bands show constant peak area

ratios, i.e. 2.68 eV : 2.58 eV =1 : 0.34±0.08. The two emission bands are characterised by

intensity decay during electron radiation and cause beside the 2.79 eV emission the blue

“flash” at initial electron radiation. Contrary to our findings, Gorton et al. (1996) suggested

that the 3.26 eV band is responsible for the high initial blue intensity that is visible as a blue

“flash”. The 2.68 eV band was observed in crystalline quartz by Kalceff and Phillips (1995)

who assume an association of the emission with a STE combined with an E’ center. However,

the occurrence of the two emissions in all investigated quartzes points to an intrinsic cause.

2.79 ± 0.2 eV emission

This emission shows a strong intensity decay during the electron radiation and is mainly

responsible for the blue “flash” during the first seconds of electron radiation. Heat treatment

sometimes leads to the intensification of the blue emission band (Fig. 5.8; sample 14). Vein

quartz showing an intense unstable 2.79 eV emission has extremely high Al concentrations.

However, no significant correlation between Al concentration and peak area has been found.

According to Ramseyer and Mullis (1990) the blue luminescence is related to the positively

charged interstitial cations H+, Na+, Li+ and K+, which compensate Al3+. Ramseyer and Mullis

(1990) show that areas with a high Al content (>1000 ppm Al) always exhibit unstable blue

luminescence. This luminescence is absent for Al <50 ppm. However, they did not find a
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simple correlation between the Al content and CL intensity. The relative concentration of

[AlO4]0 centres in magmatic quartz show a positive correlation with the unstable component

of the blue 2.79 eV emission. This observation is in agreement with Nassau and Prescott

(1975) who assumed that the [AlO 4]0 centre is associated with the emission band at 2.85 eV.

The general absence of a significant correlation between the Al and the emission intensity of

the 2.79 eV band can explained by the occurrence of Al also in interstitial sites (Cohen, 1960)

and/or in form of microinclusions lattice (Flicstein and Schieber, 1974; Blankenburg et al.,

1994; Götze and Plötze, 1997). However, the decay of the blue 2.79 eV emission can

explained by radiation-induced release of interstitial cations accelerated by sample warming

and charging. Possibly the emission is associated with charge compensating ions of

substitutional Al3+.

Table 5.4    Detected CL emission bands of quartz and their possible association with trace elements and defect

centres.

Position
(eV)

Half width
(eV)

Association with trace elements Association with defect
centres

1.73±0.02 0.3±0.02 Associated with Fe-defects (?) -

1.84±0.01 0.22±0.01 Associated with structural water in form of H+,
OH-, and H2O (especially the unstable
component) (?)
and partly associated with Al-defects and their
interstitial charge compensators (H+, Li+, Na+,
K+, Fe2+) (?)

Associated with O2
3- centres (?)

1.96±0.02 0.22±0.02 Associated with structural water in form of H+,
OH-, and H2O (especially the unstable
component)
and partly associated with Al-defects and their
interstitial charge compensators (H+, Li+, Na+,
K+, Fe2+)

Associated with O2
3- centres

2.15±0.02 0.38±0.01 Associated with Mn-defects (?) -

2.47±0.02 0.30±0.03 Associated with Li-defects Associated with Li-H defects

2.58±0.01 0.18±0.005 - Intrinsic defect (?)

2.68±0.01 0.23±0.01 - Intrinsic defect (?)

2.79±0.01 0.26±0.01 Associated with Al-defects and their interstitial
charge compensators (H+, Li+, Na+, K+, Fe2+)

Associated with [AlO4]0 centres

2.96±0.015 0.30±0.02 Associated with Ti-defect structures Associated with [TiO4/Li+]0

centres
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2.96 ± 0.2 eV emission

This band represents the more stable part of the blue CL emission and is characteristic for

rhyolitic quartz (sample 5, 15) as well as for granitic quartz (sample 7, 12, 14; Fig. 5.1, 5.3).

A good correlation between the emission intensity and Ti distribution was found (Fig. 5.14).

Heating at 600°C for 24 h results in the intensification (sample 15) as well as the creation

(sample 1) of the 2.96 eV band after (Fig. 5.8, 5.9).

Rink et al. (1993) observed thermoluminescence emission at 2.85-2.95 eV for magmatic

quartz. Kalceff and Phillips (1995) assumed that the origin of the 2.95 eV emission is possibly

related to irradiation producing intrinsic defects. Koyama (1980) observed blue CL in carbon-

implanted SiO 2. Like Ti4+ carbon enter the substitutional position in the SiO 4 tetrahedra.

Although the Ti content closely correlates with the 2.96 eV emission, it is not clear whether

Ti is a CL activator or sensitizer (Table 5.4).
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6   Genetic significance of CL structures and

trace element distribution

6.1   Impurity uptake during quartz crystallisation in silicate melts

The rhyolites (samples 4, 5, 10, 11, 15) as well as a number of the sampled granites (samples

6, 7, 8, 14) contain euhedral quartz phenocrysts showing a CL-contrasted complex growth

pattern (Fig. 5.11, 6.1, 6.2a-f, 7.6; Plate 1). The euhedral phenocrysts of granites are

recognisable only by using CL because they are overgrown and embedded in a homogeneous

anhedral quartz phase. The existence of euhedral quartz phenocrysts in granites showing CL-

contrasted growth textures is currently not known to be common and was described in only a

few cases (Frentzel-Beyme, 1989; Seltmann, 1994; D’Lemos et al., 1997; Müller and Behr,

1997). The questions arises if this granitic phenocrysts are comparable phenocrysts occurring

in rhyolites and if they represent a similar crystallisation environment.

A main result of the trace element analysis is that the stable blue CL of the phenocrysts

correlates with high Ti concentrations and that the variation of Ti is mainly responsible for the

contrasting of the magmatic zoning of the quartz phenocrysts (see chapter 7 and 9). Caused by

its high field strength (F = 1.04) Ti4+ can substitute Si only at high temperatures. High Ti

concentrations in macroscopically rutile-free quartz generally indicate formation temperatures

=500°C (Blankenburg et al., 1994). High Ti concentrations are also typical for quartz in

granulites (Kerkhof and Müller, 1999). To understand the variation of the Ti concentration in

quartz phenocrysts the growth textures were classified according their structure. The

classification of growth zoning is necessary to distinguish between zoning caused by self-

organised growth and zoning caused by physico-chemical changes of external factors such as

temperature, pressure and magma composition (e.g. Bottinga et al., 1966; Allègre et al., 1981;

Shore and Fowler, 1996). The zoning caused by external factors is of great interest for the

reconstruction of the crystallisation history of felsic melts (magma storage, ascent, mixing,

emplacement, and cooling rate) which will applied in the in the chapters 7-10.
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Plate 1   CL images of magmatic quartz. a – Quartz of the Flossenbuerg Granite (sample 12) showing a weak

red-brown CL and a dense network of healed cracks. b – Edge of a zoned quartz phenocryst with blue CL

overgrown by red-brown luminescent matrix quartz (Schellerhau Granite, sample 6). c – Quartz phenocryst of

the Schellerhau Granite with complex growth pattern overgrown by red-brown luminescent anhedral matrix

quartz. d - Zoned quartz phenocryst of the Teplice Rhyolite (sample 5). Resorption of the phenocryst surface

causes the truncation of pre-existing growth zones. Note the small quartz fragments around the phenocryst which

indicate a mechanical abrasion during transport in the melt. e - Zoned quartz phenocryst of the Teplice Rhyolite.

f – Zoned quartz phenocryst of the Teplice Rhyolite with red-brown luminescent core. g – Edge of a zoned

quartz phenocryst of the Weinheim Rhyolite (sample 15) with a melt inclusion. The zoning fits the shape of the

melt inclusion (black with red rim). h - Zoned quartz phenocryst twin of the Weinheim Rhyolite which exhibits

resorpted red-brown luminescent cores, melt inclusions (black), and healed cracks (pink lines).

Fig. 6.1   CL images of rhyolitic quartz phenocrysts recorded with a JEOL CLD40 R712 detector. a – Phenocryst

from the Weinheim Rhyolite (sample 15). b – Phenocryst from the Beucha Rhyolite (sample 11). Note the

anhedral, unzoned, bright quartz phase which overgrows the resorpted core with complex zoning pattern.
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Fig. 6.2   CL and BSE images of magmatic quartz. The CL images were recorded with the S20 Extended

detector. a – Phenocryst of the Wachtelberg Rhyolite showing a red-brown, Ti-depleted core. b – Phenocryst of

the Schoenfeld Rhyolite with bright blue CL. c – BSE image of quartz in the Eibenstock Granite. d – CL image

of the same area as (c) showing an euhedral zoned core overgrown by an anhedral, red luminescent quartz phase

without zoning. The CL intensity of secondary quartz have been turned from low CL intensity to high CL

intensity after 5 min electron radiation (bright patchy areas within the crystal). e - BSE image of quartz in the

Ramberg Granite. f - CL image of the same area as (e) showing a very weakly contrasted phenocryst (bright)

with faint growth zoning. The granitic quartz in figures d and f exhibits a number of secondary CL structures.
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The development of growth zoning during magmatic crystallisation is described by a number

of models (e.g. Sibley et al., 1976; Anderson, 1984; Fowler, 1990) that have been derived

from the growth zoning of plagioclase. We apply these models to the crystallisation of

magmatic quartz having a very similar growth zoning as plagioclase. Below an interpretation

of growth textures in quartz phenocrysts is given, based on our observations and the present

level of knowledge, to explain the variations of impurity uptake in magmatic quartz. The

compilation of growth textures is illustrated in Fig. 7.1 (chapter 7).

During crystallisation of a mineral four processes are competing and the overall growth rate-

controlling process is the slowest one: 1) the reactions occurring at the crystal-melt interface,

2) the bulk diffusion of components in the melt close to the interface, 3) the production and

dissipation of the latent crystallisation heat at the interface, and 4) the relative flow of the melt

with respect to the interface. The latter two are not critical since heat diffusivities are one to

several orders of magnitude higher than mass diffusivities (Dowty, 1980) and the crystal

settling effects in a magma chamber are small for viscous silicate melts. Therefore, processes

1) and 2) control are the main parameters controlling the crystal growth rate. A crystal can

grow only if the thermodynamic variables for the formation of that phase exceed the

equilibrium conditions. This overstepping (undercooling, overheating, supersaturation)

provides energy by which nuclei are formed and crystal growth is sustained. The nuclei

provide sinks to which the crystallising components diffuse. The distance over which

elements are transported by diffusion depends on the diffusion rate and time.

The microscopic topography of individual growth zones is a relic crystal-melt interface and is

indicative for disturbances of growth and diffusion rates during crystallisation. These

parameters depend on the melt composition, crystal transport in the melt (e.g., convection),

the ascent velocity of the melt, and pressure- and temperature variations. These criteria

regulate the type and quantity of trace elements, few of which are CL-activators. Thickness

and frequency of the zones are directly related to the physical and chemical melt properties.

The diffusion rate in the melt controls the compositional variation and width of the zoning.

The higher the diffusion rates, the less are the compositional differences in trace element

content in the quartz. Concentration gradients develop in the melt when the growth rate

exceeds the diffusion rate, and in the solid when the reaction rate of crystals with the liquid is

lower than the growth rate (Sibley et al., 1976). The development of growth zoning during

magmatic crystallisation was described by a number of models (e.g. Sibley et al., 1976;

Anderson, 1984) that have been derived from the zonal structure of plagioclase. We apply
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these models to the crystallisation of magmatic quartz, which shows very similar zonal

growth as plagioclase.

Major discontinuities in the zoning (50 - 1000 µm width) being non-periodic and showing a

significant change of the luminescence colours result in physico-chemical changes of external

factors (“extrinsic” according to Shore and Fowler, 1996) such as temperature, pressure and

magma composition (Bottinga et al., 1966; Allègre et al., 1981). Bottinga et al. (1966) defined

the non-periodic zones as compositional zoning, and Allègre et al. (1981) called them stepped

zoning. Depending on the type of the physico-chemical change (degassing, magma mixing or

ascent) the trace element concentrations, mostly represented by variations of Ti and

sometimes of Al, show an abrupt change (see chapter 7).

The fine oscillatory zoning (2 - 20 µm width) within the step zones can be explained by a self-

organised (“intrinsic” according to Shore and Fowler, 1996) diffusion-controlled mechanism

on the crystal-melt boundary layer and plays a role exists in a number of models proposed by

several authors (Sibley et al., 1976; Haase et al., 1980; Allègre et al., 1981; Loomis, 1982;

Simakin, 1984; Pearce, 1993). Oscillatory growth zones form very slowly, at low degrees of

undercooling and oversaturation under near-equilibrium conditions. This is possible only

when the crystallising system on the solid-liquid interface is not disturbed, i.e. thus the melt

should not convect (Allègre et al., 1981). The self-organisation in the crystal-melt reaction

zone and boundary layer can be explained by the following model (e.g. Allègre et al., 1981;

Fig. 6.3): Saturation of silica in the reaction zone increases the quartz growth rate. The

increasing growth rate results in the decrease of silica concentration if the growth rate exceeds

the diffusion rate of silica. Simultaneously, quartz-foreign elements are accumulated in the

reaction zone and boundary layer. The high growth rate favours the incorporation of

impurities due to the change of planar to the cellular interfaces with rather high specific free

Fig. 6.3   Model system showing

schematic concentrations of

relevant species versus distance

from the surface of quartz crystal
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energy. The growth rate will slow down when quartz growth is so fast that silica becomes

depleted in the reaction zone and boundary layer. Consequently, the diffusion rate becomes

the dominant crystal growth controlling process. The growth rate starts to rise again as soon

as the silica in the reaction zone has been recovered. Investigations on natural plagioclase by

Greenwood and McTaggart (1957) and Wiebe (1968) confirm that oscillation zones of

crystals grown from the same melt and formed by self-organising character of processes

cannot be correlated. Physical or chemical changes in the bulk magma are not required to

develop oscillation zones. The self-organised growth causes only slight variations of Ti

upatke.

Wavy surfaces are sometimes observed between the straight-bordered growth zones. They are

characterised by convex inlets which are opposed to the growth direction. In contrast to

resorption surfaces which are resulted in sharp truncation of the regular zoning and rounded

crystal corners (e.g. Shore and Fowler, 1996) the inlets of the wavy surface are much smaller

and extend maximal 20 µm in the growth zones and do not cut older zones or round-off

corners. The subsequent growth zones are rectilinear bordered again and parallel to the

euhedral crystal habit. This feature is in contrast to the wavy zoning which is described for

plagioclase by Pearce and Kolisnik (1990), where the subsequent growth zones keep the wavy

structure. The wavy zones of quartz are interpreted as a small scale diffusion front caused by

rapid variation of the melt temperature and/or composition leading to changes of CL

properties developed during crystal growth.

Discussions about the distinction of resorption surfaces and growth impediments in quartz

phenocrysts have been controversial (Kozlowski, 1981; Harris and Anderson, 1984).

Laemmlein (1930) first recognised and described lobate depressions at the quartz crystal

surface as growth impediments. This result is in accordance with our CL observations which

show clearly that the zoning around lobate depressions, mineral-, and melt inclusions adapts

to the shape of the impediments. In contrast, resorption surfaces cut pre-existing growth

zones. Growth impediments are caused by immiscible liquids, vapor bubbles, molten sulfide

or fluid-rich melt droplets which stick on the crystal surface, hinder the crystal growth and

result in lobate depressions and entrapments (Kozlowski, 1981; Donaldson and Henderson,

1988; Lowenstern, 1995). The resorption (melting) of quartz surfaces is due to SiO 2-

undersaturation of the melt that may be caused by increase in temperature, isothermal

depressurisation or magma mixing. Crystals may undergo rounding due to chemical

interaction (melting) and mechanical abrasion during transport in the melt. The occurrence of

resorption which results in strong rounding of the quartz crystals is in accordance with the
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rapid ascent of granitic melts by dyke formation as found by Holtz and Johannes (1994) and

Johannes and Holtz (1996).

The presence of skeletal (dendritic) growth indicates supercooling and the consequent

decrease of the diffusion/growth rate. Here, the compositional gradient on the crystal-melt

interface develops, but the planar crystal-melt interface becomes unstable and changes to

cellular and dendritic growth. This type of crystal growth results in skeletal (dendritic) crystal

morphologies (Kirkpatrick, 1981; Fowler, 1990).

The growth pattern in rhyolitic and granitic quartz phenocrysts are similar indicating a similar

crystallisation environment. Flick (1984; 1987) describes rhombohedral a-quartz phenocrysts

from the Weinheim Rhyolite (sample 15). Assuming a typical solidus of a rhyolitic melt of

900-950°C, a crystallisation pressure of at least 13 kbar is necessary for a-quartz

crystallisation (Flick 1987). This pressure corresponds with a formation depth of phenocrysts

in this rhyolite of about 40 km assuming a geothermal gradient of 20/25°C/km. Thomas

(1992) calculated the depth of quartz phenocryst crystallisation of granites of the Erzgebirge

(e.g. Eibenstock Granite) of up to 21 km provided by microthermometric studies of silicate

melts. Our observations and the two calculations of the crystallisation depth show that

euhedral quartz phenocrysts in rhyolites as well as granites exhibiting blue CL-contrasted

growth zoning represent a low to mid-crustal crystallisation environment.

Like shown above except for the oscillatory zoning all growth textures are caused by physico-

chemical changes of external factors such as temperature, pressure and magma composition

which result in the abruptly change of Ti concentration. In § 9.8 is shown that the Ti content

in quartz phenocrysts increases with increasing growth rate. Quartz phenocrysts frequently

show a Ti depletion in the red/red-brown luminescent crystal core (sample 5, 6, 10, 15)

indicating a slow growth rate during the early crystallisation stage (Fig. 6.2a).

6.2   Impurity uptake during quartz crystallisation in aqueous solution

Hydrothermal quartz shows similar growth patterns as magmatic quartz but the compositional

zoning is more dominant than the self-organised oscillatory zoning. This indicates

crystallisation in a more frequently disturbed (open) system. Resorption (solution) surfaces

observed in magmatic quartz and cutting pre-existing growth zones do not occur in

hydrothermal quartz. This observation can be explained by the low solubility of Si2O in water

which results only in weakly resorbed (solved) crystal surfaces that can not be distinguished
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from unsolved surfaces. A matter of discussion is, if a crystal surface represents generally a

solution surface. A characteristic feature of hydrothermal quartz is the so-called sector zoning

(e.g., Siebers, 1986) which has been not observed in magmatic quartz.

As shown in chapter 6 the contrasted zoning of hydrothermal quartz was explained by the

distribution of Al-defects. Therefore, the present discussion focuses on the incorporation and

distribution of Al3+ (and to lesser extend also Fe3+) and their charge compensating ions Li+,

H+, Na+, Fe2+, K+. Ti, which may cause CL zoning of magmatic quartz phenocrysts is nearly

absent in hydrothermal quartz. This can be explained by the following considerations: 1) The

high field strength of Ti4+ allows the to substitution of Si4+ only at temperatures >500°C

(Blankenburg et al., 1994), 2) the supply of Ti is very low in natural hydrothermal solutions,

and 3) the uptake of Ti of >50 ppm is limited by the stability PT-field of the a-quartz.

Generally, the incorporation of trace elements in hydrothermal quartz depends on the growth

direction, growth velocity, the solution chemistry, and the crystallisation pressure and

temperature (Brown and Thomas, 1960; Cohen, 1960; Bambauer, 1961; Poty, 1969; Siebers

et al., 1984; Siebers and Klapper, 1984; Siebers, 1986; Pankrath 1988). The quartz growth

kinetic in an aqueous solution is similar to the processes in silicate melt and can be divided

into 5 stages:

1) Solution of silica in the form of complexes

2) Transport of the complexes into the crystal boundary layer and reaction zone of the

growing crystal by diffusion and convection

3) Dissociation of the complexes, and adsorption of the complex components on the

crystal surface; desorption and removal of water and quartz-foreign elements from the

reaction zone

4) Surface diffusion of the components to energetically favourable places

5) Incorporation (reaction) into the crystal and diffusion of the reaction heat.

In order to understand the processes in the crystal-fluid reaction zone and boundary layer in

aqueous solutions Siebers (1986) proposed the following model: At the crystal surface a

equilibrium develops between diffusion and boundary layer processes (Fig. 6.4). The

thickness of the boundary layer depends on the diffusion coefficient of the reaction partners at

the crystal surface. The thermal diffusion coefficient of the heat which is produced in the

reaction zone is much higher than the diffusion coefficients of the substances. Therefore, the

reaction heat does not effect reaction and growth processes. The oversaturation of the reaction

partners increases with the distance from the reaction zone. The concentration gradient in the

boundary layer is the driving force of the reaction and growth rate. Therefore, the height of
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growth mounds at the basis c (0001) corresponds to the thickness of the boundary layer which

can reach several millimetres (Jackson, 1979). In comparison to the crystal-melt interface the

crystal-liquid interface is generally more sensitive for concentration variations than

temperature variations (Siebers, 1986).

Precondition for impurity incorporation in quartz is that the impurity element is dissolved in

the aqueous solution as a complex which can be transported. The dissolution rate and the

ability of forming complexes depend on the element concentration of the solution, the

pressure, temperature, redox potential, and pH (e.g. Siebers, 1986). Al can be fixated on the

quartz surface if it is represent as aqueous tetrahedrally coordinated species [Al(OH)4]-

(Merino et al., 1989). This species occurs in aqueous solutions with pH >5 (for =100°C).

According to Merino et al. (1989) and Pankrath (1988) high amounts of Al (>2000 ppm), Li,

Na and low H concentrations in hydrothermal quartz may result from crystallisation in a high-

pH aqueous solution. These authors assumed that the pH of the solution is beside the crystal

growth rate the main controlling factor in the uptake of Al and responsible for the large

variation of Al in hydrothermal quartz.

Fig. 6.4   Model system (modified after Siebers 1986) showing schematic concentrations c of relevant

components versus distance from the surface of quartz crystal in solution during diffusion-controlled growth.

The relative thickness of the boundary layer d of component is controlled by its diffusion coefficient D. The

development of growth mounds favours the impurity segregation. The sketch in the cycle show the idealised

crystal-fluid reaction zone in pure water.
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The Al concentration of the hydrothermal quartz (sample 9) differs between the rhombohedral

faces z (~4500 ppm) and r (~3300 ppm). The different Al concentrations of different growth

directions cause the sector zoning observed by CL (Fig. 6.11c). The probability of Al3+ uptake

is controlled by different crystal structural and crystal chemical properties of the surfaces of

the growing crystal. For these different surfaces, the probability of Al uptake is higher for z

(0111) faces and lower in r (1011) faces. According to the Periodic-Bond-Chain (PBC) theory

after Hartmann (1978) the crystal faces of quartz can be distinguished into K-(kinked) and F-

(flat) faces. Atomic flat F-faces are the m (1010), r (1011), and z (0111) faces. The basis c

(0001) is an atomic rough K-face. The PBC theory can not differentiate between the surfaces

of r (1011) and z (0111). The K-face is more reactive because of the high number of free

bonds. At this face foreign ions are preferably adsorbed. The F-faces remains flat during

higher growth rate whereas the roughness of the K-face c (0001) increases. An increasing

growth rate results in a drastic increase of the impurity uptake at the rough K-face c (0001)

(e.g., Martin and Armington, 1983). The increase of Al uptake on the F-face z (0111) with

increasing growth rate occurs at temperatures above 400°C. Below 400°C the relationship

between Al uptake and growth rate becomes inverted (Tsinober and Kamentsev, 1964;

Rumyantsev and Novozhilov, 1980). Siebers (1986) proofed that the impurity concentration

decreases from c (0001), m (1010), r (1011), to z (0111). The PBC theory cannot explain the

different distribution coefficients of foreign ions at m (1010), r (1011), and z (0111). The

distribution coefficient of foreign ions on the different faces depends also on the growth rate,

temperature, degree of saturation, and growth mechanism (Siebers, 1986). The compositional

differences between F and K-faces disappear at higher temperatures near the solidus. During

high temperature crystallisation the crystal-fluid interface undergoes a drastic increase of

roughness. Close to the melting temperatures all faces becomes rough and take up foreign

ions in similar portions. That explains why sector zoning is not observed in magmatic quartz.

The extremely high Al in hydrothermal quartz up to 5000 ppm (sample 9) gives reason to

assume that Al is not only structurally incorporated, but also as impurity clusters or inclusions

(Flicstein and Schieber, 1974; Blankenburg et al., 1994). Götze et al. (1999) showed that the

content of bulk trace Al is higher than the structurally incorporated Al calculated from

saturated paramagnetic Al centres. Mullis and Ramseyer (1999) determined up to 12000 ppm

Al in fissure quartz form the Alps. Caused by the larger ion radius of Al3+ in comparison to

Si4+ such high amounts of structurally incorporated Al3+ should cause an extreme deformation

and weakening of the quartz lattice. Pfenninger (1961) described impurity entrapment in the

form of micro-inclusions and gave the following explanation: The oversaturation of silica
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results in diffusion-controlled crystal growth and higher growth rates. At these rates the

surface diffusion is too low to organise a planar face growth and cellular growth becomes

dominant. Cellular growth results in the development of defect channels which may be filled

with foreign elements. These defect channels, 20 - 50 nm in diameter, are parallel to the c-axis

and surrounded by disordered SiO 2 boundary layers (Fig. 6.5). They start to grow at the

structural channels due to the stepwise bond lacking between the tetrahedra. The competition

between impurity segregation and lateral diffusion results in a broadening of the defect

channels which finally may result in dendritic growth.

The dynamics of processes at the atomic boundary layer (4-6) are not fully explained, because

the structure of the quartz surface is unknown. It has been assumped that free bonds of the

surface oxygen are compensated by H+ (e.g., Anderson and Wickersheim 1964, Gallei and

Parks 1972, Kuznetsov and Lobachev 1973). H2O is removed during the uptake of dissolved

SiO2 complexes. The Si-OH bond layer is followed by polymolecular adsorbed H2O

molecules (Fig. 6.4). This “quasi-crystalline” layer interacts with the dissolved complexes.

The criteria which control the uptake of Al3+ and Fe3+ and its charge compensating ions Li+,

H+, Na+, Fe2+, K+ into the lattice of hydrothermal quartz can be summarised as follows:

1) Impurity concentration differs systematically between growth directions and decreases

from c (0001), m (1010), r (1011), to z (0111).

2) The increase of the growth rate stimulates the impurity uptake at the K-face c (0001). This

is valid only at temperatures >400°C for the F-face z (0111). Below 400°C the impurity

concentration decreases with increasing growth rate.

3) Impurity uptake is controlled by the pH of the aqueous solution. High pH (=5) of an

aqueous solution results in high Al concentrations in quartz.

4) The presence of the charge compensating ions H+, Li+, Na+, and K+ stimulates the Al3+

and Fe3+ uptake.

Fig. 6.5   Idealised model of hollow defect

channels K and the disordered boundary layer

G according to Pfenninger (1961). Section

vertical to c-axis.

K
G

G
K
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Dennen et al. (1970) proposed a geothermometer based on the incorporation of Al in

hydrothermal quartz as a function of the formation temperature. However, the multiple

criteria which control the Al uptake show that the Al concentration cannot be directly used as

a geothermometer.

6.3   Secondary CL structures and processes resulting in modification of defect centres

Quartz may show a number of secondary structures made visible in CL which formed after

growth of the host crystal by retrograde processes. The secondary CL structures are

principally formed by a number of processes: 1) micro-cataclasis followed by healing

(dissolution-precipitation), 2) diffusion, and 3) a-radiation. These processes result in the

modification of defect centres in the quartz lattice or in the formation of new quartz. The

secondary structures may show reduced or lower defect centre contents or reversely defect

centres are induced. The secondary CL structures have been grouped according their defect

centre content.

Secondary CL structures with reduced defect centres

Secondary structures with reduced defect centre content are healed veinlets, healed irregular

domains, and patchy halos of secondary quartz around fluid inclusions. They are

distinguished by weak red-brown or no CL. This weak CL is indicative of lower contents of

activator elements and/or intrinsic defects.

Trans-granular veinlets and irregular domains of up to several hundreds micrometres wide

have been observed. The veinlets are completely healed, or they contain fluid inclusions.

Some samples (Megaquartz, Schellerhau Granite) show different veinlet generations of (Fig.

6.6e, f). Thin concentric and radial, healed micro-cracks are typical for rhyolitic quartz

phenocrysts (Fig. 6.2a, b). In this case the cracks are interpreted as thermally induced

contraction cracks formed due to rapid cooling during effusion. Dissolution-precipitation

(healing) results in veinlets and domains of secondary quartz along micro shear zones, grain

edges, grain and subgrain boundaries (§ 10.7).
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Fig. 6.6   SEM-CL images of secondary CL structures in quartz. a – Non-luminescent spots (easily visible in the

cycle) in quartz of the Flossenbuerg Granite. b – Patchy halos of secondary quartz around fluid inclusions

connected by sub-parallel healed micro cracks (Flossenbuerg Granite). c - Combination of SEM-CL and BSE

images showing the residual porosity of the former fluid inclusions (black “holes”; Flossenbuerg Granite). d –

Healed veinlet in the quartz of the Sunset Hills Granite/Lachlan Fold Belt (see chapter 10). The wider veinlet is

not completely healed. e – The hydrothermal megaquartz shows a dense network of healed cracks and domains

of different ages. Three populations can be distinguished: 1) healed domains with weak CL following fluid

inclusion trails. 2) Bright luminescent, linear trails some of which overprint the population (1). 3) Linear, thin

cracks healed with weak luminescent quartz. f – Light circular halo around a zircon. The radius of halo is ~40

µm. The halo is subdivided into a brighter inner zone (~25 µm) and a outer zone (~15 µm) (Schellerhau

Granite).
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Particularly in quartz formed at high temperatures patchy halos of secondary quartz around

fluid inclusions were observed. These and similar structures have been observed since about

one decade (Frentzel-Beyme, 1989; Behr, 1989; Kerkhof and Müller, 1999). In the following

part the characteristics and formation mechanics of the halos are discussed in more detail. The

understanding of the formation of this structures is important for the interpretation of fluid

inclusion data. Magmatic quartz crystals typically contain red to red-brown luminescent,

patchy halos of secondary quartz around fluid inclusions, connected by healed sub-parallel

trans-granular micro-cracks of <5 µm wide (Fig. 6.6c). This structures are frequent in granitic

quartz and less common in rhyolitic phenocrysts. The secondary quartz has the same

crystallographic orientation as the host quartz indicating. The CL intensity of the secondary

quartz increases during 2-10 min electron radiation using high beam power densities >10+4

W/cm2 (Fig. 6.2d). The halos of secondary quartz are depleted in trace elements (Li, Al, K,

and Ti) compared to the host quartz (see § 10.7). Sometimes, the host crystal around the

secondary quartz is enriched particularly in Fe and Ti (Fig. 5.11c). These elements are

probably released from the secondary quartz.

Decrepitation experiments of fluid inclusions with halos of secondary quartz showed that they

hold anomalously high fluid pressures on heating (Müller, 1995). Bodnar et al. (1989) showed

that the internal pressure required to initiate decrepitation of fluid inclusions in quartz is

inversely related to inclusion size according to the equation: internal pressure (kbar) = 4.26 •

D-0.423, where D is the inclusion diameter in microns. Figure 6.7 shows this relationship

between decrepitation pressure and fluid inclusion diameter (line) within a range (hatched

area) after Bodnar et al. (1989). The data measured for the pegmatite quartz of Pleystein and

Kreuzstein and Pfahl quartz (Oberpfalz, Germany) plot in the hatched area. On the other hand

the data of the Rozvadov Granite (Oberpfalz, Germany) show extremely high decrepitation

pressures. The fluid inclusions of this rock exhibit halos of secondary quartz, whereas the

pegmatites and Pfahl quartz do not.

The specific features of secondary quartz around fluid inclusions allow us to establish a model

for the mechanism of fluid inclusion decrepitation and modification, whereby three stages can

be distinguished (Fig. 6.8).
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Fig. 6.7   Relationship between decrepitation pressure and inclusion diameter after Bodnar et al. (1989).

According to Bodnar et al. (1989) data should plot in the hatched area like the fluid inclusions of the pegmatites

and the Pfahl quartz form the Oberpfalz/Germany. The fluid inclusions in the quartz of the Rozvadov Granite

showing halos of secondary quartz around fluid inclusions hold anomalously high fluid pressures on heating

(Müller, 1995).

In the first stage mass decrepitation of fluid inclusions (micro-crack formation) may occur.

Simultaneous decrepitation of fluid inclusions is assumed, because in the present samples the

halos are connected with one generation of healed micro-cracks. Mass decrepitation may be

induced by differences between fluid pressure and lithostatic pressure e.g. during uplift

(isothermal decompression). The α/β-transition causes an anisotropic contraction of 0.86

vol.% vertical to the c-axis and 1.3 vol.% parallel to the c-axis and induces stress within

individual grains (e.g. Blankenburg et al. 1994) and subsequently may also trigger mass

decrepitation. Dissolution-precipitation initiated by shearing leads to the healing of the micro

cracks.

In the second stage the defect-poor quartz grows at the cost of the host quartz and releases or

replaces defect centres. The formation of defect-poor quartz at the cost of the defect-rich host

quartz is explained by the displacing of atoms along the phase boundary of the quartz with

higher defect density so that the atoms fit to the lattice of the quartz with low defect density

(e.g. Passchier and Trouw, 1998; Stünitz, 1998). This results in local displacement of the

phase boundary (between the new quartz and the host quartz) and the growth of the more pure

crystal at the cost of more disordered neighbour. The process reduces the internal free energy

of the crystals involved and causes the release and replacement of defect centres, which are

enriched in the grow front.
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In conclusion, the formation of secondary quartz around fluid inclusions is explained by a

reconstituting process of the host crystal and represents a structural transformation, whereby

the crystallographic orientation is preserved.

Fig. 6.8   Model of formation of halos of secondary quartz around fluid inclusions. a – first stage: mass

decrepitation of fluid inclusions (micro-crack formation). b – second stage: defect-poor quartz grows at the cost

of the host quartz and releases or replaces defect centres.

Secondary CL structures with induced defect centres

Secondary CL structures with induced defect centres are halos around radioactive inclusions,

diffusion rims along grain boundaries and micro-cracks, and non-luminescent spots in granitic

quartz. Natural a–radiation and trace element diffusion cause the modification and formation

of defect centres in quartz.

Some samples show round halos around radioactive inclusions with pinkish/yellowish white

CL (Fig. 6.6b). Natural a-radiation of radioactive micro-inclusions (zircon, monazite) results

in damage of the crystal structure (metamictisation). The radius of halos is typically ~40 µm.

Each halo is subdivided into a brighter inner zone (~25 µm) and an outer zone (~15 µm). The

radius of ~40 µm corresponds to the interaction radius of the a-particles in quartz (Owen,

1988). Similar bright CL was also observed in hydrothermal quartz (sample 1) along opeb

cracks, indicating that quartz lattice damage was produced by a-radiation from radioactive

components of the migrating fluid.

In magmatic quartz diffusion rims at grain boundaries (grain boundary alteration) frequently

occur at the grain contacts between quartz and plagioclase or biotite (see § 10.7). The

diffusion rims show the enrichment of Fe, Al, and K. Fe may diffuse up to 400 µm into the

defect centres

a b
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quartz. The Fe enrichment at the grain boundaries not always results in the change of the CL

colour (Fig. 5.11c). This observation may be explained by the fact that Fe occurs as divalent

and trivalent ions. The diffusion rims in magmatic quartz are explained by solid state

diffusion of trace elements at high (sub-solidus) temperatures.

Particularly in granitic quartz radiation-induced non-luminescent spots were observed. Weak

luminescent spots up to 5 µm in size developed during electron radiation in granitic quartz

(sample 7, 8, 12, and 14; Fig. 6.6a). The radiation-induced spots are interpreted as

aggregations of aqua complexes with a gel-like disordered structure, i.e. regions with a high

local concentration of H2O and substitutional Al with one or more OH groups attached in a

locally disordered network. Stenina et al. (1984) described similar spots developed during

electron radiation and identified these structures as amorphous (non-crystalline) micro-areas

using TEM imaging. The electron radiation results in the release of molecular water from the

aqua complexes (see § 2.2). H+ ions migrate along weak donor-acceptor and hydrogen bonds

of the aqua complex defects. As a consequence oxygen may migrate due to the radiation-

triggered redistribution of Si-O and Mm+-O bonds (Stenina et al., 1984; Gritsenko and

Lisitsyn, 1985). At the defective places the following reaction occurs: O2- + 2H+ ?  H2O.

Here water bubbles may develop. Heggie (1992) showed that microcracks by producing

radicals facilitate the migration of water. In this case “water” moves through SiO 2 matrix in

the dissociated form. Heat-treatment experiments (500°C for several hours) showed that the

aqua complexes homogenised into the lattice and structural water converts to non-bound form

and creates micro bubbles (e.g. Griggs, 1967; Brunner et al., 1961; Bambauer et al., 1969;

McLaren et al., 1983; Stenina et al., 1984). These bubbles of heat-treated quartz arise as a

result of the thermal-induced break down of 2[SiO 3]---O-H-H bonds and the following H+

migration along the weak bonds of the lattice. The gel like defect structures were incorporated

during crystallisation. The frequent occurrence of these spots in anhedral granitic quartz

(matrix quartz) reflects “wet” conditions during crystallisation whereas rhyolitic and granitic

quartz phenocrysts does not show spots indicating “dry” crystallisation conditions.

In summary, trace elements in quartz are largely redistributed during retrograde processes.

Non-luminescent spots and secondary quartz around fluid inclusions are frequently in granitic

matrix quartz and less common or lacking in rhyolitic phenocrysts. The frequent occurrence

of spots caused by gel-like defect structures in anhedral granitic matrix quartz reflects “wet”

conditions during crystallisation, whereas rhyolitic and granitic quartz phenocrysts does not

show spots indicating “dry” crystallisation conditions. Rhyolitic phenocrysts are mostly fluid
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inclusion free, whereas granitic phenocrysts frequently show halos of secondary quartz

around fluid inclusions as a result of a overprinting by late-magmatic voliatiles.
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7   Application of Cathodoluminescence to Magmatic Quartz in a

Tin Granite – Case Study from the Schellerhau Granite Complex,

Eastern Erzgebirge, Germany

(this chapter has been published in Mineralium Deposita, vol. 35, pp. 169-189,

2000, co-authors: R. Seltmann  and H.-J. Behr)

7.1   Abstract

A model of the cooling history of tin-bearing granitic magma forming the Schellerhau

granites (Eastern Erzgebirge, Germany) is shown on the basis of quartz textures. Similar grain

size, similar grain habit and correlatable growth textures of phenocrysts in different granite

varieties give proof of a common crystallisation history before the melts of the Schellerhau

granite varieties were intruded. Four nucleation events occurred during crystallisation in

different crustal levels between about 20 and 1 km depth. The parental melt of the Schellerhau

granites is interpreted to have contained <2.5 wt.% H2O originally. The water content of the

melt during the subvolcanic intrusion stage amounted to more than 5 wt.% and characterises

highly evolved residual melts that enable the formation of tin deposits. This paper contributes

to a better understanding of the development and behaviour of fractionated tin-bearing

granitic melts, and links quartz cathodoluminescence (CL) with microanalytical studies.

7.2   Introduction

MacLellan and Trembath (1991) developed a quantitative model for evaluating the cooling

history of a granitic magma on the basis of quartz textures. The relative chemical and

structural stability of quartz is responsible for the conservation of quartz generations of

different size, habit and structural state in granites and rhyolites. In contrast the chemical

composition of feldspar changes during cooling because it is in equilibrium with melt.

Therefore quartz morphology provides reliable information about the cooling history of

granitic melts.

In this paper we report about the application of cathodoluminescence (CL) microscopy to

distinguish different quartz generations in the Schellerhau tin granites. CL is used to illustrate
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the growth textures of quartz. However, it is not the aim of this paper to provide a detailed

explanation of the complex causes of luminescence in quartz. The CL of quartz results from

substitutional and interstitial incorporation of trace elements and from different types of

intrinsic and extrinsic defect centres in the quartz lattice (e.g. Ramseyer et al., 1988).

Consequently, the luminescence behaviour is a complex function of the concentration of trace

elements which may act as CL activators, like Al, Fe and Ti, or as quenchers. The CL is

related to the conditions of mineral crystallisation, and alteration and of natural γ- and α-

radiation. The analysis of the luminescence spectra makes it possible to quantify the emission

properties of single grains. The scanning electron microscope cathodoluminescence (SEM-

CL) facilitates high resolution of intragranular growth textures of magmatic quartz. Zoning

within quartz is normally invisible by conventional optical microscopy and rarely documented

by quantitative analysis. We also determined trace element concentrations in quartz using the

electron microprobe. In addition, the detailed analysis of quartz texture and size distribution

was carried out. The intragranular growth textures, the quartz framework and the grain size

distribution yield important information on the nature and evolution of the melt from which

the crystal grew. Plots of maxima of grain size distributions for a single mineral indicate

bursts of nucleation which are caused by a high degree of melt undercooling (Dowty, 1989).

In the following is given a short introduction in the general interpretation of growth textures,

based on the present level of knowledge. A general compilation of observable growth and

resorption textures is illustrated in Fig. 7.1.

The different primary growth textures represent disturbances of growth and diffusion rates

during crystallisation. Growth and diffusion rates depend on melt composition, crystal

transport in the melt (e.g., convection) and ascent velocity of the melt and related pressure and

temperature changes. These criteria regulate type and quantity of defects, few of which are

luminescent active and incorporated into the quartz lattice. Wavelength and amplitudes of

individual zones are directly related to the physical and chemical melt properties. The
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Fig. 7.1   Synoptical scheme of primary growth textures in magmatic quartz phenocrysts with a diameter of 1 to

5 mm contrasted by SEM-CL. 1 - Nucleation of hexagonal β-quartz or rhombohedral α-quartz; 2 - Resorped

surface; 3 - Skeletal growth; 4 - Step zoning (50 - 1000 µm); 5 - Oscillation zoning (2 - 20 µm); 6 - Growth

impediment; 7 - Inclusion (entrapment) of melt or a bubble; 8 - Growth impediment caused by adjacent

phenocrysts; 9 - Rim of anhedral quartz of the final magmatic crystallisation.

diffusion rate in the melt controls the compositional variation and width of the zoning. The

higher the diffusion rates, the less compositional differences occur in the quartz.

Concentration gradients develop in the melt when the growth rate exceeds the diffusion rate,

and in the solid when the reaction rate of crystals with the liquid is lower than the growth rate

(Sibley et al., 1976).

The development of growth zoning during magmatic crystallisation is described by a number

of models (e.g. Sibley et al., 1976; Anderson, 1984) that have been derived from the zonal

structure of plagioclase. We apply these models to the crystallisation of magmatic quartz

having a very similar zonal growth as plagioclase.

Major discontinuities in the zoning (50 - 1000 µm width) being non-periodic and showing a

significant change of the luminescence colours result in physicochemical changes of external

factors (“extrinsic” acc. to Shore and Fowler, 1996) such as temperature, pressure and magma
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composition (Bottinga et al., 1966; Allègre et al., 1981). Bottinga et al. (1966) defined those

zones as compositional zoning, and Allègre et al. (1981) called them stepped zoning.

The fine oscillatory zoning (2 - 20 µm width) within the step zones is explained by a self-

organised  (“intrinsic” acc. to Shore and Fowler, 1996) diffusion controlled mechanism on the

crystal-melt boundary layer and exists in a number of recent models (Sibley et al., 1976;

Haase et al., 1980; Allègre et al., 1981; Loomis, 1982; Simakin, 1984; Pearce, 1993).

Oscillatory growth happens very slowly at low degrees of undercooling and oversaturation. It

may only take place when the crystallising system is not disturbed on the solid-liquid

interface, thus the melt should not convect (Allègre et al., 1981). Investigations on natural

plagioclases by Greenwood and McTaggart (1957) and Wiebe (1968) confirm that oscillation

zones of crystals grown from the same melt cannot be correlated due to the self-organising

character of the process. To develop oscillation zones physical or chemical changes in the

bulk magma are not required.

Discussions about the distinction of resorption structures and growth impediments in quartz

phenocrysts have been controversial (Kozlowski, 1981; Harris and Anderson, 1984).

Laemmlein (1930) first recognised and described lobate depressions at the crystal surface as

growth embayments. The fact that these are growth impediments may be recognised because

the zonation adapts to the shape of the embayments. In contrast, resorption surfaces cut pre-

existing zones. Growth impediments are caused by immiscible liquids, vapor bubbles, molten

sulfide or fluid-rich melt droplets which stick on the crystal surface, hinder the crystal growth

and result in lobate depressions and entrapments (Kozlowski, 1981; Donaldson and

Henderson, 1988; Lowenstern, 1995). The resorption (melting) of quartz surfaces is due to

SiO2-undersaturation of the melt which may be caused by increase in temperature, isothermal

depressurisation or magma mixing. Crystals may undergo a rounding due to thermal

weakening, chemical interaction and mechanical abrasion even during transport in the melt.

The occurrence of resorption which results in strong rounding of the quartz crystals is in

accordance with the rapid ascent of granitic melts by dyke formation as found by Holtz and

Johannes (1994) and Johannes and Holtz (1996).

The presence of skeletal growth indicates supercooling and a related decrease of the ratio of

diffusion rate/growth rate. In such cases compositional gradients on the crystal-melt interface

develop, planar crystal/melt interfaces become unstable and the growth results in skeletal

morphology (Kirkpatrick, 1981; Fowler, 1990).
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As object of studies we have chosen the Schellerhau Granite Complex (SGC) in the Eastern

Erzgebirge/Germany. It has been studied by Pälchen and Ossenkopf (1967), Helbig and Beyer

(1970), Seim et al. (1982), Just et al. (1987), and Schilka and Baumann (1996) so that an

extensive state of knowledge based on mapping, availability of drill cores and resulting

chemical and petrographical data exists. The pluton was studied by the authors across a

vertical sampling profile of about 1000 m using the relief differences of up to 300 m caused

by erosion and dislocations, and available drill cores of depths of up to 1000 m (drilling

Niederpöbel 1/58, Helbig and Beyer, 1970). On the basis of the collected data, we present a

model of the quartz crystallisation history of the Schellerhau granite magma.

7.3   Analytical methods

Cathodoluminescence (CL) microscopy  has been used to visualise growths and alteration

structures in quartz. Two instruments for CL studies of polished thin sections were used. The

analyses of the luminescence colours (optical CL) were carried out on a hot-cathode-

luminescence-microscope (Neuser et al., 1995) at the University of Göttingen. Thin sections

were coated with a carbon layer and were bombarded with electrons with an energy of 14 keV

and a filament current of 0.17 mA. The electron beam (4 mm cross section) and the sample

were maintained in vacuum conditions of 10-5 mbar. The spectral response of the

luminescence was recorded by a TRIAX 320 spectrometer with a 100 lines/mm grating for

the emission spectra from 1.3 to 3.1 eV. The single emission bands 2.79 eV and 1.96 eV were

measured with the Monochromator at a speed of 10 mm/min using the CL-microscope after

Zinkernagel (1978) (10 keV, 0.25 mA). The scanning electron microscope model Geoscan

250-MK3 with a CL detector (SEM-CL) was used for black-and-white images of the internal

growth and secondary structures of the quartz grains. The voltage was 15 keV and the current

5 to 15 nA. Dark contrasted areas in quartz produced by SEM-CL correspond to red to reddish

brown CL-colours of the optical CL. Light areas correspond to blue to violet colours.

The trace element concentrations in quartz were determined by wavelength-dispersion

analysis on the JEOL JXA 8900 electron microprobe operating at 15 kV and 70 nA with a

beam diameter of 5 µm. Analyses were performed for Al, Ti, Mn and Fe. The calculated

detection limits ranged from <25 ppm for Al, <17 ppm for Ti, <26 ppm for Mn to <23 ppm

for Fe with a confidence level of 95%.
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The application of the lacquer peel method (Behr, 1966) enables detailed analyses of the

quartz framework (Müller and Behr, 1997). This technique, usually applied to carbonates, is

used here to visualise the quartz textures. The peels are produced by treating the surfaces of

polished samples with a 40% HF solution. The corroded surface is covered with several

lacquer layers. After drying, the lacquer film is pulled off and used as a negative for black-

and-white photos. Quartz appears black and feldspar and mica white or grey on the photos.

Grain size analyses were carried out in thin sections and in hand specimen. The length and

width of quartz grains (≤ 1 mm) in the thin sections was measured using a defined raster,

determined through the grain size. The distance between the points of the raster corresponds

to the average grain diameter. Quartz grains larger than 1 mm were measured by micrometer

on polished hand specimens (15 x 15 cm). The grain size was calculated from the average of

its length and width.

7.4   Geology and geochemistry of the SGC

Geological setting

The SGC belongs to the highly evolved younger granite group of the Erzgebirge batholith

(Tischendorf and Förster, 1990; Stemprok, 1993; Förster and Tischendorf, 1994; Seltmann,

1994). Neoproterozoic gneisses of the metamorphic basement and volcano-sedimentary rocks

of the Altenberg-Teplice caldera form the host rocks (Fig. 7.2).

Late-collisional extensional tectonics and collapse of the Variscan orogen controlled during

the Upper Carboniferous the block and graben tectonics in the area, caldera formation with

pre-dominantly ignimbritic rhyolites and porphyritic microgranites, and finally the post-

tectonic multiple intrusion of tin granites of the SGC into a subvolcanic level. Uplift, faulting,

block tilting and erosion took place mostly in Permo-Silesian and Cenozoic times and formed

the recent morphology. NW- and NE-striking faults with vertical dislocations of several

hundred metres form the SGC as horst and as a result some deeper pluton parts are uncovered

by erosion. The SGC crops out at about 13 km2 as a NW-SE elongated body roughly bounded

in the north-eastern part by the Weisseritztal fault and in the south-western part by the
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Fig. 7.2   Geological sketch map of the Schellerhau granite massif and its geological setting in the Altenberg-

Teplice caldera, Eastern Erzgebirge (without Cenozoic).
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Pöbelbach fault (Schilka and Baumann, 1996). These marginal fault zones indicate within the

structural pattern of the Altenberg-Teplice caldera a NW-striking sinistral strike-slip

movement and north-east directed extension controlling in the post-caldera stage the post-

tectonic SGC intrusion. Faults intersecting the SGC are either post-intrusively reactivated or

newly formed as indicated by their hydrothermal mineralisation of diffent ages ranging from

Upper Carboniferous to Cenozoic.

According to gravimetry data and geochemical studies of drill cores, granites of the SGC type

form the mostly hidden Eastern Erzgebirge partial pluton (Tischendorf, 1964). This NNW-

striking hidden granite ridge reaches from Dippoldiswalde in the north to Zinnwald in the

south with ca. 10 km east-west extension. To the south, in the Czech part of the Erzgebirge,

the chemically and texturally similar Preisselberg-Cinovec granite (Stemprok et al., 1994)

forms the continuation of this granite ridge.

Phasing

The SGC is characterised by the intrusion sequence of porphyritic (SG1) to weakly-

porphyritic (SG2) biotite syeno- to monzogranites, and mostly seriate albite granites (SG3).

The SG1, SG2 and SG3 rocks of the SGC represent individual stages (phases) of a multiple

granite intrusion as indicated by field evidence.

The SG1 forms the central and upper part of the SGC and occupies about 2/3 of the SGC at

the recent surface. Locally, the SG1 exhibits a marginal facies characterised by the most

primitive composition within the SGC that is due to porphyritic texture and muscovite-

bearing similar to the “intermediate granites” (IG, “Zwischengranite” type Walfischkopf,

Lange et al., 1972; Stemprok, 1986) of the Western Erzgebirge. Pendants of that SG1 variety

of the SGC also occur in the multiple intrusions of tin granites at Sadisdorf and Sachsenhöhe.

The textural variability of the marginal facies of the SGC also includes so-called two-phase

textures (Cobbing et al., 1992; Seltmann and Stemprok, 1994) where crystals/crystal mush of

an earlier SGC intrusion and cooling stage either underwent fluidisation at intrusive contacts

or were infiltrated along grain margins but not resorbed by low-viscosity melt batches of a

subsequent intrusion stage. The older phenocrysts  exhibit sharp contacts to the surrounding

groundmass of that second stage.

The SG2 intruded the SG1 along its margins probably due to cauldron subsidence effects in

the post-caldera stage of the Altenberg-Teplice crustal unit. The SG2 occupies about 1/3 of

the SGC surface. There is field evidence that SG1 enclaves occur in SG2 (locality Paradies-

Fundgrube), SG2 dykes cross-cut SG1, and there are sharp intrusive contacts with
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stockscheiders and chilled margins of the younger phase against the earlier phase (northern

SGC flank at Kipsdorf SG2/SG1, southern SGC flank at Kahleberg SG2/SG1, drill cores

SG3/SG1 and SG3/SG2).

The albite granites (SG3) occur as fine- to medium-grained porphyritic and seriate varieties.

They were found in most of the drillings as flat igneous layers of up to several ten metres

thickness intercalated with SG1 and SG2 units characterising the SGC as sheeted laccolite

body. Small SG3 dykes cross-cutting the earlier granite phases SG1 and SG2 provide

evidence for magmatic origin of SG3 and against its interpretation as metasomatic zones.

Exploratory excavations near the former New Galgenteich quarry exposed a small SG3 dyke

with sharp igneous contacts to the SG2 (F. Schiemenz, pers. comm.). The occurrence of fluid

saturation textures (miarolitic cavities, micrographic quartz/K-feldspar intergrowth) reflects

the high fractionation degree of the SG3 melt.

The genetical position of alkali feldspars, especially the occurrence of sugar-grained albites,

remains unsolved and is controversially discussed for similar rocks (Beus et al., 1962;

Schwartz, 1992; Stemprok, 1993). Regardless of many subsolidus features caused by deuteric

alteration and post-magmatic fluid-rock reactions, we classify the SG3 rocks as to be of

predominantly magmatic origin (Just et al., 1987; Seltmann et al., 1992) as they are

characterised by snowball quartz that is bearing melt inclusions (R. Thomas, pers. comm.).

These melt inclusions show features of trapped silicate melt similar to those studied in topaz-

bearing granites from Karelia (Poutiainen and Scherbakova, 1998) and do not link to the

interpretation of crystallised silica colloid trapped as a hydro gel during greisenisation as

described from a Cornish topaz granite (Williamson et al., 1997). The snowball quartz

contains also inclusions of late-magmatic matrix albite. Many SGC samples underwent

supplementary metasomatic albitisation (Haapala, 1997) and therefore only relics of the

primary texture and structural relationships allow to identify the original granite type.

Within the Eastern Erzgebirge, marginally to the SGC, a series of stock-like granites

(Altenberg, Sadisdorf, Sachsenhöhe, Zinnwald, Preisselberg), each with 1-5 km2 outcrop size

at the recent surface, form as multiple intrusions cupola-shaped elevations of the hidden

pluton. These stocks we interprete as channelised products of evolved melt batches and the

accompanying ore-forming greisen fluids as originated from deeper parental magmas. They

are, similar to the SG1 to SG3 sequence, composed of rock types with fine-grained

porphyritic via medium-grained equigranular syeno- to monzogranites to seriate albite

granites. The granite elevations  represent the country rocks for endocontact tin mineralization

of the greisen type. Numerous drillings made in the area between Cinovec (Zinnwald) and
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Krupka on the Czech side where granites were continuously followed in the drill cores appear

equivalent to those found in the SGC. Our studies confirm the evolution series of

protolithionite, zinnwaldite and lepidolite granites such as decribed as upward sequence from

the deep drilling at Cinovec (Stemprok and Sulcek, 1969; Rub et al., 1997).

Due to the recent erosion level of the SGC of estimated ca. 500-1000 m (Schust, 1980,

Spengler, 1949), any mineralised cupolas or elevations over the Schellerhau granite body

were eroded. Greisen occurrences within the SG1 (Fig. 7.1) represent either the root zones of

eroded tin mineralization or are exogreisens of hidden intrusions of SG2 and SG3 intruding at

depth the SG1.

Geochemistry

The SG1, SG2 and SG3 rocks chemically represent the suite of P-poor, Li-F-enriched series

of leucogranites that exhibit some distinct A-type tendency (Förster et al., 1995; Breiter et al.,

1999). The latter are weakly peraluminous (A/CNK ≤ 1.2), enriched in HREE, Y, Th, Hf, Zr,

Sc, Nb, Ta, and U and display elevated abundances of Rb, Li, F, and Sn (Förster et al., 1996)

increasing from SG1 to SG3. There is only a moderate chemical contrast between the SG1

and SG2 rocks. The SG3, however, exhibits in distinction to the SG1 and SG2 the chemical

and petrographic patterns of alkali feldspar leucogranites (Table 7.1). The SG3 rocks are more

highly evolved as also shown by the decreased Zr/Hf and Y/Ho values. Its modal composition

(Table 7.2) is due to feldspathisation different to that of the SG1 and SG2 rocks. Topaz occurs

mostly poikiloblastic and was classified in Table 7.2 as of secondary nature but in few cases

primary magmatic topaz exists in the SGC rocks (R. Thomas, pers. comm.).

The SG1, SG2 and SG3 rocks are interpreted as products of in-situ fractionation of a magma

derived from a common deep-crustal parental magma. The chemical and textural specifics of

the SG3 rocks were produced when the rock underwent deuteric alteration, and only in few

cases (drill cores) the primary textural and chemical features were preserved.
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Table 7.1    Chemical analyses of major and trace elements from representative SGC samples.

Number,
Granite

Sh-22 (SG1) # 16 (SG2) Sh-32 (SG2) Sh-18 (SG3)

Locality Abandoned
mine Paradies-

Fdgr.

Abandoned mine
Paradies-Fdgr.

From drill core near
Kipsdorf

295m depth, drill
core at Kipsdorf

Texture Very fine-
grained, weakly

porphyritic,
phenocryst-poor

Medium-grained
(altered), seriate,

weakly
porphyritic,

Medium-grained
equigranular

(slightly altered)

Fine- to medium-
grained seriate,

albitized

SiO2, wt.% 75.13 72.93 71.91 69.29
TiO2 0.057 0.094 0.068 0.022
Al2O3 12.60 13.84 14.64 16.97
Fe2O3 0.89 1.69 1.25 0.74
MnO 0.02 0.05 0.033 0.09
MgO 0.06 0.17 0.07 0.02
CaO 0.50 0.71 0.92 0.11
Na2O 3.31 3.47 3.91 6.96
K2O 5.33 5.09 4.64 4.09
P2O5 0.02 0.04 0.036 0.03
H2O+ 0.86 0.72 0.98 0.87
CO2 0.05 0.10 0.12 0.15
Li2O 0.037 0.075 0.164 0.016
F 0.51 0.82 1.41 0.12
-O=F -0.21 -0.34 -0.59 -0.05
Total 99.16 99.45 99.56 99.43
Sn, ppm 18 402 164 42
Nb 51 40 75 72
Rb 782 929 1297 1115
Sr 8.53 34.0 32.1 19.2
Ba 86.9 798 105 83.8
Cs 29.7 40.2 62.4 16.7
Zr 140 121 84.2 40.1
Hf 8.11 7.53 6.71 8.28
Pb 39 413 18 6.9
Th 58.1 39.5 24.9 9.29
U 15.0 17.6 20.8 3.33
Y 103 89.6 44.5 1.55
La 15.8 35.5 26.1 1.14
Ce 32.4 85.3 69.0 2.44
Pr 5.22 11.2 8.55 0.26
Nd 19.0 37.4 25.3 0.70
Sm 6.11 10.3 6.85 0.24
Eu 0.063 0.195 0.12 <0.02
Gd 8.47 10.7 6.01 0.24
Tb 1.94 2.27 1.36 0.06
Dy 14.3 15.4 9.54 0.38
Ho 3.24 3.25 1.99 0.08
Er 10.6 10.5 6.95 0.30
Tm 1.73 1.89 1.42 0.08
Yb 12.0 12.8 11.4 0.93
Lu 1.80 1.97 1.71 0.15
Y/Ho 31.7 27.5 22.4 20.7
Zr/Hf 17.2 16 12.5 4.8

Notes on analytical
methods: Oxides, Nb, Sn
by XRF, Li by ICP-
AES, F  by ISE, other
trace elements by ICP-
MS. Details on
analytical conditions and
accuracy are available
on request from RS.
H2O- not determined.
Sample #16 bears little
galena.
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Table 7.2    Modal mineral composition of representative samples of the SGC.

Samples Sh-22 (SG1) # 16 (SG2) Sh-32 (SG2) Sh-18 (SG3)
Characteristics Very fine-grained, weakly

porphyritic,
phenocryst-poor

Fine-to medium-grained
(altered), seriate, weakly

porphyritic

Medium-grained,
equigranular

(slightly altered)

Fine- to medium-grained
seriate,

albitized
PRIMARY MINERALS: PHENOCRYSTS and GROUNDMASS, vol.%

Quartz 31.7 30.7 23.6 19.7

K-feldspar 35.8 32.2 30.3 15.3

Albite (An<5 vol.%)
(Afs), estim. portions

Albite-Oligoclase
(Plagiocl. An>5 vol.%)

6.3

14.2

5.0

15.0

13.0

13.9

14.9

-
Li-mica (Protolithionite
to Zinnwaldite)

3.4 3.0 9.0 4.9

Accessories (Titanite,
Rutile, Monazite, Zircon,
Thorite, Apatite, ...)

0.1 0.8 0.1 0.1

Opaque (Ore) Minerals:
Ilmenite, Sulphides

0.1 0.1 0.1 0.1

SECONDARY MINERALS, vol.%

Albite
(Afs, An <5 vol.%)

3.3 6.3 3.0 38.1

Mica from veinlets - 0.6 - -

Sericite
(+ Hydrosericite)

4.4 3.6 2.5 6.3

Muscovite 0.1 0.5 - -

Kaolinite 0.1 1.6 1.5 -

Fluorite 0.3 0.7 0.8 0.6

Topaz 0.2 0.2 2.1 -

Carbonate - 0.4 - -

SUM, vol.% 100.0 100.1 99.9 100.0

7.5   Textural studies

The quartz texture of the SG1

The grain size maxima of quartz in the phases and varieties of the Schellerhau granite massif

(Figs. 7.3 and 7.4) help to reconstruct the multiphase intrusion and crystallisation history of

the pluton. We focussed in our study on SG1 and SG2 phases of the SGC since these are the

only ones well exposed at the surface, whereas the afs-rich SG3 varieties are predominantly

represented by a few drill cores and are mainly characterised by secondary (recrystallisation)

structures which overprint and remove the primary ones.
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Fig. 7.3   The phenocryst portion of textural varieties of the SG1 and SG2, illustrated by black-and-white prints

of lacquer peels. Quartz appears black and feldspars grey or white. The phenocryst portion varies between 5 to

40%; the portion of 15% is most frequent and common.
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Fig. 7.4   Grain size maxima, shapes and distributions of quartz crystals in the SG1 and SG2. A maximum in the

grain size distribution in a magmatic rock indicates a burst of nucleation caused by a high degree of melt

undercooling. The texture is contrasted by black-and-white prints of laquer peels. The quartz appears black and

the feldspar grey or white. 1 - quartz phenocrysts (1st generation); 2 - quartz microphenocrysts (2nd generation);

3a - granophyric quartz in miaroles; 3b - microgranophyric quartz (3rd generation); 3c - isometric aplitic quartz

(3rd generation); 3d - anhedral quartz (3rd generation).



128

The phenocrysts of the early quartz generation (1st generation) are large, 1.5 to 6 mm

idiomorphic hexagonal dipyramidal crystals with hexagonal prism faces (β-quartz). The

median grain size of SG1 quartz phenocrysts is 2.3 mm. The large feldspar phenocrysts (up to

2 cm long) are surrounded by microgranophyric intergrowths with quartz. The “typical” SG1

rocks contain a portion of ca. 15 vol.% phenocrysts  (5% quartz + 10% feldspar, less than 1%

mica). Phenocryst portions below 12 vol.% and more than 18 vol.%, resp., are rarely

represented and occur only in the southern part of the Schellerhau  granite (Pöbelknochen and

Seifenbusch area, Schilka and Baumann, 1996). The Pöbelknochen (elevation 833 m)

represents the uppermost part of the Schellerhau granite massif in the studied vertical profile.

The matrix quartz, we call it later 3rd generation, exhibits variable shape. The major portion of

the granite is characterised by aplitic matrix quartz which contains small crystals (0.02 - 0.2

mm) that are anhedral and more or less isometric. They surround the small euhedral feldspar

crystals as clusters or networks or occur as overgrowths on quartz phenocrysts. Crystals (< 0.1

mm) are often in granophyric intergrowths with feldspar. The matrix quartz is in a

microgranophyric intergrowth with feldspar especially in the upper 30 m of the cupola region

of the locality Pöbelknochen. This texture is superimposed by interconnected miarolitic

texture (IMT, Candela and Blevin, 1995). The IMT consists of micropegmatitic miaroles that

form 3-dimensional interconnected networks (Fig. 7.4). The size of the druses and miaroles

ranges from 0.2 mm to pegmatitic cavities of several cm size. Below 800 m elevation the

microgranophyric texture of the matrix quartz continuously changes into aplitic texture and

the IMT disappears. In the deeper parts, the IMT occurs only rarely and is developed 2-

dimensionally exclusively along early fractures that were filled by residual melt portions

(locality Paradies-Fundgrube).

Supported by the small grain size of the miarolitic matrix, another quartz type could be

detected at the Pöbelknochen locality. However in contrast to the phenocrysts, these

microphenocrysts are euhedral, hexagonal dipyramids of only 0.1 to 0.5 mm size, and are

homogeneously distributed within the matrix. They are mantled by matrix quartz, similar to

the phenocrysts, and are classified as 2nd quartz generation. The percentage of this frequent

grain generation is difficult to  determine. For example, the miarolitic SG1 rocks contain 5 to

7 vol.% of this 2nd quartz generation. It may be assumed that this generation is represented

also within the aplitic type. However, due to the small grain size it is not distinguishable from

the aplitic grains in studies of the lacquer peels and thin sections.

Hydrothermal quartz is well distinguishable from the above described primary magmatic

quartz. Based on postsolidus recrystallisation textures (metasomatic overprint and blasteses),
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visible CL zonation, and dark red-brown luminescence, those metasomatic quartz textures

formed by hydrothermal processes could be excluded from this study.

The quartz texture of the SG2

The SG2 exhibits a weak hiatalporphyritic texture (Figs. 7.3 and 7.4) that was described in the

past as homophan (Pälchen, 1968) or equigranular (Schilka and Baumann, 1996). However,

the grain size distribution shows a significant hiatus between the both maxima at 0.7 mm and

3 mm. The median grain size of the SG2 quartz phenocrysts (1st generation) is 2.6 mm (the

corresponding value in the SG1 for the 1st quartz generation is 2.3 mm). The most frequent

phenocryst portion amounts to 15 vol.% as in SG1 (5 % quartz + 10% feldspar). Variations in

comparison to the “normal” type are situated only in the southern part of the granite massif

near the locality of Seifenbusch. The mine dumps of the abandoned “Paradies-Fundgrube”

contain SG2 varieties with up to 35 vol.% phenocryst portions (quartz + feldspar), and others

with less than 10 vol.%. The role of the 2nd quartz generation may be similar to that in the

SG1. The anhedral matrix quartz (3rd generation) of the SG2 was feeding the irregular cavities

between the subhedral to euhedral feldspar crystals and envelopes the quartz phenocrysts.

The quartz texture of the SG3

The textures of the granite phases succeeding SG1 and SG2, in the following summarized as

SG3, are heterogeneous, aberant and show no or only few similarities to the previously

described textural types (Fig. 7.5). Numerous leucocratic SG3 phases and varieties,

hiatalporphyritic, seriate, equigranular and aplitic ones, are, in general, characterised by an

alkali feldspar-rich matrix. Within the matrix composed of euhedral, microcrystalline albite

plates (20 - 600 µm) occur micropoikilitic, amoebic and snowball-like quartz phenoblasts of

different size (0.3 - 5 mm). These belong to magmatic-hydrothermal transition processes and

form a 4th quartz generation that is grown in a highly viscous crystal mush with a low portion

of residual melt in coexistence with fluids exsolved from the melt. Albite has been clearly

determined as the liquidus mineral as it forms inclusions in all the other rock-forming

minerals. Small isolated K-feldspar phenocrysts have irregular grain boundaries. The quartz

crystals contain numerous euhedral albite crystals that also typically occur in the matrix. The

irregular grain boundaries of the quartz, surrounding the albite crystals of the matrix, support

the idioblastic growth. Partially, the quartz grains show euhedral shape due to occurrence of

idioblastic growth creating textures characteristic of highly fractionated Sn-bearing granites

(Cobbing et al., 1992; Müller and Behr, 1997; Beskin et al., 1994).
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Fig. 7.5   The quartz phenoblasts (4th generation) of the SG3. a - Porphyroblastic texture of the SG3. Quartz is

black and feldspar white; b - SEM-CL image of the idioblastic, micropoikilitic snowball quartz of the SG3. The

CL and the growth textures are different from that of the phenocrysts and microphenocrysts. The zoning follows

the shape of trigonal α-quartz (combination of the hexagonal prism m and the rhombohedrons r and z).

7.6   CL properties of the quartz in the SGC

CL colours

The detected emission spectra (1.3 - 3.1 eV) of the SGC quartz generations are composed of

two broad emission bands: blue (2.6 - 3.1 eV) and red (1.75 - 2.2 eV). In addition, an infra-red

emission band with low intensity occurs between 1.3 to 1.5 eV. The blue emission (2.6 – 3.1

eV) centred around 2.79 eV is characterised by very high intensity at initial electron

bombardment being a typical feature of natural quartz (e.g., Ramseyer and Mullis, 1990). The

initial intensity drops by 1/2 to 1/3 after a few seconds (unstable CL) and is stabilised after 30

to 120 s of electron bombardment (stable CL). A slight decrease or nearly constant intensity

was observed. The removal of those defects that are luminescence active in the blue emission

range is forced in the crystal lattice caused by electron bombardment (γ-radiation) and the

related warming of the sample to 70° to 90°C. Alonso et al. (1983) and Gorton et al. (1996)

detected three (2.82, 2.92, 3.26 eV) and four (2.48, 2.76, 2.95, 3.18 eV) bands in the blue

emission range, respectively. Gorton et al. (1996) suggested that the 3.26 eV band is

responsible for the high intial blue intensity that is visible as a blue “flash”.

In contrast to the blue emission, the red emission (1.75 – 2.2 eV) is centred around 1.96 eV

and shows an intensity minimum at initial electron bombardment that is flat or exhibits a steep

parabolic increase during radiation duration of several minutes. However, the decrease of blue

and the increase of red emission are two independent processes because it was observed in

ba

400 µm0.5 cm
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deformed quartz that the red emission remained constant whereas the blue one decreased

(authors’ unpubl. data).

After subsidence of the initial blue emission, the morphologically-distinct quartz generations

of the SGC show different luminescence colours from bright blue to violet to dark red-brown.

There are three different luminescence types of quartz in SG1 and SG2 rocks. Nearly all

phenocrysts in the SG1 and SG2 sections, exhibit a weak luminescent, dark red-brown

phenocryst core. This is surrounded by 100-1000 µm broad, in shades of a blue and violet

luminescent phenocryst ongrowth zone. The phenocrysts show an outermost ongrowth zone

formed by homogeneous matrix quartz with unstable red-brown luminescence. The spectral

analysis of the red-brown luminescent phenoblasts of the SG3 was not feasible due to the high

density of feldspar inclusions.

The luminescence spectra at 1.3 to 3.1 eV of these three types show different ratios of red

versus blue emission peak areas. The ratio in the phenocryst core is 3.5, in the blue zone 1.4,

and in the matrix quartz 2.8. The red-brown luminescent phenocryst core is characterized by a

minor concentration of stable blue luminescent defect structures and accompanied by a low

red emission intensity, that only slightly increases during continued radiation. In contrast, the

blue luminescent quartz exhibits a much higher stable blue luminescence and also a low and

slightly increased red emission. The intensity of the blue luminescence of the matrix quartz

lies near those of the red core, but the high red intensity is characterised by a steep rise.

Consequently, the CL of the two phenocryst luminescence types is more stable during

electron radiation than the CL of the matrix quartz.

The infra-red emission between 1.3 to 1.5 eV behaves similar to the red emission, the

intensity increases with treatment (electron bombardment) time. The intensity of this emission

peak is lower than the blue and red emissions, and it varies strongly within quartz grains that

are visible as homogeneous.

Primary growth textures

The phenocrysts and microphenocrysts of the SG1 and SG2 show distinctive growth

zonations (Figs. 7.6, .7.7 and 7.8), as is normally more common for rhyolitic phenocrysts (e.g.
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Fig. 7.6   Quartz growth textures contrasted by SEM-CL in the 1st generation (phenocrysts) and in the 2nd

generation (microphenocrysts) of the SG1 and SG2; a - hexagonal dipyramidal phenocryst with hexagonal prism

faces (β-quartz) (SG1); b - microphenocryst (SG1) with anhedral ongrowth rim; c - phenocryst (SG2) with

different resorbed surfaces; d - microphenocryst (SG2); e - phenocryst with rounded (resorbed) core (SG2); f -

microphenocryst nucleation on K-feldspar (black) (SG2).
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Laemmlein, 1930; Schneider, 1993; Watt et al., 1997). The existence of euhedral quartz

phenocrysts in granites showing CL-contrasted growth textures is currently not known to be

common and was described in only a few cases (Frentzel-Beyme, 1989; Seltmann, 1994;

D’Lemos et al., 1997; Müller and Behr, 1997). The detailed analysis and comparison of

growth textures of ca. 40 phenocrysts and 50 microphenocrysts in SG1 and SG2 allow the

correlation of significant growth textures indicating a common crystallisation history.

All phenocrysts of the SG1 and SG2 exhibit a dark red-brown luminescent rounded or

globular core (zone 1). Internally, the dark core zone does not show contrasted growth

textures. Weakly contrasted growth zones occur exclusively in the marginal zone (zone 1a).

The crystals used tiny mica, albite or orthoclase crystals as nuclei. Large crystal nuclei (e.g.,

mica and K-feldspar) often serve as growth centers for two to five quartz crystals

simultaneously, and growth impediments are typical (Fig. 7.6a). Such grain clusters may

break up during magma flow, leading to single grains, showing different growth rates in the

various growth directions. In the case of small nuclei, isolated crystals develop.

Fig. 7.7   Schematic representation of quartz growth textures contrasted by SEM-CL and their correlation with

the 1st generation (phenocrysts) of the SG1 and SG2. Two different euhedral quartz generations continue to grow

simultaneously with the beginning of microphenocryst growth in the step zone 2b. The subordinate zones 2a, b

and c are characterised by a gradual change from bright blue to violet luminescence. Both the phenocrysts and

microphenocrysts are hexagonal dipyramidal β-quartz crystals with hexagonal prism faces.

Zone 3
Zone 2c
Zone 2b

Zone 2a
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Zone 1a
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Zone 2c
Zone 2b
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the SG1 and SG2 phenocrysts

1st generation
(phenocrysts)

   2nd generation
(microphenocrysts)

SG1
SG2

1 mm

1st generation
   of the SG2



134

Fig. 7.8   Schematic representation of quartz growth textures contrasted by SEM-CL and their correlation with

the 2nd  generation (microphenocrysts) of the SG1 and SG2. The frequent impediments of the zone 2c were

caused by vapour bubbles that stuck to the crystal surface and hindered the growth.

The stage of red-brown growth ends with resorption (rounding) (Figs. 7.6b, c). The evidence

of resorption is the cutting of zonations of zone 1a. The degree of resorption differs strongly

in the individual crystals, and most of the euhedral crystals develop a globular shape. This is

succeeded by a blue to violet growth zone (zone 2) that may be subdivided into three sub-

zones (2a, b and c). Internally, these sub-zones show a gradual transition from bright blue to

violet. Within the sub-zones are oscillatory zonations of 2 to 20 µm thickness. Zone 2 may

have up to three subordinated resorption phases, where the resorption is only slightly

developed and is not detectable in each crystal. The oscillatory zonation of zone 2 in the SG1

phenocrysts disappears in the direction of the red-brown luminescent rim (3rd generation, zone

Zone 3

Zone 2c

Zone 2b
2nd generation
   of the SG1

   Common growth
history of the SG1 and
SG2 microphenocrysts

   2nd generation
(microphenocrysts)

2nd generation
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3). In contrast, zone 2 in the SG2 phenocrysts is disturbed by resorption. This is followed by a

homogeneous red-brown anhedral growth rim.

In addition to the 1st  generation of quartz phenocrysts, the 2nd generation of euhedral quartz

(microphenocrysts) occurring in the miarolitic SG1 (Figs. 7.4 and 7.8) exhibits clearly-

contrasted growth textures with oscillatory zones of ≥ 2 µm. The growth textures belonging to

different crystals may be correlated as genetically-linked generations. The nucleation of the

second generation can be reconstructed in detail (Fig. 7.6d-f). Exclusively, tiny K-feldspar

crystals serve as crystallisation centre for quartz that started growing simultaneously at many

places on the feldspar surfaces. With increasing size the growing crystals touch and unify to a

single crystal. It is significant that these crystals of the 2nd generation do not show the growth

impediments that usually develop during growth of neighbouring crystals (such as

phenocrysts of 1st generation). The crystals of the 2nd generation could grow in the melt

unimpeded and have only few small lobate impediments. Consequently, the crystals

accumulated in a later crystallisation stage to intergranular clusters that are situated among the

feldspars and form net-like envelopes around the feldspar crystals as visible by CL (Fig. 7.9).

The crystal growth begins with bright blue luminescent quartz which merges into violet

during further growth. This growth stage is accompanied by an early simultaneous resorption

and by a subsequent distinct resorption stage (Fig. 7.6d-f). The overgrowth zone changes from

bright blue to violet again. Within this zone lobate impediments often occur. Such structures

could not be observed in large phenocrysts of the 1st generation. Marginally, the SG1

microphenocrysts lose their zonal structure and merge into homogeneous, dark red

luminescent, anhedral growth rims. In contrast, the marginal zone of the SG2 quartz

concludes with resorption, similarly to the SG2 phenocrysts. Finally, the SG2

microphenocrysts show ongrowth of a homogeneous, red-brown luminescent anhedral

generation (3rd generation, zone 3).

The average grain size of the microphenocrysts (0.07 - 0.6 mm, Fig. 7.4) is lower in the SG1

than in the SG2 (0.3 - 0.9 mm). The comparison of grain size maxima of the miarolitic SG1

(0.15 mm) with the aplitic SG1 (0.3 mm) shows that the grain size of this generation increases

in the aplitic SG1. The CL observations allow the conclusion that this increase of grain size is

caused by a broader anhedral growth rim in the aplitic facies. In contrast, the grains of the

miarolitic variety exhibit either no or very thin growth rims. Thus, the measured average grain

size of the miarolitic variety represents the “true” size of the SG1 microphenocrysts.
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Although the euhedral 1st and 2nd generations show different grain size range, it is justified to

correlate their growth textures. The microphenocrysts have initial growth during the growth of

zone 2b of the phenocrysts. Both exhibit the same resorption events, but the resorption is

more strongly developed in the microphenocrysts. In exceptional cases, individual crystals

form sub-generations between 1st and 2nd generations. These are phenocryst fragments that

formed by brittle failure during magma flow and that later continued to grow separately (Fig.

7.6a). According to habits, internal zonation and luminescence behaviour, the 1st and 2nd

generations of quartz phenocrysts are similar or identical to those in rhyolites (Schneider,

1993). This observation characterises the original SGC melt as dry felsic (rhyolitic) magma.

The growth zoning of phenoblasts of the SG3 (4th generation, Fig. 7.5) shows no similarities

to the zoning in the phenocrysts and microphenocrysts of the SG1 and SG2 and develops

obviously under magma-hydrothermal transitional conditions when the melt is degassing. It is

clearly distinguishable from the postsolidus rearrangements by hydrothermal fluids as

outlined above. The phenoblasts consist of sharp-bordered, homogeneous, bright grey and

1 mm

1 mm

a

b

Fig. 7.9   Distribution of the

1st (large grey grains), 2nd

(small grey grains) and 3rd

generation (black) in the

quartz framework a) of the

SG1 and b) of the SG2 in thin

section images.
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dark grey contrasted zones (2 µm to 200 µm). Resorption surfaces which resulted in rounding

of the crystals cannot be detected. The zoning follows the shape of trigonal α-quartz

(combination of the hexagonal prism m and the rhombohedrons r and z). Growth impediments

occur around the feldspar inclusions, but the impediments do not form large lobate textures

like those in the microphenocrysts.

Secondary CL structures

Primary growth textures and secondary CL structures are distinguished by characteristic

features because primary textures were developed during crystallisation and secondary

strucutres formed after growth. Secondary structures overprint and delete primary ones.

Cataclasis of crystals (cracks, decrepitated inclusions) cause recrystallisation of quartz that

shows different CL characteristics due to formation under different conditions.

Almost all quartz crystals contain dark red-brown luminescent, star-like structures along thin

microcracks (< 3 µm). These strucutres are healed decrepitation traces of micro-inclusions.

The ruptures that connect the decrepitation halos can be explained by cooling-induced thermal

stresses at grain scales, especially during incoherent β-/α-transition and isothermal uplift

(Sprunt, 1979; Behr, 1989). In the case of dense networks of microcracks a fracture pattern of

dark contrasted polygons develops (Figs. 7.6e and 7.10).

White to light gray contrasted structures veining the grains in high intensity are conspicious in

these samples (Fig. 7.6b). Their distribution is inhomogeneous; some single grains are

extremely veined and others not. These structures are stable at extended electron

bombardment and are rooted in inclusions and neighboured crystals of K-feldspar. The quartz

develops white rims at its grain boundaries with K- feldspar. The veins use the decrepitation

structures and partially overprint them. All quartz types show light halos around radioactive

inclusions.

In addition to thin CL contrasted microcracks (< 3 µm) that connect the decrepitation traces,

larger transgranular microshear zones (to 100 µm) showing distinct brecciation of the host

quartz occur (Fig. 7.6c). The healed cracks, that are only visible by CL are related to heat

generated by friction of crystals in the melt and to post-magmatic deformation.
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Fig. 7.10   Synoptical scheme of secondary structures contrasted by SEM-CL. 1 - star-like decrepitation traces

around fluid inclusions connected with microcracks; 2- pattern of polygons associated with a dense network of

microcracks; 3 - light grey contrasted structures rooted in inclusions and neighboured crystals of K-feldspar; 4 -

microshear zones; 5 - round halos around radioactive inclusions.

7.7   Relationships between CL and trace element distribution in quartz of the SGC

Different trace element contents in the quartz generations and the heterogeneous incorporation

of trace elements in zoned crystals reflect changes of growth conditions like temperature,

pressure and composition of the melt. One aim of this work was to determine the trace-

element contents of the different quartz generations and their distribution in the zoned

phenocrysts, to search for correlations between the CL behaviours and Al, Ti, Fe and Mn.

High Al concentrations occur in the red brown luminescent matrix quartz as a short-lived,

intensive initial blue (Figs. 7.11a, c and 7.12). In contrast, the quartz phenocrysts and the

quartz of the healed microcracks with blue CL and relative stable red-brown, respectively,

contain low Al concentrations. Alonso et al. (1983), Perny et al. (1992), Kalceff and Phillips

(1995) and Gorton et al. (1996) suggested that the 3.1 – 3.25 eV emission band correlates with

Al of the compensated centres and causes the unstable portion of the blue CL. However, the

2

3

4

4

5

kfs

kfs

mica

1



139

investigated quartz shows a decrease of the entire measured blue emission range (2.6 – 3.1

eV) with maximum at 2.79 eV.

Numerous studies of natural and synthetic quartz by electron paramagnetic resonance (EPR)

and optical absorption showed that Al3+ (M3+) as the most characteristic impurity element of

quartz substitutes Si4+ in the silicon-oxygen tetrahedra of the regular lattice and Li+, Na+, K+,

Fe2+ and H+ (Mn+) as ion-compensators enter interstitial positions. The infrared absorption

spectra of natural quartz crystals often exhibit sharp, dichroic absorption peaks between 3000

and 3740 cm-1 which are associated with hydrogen and hydroxyl acting as a charge

compensator of Al3+ and of Mn+ (e.g. Brunner et al., 1961; Kats, 1962; Bambauer et al., 1963).

Maschmeyer and Lehmann (1983) gave a first model for the association of Al and hydroxyl in

quartz where two OH groups are neighbouring the substitional M3+ (Al3+, Fe3+...) and

interstitial Mn+. Stenina et al. (1988) showed on the basis of transmission electron

microscopy, X-ray microanalysis and EPR that the trace M3+ cations replacing Si4+ in oxygen

tetrahedra are related to compensating Mn+ ions and form parts of aqua complexes and

clusters as follows:
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Scheme 1

The greater part of the structural water, Al-, Li- and Na-ions of hydrothermal and magmatic

quartz are incorporated in such aqua complexes. These defect structures are primary and are

built into the lattice during crystallisation. Consequently the uptake of M3+ and Mn+ in

magmatic quartz is controlled by the presence of water in the melt. The structural water

bounded as Si---O-H-H traps scattered electrons during radiation and the bounds are ruptured

(McLaren and Phakey, 1966; Maschmeyer and Lehmann, 1983; Stenina et al., 1984). The

radiation-induced reaction results in the development of paramagnetic E’ centres (≡Si·) and/or

diamagnetic trapped electron centres (≡Si:) which are beside the non-bridging oxygen hole

centres (Si-O·) the cause for the emission at 1.96 eV (Griscom, 1985). This process is visible

by CL where the formation of point defects of red-brown CL (<1µm) takes place in water-rich

pegmatitic and granitic quartz during electron bombardment (e.g. Behr, 1989; Schneider,

1993). Nevertheless, the mechanism of transformation is not clearly yet. The higher the

content of interstitial molecular water and of associated Men+ and M3+ ions in the magmatic

quartz the steeper is the intensity increase of red CL during the electron bombardment.

Furthermore, the different quartz luminescence types of the SGC reflect the water content of

the melt: dry (“rhyolitic”) conditions during the nucleation and growth of the red-brown

phenocryst core, more wet conditions during the blue phenocryst growth and, finally, wet

(“granitic”) conditions during the granite emplacement and crystallisation of the 3rd

generation. The low Al concentration in the phenocrysts is presumedly caused by the limited

water supply in the melt. This conclusion confirms Thomas (1994) who determined water

contents of melt inclusions of Erzgebirge granites in the range of 2.9 to 8.0 eq. wt. %. These

melt inclusions represent the early and late stages of quartz crystallisation, respectively.
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Fig. 7.12   SEM-CL profile across a zoned quartz phenocryst showing the Al and Ti concentration and the ratio

of the red and blue emission peak areas.
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In contrast to the M3+ and Mn+ the substitional M4+ ions (mostly Ti4+) create relatively stable

defect centres without interstitial charge compensators. The blue luminescent quartz of the

phenocrysts and microphenocryst shows a strong enrichment of Ti. In contrast the stable red-

brown CL of the phenocryst and crackling structures and the unstable red-brown CL of matrix

quartz exhibit low Ti concentrations. The high intensity of the stable blue luminescence

correlates with Ti-related defect centres (Figs. 7.11a, b and 7.12). These observations are also

supported by Kerkhof et al. (1996) and Bruhn et al. (1996). It remains unsolved if the Ti

functioned as CL activator or sensitizer (J. Götze, pers. comm.). The dark red-brown

luminescent quartz of the healed microcracks and of the decrepitation halos is depleted in Al

and Ti (Figs. 7.11a-c and 7.12).

Iron and manganese concentrations of all CL types are below the detection limit of 23 and 26

ppm, respectively.

7.8   A multistage quartz crystallisation model of the SGC

Early phenocryst crystallisation

Initially, nuclei developed in the melt during growth as hexagonal dipyramids (β-quartz).

Such crystals are formed at low values of undercooling ∆Ti (Kirkpatrick, 1975; Allègre et al.,

1981; Swanson and Fenn, 1986; MacLellan and Trembath, 1991). The value of ∆Ti is the

difference between the liquidus temperature and crystallisation temperature. At such

conditions, the nucleation rate is low (Swanson, 1977), and only a limited number of nuclei

may be formed in the melt.

The nucleation of quartz crystals of the 1st generation, and 2nd generation, as well took place

in few cases on growth centres that are formed by tiny K-feldspar, albite and mica crystals.

Their joint occurrence allows to interpret them as microenclaves that are in disequilibrium

with the melt. Especially the alkali feldspar residues are often corroded until nearly complete

resorption.

The euhedral habit of the phenocrysts seems to indicate unimpeded crystallisation in the melt,

maybe due to high charge potential. The hexagonal habit of the zoning (β-quartz) indicates

that the phenocrysts crystallised at about 750 °C (7 kbar; Yoder, 1950) and that the melt

shows a H2O-content of <2.5 wt% (Johannes and Holtz, 1996). Evidence for possible

maximum depths of first nucleation for crystallisation of Erzgebirge tin granites is provided

by microthermometric studies of silicate melt inclusions in quartz phenocrysts (Thomas,
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1992), which indicate the depth of magma formation of up to 21 km (Fig. 7.13). The results of

melt inclusion studies (Thomas, 1994) on granitic quartz form a p-T-t path that tracks the

entrapment of melt during quartz growth in different stages of magma uprise at various crust

levels. This synoptical information based on a few hundreds of inclusion data reflects the

stages of melt evolution. To reconstruct in detail from which defined growth zone of a single

quartz phenocryst an individual melt inclusion was measured requires application of more

sophisticated methods (oriented sections, CL, SIMS).

Fig. 7.13   The quartz crystallisation model of the Schellerhau granites. Scheme shows nucleation, growth and

resorption of four different quartz generations at its formation depths and resulting growth patterns. The

evolution scheme of the SGC considers melt generation from the lower crust under decompressional, late

collisional tectonics of the Variscan orogen in the Upper Carboniferous. Extensional tectonics control the

segregation of melt batches and multiphase intrusion of SG1, SG2 and SG3 into a subvolcanic level.
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Weakly CL contrasted growth zones developed only during the final stage of initial growth

(red-brown luminescent core zone 1, Fig. 7.7). These may be either self-organised

(oscillative) growth zones or zones disturbed by disequilibrium with the melt. The growth of

zone 1 ended abruptly by strong resorption of the initial crystallisation stage. Rapid,

isothermal ascent of the magma into higher crust levels explains the resorption that produced

rounded crystals (Holtz and Johannes, 1994). There is no evidence for magma mixing, neither

from the chemical evolution of the intrusion sequence nor from the element profiles in the

feldspars (authors’ unpubl. data).

The growth of the blue luminescent zone begins (zone 2) in a higher crust level, at weakly-

undercooled melt conditions (Fig. 7.13). The euhedral unimpeded growth continues, with the

distinction, that periodic, fine laminae, 5 - 20 µm broad oscillatory zones form in the 300 to

1000 µm broad zone 2.

Cyclic, self-organising oscillation growth is only possible when the melt cannot convect and

the chemical bulk composition remains constant. Despite the obvious homogeneity of the blue

growth zone a number of events are documented that possibly reflect changes of the melt

conditions (Figs. 7.9 and 7.13):

1. Within zone 2 occurs three times the gradual change from bright blue to violet. These sub-

zones (2a, b and c) stop abruptly and the next zone starts growing with bright blue CL.

2. A second nucleation stage, that begins with the growth of zone 2b in the phenocrysts

occurs. Crystallisation of the 2nd euhedral quartz generation (microphenocrysts) starts (Fig.

7.7, 7.13). The second nucleation stage requires a change in temperature/pressure

conditions (Sibley et al., 1976).

3. Furthermore, up to three subordinated resorption stages develop. Only one of them

coincides with the abrupt change of violet to blue luminescence (border of zone 2b to 2c).

The other two resorptions are situated within the zones 2a and 2b, respectively. The latter

resorption stages are more clearly developed in the microphenocrysts than in the

phenocrysts.

4. Also obvious are frequent lobate impediments occurring in the zone 2c, especially of the

microphenocrysts (Fig. 7.8). The impediments may be caused by vapour bubbles which

stuck to the crystal surface and hindered growth. The bubble formation may be explained

by depressurisation (degassing) and related foaming (1st boiling of melt) prior to the main

intrusion.
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The equilibrium of the bulk melt in the reservoirs, that is responsible for the blue luminescent

zones, occurred for a long time, and was only slightly disturbed. Stepwise ascent along short

distances or convection may be the cause of weak undercooling in the melt. The initiation of

growth of the microphenocrysts of zone 2b caused two different euhedral quartz generations

that continue to grow simultaneously. The nuclei of the microphenocrysts surrounding one

and the same crystallisation centre unify themselves during continued growth to one single

crystal which contrasts with the nucleation behaviour of the 1st quartz generation. This may be

due to lower charge potential of the 2nd quartz generation.

Melt separation, intrusion, and main crystallisation of SG1, SG2 and SG3

Generally, the 1st and 2nd quartz generations of the SG1 and SG2 have a common

crystallisation history as outlined above. Only during the growth of zone 2b, the SG1 melt

separated from deeper located melt reservoir and intruded at a subvolcanic level. The

microgranophyric and aplitic matrix quartz, both of which crystallised in the intrusion level,

represent as 3rd generation (zone 3) the final crystallisation. The textures indicate extreme

nucleation, low growth rates and that the melt was strongly undercooled (Swanson and Fenn,

1986). MacLellan and Trembath (1991) show, that porphyritic textures in which quartz occurs

as unit of phenocrysts and aplitic matrix grains (Kirkham and Sinclair, 1988) are textures of

rapid cooling. Granophyric intergrowths in the groundmass and matrix quartz overgrowing

the phenocrysts are common. Consequently, the quartz phenocrysts were already present,

when the matrix and granophyric quartz crystallised. In addition to the textures, the

geomorphological and stratigraphic considerations of Spengler (1949) and Schust (1980), who

concluded a ca. 1,000 m thick cover at the time of intrusion, support the subvolcanic nature.

Geothermobarometric data give a paleo-intrusion level of the various tin granites of the

Erzgebirge between 200 and 3,000 m (Seltmann et al., 1992).

The locality Pöbelknochen (833 m) represents the roof of the Schellerhau massif. There are

diffuse contacts between  “normal” SG1 rocks (with 15% phenocrysts) and local zones of

SG1 variations with extremely variable phenocryst content. We interpret the latter rocks as

result of highly dynamic magma near the intrusion centre. Possible interpretations include

mixing of forerunner marginal and main phase magma in the immediate roof parts of the

intrusion, or magma schlieres with variable phenocryst content, or melt batches intruding

subsequently to the normal SG1 emplacement. Except for the marginal intrusive

endocontacts, only at Pöbelknochen few xenoliths of the metamorphic cover are incorporated

in the granite body. The interconnected miarolitic texture (IMT) found at Pöbelknochen
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clearly developed in the granite variety with microgranophyric matrix quartz of SG1 (0.01 - 1

mm). It represents a snapshot of a special type of volatile-phase permeability that occurs in

the upper part of granite complexes (Candela and Blevin, 1995). The volatile phase was

enriched beneath the impermeable roof of the intrusive body, infiltrated earlier crystallised

marginal granite intrusion phases and reacted with the crystallising magma itself. The roof

impermeability was formed through rapid cooling (and pressure release quenching, resp.)

when the granite melt intruded zones of sharp thermal gradient that is developed best at

subvolcanic crustal levels (Seltmann, 1994). The IMT disappears beneath the top of the

Pöbelknochen and merges into aplitic texture. Towards deeper parts of this elevation, the IMT

is developed only along a few joints that were used after their opening as fluid pathways.

Feldspar phenocrysts are surrounded by granophyric intergrowths with quartz caused by

undercooling due to degassing of magmatic vapour phase and related pressure release. The

locality might represent according to gravity data (Tischendorf, 1964), the central part of the

NNW striking intrusion axis and, moreover, the fluid-enriched carapace above the intrusion

centre.

Because the 1st and 2nd quartz generations were resorbed in SG2 but not in SG1 (Figs. 7.7 and

7.8), we conclude that the melt/crystal ratio remained nearly constant in SG1. The resulting

slope of the P-T path of the SG1 melt ascent should run along the liquidus curve or be more

flat in response to the water content of the melt (Holtz and Johannes, 1994; Johannes and

Holtz, 1996).

After the SG1 melt portion separated from the deeper reservoir, the remaining phenocrysts

continued to grow to another 10 to 15 vol.% and the microphenocrysts of the 2nd generation

increase their volume by 100 vol.% until the SG2 melt separated from the reservoir and

intruded the subvolcanic level that was earlier reached from the SG1 portion. Based on the

extreme degree of phenocryst rounding, the melt/crystal ratio must have increased and the

ascent was nearly isothermal. The anhedral matrix crystals are in comparison to the SG1 less

but larger (0.08 - 0.6 mm), and indicate medium to low undercooling (Swanson and Fenn,

1986). The SG2 could use the intrusion path of the SG1 as is indicated by the spatial

distribution of the SG2 along the SG1 flanks and that at depth the SG2 is situated parallel to

the SG1 intrusion axis. Because the magma of the SG1 intrusion pre-heated the intrusion level

and formed a thermal barrier by rapid cooling of its roof, the cooling of SG2 occurred more

slowly as indicated by the seriate to equigranular textures of the latter. Chilled margins at

some contacts and sharp borders of SG1 fragments within SG2 provide evidence that the SG1

was already fully crystallised when the SG2 intruded. It is postulated that the intrusion of both



147

granites occurred in the period of crustal uplift and rapid erosion so that the crystallisation

process happened within changing p-T gradients.

The SG3 represents the end member of the geochemical differentiation of the Schellerhau

granite massif. Despite its geochemical and genetical relations with SG1 and SG2, the SG3

does not show textural similarities. Geochemical evidence (REE patterns, Zr/Hf) indicates

that the melt originated from the same reservoir. But, texturally, the phenocrysts of the 1st and

2nd generations are missing as expected. The sealed amoebic grain boundaries of snowball

quartz (4th generation)  show replacement and idioblastic growth with entrapment of

numerous matrix crystals. The crystallisation of this phenoblastic quartz type occured in the

last stage of crystallisation representing the fluid-saturated, highly-evolved alkali feldspar-rich

residual melt. Oscillations of rapidly increased velocity of quartz growth enabled zonal

entrapment of albite. At slow growth velocity quartz “snowplowed” the albite tablets in the

melt and albite-free zones of quartz were developed. This crystallisation stage is representing

the magma-hydrothermal transition when the melt is becoming highly viscous after releasing

its magmatic vapour phase (magma degassing due to hydraulic fracturing).

The trigonal habit of the zoning (α-quartz) indicates that the phenoblasts crystallised at

<600°C (<1kbar). The phenoblasts which crystallised in the subvolcanic level indicate a late-

stage H2O-content of >5 wt% in the melt (Yoder, 1950; Thomas, 1994; Johannes and Holtz,

1996).

The quartz phenoblasts and hydrothermal greisen quartz cannibalised more or less the older

quartz generations, thus reflecting the intense late- to post-magmatic fluid-rock reactions that

are closely related to tin mineralisation and deuteric alteration.

7.9   Summary

The application of cathodoluminescence combined with grain texture and grain size analysis

facilitates the identification of four quartz generations in the SG1, SG2 and SG3: � large

(∅=2.3 mm) euhedral hexagonal dipyramidal zoned phenocrysts (1st generation); �

hexagonal dipyramidal zoned microphenocrysts (2nd generation) (∅ = 0.2 mm); � matrix

quartz (3rd generation) developed aplitic and miarolitic (∅=0.1 mm) in the SG1 and anhedral

(∅=0.3 mm) in the SG2; and � zoned, micropoikilitic, amoebic and snowball-like quartz

phenoblasts (0.3 - 5 mm) (4th generation) in the SG3. One maximum of a grain size
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distribution plot represents one quartz generation and indicates a burst of nucleation which

was caused by a melt undercooling event.

The same grain size, grain habit and the correlatable growth textures of the phenocrysts and

microphenocrysts in the different granite varieties give proof of a common crystallisation

history until the melts of the three granite varieties SG1, SG2 and SG3 were separated and

intruded. Four nucleation events occurred during crystallisation at different crustal levels

between about 20 and 1 km depth.

The stable blue CL of the phenocrysts correlates with high Ti concentrations. The unstable

blue as well as the unstable red CL are controlled by aqua complexes in the form of 2SiO 3-

H2O-Mn+2M3+O4, where M3+ is mostly Al3+ and Mn+ mostly H+, Li+ and Na+. The slight

increase of the red emission intensity during electron bombardment reflects dry conditions

during the nucleation and the early crystallisation stage. The steep increase reflects more wet

conditions during the granite emplacement and crystallisation of the 3rd generation. The

Schellerhauer granite melt is interpreted as one with a dry „rhyolitic“ early stage, due to the

euhedral zoned β-quartz phenocrysts formed in water-poor conditions with <2.5 wt% H2O in

the melt and at temperatures about 750°C. The water content of the melt increases during the

further development until the melt assumes granitic properties. The 4th quartz generation

(snowball quartz) which crystallised in the subvolcanic level indicates a H2O-content of >5

wt% in the melt and temperatures <600°C. Due to the highly-reactive fluids exsolved in late

magmatic stages from the melt, the quartz and feldspar phenocrysts of 1st and 2nd generations

were cannibalised and only a few relics of K feldspar remained.

The application of CL is a very helpful and irreplaceable tool for the reconstruction of the

crystallisation history of granitoid melts in connection with other methods such as trace-

element geochemistry, grain texture and grain size analysis.
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8   The genetic significance of snowball quartz in highly

fractionated tin granites of the Krušne Hory/Erzgebirge

(this chapter has been published in “Mineral Deposits: Processes to Processing”

edited by Stanley et al., Balkema, pp. 409-412, 1999, co-author: R. Seltmann)

8.1 Abstract

Snowball-textured quartz phenoblasts are magmatic-hydrothermal fluid saturation textures

and occur widespread in highly evolved alkali feldspar and topaz-bearing granites. They are

characterised by zonal arrangement of entrapped matrix minerals (albite, K-feldspar, mica)

alternating with inclusion-free zones. Case studies from the Schellerhau and Podlesi granites

(Erzgebirge/Krušne Hory) showed a crystallisation sequence albite – K-feldspar – Li-mica –

snowball quartz. If the growth velocity increased rapidly, beside silicate melt drops also

predating and simultaneously formed matrix minerals were overgrown and trapped in the

quartz. CL and growth zoning studies indicate a kinetically caused increase of the growth

velocity with crystal size in a nearly non-convecting crystal mush. Wavy zones of snowball

quartz are interpreted as products of small scale diffusion fronts which lead to the change of

CL properties developed during the crystal growth and caused by rapid variation of the melt

conditions.

8.2   Introduction

Snowball-textured quartzes in granitic rocks are ellipsoidal phenoblasts up to 1cm in size.

They are characterised by zonal arrangement of entrapped matrix minerals (albite, K-feldspar,

mica) alternating with inclusion-free zones (Figs. 8.1 – 8.2a).
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Fig. 8.1   Synoptical scheme of CL-contrasted growth textures in snowball quartz as observed in the Schellerhau

SG3 granite and in the Podlesi dyke granite. Quartz crystal size is usually 1 mm up to 1 cm.

Regardless the genetically totally different formation mechanism, these late-magmatic

textures have some phenomenological similarities to metamorphic blastesis products also

called snowball texture for which the term was first used when crystals grow under shear

stress and other minerals were entrapped during rotational deformation.

The snowball texture is typical for highly evolved alkali feldspar and topaz-bearing granites

world-wide and its origin is controversially discussed. It is considered to be either

metasomatic (e.g. Beus et al., 1962; Sonyushkin et al., 1991), or magmatic in origin

(Kovalenko, 1977; Renno, 1997; Poutiainen and Scherbakova, 1998).

Snowball-textured quartz occurs also in the roof of late Variscan tin-bearing alkali feldspar

granite stocks of the Krušne Hory/Erzgebirge. For textural, cathodoluminescence (CL) and

trace element studies on snowball quartz were chosen the third intrusion stage SG3 of the

Schellerhau granite complex (Eastern Erzgebirge/Germany; Müller et al., 1999) and the

Podlesí dyke granite (Western Krušne Hory/Czech Republic; Breiter et al., 1997). These
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highly evolved, Li-F-enriched alkali feldspar leucogranites belong to the younger granite

group and are connected with the Sn-W mineralization of the Krušne Hory/Erzgebirge

(Seltmann, 1994). The rocks are emplaced as small stocks, sills and dykes at shallow crustal

levels (formation pressure <1kbar).

8.3   Petrography and texture

The texture of the alkali feldspar granites is characterized by porphyritic snowball quartz and

K-feldspar, and fine-grained euhedral albite tablets which form the main portion of the matrix.

The quartz are between 2 - 5 mm and 0.2 – 1.5 mm in diameter in the Schellerhau SG3 granite

and Podlesi dyke granite, respectively. In the Podlesi dyke granite, where snowball quartz and

K-feldspar have nearly the same size as the matrix albite, the porphyritic texture shifts into a

fine-grained one. The snowball quartz shows continuous growth into the matrix quartz,

recognizable by the ramified, amoeboic grain boundaries, and penetrates the matrix. Up to 90

vol.% of the modal quartz is accumulated in the snowballs. The crystals contain zonally

enriched inclusions of the matrix minerals, such as corroded K-feldspar, mica, metamictic

zircon, apatite and above all albite. Furthermore, in many cases fluid and melt inclusions

occur. The entrapped albite tablets are often arranged with their long axis parallel to the

zoning. Large number of albite tablets envelope the phenoblast edge indicating that the quartz

put off the albite tablets during the growth. If the growth velocity increased rapidly the albite

and other matrix minerals were overgrown and trapped in the quartz. The general

crystallisation sequence is: albite – K-feldspar – mica  –  snowball quartz.

8.4   CL and growth zoning

The investigated snowball quartz have a red-brown luminescence with weak intensity. The

CL spectra show a dominance of the red emission centred at 1.96 eV and low intensity of the

blue emission centred at 2.79 eV. During the electron radiation the red emission increases

whereas the blue emission decreases visible by the blue “flash” at the first seconds of

radiation.

The phenoblasts contain CL-contrasted growth zoning which is visible by using the SEM-CL

with 15 kV and a current of 15 mA (Figs. 8.1-8.2). The first growth zones show spherical
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shape which changes during the subsequent growth into rectilinear bordered zones with α-

quartz habit. The zones have variable width from 2 to 200 µm. Growth impediments around

albite inclusions are recognizable as the zoning fits the shape of the obstruction (Fig. 8.2b).

Fig. 8.2   SEM-CL images of snowball quartz of the Schellerhau SG3 granite. a) Snowball quartz with a large

number of albite inclusions (white); b) Detail of a snowball quartz showing growth impediments around albite

(Ab) inclusions (1), wavy zoning (2), and stress-induced recrystallised quartz (black) around mineral inclusions

(3).
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These impediments are well developed in the crystal core and are smaller and indistinct in the

direction to the crystal edge. This indicates a general increase of the growth velocity with

growing crystal size. Between the straight bordered growth zones wavy surfaces occur. They

are characterized by convex inlets which are opposed to the growth direction. In contrast to

resorption surfaces which are resulted in sharp truncation of the regular zoning and rounded

crystal corners (e.g. Shore and Fowler, 1996) the inlets of the wavy surface are much smaller

and extend maximal 20 µm in the growth zones and do not cut older zones or round-off

corners. The subsequent growth zones are rectilinear bordered again and parallel to the

euhedral crystal habit. This feature is in contrast to the wavy zoning which is described in

plagioclase by Pearce and Kolisnik (1990) were the subsequent growth keeps the wavy

texture. The wavy zones of snowball quartz are interpreted as a small scale diffusion front

which lead to the change of CL properties developed during the crystal growth and caused by

rapid variation of the melt conditions. The zoning continues into the amoebic crystal margin

and into the matrix quartz without changes of the CL properties. Consequently, at least the

rims of snowball quartz and the matrix quartz represent one and the same quartz generation.

The zoning pattern indicates that the snowball quartz crystallised in-situ without significant

magma movement. The tension anisotropy of quartz caused the stress-induced

recrystallisation of non-luminescent secondary quartz around albite inclusions (Fig. 8.2b).

8.5   Trace elements

The CL of quartz results from substitutional and interstitial incorporation of trace elements

like Al, Fe and Ti and from different types of intrinsic and extrinsic defect centres in the

quartz lattice. K and Na were measured to distinguish the Al originated from mineral

inclusions from that of the host quartz.

Both, the Schellerhau and the Podlesi snowball quartz, are characterised by in average low Ti

concentration of 20 ppm (Figs. 8.3a - 3b). In contrast, the quartz has a variable and mostly

high Al content. Near the contact to albite the Al, Fe and Ti content increases caused by

diffusion (Fig. 8.3b).

The measured trace elements show no correlation with CL zoning. This is in contrast to

rhyolitic phenocrysts where Ti is mainly responsible for the contrasting of the magmatic

zoning (Müller et al., 1999). The dominance of red luminescence centered at 1.96 eV
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associated with a steep increase during electron radiation indicates high content of Si-OH

bonds and molecular water in the quartz lattice (Kalceff and Phillips, 1995).

Fig. 8.3   Trace element profiles of snowball quartz of the Schellerhau SG3 granite (a) and the Podlesi dyke

granite (b) using electron microprobe.
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8.6   Conclusions

The habit and zoning pattern, the arrangement of the enclosed and neighbouring albites and

the occurrence of melt inclusions indicate a growth of the snowball quartz in a nearly non-

convecting crystal mush. On the other hand, the trigonal habit of the zoning indicates

crystallisation temperature of <600°C (at <1kbar). The zoning and CL properties of the

snowball quartz show magmatic as well as hydrothermal features.

According to Holten et al. (1997) the observed zoning texture of the snowball quartz mostly

reflects an external fluctuation in open systems and is not a product of self-organising growth.

The irregular zoning is explained due to periodic degassing during melt cooling in the granite

roof (Plimer, 1987).

Due to the highly reactive fluids exsolved in late magmatic stages from the melt, obviously

the quartz and feldspar phenocrysts of the early crystallisation stages were cannibalised and

mainly resolved.

Consequently, snowball quartz is a textural indicator for fluid-saturated, F-Li-enriched melts

of alkali feldspar granites with subvolcanic (shallow) emplacement (Pitfield et al., 1990).

Furthermore, it serves as indirect indicator for tin-tungsten mineralisation related to such

melts.
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9   Cathodoluminescence (CL) of magmatic quartz:

Applications to topaz granites from the Hub Stock

(Slavkovský Les Mts., Czech Republic)

(this chapter has been submitted to Terra Nova, co-author: M. René and H.-J.

Behr)

9.1   Abstract

Topaz-bearing granites from the Hub Stock, hosting the Sn-W deposit Krásno (Slavkovský

Les Mountains, Czech Republic), form a stock structure in the SW part of the Krušné

Hory/Erzgebirge Batholith. CL facilitates the discrimination of three magmatic quartz

generations within these granites, which has given new insights into the textural evolution of

felsic igneous rocks. Two phenocryst generations exhibit complex growth zoning with

dominant blue CL, similar to those generally found in phenocrysts from rhyolites. They

represent a water-poor (<2.5wt% H2O) “rhyolitic” crystallisation environment in the lower

and middle crust. Variation of Ti is mainly responsible for the contrasting magmatic zoning

pattern in quartz phenocrysts. Furthermore, the Al/Ti ratio measured by EPMA can be used to

distinguish quartz phenocrysts from different magma sources. Unzoned matrix quartz

crystallised during and after subvolcanic melt emplacement and overgrew the older

phenocryst generations. From the high Al content and the dominance of the unstable red 1.96

eV CL emission, which is associated with hydroxyl defects and adsorbed H2O in the lattice, it

is suggested that the matrix quartz grew in a residual “granitic” melt with higher water

content.

9.2   Introduction

Electron-excited luminescence, or cathodoluminescence (CL), is a sensitive method for

revealing growth zoning, alteration patterns, grain shapes and different generations of quartz,

which are not distinguishable in transmitted or polarised light (e.g. D’Lemos et al., 1997;

Watt et al., 1997; Müller et al., 2000). CL colour and intensity in quartz are generally
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controlled by activator and sensitise elements (extrinsic lattice defects) like Al, Ti, Fe, Mn,

Ge, Li, Na, and H and intrinsic defects (e.g. oxygen and silicon vacancies) (e.g. Sprunt, 1981;

Waychunas, 1988; Perny et al., 1992; D’Lemos et al., 1997; Pagel et al., 2000). Al3+, Ti4+,

Fe3+, and Ge4+ substitute for Si4+ and the cations H+, Li+, Na+, Fe2+, and Mn2+ function as

compensators of the electric charge at interstitial positions (e.g. Bambauer, 1961; Lehmann,

1975; Lehmann and Bambauer, 1973; Maschmeyer and Lehmann, 1983; Weil, 1984). Earlier

studies showed a large variation in the trace element content within quartz crystals as well as

of quartz crystals from different environments (e.g. Stuttner and Leininger, 1972; Schrön et

al., 1988; Blankenburg et al., 1994; Müller, 2000). Spatial variations of CL properties reflect

structural and chemical variations within crystals, which are related to crystal growth zones.

These variations are caused by fluctuations in growth and diffusion rates in the melt through

the crystal-melt boundary layer. Growth and diffusion rate are controlled either by self-

organising intrinsic mechanism or an extrinsic mechanism involving physical or chemical

changes within the bulk system, such as crystal settling, large-scale convection, magma

mixing, ascent velocity and related temperature and pressure changes (e.g. Sibley et al., 1976;

Shore and Fowler, 1996), but the problem is to relate the different patterns of zoning to

specific genetic processes.

Despite considerable benefits of the phenomenological investigation of the CL of quartz, the

relationship between CL properties, trace elements, and petrogenesis is far from being solved.

This study is focused on magmatic quartz from the topaz-bearing granites of the Hub Stock

hosting the Krásno Sn-W deposit (Slavkovský Les Mountains, Czech Republic). The aim of

this study is to explain the causes of the CL of magmatic quartz and to determine the

petrological significance of trace element distribution, quartz CL, and of textures visible in

CL. Combination and comparison of the CL studies with micro-analytical results (EPMA) has

been given new insights into the origin, emplacement, crystallisation, and textural evolution

of fractionated Li-F-enriched melts and provide an information link between simplified

systems of theory and experiment, and the complexities of natural processes.
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9.3   Geological setting

The Krušné Hory/Erzgebirge batholith that extends over an area of about 6000 km2, belongs

to the largest Variscan granite bodies in the Bohemian Massif (Fig. 9.1). Topaz-albite granites

that usually form granite stocks are traditionally related to the younger intrusive complex

(YIC) of the Krušné Hory/Erzgebirge batholith (Lange et al., 1972; Fiala 1968). However, the

topaz-albite granites of the Hub Stock form part of a complicated stock structure of topaz-

albite granites, which are associated with the upper part of the Krásno Sn-W ore deposit

(Jarchovský et al., 1994; René, 1998). Topaz-albite granites in this part of the Slavkovský les

Mts. are part of the Krudum massif that forms a relatively independent magmatic body on the

SW margin of the Karlovy Vary pluton. The emplacement of the granite stock was associated

with intensive tectonic deformation of slightly migmatized biotite paragneisses in the

overlying pre-Variscan basement. Intrusion breccias described in detail by Jarchovský and

Pavlu (1991) and Seltmann et al. (1992) occur in the upper part of the Hub stock and are

cemented by topaz-albite microgranites.

Topaz-albite granites of the Hub stock are mostly medium-grained varieties locally

accompanied by fine-grained porphyritic topaz-albite granites with characteristic quartz and

K-feldspar phenocrysts. The temporal relationship between the medium-grained and fine-

grained porphyritic granites cannot be interpreted unambiguously. The contact of both

varieties has a tectonic character in some cases and an intrusive character in the other, either

gradually passing from one variety to another or linked with the origin of a small coarse-

grained zone on the contact of both varieties. The two textural varieties may represent

different granitic facies of approximately the same age, the origin of which was controlled by

local pressure conditions during emplacement and crystallization (René, 1998)
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Fig. 9.1   Geological setting of the Hub stock. (a), (b) Geological map of the Krušné Hory/Erzgebirge with the

distribution of granite types and the position the Hub stock. (c) Simplified cross-section through the Hub stock

according to Jarchovský (1998).
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9.4   Petrography

The porphyritic topaz-albite granitic rocks (sample Ju-10) have a fine-grained equigranular

groundmass (50 - 100 µm) of anhedral quartz, albite (An03-05), K-feldspar, Li-mica, topaz,

muscovite, and accessory minerals (fluorite, cassiterite, apatite, zircon, hematite, sulphides).

The megacryst population is dominated by bipyramidal quartz (1.5 - 3 mm), platy Li-mica,

and sparse K-feldspar up to two centimetres in size.

Topaz-albite microgranites (sample Ju-20) found in the upper part of the Hub stock, that form

the matrix of the intrusion breccias, are aplitic (grain size: 200-500 µm) and rarely

porphyritic. The microgranitic rocks include K-feldspars several millimetres in size as well as

bipyramidal quartz (1.5 - 3 mm). The groundmass of the microgranitic rocks is composed of

anhedral quartz, albite, Li-mica, K-feldspar, and primary topaz.

The application of CL facilitates the identification of a third magmatic quartz population

beside the large phenocrysts (qz1) and the matrix quartz (qz3) in both granite varieties (Fig.

9.2a, b). Like the large phenocrysts, this population is 300 – 700 µm in size and exhibits a

dipyramidal ß-quartz habit and growth zoning. Each phenocryst population forms a maximum

in the grain size distribution plot: qz1 at 2 mm and qz2 at 0.4 mm. In the following we call

this population microphenocryst (qz2). Both the phenocrysts and microphenocrysts are

overgrown by younger matrix quartz.

9.5   Methodology

CL investigations were carried out using a hot-cathodoluminescence-microscope (Neuser et

al., 1995) with 14keV energy and filament current of 0.18 µA. CL spectra were recorded with

a triple-grating (100, 1200, and 1800 lines/mm) spectrograph TRIAX 320 provided with a

liquid N2-cooled Charge Coupled Device (CCD) camera. The system is well suited to

applications with very low signals such as the CL of quartz. The 100-lines/mm grating was

used to detect the emitted spectra between 400 and 950 nm (3.1 and 1.4 eV), whereas the

1200 lines/mm grating provided high-resolution spectra of 70 nm width sectors. The latter

allowed the determination of the exact position of the single CL emission bands. For the

quantification of the CL spectra were resolved by best fitting with Gaussian curves.

The application of a microprobe (EPMA) equipped with a CL detector (SEM-CL) facilitates

the analysis of trace element distribution in relation to the CL textures. Trace element

abundances of Al, Ti, K and Fe in quartz were determined using a JEOL JXA 8900 electron
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microprobe fitted with a wavelength dispersive detector and with a CL detector (CLD40

R712). Raw analysis were converted into concentrations, after making appropriate matrix

corrections using the phi-rho-z method of Armstrong (1991). The main advantages of the

EPMA are the high spatial resolution of ~5 µm and the capability of combining

microanalytical analysis with CL and BSE imaging on the same area. The CL detector

provided monochromatic (grey scale) images of the growth zones and alteration patterns

within individual quartz crystals. Trace element measurements were carried out as line scans

yielding distribution profiles. CL imaging was performed prior to and after EPMA analysis. In

this way the measurement points in relation to the CL textures can be exactly located. The

grey scale profiles along measured trace element profiles within quartz crystals are processed

from the SEM-CL images using the software Optimas 6.0. Dark contrasted areas of quartz

SEM-CL images correspond to red to reddish brown CL-colours and bright areas correspond

to blue to violet colours. Quartz contains trace elements of very low concentrations so that

quantification by EPMA poses a major difficulty. For high precision and sensitivity, a high

beam current of 120 nA, beam diameter of 7 µm, and a counting rate of 10 min per analysis

(i.e. 180 s per element) were chosen. Detection limits were calculated for each trace element

profile with a confidence level of 95% on the basis of the standard deviation obtained from 12

background measurements (Plesch, 1982). Detection limits are 56 ppm for Al, 9-16 ppm for

Ti, 8 ppm for K, and 11-18 ppm for Fe.

There are several reasons why the concentrations of Al, Ti, K and Fe were determined. Al3+

and Ti4+ are the most frequent trace elements in quartz, which substitute for Si4+ (e.g.

Bambauer, 1961; Dennen, 1965; Weil, 1984; Blankenburg et al., 1994) and may have a strong

influence of the CL of quartz (e.g. Ramseyer and Mullis, 1990; Perny et al., 1992; Müller et

al., 2000). K+ was chosen as representative of the interstitial ions, because the detection limit

of Na (~80 ppm) was higher than the concentration and the ultra-light element Li cannot be

measured by EPMA. Fe and Mn are important CL activators and quenchers in silicates and

enter interstitial (Fe2+ and Mn2+) and substitutional (Fe3+ and Mn3+) positions (Marshall,

1988). However, the concentration of Mn was far below the detection limit (~ 12 pm).
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9.6   Quartz CL colours and growth patterns

The application of CL facilitates the identification of three magmatic quartz generations in the

two granite varieties: euhedral zoned phenocrysts (qz1), euhedral zoned microphenocrysts

(qz2), and anhedral unzoned matrix quartz (Fig. 9.2a and b). The growth zoning in the

phenocrysts (qz1 and qz2) is contrasted by different shades of blue, violet, and red-brown CL

and include stepped (compositional) and oscillatory zoning with ß-quartz habit, resorption

surfaces, and growth impediments (Kozlowski, 1981; Schneider, 1993; Müller et al., 2000;

Fig. 9.2c, d and e). Characteristic is the presence of fine-scale oscillatory zoning (2 - 20 µm

width) within super-ordinate stepped zoning (50 - 1000 µm width). The analysis of the growth

zoning shows, that the nucleation and growth of the microphenocrysts (qz2) begins with the

growth of the outer step zone of qz1 (Fig. 9.2a, b).

The existence of euhedral quartz phenocrysts in granites showing CL-contrasted growth

zoning is currently not known to be common and was described in only a few cases

(Seltmann, 1994; D’Lemos et al., 1997; Müller et al., 2000). Furthermore, the growth zoning

of these granitic phenocrysts is similar to growth zoning of phenocrysts observed in Permian-

Carboniferous rhyolites of the Erzgebirge (Fig. 9.2f). In contrast the matrix quartz (qz3)

overgrowing qz1 and qz2 is free of growth zoning and exhibits a red-brown CL.

Quartz formed during post-magmatic or late-magmatic alteration is easily distinguishable

from the above-described magmatic quartz. Based on postsolidus recrystallisation textures

(fluid saturation textures, grain blasteses, cannibalising; e.g. Müller and Seltmann, 1999), and

dark red-brown luminescence, those metasomatic quartz textures formed by hydrothermal

processes could be excluded from this study.

9.7   Quartz CL spectroscopy and trace element distribution

The spectral response of the CL of quartz in the range of visible light is characterised by 9

emission bands between 1.7 – 2.2 eV (red) and 2.4 – 3.1 eV (blue) (Fig. 9.3, Table 9.1). The

intensity of the emission bands changes with the exposure time of electron radiation, whereby

the blue emission decreases and the red emission increases, indicating the decay and creation

of luminescence centres,
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Fig. 9.2   SEM-CL images of quartz phenocrysts from the Hub stock topaz-bearing granites (Slavkovský Les

Mts.). (a) Zoned quartz phenocryst (qz1, Ju-20). The line A-B shows the position of the trace element profile in

figure 9.4a, c, and e. (b) Scheme of the three quartz generations, which are distinguishable in the SEM-CL image

(a): zoned phenocryst (qz1), zoned microphenocrysts (qz2), and the matrix quartz (qz3) developed as ongrowths

on qz1 and qz2. The nucleation and growth of qz2 begins with the growth of the outer step zone of qz1. (c)

Zoned quartz phenocryst (qz1, Ju-20). The stepped zones (1) are truncated by resorption surfaces (arrowed) and

overlain by the sub-ordinate oscillatory zoning. Three large scale resorption events are recorded in the zoning

pattern. (d) Grey scale profile through the quartz phenocryst in figure 3c. High grey scale corresponds to blue CL

and low grey scale to red-brown CL. Within a stepped zone the grey scale (blue CL) tendentiously decreases in

the growth direction. The grey scale correlates with the Ti distribution (see Fig. 9.5a). (e) Quartz phenocryst

showing growth impediments. The zoning fits the shape of the impediment caused by immiscible melt, vapour

phases or minerals which stick onto the crystal surface during growth. During further growth the impediment

becomes enclosed. (f) Zoned quartz phenocryst from the Wachtelberg Rhyolite (Eastern Erzgebirge). The zoning

pattern of rhyolitic phenocrysts is similar to the zoning occurring in the phenocrysts of the Hub stock granites.
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Fig. 9.3   CL spectra of (a) violet luminescent phenocryst quartz of sample Ju-10, (b) violet luminescent

phenocryst quartz of sample Ju-20, and (c) red-brown luminescent matrix quartz (Ju 10). The spectra were

recorded after 30 s, 2 min, and 7 min electron radiation. The 7-min-spectra are fitted with Gaussian curves. Each

Gaussian curve represents a single emission band.
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Table 9.1    CL emission bands between 1.4 and 3.1 eV observed in the magmatic quartz of the topaz-bearing

granites from the Hub stock and their identification (NBOHC - non-bridging oxygen hole centre; STE - self-

trapped exciton)

CL band

position

(eV)

Half width

(eV)

Identification Reference

1.73±0.02 0.3±0.02 substitutional Fe3+ Pott and McNicol (1971)

1.84±0.01 0.22±0.01 Associated with NBOHC with Si--O and

peroxy linkage precursor or ≡Si: centre

Stevens Kalceff and Phillips (1995)

1.96±0.02 0.22±0.02 Associated NBOHC with −OH precursor Stevens Kalceff and Phillips (1995)

2.15±0.02 0.38±0.01 STE associated with Ge Luff and Townsend (1990)

2.47±0.02 0.3±0.03 Impurity Itoh et al. (1988)

2.58±0.01 0.18±0.005 Associated with Al3+-defect structures

STE

Nassau and Prescott (1975)

Remond et al. (1992)

2.68±0.01 0.23±0.01 STE

Associated with Ti-defect structures

Stevens Kalceff and Phillips (1995)

Marfunin (1979)

2.79±0.01 0.26±0.01 Oxygen related centre Hagni (1987)

2.96±0.02 0.3±0.02 Associated with Ti-defect structures This study

respectively. The CL colours are more unstable in the matrix quartz than in the phenocrysts.

The CL signal obtained from phenocrysts within both granitic varieties is similar, whereas the

CL spectra of the matrix quartz show a dominance of the red emission (Fig. 9.3).

The comparison of CL emission band and trace elements revealed the following:

• Growth zones with blue CL show high Ti concentrations up to 70 ppm (Fig. 9.4a and b).

We found that the blue CL emission at 2.96 eV is associated with Ti (Fig. 9.5a). From this

observation we conclude, that variations in Ti are mainly responsible for the magmatic

zoning pattern within these quartz phenocrysts. The 2.96 eV band is beside the 2.47, 2.58,

2.68, and 2.79 eV one of five bands of the blue emission range. Generally, crystallisation
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temperatures >500°C are necessary for the substitution of Si4+ through Ti4+ caused by the

high field strength of Ti4+ (F = 1.04; Blankenburg et al., 1994). However, it is generally

not clear whether Ti is a CL activator or sensitizer (Marshall 1988, Götze 2000).

• Phenocryst quartz (qz1 and 2) shows an Al content between 170 and 270 ppm, whereas

matrix quartz (qz3) has higher concentrations between 250 and 370 ppm (Fig. 9.4c and d).

Al concentrations >400 ppm correlate with K concentrations >30 ppm indicating the

contamination of the analysis by feldspar microinclusions. Al generally behaves in an

opposite way to Ti with abundances being low in the blue and higher in the red-brown

luminescent quartz especially in the matrix quartz (qz3; Fig. 9.5b). In contrast Ramseyer

and Mullis (1990) and Perny et al. (1992) assume that the high Al and Li concentrations

are the cause of the blue CL of hydrothermal quartz. According to Siegel and Marrone

(1981), Griscom (1985), and Stevens Kalceff and Phillips (1995) the red CL emission

around 1.96 eV is related to OH- and/or adsorbed H2O. The increase of the emission

during electron radiation is explained by radiolysis of hydroxyl groups and/or adsorbed

H2O of the quartz lattice, which leads to the formation of non-bridging oxygen hole

centres (NBOHC). Hydroxyl groups and adsorbed H2O acting as charge compensator of

Al3+ forming [2SiO 3-H2O-M+2AlO4] defects, where M+ is a combination of Li, K, and Na

ions (Bambauer et al., 1963; Maschmeyer and Lehmann, 1983; Kronenberg et al., 1986;

Stenina, 1995). This association of Al and hydroxyl groups and/or adsorbed H2O may

explain the weak correlation of Al with the red emission.

• The Fe content varies predominantly between 10 and 30 ppm (Fig. 9.4e and f). It was

observed that Fe increases towards the grain boundary up to 260 ppm indicating a high

diffusion rate of Fe in the quartz lattice. This grain rim shows no change in CL properties.

Pott and McNicol (1971) and Kempe et al. (1999) found that high Fe3+ causes the 1.73 eV

CL emission. However, in our samples we found no correlation between the Fe

concentration and the 1.73 eV band intensity. The lack of correlation may be explained by

the fact that Fe occurs as divalent and trivalent ions.

• Weak to non-luminescent, post-magmatic (secondary) quartz is depleted in Ti, Al, Fe and

K (Fig. 9.5a and b).
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Fig. 9.4   Trace element profiles of quartz of the topaz granites from the Hub stock. Lower Ti and higher Al are

characteristic for the matrix quartz. High Al (>400 ppm) correlates with K indicating analysed micro-inclusions

of feldspar. The steep increase of Fe near the grain boundary to plagioclase demonstrates the high diffusion rate

of Fe in the quartz lattice. Secondary (post-magmatic) quartz between 100 and 130 µm in (b), (d), and (f) is

depleted in Ti, Al, Fe and K. The arrows at the axis of ordinates mark the detection limits (dl).

9.8   Discussion

Topaz-bearing granites of the Hub stock hosting the Krásno Sn-W ore deposit contain three

generations of magmatic quartz represented by phenocrysts (qz1), microphenocrysts (qz2),

and matrix quartz (qz3) indicating multiple crystallisation and contrasting crystallisation

environments.
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Fig. 9.5   (a) Correlation of Ti and CL signal plotted as grey scale within a zoned quartz phenocryst (qu1, Ju-10).

The grey scale reflects the intensity ratio of red (1.7 – 2.2 eV) versus blue emission (2.4 – 3.1 eV). The higher

the blue emission intensity the greater the amount of the grey scale. Quartz with high Ti shows violet to blue CL.

(b) Al concentration of phenocryst quartz (1), matrix quartz (2), and secondary (post-magmatic) quartz (3). The

matrix quartz (2) has high Al in contrast to the secondary quartz (3). (c) Comparison of the Ti-Al ratio of quartz

phenocrysts from the Hub stock topaz-bearing granites and of Schellerhau tin granites (Eastern Erzgebirge). The

phenocrysts of the different topaz-bearing granite varieties of the Hub stock show a similar trace element

signature indicating a common magma source, whereas the phenocryst quartz of the Schellerhau tin granites has

a lower Al concentration.
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To understand the Ti variation of growth zones in the phenocrysts (qz1 and qz2) it is

necessary to distinguish between zoning caused by self-organised growth and zoning caused

by physico-chemical changes of external factors such as temperature, pressure and magma

composition (e.g. Allegre et al., 1981; Anderson, 1984; Fowler, 1990; Shore and Fowler,

1996). The fine-scale oscillatory zoning observed arises from self-organised growth without

the intervention of externally imposed periodicities in the state (pressure, temperature, or

composition) of the melt from which the crystal grew (e.g. Sibley et al., 1976; Allegre et al.,

1981; Ortoleva, 1990; Shore and Fowler, 1996). Self-organisation of the growth is controlled

by cyclic competition of the crystal growth rate and the diffusion rate of silica and elements

such as Ti within the crystal-melt reaction zone and boundary layer. In contrast, stepped

zoning and resorption surfaces are zoning patterns typically caused by external factors (e.g.

Allegre et al., 1981; Müller et al., 2000). The stepped zones are often truncated by resorption

surfaces, which results in rounding of the crystals (Fig. 9.2c). Resorption (melting) of crystal

surfaces indicates local SiO 2-undersaturation of the melt, which may be caused by an increase

in temperature, isothermal decompression, or magma mixing. The continuous fractionation

trend of the granite varieties of the Hub Stock and Krásno area (e.g. Jarchovský and Pavlu,

1991) gives no indications for magma mixing which may cause the multiple resorption

events. Furthermore, the crystal settling effects in a magma chamber are small for viscous

silicate melts (e.g. Dowty, 1989) and do not result in large-scale resorption of crystals.

Therefore, we favour isothermal decompression during adiabatic melt ascent as the cause of

large-scale resorption. Adiabatic conditions are only possible by rapid magma ascent in

dykes. Resorption drastically lowers the amount of suspended solids in the melt. The flow rate

is elevated by reduction of the effective viscosity. This process may be initiated by brittle

deformation during extension or shear in the upper crust. The occurrence of resorption

surfaces is in accordance with the rapid ascent of granitic melts by dyke formation as found

by Clemens and Mawer (1992), Petford et al. (1993), Petford (1996) and Johannes and Holtz

(1996). After a resorption event (melt ascent), the subsequent growth of a new stepped zone

begins with high Ti (blue CL) indicating a change of the crystallisation conditions. The Ti

content decreases tendentiously across the stepped zones during further growth and is overlain

by a sub-ordinate oscillatory Ti variation. If the oscillatory Ti variation is controlled by the

rate of Ti diffusion in the melt (self-organised growth), then the tendentious decrease in Ti

within the stepped zone should have other causes. After a resorption event, here explained by

adiabatic melt ascent, Ti incorporation is likely to be high as a result of rapid growth rates

since the melt moved into cooler surroundings. We draw this conclusion from textural
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observations. There may be some additional effects such as pressure and melt composition,

which favour incorporation of Ti into the quartz lattice.

The growth zoning and CL properties of the phenocrysts of the granites (qz1 and qz2) are

similar to those observed in phenocrysts of Permian-Carboniferous rhyolites of the German

Variscides (Schneider, 1993; Müller, 2000) and may indicate similar crystallisation

conditions. Thomas (1992) calculated the depth of quartz phenocryst crystallisation of tin

granites of the Krušné Hory/Erzgebirge of up to 21 km provided by microthermometric

studies of silicate melt inclusions. This is in accordance with the crystallisation depth of

quartz phenocrysts of the Permian-Carboniferous rhyolites of the Erzgebirge, which was

estimated at about 25 km (Thomas, 1992). Our observations and the calculations of the

crystallisation depth by Thomas (1992) show that zoned quartz phenocrysts in granites with

dominant blue CL represent a water-poor (<2.5wt% H2O) “rhyolitic” crystallisation

environment in the lower and middle crust. Such phenocrysts contained in granites exhibit

early stages of magma evolution and show features similar to rhyolite magmas, thus may

represent the capability of erupting magmas. The matrix quartz (qz3) is interpreted as the

product of the last magmatic crystallisation stage during and after the subvolcanic melt

emplacement taking place at ca. 1.5 km (Thomas, 1994). Derivable from the high Al

incorporated in [2SiO 3H2OM+2AlO4] defects (M+ = Li+, Na+, K+) and from the dominance of

the unstable red 1.96 eV CL emission, which is associated with hydroxyl defects and

adsorbed H2O in the lattice the matrix quartz grew in a residual “granitic” melt with higher

water content.

Quartz phenocrysts in both topaz-bearing granites of the Hub stock exhibit a similar Al/Ti

ratio (Fig. 9.5c). However, this differs from quartz phenocrysts of other topaz-bearing granites

of the Krušné Hory/Erzgebirge like the Schellerhau granite (Müller et al., 2000). Similar

observations have been made by Stuttner and Leininger (1972) who showed that Ti content is

different for quartz derived from different batholiths. Thus, quartz phenocrysts formed from

different magma sources have various Al/Ti ratios. We conclude that the two quartz

phenocryst generations of the topaz-bearing granite varieties of the Hub stock represent the

same crystallisation history and are derived from one-magma chamber. However, the rock

textures, quartz generations, and growth patterns observed in CL are very similar for a

number of topaz-bearing granites of the Krušné Hory/Erzgebirge (Müller et al., 2000; Müller,

2000). These similarities suggest that the quartz textures in the granite and the phenocryst

growth patterns found in the Krušne Hory/Erzgebirge province are typical for Li-F-enriched

melts, which are related to Sn-W-mineralizations.
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10   Crystallisation, emplacement and deformation of S- and I-
type granites in the Eastern Lachlan Fold Belt (SE Australia)
indicated by quartz texture, cathodoluminescence, and Al-in-

hornblende barometry

(this chapter has been submitted to Mineralogy and Petrology, co-authors: P.
Lennox and R. Trzebski)

10.1   Abstract

The I-type Carcoar and Barry Granodiorites and the S-type Sunset Hills Granite were intruded

in the Late Ordovician-Early Silurian into Early Ordovician greywacke and volcaniclastic pile

at different levels and subsequently repeatedly deformed in the Lachlan Fold Belt, SE

Australia. Whereas the Carcoar Granodiorite has one generation of anhedral quartz, the Barry

Granodiorite consists of unzoned subhedral quartz phenocrysts and anhedral matrix quartz,

which crystallised at or near the emplacement level. Both granodiorites are considered to have

been derived from the same magma source and have experienced a continuous and rapid

ascent to depths of 4 to 6 km as determined by Al-in-hornblende barometry. The Sunset Hills

Granite has three generations of quartz, and is geochemically related and spatially linked to

the adjacent Wyangala Batholith. It was intruded at depths of 10-12 km. The magma of the

Sunset Hills Granite ascended in a stepwise fashion, causing multiple quartz nucleation,

episodes of slow crystal growth, and resorption events. The Carcoar and Barry granodiorites

both show syn- and post-magmatic foliations, whereas the Sunset Hills Granite only has a

post-magmatic foliation. The post-magmatic, solid-state foliations were produced during

regional transpression and transtension during two subsequent deformation events. The earlier

deformation is related to the Early Devonian Bowning event which caused east-west

compression accompanied by regional transpression and transtension and vertical uplift and

contraction in the Eastern Lachlan Fold Belt. During the Bowning event, the granodiorites

were deformed under brittle conditions at temperatures of 250 to 400°C; whereas the Sunset

Hills Granite experienced ductile deformation at temperatures of around 550°C. The second

deformation recorded in the quartz is the late Middle Devonian Tabberabberan event, which is

not apparent in the granodiorites, whereas the Sunset Hills Granite was further deformed,

uplifted and experienced transpression during this event. The multiple deformation of quartz
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result in redistribution of Ti, Al and structurally bound water in the quartz lattice and the

formation of muscovite (<0.5 µm) along slip planes in quartz.

10.2   Introduction

Structural analysis of granites with a polyphase deformation history often faces the difficulty

of discriminating between generations of magmatic and deformation fabrics. In this paper, we

present an method that combines microstructural, petrological and geochemical data to

reconstruct the conditions of magma crystallisation, emplacement and deformation.

In recent years, cathodoluminescence (CL) of quartz has been increasingly applied to describe

the processes of magma genesis, transport and deformation (Behr, 1989; Watt et al., 1997;

Müller et al., 2000). In this study, CL was applied to characterise the conditions of magma

crystallisation, emplacement and deformation of the Carcoar and Barry granodiorites and the

Sunset Hills Granite in the Eastern Lachlan Fold Belt (SE Australia). Special emphasis was

placed on the macro- and microtexture, trace element distribution in quartz, Al-in-hornblende

barometry, and whole-rock geochemistry. We show how the CL behaviour of quartz and its

textures at the microscale reflect the conditions and sequences of magma crystallisation and

deformation. This is a complimentary study to previous structural and gravity modelling,

which revealed the pluton shape at depth and the tectonic setting during emplacement of these

granites (Trzebski et al., 1999).

10.3   Geological Setting

The northern part of the eastern Lachlan Fold Belt evolved in an island-arc setting during the

lower Palaeozoic (Powell, 1984; Coney, 1992; Collins and Vernon, 1992; Gray et al., 1997).

The Molong-Wyangala-Jerangle-Kuark Zone (abbreviated as Molong-Wyangala Zone) within

the northern Lachlan Fold Belt may represent a fragment of a former Ordovician island arc

and lies adjacent to the Hill End-Barradine Zone (abbreviated as Hill End Zone) a Mid-

Silurian turbidite-filled trough (Glen et al., 1998; Scheibner, 1998).



173

The Carcoar, Barry and Sunset Hills granites intruded the multiply deformed Molong-

Wyangala Zone. This zone consists of Ordovician metasedimentary and volcaniclastic rocks,

which were metamorphosed from prehnite-pumpellyite to greenschist conditions and

deformed during the Late Ordovician/Early Silurian Benambran event (Smith, 1969). This

event was followed by extensional and transcurrent deformation from the mid-Silurian to the

mid-Devonian, which led to the formation of sedimentary basins (Hill End Zone) and

emplacement of granitoids (Collins and Vernon, 1992; Glen, 1998).

The Carcoar Granodiorite is a roughly equant (10 x 10 km) pluton bound by the Carcoar

Fault on the west and the Quarry Fault on the east. It is composed of fine- to medium-grained,

enclave-bearing, hornblende-biotite granodiorite to tonalite, similar to other I-type granites in

the area, and minor intrusions of diorite (Long Hill Diorite), monzonite, aplite and pegmatite.

The Barry Granodiorite is a meridionally elongated body (5 x 12 km), consisting mainly of

Fig. 10.1    Locality map and geological

sketch map of the study area where CGD

= Carcoar Granodiorite, BCSZ = Browns

Creek Shear Zone, BGD = Barry

Granodiorite, RCSZ = Reedy Creek

Shear Zone, SHG = Sunset Hills Granite,

RBCSZ = Rocky Bridge Creek Shear

Zone, BRG = Bugs Ridge Granite, WYB

= Wyangala Batholith and regional

metamorphic zones in pelites from Smith

(1969) are chl = chlorite and bt = biotite.
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hornblende and biotite granodiorite of tonalitic composition with minor microtonalite

enclaves (Lennox et al., 1998). The Sunset Hills Granite crops out as a north-south elongated

body (6 x 13 km) bound in part by a possible extension of the Quarry Fault in the west and the

Copperhannia Thrust in the east (Fig. 10.1). It is mainly composed of a biotite granite

intruded in places by aplite and muscovite-leucogranite dykes. Metasedimentary xenoliths of

up to 5 m in length and 0.3-0.5 m in width represent stoped blocks of the host rocks

(Adaminaby Group) and show a foliation oblique to the foliation in the granite, indicating

deformation prior to granite emplacement (Lennox et al., 1998).

All three granites show poorly developed magmatic flow fabrics, and a poor to moderately

pervasive tectonic fabric. The main solid-state fabric (Sg) in all granites consists of aligned

biotite books, opaque grains, fractured feldspars, rarely aligned hornblende crystals and

elongated muscovite aggregates. Cross-cutting mylonite zones, S-C microstructures and shear

zones are better developed south of and adjacent to the Sunset Hills Granite. New zircon

SHRIMP and published Ar-Ar, Rb-Sr and K-Ar dating studies (Lennox et al., 1998) indicate

that the granites intruded about the same time, during the Early Silurian following the

Benambran event. All three granites were multiply deformed during the Early Devonian

Bowning, late Middle Devonian Tabberabberan and Early Carboniferous Kanimblan events

(Lennox et al., 1998; Trzebski et al., 1999).

10.4   Methods

The CL emission of quartz was analysed using a hot-cathodoluminescence-microscope

(Neuser et al., 1995) at an energy of 14 keV and a filament current of 0.18 mA. CL is

generated by the emission of photons of ultra violet (UV) to infrared (IR) wavelength from

activated electrons of the sample during electron bombardment. The spectral response of the

CL was recorded with the grating (100 lines/mm and 1200 lines/mm) spectrograph TRIAX

320 and a LN2-cooled CCD-detector, and corrected for the total instrument response. The

high-resolution spectrograph was used to determine the energy of individual emission bands,

which usually have a Gaussian shape if plotted in energy space. The position, width, and

height of the Gaussian curves were calculated and adjusted in such a way that the sum of the

individual components corresponds to the recorded CL spectra. The areas of the Gaussian

curves were used to determine the percentage of the individual emission bands of the total
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spectra between 1.4 and 3.1 eV. The peak area portions were correlated with the recorded

trace elements.

The scanning electron microscope cathodoluminescence (SEM-CL) generates a high degree

of spatial resolution of CL textures, and enables visualisation of magmatic growth zoning and

deformation fabrics in quartz. A Geoscan 250-MK3, with a CL detector operating at an

energy of 15 keV and a filament current of 8-12 nA was used for black-and-white images of

the primary (growth) CL textures and secondary (post-magmatic) CL structures in quartz.

Typical primary CL textures in magmatic quartz, as revealed by variations in CL, include (1)

stepped zoning (50-1000 µm width) with subordinate oscillatory zoning (2-20 µm width), (2)

resorption surfaces, (3) growth impediments, and (4) skeletal growth (Müller et al., 2000).

Secondary CL structures, such as healed microcracks and recrystallised domains are also

clearly detectable with CL (Behr, 1989).

Additional information about the nature and evolution of the magma can be obtained by

analysing the grain size distribution of quartz and its framework. The application of the

lacquer peel method (Behr 1966; see Fig. 10.3) enables detailed analyses of the quartz

framework. Grain size analysis were carried out in thin sections and hand specimens. The

length and width of quartz grains (=1 mm) in thin sections. Quartz grains >1mm were

measured by micrometer on polished hand specimen (15 x 15 cm). The grain size of each

grain was calculated from the average of its length and width.

The high-resolution spectral analysis of CL was combined with Electron Probe Micro

Analysis (EPMA) to establish a correlation between the CL emission bands and Al, Ti, K, and

Fe, which may act as CL activators in quartz. The element concentrations in quartz and of Na,

Si, Ti, Ca, Fe, Mg, Al, Cr, K, and Mn in hornblende were determined using the JEOL JXA

8900 electron probe micro analyser (EPMA) operating at 15 kV. To minimize the excitation

volume during the measurements of the hornblende crystals the beam was set to 40 nA and to

a diameter of 5 µm. For high precision and sensitivity of the trace element determination in

quartz, the a beam current of 120 nA, a beam diameter of 7 µm, and a counting rate of 10 min

per shot means 180 s per element were chosen. Detection limits were calculated for each trace

element profile with a confidence level of 95% on the base of the standard deviation obtained

from 12 background measurements (Plesch, 1982). Detection limits are 32 ppm for Al, 20

ppm for Ti, 13 ppm for K, and 15 ppm for Fe.
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10.5   Geochemistry

The three granites show similarities in their geochemical composition and can be subdivided

into two groups: the metaluminous I-type Carcoar and Barry granodiorites, with SiO 2 contents

of 63-67wt.%, and the meta- to peraluminous Sunset Hills Granite and Wyangala Batholith

with S-type affinity and with a SiO 2 content of 69-74wt.% (Fig. 10.2).

Fig. 10.2    Representative variation diagrams of whole rock samples of the Carcoar Granodiorite, Barry

Granodiorite, Sunset Hills Granite and Wyangala Batholith. a - The Carcoar and Barry granodiorites are

metaluminous I-type granites and the Sunset Hills Granite and Wyangala Batholith are meta- to peraluminous S-

type granites. b - The decrease of MgO, FeOT and CaO in the Barry Granodiorite with increasing SiO2 indicates

that melt differentiation occurred by fractionation (gravity settling) of hornblende. The Carcoar Granodiorite

represents a primitive melt. c - The differentiation trend by decreasing TiO2 is characterised by a gap which

clearly separates the two granite groups. d - The variation of Sr indicates fractionation of plagioclase in the Barry

Granodiorite, whereas the decrease of Ba concomitant with Sr shows that both K-feldspar and plagioclase were

removed during differentiation of the Sunset Hills Granite.
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The TiO2, Al2O3, K2O and Na2O contents of the Barry Granodiorite are constant, whereas the

MgO, FeOT  and CaO contents decrease with increasing SiO 2. The distribution of the major

elements, the constant Sr content and the minor variation of the Ba content indicate that

differentiation occurred by fractionation (gravity settling) of hornblende. The Barry

Granodiorite shows a progressive differentiation of major and trace elements from north to

south, which is shown by the decrease of hornblende and the increase of quartz to the south.

The geochemistry of the Carcoar Granodiorite shows similarities with the Barry Granodiorite,

except that the Barry Granodiorite shows a higher degree of fractionation, as indicated by the

depletion of hornblende.

In the Sunset Hills Granite, the MgO, FeOT , TiO2, Al2O3, and CaO contents decrease with

increasing SiO 2. The Na2O and K2O contents vary between 2.4-4.2wt.% and 0.6-4.7 wt.%,

respectively. The decrease of Ba concomitant with Sr shows that both K-feldspar and

plagioclase were removed during differentiation. In contrast to the Barry Granodiorite, the

distribution of the major and trace elements shows an east-west trend in the Sunset Hills

Granite. The highest fractionation was recorded at the western margin of the pluton.

10.6   Quartz texture and foliation development

Carcoar Granodiorite

The magmatic quartz of the Carcoar Granodiorite is represented by one anhedral generation,

which forms irregular grain aggregates between the subhedral to euhedral feldspar and the

hornblende grains (Fig. 10.3a). The grain size distribution of the weakly deformed samples

shows one main peak around 650 µm, which indicates one nucleation event during magmatic

crystallisation (Dowty, 1989) (Fig 10.4a).

The weak, post-magmatic deformation of the Carcoar Granodiorite is reflected in thin section

by undulatory extinction of quartz, and by new grains at grain boundaries as a result of

rotation recrystallisation (Fig. 10.3b). The degree of deformation in quartz generally increases

with the proximity to shear zones. Measurements of the orientation of the subgrain boundaries

of deformed quartz showed that the dominant feature are prismatic subgrain boundaries

parallel to the c-axis. During the dynamic recrystallisation, bulges at grain boundaries formed

where some new grains (~12 µm diameter) developed due to progressive rotation of subgrains

(Fig. 10.3b, 10.4a). Biotite formed ‘fish’ and hornblende crystals were rigidly rotated into a

post-magmatic foliation. Simple, open kink-bands associated with slip on the basal plane were
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Fig. 10.3    The quartz framework of the Carcoar Granodiorite, Barry Granodiorite, and the Sunset Hills Granite.

a - The anhedral quartz of the fine-grained Carcoar Granodiorite filled the irregular cavities between the

subhedral to euhedral feldspar (white), biotite and hornblende crystals (grey) (contrasted lacquer peel). b -

Deformed quartz of the Carcoar Granodiorite contains elongated subgrains and small recrystallized grains at the

edges. c - The Barry Granodiorite contains subeuhedral quartz phenocrysts (arrows) overgrown by anhedral to

aplitic matrix quartz. d - Elongated phenocryst of the Barry Granodiorite with subparallel contrasted subgrains

cross-cut by trails of recrystallized quartz. e - The fine- to medium-grained, porphyritic magmatic texture of the

Sunset Hills Granite with two euhedral zoned phenocryst generations (first and second) which are embedded in

anhedral matrix quartz. f - Deformed phenocryst (first generation) of the Sunset Hills Granite entirely converted

to new grains with high-angle boundary during recovery of subgrains.
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developed in biotite, whereas hornblende reacted by intragranular, brittle displacement along

the cleavage planes. The foliation within the shear zones is not parallel with the magmatic

foliation marked by aligned hornblende and biotite. Muscovite occurs as fringes within strain

shadows of feldspar.

Barry Granodiorite

The grain size distribution of quartz in the equigranular to weakly porphyritic Barry

Granodiorite shows two maxima (Fig. 10.4). It contains sub-euhedral quartz phenocrysts with

diameters between 800 and 900 µm (Fig. 10.3c, d), which are embedded in the anhedral

matrix quartz with an average diameter of ~300 µm (Fig. 10.4b). In the southern part of the

Barry Granodiorite, the isometric matrix quartz has an average diameter of about 100 µm,

whereas the size of the phenocrysts remains constant at 800 to 900 µm.

The deformed quartz of the Barry Granodiorite shows elongate subgrains marked by ribbons

and rims of polygonal, recrystallised quartz with high-angle grain boundaries formed by

rotation recrystallisation (Fig. 10.3d). Prismatic subgrain boundaries parallel to the C-axis are

dominant. The non-elongated recrystallised grains with an average grain size of 40 µm show

straight boundaries and 120° triple junctions (Fig. 10.4b). The recrystallised quartz ribbons

are similar to the Type 2 polycrystalline quartz ribbons after Boullier and Bouchez (1978).

The feldspars within the post-magmatic shear zones are often entirely sericitised. Plagioclase

is weakly recrystallised along microcracks. Likewise in the Carcoar Granodiorite, the

magmatic foliation is marked by aligned hornblende and biotite. The post-magmatic

deformation of biotite and hornblende caused slip along the cleavage planes, rigid body

rotation, boudinage, and recrystallisation at the crystal edges.

Sunset Hills Granite

The porphyritic Sunset Hills Granite contains two generations of euhedral quartz phenocrysts

embedded in anhedral matrix quartz (third generation) as shown in Fig. 10.4c. The quartz

phenocrysts and aggregates were almost entirely converted to new grains with high-angle

boundaries, due to rotation recrystallisation. The new grains with an average diameter of 100

µm are either microscopically strain-free or internally deformed (Fig. 10.4c). In deformed

quartz, basal subgrain boundaries normal to the c-axis occur in addition to the prismatic

subgrain boundaries, forming typically rectangular (“chessboard”) patterns. A number of the

larger grains of the quartz aggregates shows strongly curved, sutured grain boundaries formed

due to grain boundary migration recrystallisation. Recrystallised, polycrystalline quartz
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Fig. 10.4    Grain size distribution of quartz. a – of the Carcoar Granodiorite, b – of the Barry Granodiorite, c – of
the Sunset Hills Granite. The original grain size maximum of 3.5 mm (reconstructed) of the large, first
generation phenocrysts is reduced by deformation. This diagram shows that the maximum frequency of the
matrix quartz is overlapped by the maximum frequency of grains modified by the post-magmatic rotation
recrystallisation.
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Fig. 10.5    SEM-CL images of quartz. a – Quartz grain of the Carcoar Granodiorite with a bright core and dark
grey diffusion rim (dr) depleted in Ti and enriched in Fe. The high Fe concentration of the diffusion rim is
derived from the neighbouring biotite (bt) (dashed line = position of the electron microprobe profile in Fig.
10.8a). b - Zoned quartz phenocryst (pqz) of the Sunset Hills Granite with magmatic growth zoning which is
weakened and partly destroyed during deformation. It is overgrown by dark contrasted, unzoned matrix quartz
(mqz). The brighter the CL of the zone the higher is the Ti concentration (dashed line = position of the electron
microprobe profile in Fig. 10.8c). c - Euhedral quartz phenocryst of the Barry Granodiorite (pqz) overgrown by
dark red-brown luminescent, anhedral matrix quartz (mqz). The arrows mark the border between the two
generations. d - The subgrains in the deformed quartz of the Barry Granodiorite are bordered by dark
recrystallized quartz depleted in trace elements. The development of stress-induced Si-OH bonds along
microsliding planes leads to this lamellate textures. Along the thin healed cracks at right angles to c are small
star-like halos. e - Rotation recrystallization in the quartz of the Carcoar Granodiorite results in first stage star-
like textures at the grain edges, as shown by the arrows. f - Advanced rotation crystallization in the quartz of the
Sunset Hills Granite. The volume of newly crystallized (secondary), non-luminescent quartz (black) grows with
the increase in the intensity of deformation.
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ribbons (Type 2 and Type 4 ribbons after Boullier and Bouchez, 1978) cross-cut quartz

aggregates and cataclastic feldspar. Biotite is entirely recrystallised with its (001) planes

subparallel to the S-C fabrics. Feldspar is entirely sericitised in some samples and shows

pressure-solution phenomena, particularly at contacts with muscovite layers or where cross-

cut by muscovite layers. Indications of pre-existing magmatic foliation were not found.

10.7   Cathodoluminescence of quartz

Primary magmatic CL textures

Quartz phenocrysts of the Sunset Hills Granite (first and second generation) show weakly

contrasted, relict growth zones typical of rhyolitic phenocrysts (Laemmlein 1930; Schneider

1993; Watt et al. 1997). Growth pattern, formed by oscillatory zoning (2-20 µm width),

superordinate stepped zoning (50-1000 µm width) and resorption surfaces, is preserved in less

deformed phenocrysts. However, these growth zones were largely erased due to high-

temperature, post-magmatic deformation (Fig. 10.5b). On the other hand, experiments with

zoned, rhyolitic quartz phenocrysts also show that the contrast of the CL growth zones

weakens after several hours of heating at temperatures over 500°C. In contrast, the subhedral,

quartz phenocrysts of the Barry Granodiorite are non-rhyolitic, do not show growth zoning.

The red-brown luminescent quartz phenocrysts are overgrown in optical continuity by dark

red-brown luminescent, anhedral matrix quartz (Fig. 10.5c). In all three granites, the anhedral

matrix quartz shows no zoning.

Secondary CL structures

In all three granites, quartz shows fine, transgranular ruptures, which are healed by dark red-

brown, nearly non-luminescent quartz. Star-like halos around fluid inclusions are arranged

along these ruptures (Fig. 10.5d).

The deformed quartz of the Carcoar and Barry granodiorites exhibits lamellae, which are not

detectable using polarisation microscopy (Fig. 10.5d, e). In contrast, quartz of the Sunset Hills

Granite is free of lamellae as such lamellae (Fig. 10.5f). The subgrain boundaries are coated

by dark red-brown luminescent, newly crystallised quartz (Fig. 10.5d). Rotation

recrystallisation mainly produced star-like structures at grain edges (Fig. 10.5e). With

progressive rotation recrystallisation, the new rotated grains become more rounded, and the

volume of the newly crystallised quartz (secondary quartz; Fig. 10.5f) increases in the Barry
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Granodiorite and Sunset Hills Granite. Transgranular, up to 200 µm wide diffusion rims along

thin, open micro-cracks indicate circulation of fluids along these cracks. These structures are

abundant in the Sunset Hills Granite and relatively rare in the Barry Granodiorite.

CL patterns and properties linked to trace elements in the quartz

The quartz of the Carcoar Granodiorite and Sunset Hills Granite luminescences blue to

violet/red-brown; whereas the quartz of the Barry Granodiorite luminescences red-brown to

dark red-brown. The emission spectra of quartz between 1.4 and 3.1 eV are composed of two

broad emission ranges; blue (2.6-3.1 eV) and red (1.75-2.1 eV) resulting in blue, violet, and

red-brown CL colours (Fig. 10.6). The blue range consists of five emission bands at 2.47,

2.58, 2.68, 2.79, 2.96 eV (Fig. 10.7), and the red range consists of four bands at 1.73, 1.84,

1.96, and 2.15 eV. The blue emission range is generally characterised by a decrease of the

intensity during electron radiation, and is caused by the destruction of luminescent defects

through electron radiation and partly through sample warming (Ramseyer et al. 1988;

Ramseyer and Mullis 1990). Cathodoluminescence resulting from defect centres is partly due

to the effect of interstitially or substitutionally incorporated trace elements. Electron

microprobe profiling of quartz grains was used to determine the relationship between the CL

properties and the distribution of trace elements. The profiles and the Ti, Al, K and Fe

concentrations are shown in Fig. 10.8.

The Ti concentration of quartz correlates with the intensity of the blue 2.97 eV emission band.

The quartz of the Carcoar Granodiorite with the highest average Ti content (~85 ppm) shows

the highest intensity of the 2.96 eV emission. The intensity of this band and the Ti content

decrease from the Sunset Hills Granite (~75 ppm), to the Barry Granodiorite (~45 ppm) to the

new crystallised quartz (~15 ppm). Furthermore, the intensity of the 2.96 eV emission and the

Ti vary within the zoned phenocrysts of the Sunset Hills Granite; blue luminescent zones

show a higher intensity and Ti content than the violet and red zones. Similar observations

have been made by Kerkhof et al. (1996) and Müller et al. (2000), who showed that blue to

violet luminescent growth zones in high-temperature quartz have high Ti concentrations. With

increasing degrees of deformation the primary magmatic Ti distribution is more and more

overprinted, resulting in weakening of the growth zoning. The dark red-brown to non-

luminescent, secondary CL patterns, such as star-like halos around fluid inclusions, diffusion

rims along open micro-cracks, lamellae and domains of newly crystallised (secondary) quartz

along healed micro-cracks (e.g. black areas of the quartz in Fig. 10.5d, e, f), are depleted in Ti

(Fig. 10.9). Depletion of Ti occurs near grain boundary in all three granitoids.
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Fig. 10.6   CL spectra of quartz (1.4 - 3.1 eV) recorded with the 100 lines/mm grating after 30 s, 2 min, and 7

min of electron bombardment. The 7-min-spectra are fitted with Gaussian curves. Each Gaussian curve

represents a single emission band. a - Carcoar Granodiorite (CGD). b - Barry Granodiorite (BGD). c - Sunset

Hills Granite (SHG).
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The Al distribution in all three granites is heterogeneous and the Al content is mostly below

32 ppm. At Al contents above the detection limit of 32 ppm, Al correlates with K (Fig. 10.10).

The regression line corresponds to the Al/K weight ratio of an average muscovite

composition. The muscovite flakes of up to 0.5 µm in diameter are finely dispersed in the

quartz of all three granites, probably on slide planes and we assume they are the products of

deformation.

The average Fe content of the three granites amounts approximately to the detection limit of

15 ppm. Despite the low Fe concentration, the spectra show the 1.73 eV emission band caused

by Fe3+ defect structures (Pott and McNicol, 1971). The Fe content in quartz increases at the

grain contacts with plagioclase, and particularly with biotite (Fig. 10.8), which indicates a

high diffusion mobility of Fe in the quartz lattice.

Fig. 10.7    Quartz CL spectra sections of the blue spectrum range (2.5 - 3.1 eV) recorded with the 1200 lines/mm

grating after 7 min of electron bombardment where CGD = Carcoar Granodiorite, BGD = Barry Granodiorite

and SHG = Sunset Hills Granite. The spectrum of BGD – new crystallised quartz is fitted with Gaussian curves.

The intensity of the 1.96 eV emission is constant during electron radiation in the quartz of the

Carcoar Granodiorite, and decreases in the quartz of the Barry Granodiorite and Sunset Hills

Granite. According to Siegel and Marrone (1981), Griscom (1985), and Stevens Kalceff and

Phillips (1995), the red CL emission around 1.96 eV is related to OH- and/or adsorbed H2O.

In undeformed quartz the 1.96 eV emission increases during electron radiation. This increase

is explained by radiolysis of hydroxyl groups and/or adsorbed H2O of quartz lattice, which
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Fig. 10.8    Trace element profiles of quartz. a, b Carcoar Granodiorite. The position of the profile is shown in

Figure 7a. c, d Barry Granodiorite. e, f Sunset Hills Granite. The position of the profile in the Sunset Hills

Granite is shown in Figure 7b.

leads to the formation of non-bridging oxygen hole centres (NBOHC; Kalceff and Phillips,

1995). Hydroxyl groups and adsorbed H2O act as charge compensators for [2AlO 4/M+]-

defects, where M+ is a combination of Li, K, and Na ions (Bambauer et al., 1963;

Maschmeyer and Lehmann, 1983; Kronenberg et al., 1986; Stenina 1995). As discussed

above, the Al of the deformed quartz of the granites is removed from the quartz lattice and

may be incorporated into the muscovite flakes. A similar process is assumed for the hydroxyl

groups and adsorbed H2O of the quartz lattice. Both bound water types may also be removed

during deformation. This process explains the constant or slightly decreasing 1.96 eV

emission, because no NBOHC is created during electron radiation, due to the absence of

hydroxyl groups and adsorbed H2O in the quartz lattice.



187

Fig. 10.9    a - SEM-CL image of quartz from the Carcoar Granodiorite. The black areas are dark red-brown to

non-luminescent quartz around fluid inclusions. The residual porosity of the destroyed fluid inclusions at the

sample surface are marked by grey dots. b - Trace element profile of the same quartz. The non-luminescent

quartz is depleted in Ti. The high Al and K of the 40-µm point is caused by impurities in the fluid inclusion hole

(grey).
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Fig. 10.10   Al versus K concentrations of the investigated quartz of the three granites. The regression line of the

data above 50 ppm corresponds with the Al/K ratio of the average muscovite composition (dashed line). The

deformation of magmatic quartz caused the development of submicroscopic muscovite flakes (<0.5 µm) along

slip planes.

10.8   Al-in-hornblende geobarometery on the Carcoar and Barry granodiorites

The Al-in-hornblende barometer helps to estimate the crystallisation pressure of granites. The

empirical correlation between the pressure of emplacement of calcalkaline granites, and the

total Al content of hornblende equilibrated with quartz was proposed by Hammarstrom and

Zen (1986) and Hollister et al. (1987). Experimental calibrations of the barometer were

carried out by numerous workers (Johnson and Rutherford, 1989; Thomas and Ernst, 1990;

Schmidt, 1992; Anderson and Smith, 1995). The barometer applies if the magmatic rocks (1)

have the assemblage pl + ksp + qtz + hb + bt + tnt + Fe - Ti; and (2) plagioclase has a constant

rim composition in the range of An25 and An35; (3) the analysis is limited only to the rim

composition of hornblende; (4) the hornblende FeT/(FeT  + Mg) ratios are in the range of 0.40-

0.65, to exclude low ƒO2, and (5) the pressure of crystallisation is above 1 kbar

(Hammarstrom and Zen, 1986; Hollister et al., 1987; Anderson and Smith, 1995).

The Carcoar and Barry granodiorites have the appropriate mineral assemblage, with a

plagioclase composition between An29 and An34, and hornblende with FeT/(FeT  + Mg) ratios
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in the range of 0.42-0.53. The pressures during mineral growth were calculated using the

calibration of Anderson and Smith (1995), including the effect of temperature, as the

barometer is sensitive to variations in temperature. The temperatures were determined using

the amphibole-plagioclase geothermometer after Blundy and Holland (1990) with the

modified pressure term after Schmidt (1992).

Al-in-hornblende barometry on the Carcoar Granodiorite yields pressures of 1.7 ± 0.7 kbar

(30 analyses) at 756 ± 12 C. Amphiboles of the Barry Granodiorite yield pressures of 1.8 ±

0.8 kbar (37 analyses) at 753 ± 22 C. No differences in the AlT-content were detected between

the core and the rim of hornblende in the Carcoar and Barry granodiorites. Consequently, the

crystallisation depth of the hornblende of the Carcoar and Barry granodiorites is 6.0 ± 2.6 km.

These results are consistent with the estimated intrusion depths of 4-6 km for the Carcoar and

Barry granodiorites based on the extent and nature of the contact aureole as calculated by

Lennox and Fowler (pers. comm.)

10.9   Discussion and conclusions

Quartz cathodoluminescence

Three main conclusions can be made from CL analysis:

(1) Magmatic quartz with high Ti content shows blue to violet CL, and with low Ti content

red to red-brown CL. The variation of Ti in the quartz lattice relates with contrasts in the

growth zoning of quartz phenocrysts referred to as the primary magmatic CL textures.

With increasing deformation the homogeneity of Ti distribution decreases.

(2) Dark red-brown to non-luminescent, secondary CL textures show low Al, Fe and Ti

concentrations. The low trace element concentration of the star-like halos and the lamellae

are due to systematic recovery of the defect centres of trace element, which was initiated

by local stress around fluid inclusions and along slip planes (Kerkhof and Müller, 1999).

The annealing of intragranular micro-shear zones led to formation of secondary quartz,

depleted in trace elements.

(3) In contrast to undeformed, natural quartz, interstitial water is absent from deformed

quartz. We suggest that a large portion of the interstitial water, which was originally

incorporated in the quartz lattice during magmatic crystallisation, was absorbed in the

submicroscopical muscovite flakes during the post-magmatic deformation. The residual

interstitial water reacted with silica due to pressure solution during deformation, and
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formed Si-OH bonds along intragranular cracks caused by sliding (e.g. Michalske and

Freiman, 1982).

Magmatic quartz textures

The analysis of the magmatic quartz texture, grain size distribution, and CL contrasted growth

zoning of the phenocrysts leads to the following four conclusions:-

(1) The Carcoar Granodiorite has one generation of anhedral quartz, which crystallised in

cavities between feldspar and mafic minerals during and after emplacement.

(2) The Barry Granodiorite formed one generation of unzoned, subeuhedral quartz

phenocrysts overgrown by a second generation of anhedral matrix quartz. The

homogeneous distribution of AlT  in hornblende indicates one main crystallisation stage.

Therefore, both quartz generations must have crystallised at or near the emplacement

level. First, quartz grew in a crystal mush, which facilitated a relatively unhindered

growth and formation of planar crystal faces. Their growth may have been interrupted by

magma degassing or magma pulsing. As a result, quartz with contrasting CL properties

crystallised filling the residual space between the crystals. The grain size of the matrix

quartz of the Barry Granodiorite is smaller in comparison to the Carcoar Granodiorite. In

the south, the Barry Granodiorite shows aplitic textures and the grain size of the matrix

quartz decreases to ~100 µm indicating faster cooling rates of the melt. Both features

indicate that a higher level of the Barry pluton is exposed in the south.

(3) In contrast to the Carcoar and Barry granodiorites, the Sunset Hills Granite has three

generations of quartz. The first two generations are phenocrysts of variable size, showing

oscillatory and superordinate stepped zoning, and resorption surfaces. The stepped zoning

and the resorption surfaces both indicate a change in melt composition, pressure and

temperature during the early stage of magma ascent. The properties of these phenocrysts

show similarities with rhyolitic phenocrysts. The third magmatic generation is represented

by the homogeneous matrix quartz, which crystallised at the intrusion level, overgrowing

the phenocrysts.

(4) The melt of both granodiorites underwent a relatively continuous and rapid ascent;

whereas the melt of the Sunset Hills Granite experienced a stepwise ascent that caused

multiphase nucleation, episodes of slow crystal growth, and resorption events.
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Geochemistry and Al-in-hornblende geobarometry

The similarities in chemical composition of the Carcoar and Barry granodiorites indicate

derivation from one magma source. The geochemical difference between both granodiorites is

documented by fractionation of hornblende within the Barry Granodiorite. The most

fractionated, uppermost part of the Barry Granodiorite is exposed at the contact with the

Sunset Hills Granite in the south. The intrusion depth is in the lower error range of the

hornblende crystallisation depth between 3 and 6 km. This depth is consistent with

estimations of 4-6 km for the emplacement depth of the Barry Granodiorite by Lennox and

Fowler (pers. comm.), which are based on the extent and nature of the contact aureole. The

intrusion depth of the Carcoar Granodiorite is in the upper error range of the hornblende

crystallisation depth between 6 and 9 km, as also inferred by lower cooling rates and a wider

contact aureole. Consequently, the northern part of the Carcoar Granodiorite represents a

deeper part of the pluton compared with the southern part of the Barry Granodiorite, which is

consistent with 3D gravity modelling of the pluton (Trzebski et al., 1999).

In contrast to the I-type Carcoar and Barry granodiorites, the Sunset Hills Granite shows S-

type affinity. The magma of the Sunset Hills Granite we interprete as fractionation product

derived from the magma of the Wyangala Batholith. Besides the compositional similarities of

both granites, the Sunset Hills Granite occurs at the northeastern extremity of the negative

gravity anomaly due to the Wyangala Batholith (Trzebski et al., 1999). Three-dimensional

gravity modelling and re-interpretation of aeromagnetics suggest a subsurface connection and

therefore a possible genetic link in magma genesis between both granites.

Deformation fabrics

The Carcoar and Barry granodiorites both show magmatic and post-magmatic foliation,

whereas in the Sunset Hill Granite an intense post-magmatic foliation was developed, which

may have possibly overprinted a pre-existing magmatic foliation. The magmatic foliation of

the Carcoar and Barry granodiorites are marked by aligned biotite and hornblende and are

cross-cut by the post-magmatic, solid-state foliation. This later foliation in all granitoids is

post-magmatic, because it is (1) marked by secondary minerals, such as muscovite and

chlorite, (2) is locally at high angles to pluton-host rock contacts, (3) is continuous with the

regionally developed cleavage, and (4) cross-cuts aligned igneous minerals. In addition, the

contact aureole of these granitoids overprints the earlier metamorphic fabrics (Lennox et al.,

1991; Lennox and Fowler, 1994; McKinlay, 1993; Lennox et al., 1998). The post-magmatic

deformation fabrics are probably related to regional shear zones.
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The dominance of prismatic subgrain boundaries of quartz in the Carcoar and Barry

granodiorites indicates slip along the basal plane, which is limited to the stability field of low-

quartz (Blumenfeld et al., 1986; Kruhl, 1996). The beginning of quartz recrystallisation in the

Carcoar Granodiorite indicates deformation temperatures of =290°C (Voll 1976, 1980). The

increase in size of the dynamically recrystallised quartz grains in the Barry Granodiorite, in

comparison with that of the quartz in the Carcoar Granodiorite, is due to both increasing

temperature and differential stress. Secondly, the new crystallised quartz grains with high-

angle boundaries developed during the recovery of subgrains at moderate to high

temperatures in the Barry Granodiorite (Hull and Bacon, 1984; Hirth and Tullis, 1992). The

Barry Granodiorite was deformed at higher temperature than the Carcoar Granodiorite. The

abscence of widespread boundary migration recrystallisation indicates a maximum

deformation temperature of 400°C (Guillopé and Poirier, 1979; Urai and Humphreys, 1981;

Urai, 1983; Paschier and Trouw, 1998). Using the closure temperature of the Ar-Ar system in

biotite, the likely temperatures during the post-magmatic Bowning deformation (405-410 Ma)

are estimated to ~350°C for the Carcoar Granodiorite and to 350-400°C for the Barry

Granodiorite.

The boundary migration recrystallisation during dynamic recrystallisation in the quartz of the

Sunset Hills Granite is a typical process at high temperatures of 400-700°C (Guillopé and

Poirier, 1979; Urai and Humphreys, 1981; Urai, 1983; Paschier and Trouw, 1998). The

development of basal and prismatic subgrain boundaries in deformed quartz indicates prism

slip of quartz, which is restricted to the stability field of high-quartz at temperatures around

550 C (Blacic and Christie, 1984; Blumenfeld et al., 1986; Kruhl, 1996). The increase of

dynamically recrystallised grain size from the Barry Granodiorite to the Sunset Hills Granite

is interpreted to be a result of the dominance of annealing recrystallisation over dynamic

recrystallisation at temperatures around 550 C. This is consistent with the estimated

deformation temperatures of 550°C for the adjacent Wyangala Batholith (Morand, unpubl.

data in Paterson et al., 1990).

10.10   Geological implications

This study has quantified the conditions of magma crystallisation, emplacement and

deformation of the Carcoar, Barry and Sunset Hills granites. Our previous work revealed the

structural framework of these granites and their host rocks, the three-dimensional shape of the
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plutons, their spatial relationship with faults and their distribution at depth (Lennox et al.,

1998; Trzebski et al., 1999). New and published radiometric dating differentiated three events

that indicate the timing of emplacement of the granites and their subsequent deformation

(Lennox et al., 1998). These events are coeval with regional orogenic events in the Lachlan

Fold Belt (e.g., Gray and Forster, 1997). The first event (Benambran), dated at approximately

430 Ma (Lower Silurian) by the zircon SHRIMP U-Pb method and by U-Pb dating of zircon

fractions, indicates the emplacement time of all three granites (Lennox, unpublished data).

Both subsequent events, dated to ~410 Ma (Bowning) and ~375 Ma (Tabberabberan) using

the Rb-Sr-, Ar-Ar- and K-Ar-methods on biotite and hornblende, document two deformation

stages following granite emplacement (Lennox et al., 1998; Glen et al., in press).

All three granites intruded synchronously, but at different crustal levels. The Carcoar and

Barry granodiorites were emplaced at a depth of 6±2.6 km under brittle to locally weakly

ductile conditions. The elongate shape of the Barry Granodiorite is subparallel to the regional

structural strain. In contrast, the almost square geometry of the Carcoar Granodiorite suggests

emplacement in a brittle fashion which was structurally controlled by extensional faults and

fractures at shallow crustal depths. Although the intrusion depth of the Sunset Hills Granite

could not be determined, we assume that the magma accumulated at deeper levels on the basis

of the upper greenshist facies and the ductile structures of the surrounding host rocks (Lennox

and Fowler, 1994). The grain boundary migration recrystallisation and larger average size of

recrystallised quartz grains (~100 µm) with high-angle boundaries further indicate that the

Sunset Hills Granite remained in a hotter environment over a considerably longer period of

time after emplacement. The concordance in structural development between the Sunset Hills

Granite and the host-rocks, the geometry of foliation trends around the pluton and its

elongated shape additionally indicate emplacement into host rocks at greater depth under

ductile conditions. This is also supported by the fact that during the first post-magmatic

Bowning event the Sunset Hills Granite was deformed at temperatures of ~550o C and at

depths of 10-12 km when applying a likely geothermal gradient of 45-55°C/km (Packham,

1999). Similar intrusion depths were obtained by pressure data of 3-4 kbar for the adjacent

and genetically related Wyangala Batholith (Morand quoted in Paterson et al., 1990). In

contrast, during the same event both I-type granodiorites were deformed at temperatures of

350-400°C due to their higher emplacement level in the crust. The east-west contraction

during the Upper Silurian/Lower Devonian causes uplift of both granodiorites and cooled

through the closure temperature of biotite (~ 350o C) at around 412 Ma; whereas the deeper

seated Sunset Hills Granite was synchronously cooled through the closure temperature of
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hornblende (~550o C). The second post-magmatic deformation (Tabberabberan event), caused

by regional east-west contraction, only weakly deformed the near-surface located more

resistant granodiorites in a brittle fashion because the granodiorites were at upper crustal

levels (Vernon and Flood, 1988). The Sunset Hills Granite experienced further vertical uplift

due to east-vergent thrusting and cooling through the closure temperature of biotite (~350o C)

at around 380 Ma (Paterson et al., 1990; Glen and Watkins, 1999). The youngest event around

340 Ma, which correlates with the Early Carboniferous Kanimblan deformation (Gray and

Forster, 1997), was associated with north-south contraction and resulted in mega-kinking at a

regional scale (Powell et al., 1985). North-south oriented thrusting may have further exposed

all three granites along north-vergent ramps. This is supported by the fact that both

granodiorites show deeper exposure levels in the north of the plutons.
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Appendix A

List of CL emission band parameters of quartz

Sample 1.73 eV - Band 1.84 eV - Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)
1 Megaquartz 1.74 0.13 0.3 5000 4.3 1.84 0.095 0.22 3500 3.0

1.74 0.13 0.3 8600 13.0 1.84 0.095 0.22 5000 7.6
1.73 0.13 0.3 10500 17.5 1.84 0.095 0.22 8000 13.4

2 Fissile Quartz 1.74 0.14 0.32 5500 9.0 1.84 0.095 0.22 3000 4.9
1.74 0.14 0.32 7700 12.3 1.84 0.095 0.22 3700 5.9
1.74 0.13 0.3 11500 16.5 1.84 0.095 0.22 5000 7.2

3 Oil-bearing 1.735 0.13 0.31 6500 7.5 1.84 0.095 0.22 3500 4.1
 Quartz 1.735 0.13 0.31 13000 15.7 1.84 0.095 0.22 6000 7.3

1.735 0.13 0.31 17000 22.7 1.84 0.095 0.22 8000 10.7

4 Schoenfeld 1.73 0.13 0.3 5000 4.6 1.845 0.095 0.23 8000 7.3
Rhyolite 1.73 0.13 0.3 7500 7.4 1.845 0.095 0.23 9000 8.8

1.73 0.13 0.3 11000 10.8 1.845 0.095 0.23 9600 9.5

5 Teplice Rhyolite 1.73 0.13 0.3 3714 7.2 1.84 0.095 0.22 1864 3.6
blue CL/ 1.73 0.13 0.3 5200 10.6 1.84 0.095 0.22 2200 4.5
phenocryst 1.73 0.13 0.3 7000 13.5 1.84 0.095 0.22 3000 5.8

5 Teplice Rhyolite 1.73 0.125 0.3 39600 36.1 1.835 0.095 0.23 8500 7.7
red CL/ 1.735 0.125 0.29 38000 34.9 1.835 0.095 0.23 9600 8.8
phenocryst 1.73 0.13 0.3 36000 31.1 1.835 0.095 0.23 14000 12.1

6 Schellerhau Granite 1.735 0.125 0.29 9000 7.0 1.837 0.095 0.23 5000 3.9
blue CL/ 1.735 0.125 0.29 12000 10.1 1.837 0.095 0.23 6000 5.0
phenocryst 1.735 0.13 0.31 15500 14.3 1.84 0.095 0.22 7700 7.1

6 Schellerhau Granite 1.734 0.125 0.28 12000 14.3 1.84 0.095 0.22 5300 6.3
red CL/ 1.734 0.125 0.28 17000 19.1 1.84 0.095 0.22 7000 7.9
phenocryst 1.735 0.13 0.31 20000 22.2 1.84 0.095 0.22 8800 9.8

6 Schellerhau Granite 1.735 0.13 0.31 5500 7.9 1.836 0.095 0.23 6400 9.2
red CL/ 1.735 0.13 0.31 10300 13.4 1.836 0.095 0.23 7500 9.7
matrix quartz 1.735 0.13 0.31 13500 17.2 1.84 0.095 0.22 8000 10.2

7 Eibenstock Granite 1.725 0.135 0.31 4500 17.2 1.85 0.095 0.22 1350 5.2
1.73 0.14 0.32 6000 21.0 1.835 0.09 0.21 1600 5.6
1.725 0.135 0.31 7000 22.8 1.85 0.095 0.22 2500 8.1

8 Aue Granite 1.73 0.12 0.28 8620 5.9 1.85 0.095 0.22 3080 2.1
1.73 0.12 0.28 12500 9.1 1.85 0.095 0.22 4000 2.9
1.73 0.13 0.31 13000 10.9 1.85 0.095 0.22 5000 4.2

9 Vein Quartz 1.7 0.15 0.36 2200 2.8 1.84 0.095 0.22 1 0.0
1.71 0.15 0.36 2400 5.8 1.84 0.095 0.22 1 0.0
1.7 0.15 0.36 2420 13.9 1.84 0.095 0.22 1 0.0

10 Wachtelberg 1.73 0.13 0.3 4190 6.1 1.84 0.095 0.22 4325 6.3
Rhyolite 1.73 0.13 0.3 4630 7.4 1.84 0.095 0.22 4780 7.7
blue CL 1.73 0.13 0.3 4960 8.3 1.84 0.095 0.22 5120 8.5

10 Wachtelberg 1.723 0.125 0.29 5000 9.4 1.84 0.095 0.22 5500 10.3
Rhyolite 1.723 0.125 0.29 6000 12.0 1.84 0.095 0.22 5500 11.0
red CL 1.73 0.13 0.3 6200 12.7 1.84 0.095 0.22 6400 13.1

11 Beucha Rhyolite 1.73 0.13 0.3 6384 7.6 1.85 0.095 0.22 4910 5.8
blue CL 1.73 0.13 0.3 8300 10.8 1.85 0.095 0.22 5400 7.0

1.73 0.13 0.3 10000 13.2 1.85 0.095 0.22 5300 7.0

11 Beucha Rhyolite 1.73 0.13 0.3 6375 10.6 1.84 0.095 0.22 3312 5.5
red CL 1.73 0.13 0.3 8287 13.9 1.84 0.095 0.22 3810 6.4

1.73 0.13 0.3 10200 15.9 1.84 0.095 0.22 5300 8.3
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List of CL emission band parameters of quartz (continued)

Sample 1.73 eV - Band 1.84 eV - Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

12 Flossenbuerg 1.73 0.135 0.31 12000 8.0 1.84 0.095 0.22 3500 2.3
Granite 1.73 0.135 0.31 8500 6.1 1.832 0.095 0.22 7000 5.0

1.735 0.13 0.3 15000 10.4 1.84 0.095 0.22 10000 7.0

13 Leucosome 1.74 0.13 0.3 5000 6.7 1.84 0.095 0.22 4000 5.4
Quartz 1.74 0.13 0.3 7000 8.3 1.84 0.095 0.22 5700 6.8

1.74 0.13 0.3 11500 11.4 1.84 0.095 0.22 8800 8.7

14 Ramberg Granite 1.735 0.13 0.31 7000 6.6 1.84 0.09 0.22 5500 5.2
1.735 0.13 0.31 11000 11.3 1.84 0.09 0.22 7500 7.7
1.735 0.13 0.31 15000 10.4 1.84 0.095 0.22 10000 7.0

15 Weinheim 1.735 0.125 0.29 9800 5.1 1.845 0.095 0.22 13000 6.8
Rhyolite 1.735 0.125 0.29 12000 6.6 1.845 0.095 0.22 15000 8.3
blue CL 1.73 0.13 0.31 14300 8.5 1.845 0.095 0.22 15000 8.9

15 Weinheim 1.73 0.13 0.31 12575 14.9 1.84 0.095 0.22 9494 11.3
 Rhyolite 1.73 0.13 0.31 19400 18.4 1.84 0.095 0.22 14160 13.4
red CL 1.73 0.13 0.31 21000 20.1 1.84 0.095 0.22 15000 14.4

Sample 1.96 eV - Band 2.15 eV - Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

1 Megaquartz 1.96 0.1 0.24 4100 3.5 2.16 0.16 0.38 30000 25.6
1.96 0.1 0.24 9000 13.6 2.16 0.16 0.38 19500 29.5
1.96 0.1 0.24 9800 16.4 2.15 0.16 0.38 20300 33.9

2 Fissile Quartz 1.955 0.1 0.23 5000 8.2 2.155 0.16 0.37 12600 20.6
1.955 0.1 0.23 7000 11.1 2.15 0.16 0.38 14000 22.3
1.955 0.1 0.23 11000 15.8 2.145 0.16 0.37 16000 22.9

3 Oil-bearing 1.96 0.1 0.24 5300 6.1 2.155 0.175 0.41 22000 25.5
 Quartz 1.956 0.1 0.24 12400 15.0 2.15 0.155 0.36 21000 25.4

1.96 0.1 0.24 14500 19.4 2.14 0.16 0.38 20300 27.1

4 Schoenfeld 1.972 0.087 0.2 13700 12.5 2.15 0.16 0.38 17000 15.5
Rhyolite 1.972 0.095 0.22 16000 15.7 2.15 0.16 0.38 17000 16.7

1.967 0.1 0.24 19000 18.7 2.15 0.16 0.38 19000 18.7

5 Teplice Rhyolite 1.956 0.09 0.22 3076 5.9 2.15 0.16 0.38 6863 13.2
blue CL/ 1.956 0.09 0.22 4000 8.2 2.15 0.16 0.38 7000 14.3
phenocryst 1.956 0.1 0.24 7000 13.5 2.16 0.16 0.38 8300 16.0

5 Teplice Rhyolite 1.976 0.085 0.21 18000 16.4 2.14 0.16 0.38 20000 18.2
red CL/ 1.97 0.085 0.2 20800 19.1 2.14 0.16 0.38 19800 18.2
phenocryst 1.972 0.1 0.24 25500 22.0 2.13 0.16 0.38 25000 21.6

6 Schellerhau Granite 1.957 0.093 0.22 8500 6.6 2.155 0.16 0.37 21000 16.3
blue CL/ 1.957 0.1 0.24 13000 10.9 2.15 0.16 0.38 22000 18.5
phenocryst 1.957 0.105 0.26 17300 16.0 2.15 0.16 0.38 23300 21.5

6 Schellerhau Granite 1.955 0.095 0.23 9400 11.2 2.15 0.16 0.38 19500 23.3
red CL/ 1.954 0.105 0.24 17500 19.7 2.145 0.155 0.37 22000 24.7
phenocryst 1.957 0.11 0.26 20500 22.7 2.14 0.16 0.38 23800 26.4

6 Schellerhau Granite 1.968 0.095 0.22 8500 12.2 2.143 0.16 0.37 13800 19.8
red CL/ 1.96 0.105 0.24 15300 19.9 2.143 0.16 0.37 17400 22.6
matrix quartz 1.962 0.11 0.26 18300 23.3 2.14 0.16 0.38 19000 24.2

7 Eibenstock Granite 1.942 0.09 0.2 1500 5.7 2.136 0.17 0.4 8200 31.4
1.942 0.09 0.2 2400 8.4 2.136 0.17 0.4 9300 32.6
1.942 0.09 0.2 2700 8.8 2.122 0.17 0.4 10500 34.1

8 Aue Granite 1.935 0.09 0.21 5140 3.5 2.19 0.152 0.36 53000 36.2
1.935 0.09 0.21 7200 5.2 2.19 0.152 0.36 48000 35.0
1.935 0.09 0.21 7700 6.4 2.185 0.155 0.36 46500 38.8
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List of CL emission band parameters of quartz (continued)

Sample 1.96 eV - Band 2.15 eV - Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

9 Vein Quartz 1.95 0.11 0.26 600 0.8 2.17 0.175 0.44 7000 9.0
1.95 0.11 0.26 600 1.4 2.17 0.175 0.44 5000 12.1
1.95 0.11 0.26 600 3.4 2.167 0.18 0.41 3150 18.1

10 Wachtelberg 1.962 0.095 0.22 9200 13.4 2.173 0.16 0.38 10500 15.3
Rhyolite 1.962 0.095 0.22 10800 17.4 2.173 0.16 0.38 9500 15.3
blue CL 1.962 0.1 0.24 12144 20.2 2.17 0.16 0.38 9000 15.0

10 Wachtelberg 1.967 0.089 0.22 13200 24.7 2.163 0.16 0.37 6350 11.9
Rhyolite 1.963 0.089 0.22 14200 28.5 2.163 0.155 0.36 5900 11.8
red CL 1.962 0.1 0.23 15180 31.1 2.16 0.16 0.38 5700 11.7

11 Beucha Rhyolite 1.95 0.1 0.24 10760 12.8 2.165 0.16 0.38 14020 16.7
blue CL 1.95 0.1 0.24 11300 14.7 2.165 0.16 0.38 13600 17.7

1.95 0.1 0.24 14100 18.6 2.16 0.16 0.38 14000 18.5

11 Beucha Rhyolite 1.956 0.1 0.24 8542 14.2 2.16 0.16 0.38 7777 12.9
red CL 1.956 0.1 0.24 10250 17.2 2.16 0.16 0.38 8555 14.3

1.956 0.1 0.24 14950 23.4 2.16 0.16 0.38 10500 16.4

12 Flossenbuerg 1.95 0.09 0.22 8000 5.3 2.155 0.16 0.37 29700 19.8
Granite 1.95 0.09 0.22 9000 6.5 2.145 0.16 0.37 28700 20.7

1.956 0.1 0.24 15000 10.4 2.14 0.16 0.38 33000 23.0

13 Leucosome 1.96 0.1 0.24 7000 9.4 2.155 0.16 0.37 13200 17.8
Quartz 1.96 0.1 0.24 10700 12.7 2.155 0.16 0.37 15300 18.1

1.96 0.1 0.24 15500 15.3 2.14 0.16 0.38 20600 20.4

14 Ramberg Granite 1.958 0.085 0.2 12600 12.0 2.16 0.16 0.38 17400 16.5
1.962 0.09 0.22 16000 16.4 2.15 0.16 0.38 18500 18.9
1.956 0.1 0.24 15000 10.4 2.14 0.16 0.38 33000 23.0

15 Weinheim 1.96 0.085 0.2 25500 13.3 2.16 0.16 0.38 19000 9.9
Rhyolite 1.96 0.085 0.2 27000 14.9 2.16 0.16 0.38 19000 10.5
blue CL 1.955 0.09 0.22 28000 16.6 2.16 0.16 0.38 19000 11.2

15 Weinheim 1.958 0.1 0.24 24333 28.8 2.165 0.16 0.38 9383 11.1
 Rhyolite 1.958 0.1 0.24 40200 38.2 2.165 0.16 0.38 12000 11.4
red CL 1.958 0.1 0.24 43800 42.0 2.165 0.16 0.38 12200 11.7

Sample 2.47 eV - Band 2.58 eV Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

1 Megaquartz 2.44 0.15 0.36 48300 41.2 2.58 0.08 0.18 3400 2.9
2.445 0.14 0.32 16400 24.8 2.58 0.08 0.18 2300 3.5
2.465 0.125 0.29 11000 18.4 2.58 0.08 0.18 750 1.3

2 Fissile Quartz 2.46 0.137 0.32 14600 23.9 2.58 0.08 0.18 2500 4.1
2.46 0.13 0.3 12300 19.6 2.58 0.08 0.18 2500 4.0
2.465 0.125 0.29 11000 15.8 2.58 0.08 0.18 2100 3.0

3 Oil-bearing 2.455 0.15 0.35 25000 29.0 2.58 0.08 0.18 2900 3.4
 Quartz 2.455 0.13 0.31 15100 18.3 2.58 0.08 0.18 2400 2.9

2.465 0.125 0.29 9400 12.6 2.58 0.08 0.18 1200 1.6

4 Schoenfeld 2.46 0.122 0.28 18800 17.1 2.58 0.08 0.18 5000 4.6
Rhyolite 2.46 0.122 0.28 15000 14.7 2.58 0.08 0.18 4700 4.6

2.47 0.12 0.28 13800 13.6 2.58 0.08 0.18 3100 3.1

5 Teplice Rhyolite 2.465 0.13 0.31 10715 20.6 2.58 0.08 0.18 1790 3.4
blue CL/ 2.465 0.13 0.31 9000 18.4 2.58 0.08 0.18 1700 3.5
phenocryst 2.47 0.125 0.3 7900 15.2 2.58 0.08 0.18 1500 2.9

5 Teplice Rhyolite 2.465 0.125 0.29 11000 10.0 2.58 0.08 0.18 1900 1.7
red CL/ 2.465 0.125 0.29 10000 9.2 2.58 0.08 0.18 1900 1.7
phenocryst 2.47 0.125 0.3 9500 8.2 2.58 0.08 0.18 1600 1.4
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List of CL emission band parameters of quartz (continued)

Sample 2.47 eV - Band 2.58 eV Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

6 Schellerhau Granite 2.463 0.135 0.32 25000 19.4 2.58 0.08 0.18 4500 3.5
blue CL/ 2.463 0.135 0.32 20000 16.8 2.58 0.08 0.18 3800 3.2
phenocryst 2.47 0.125 0.3 14000 12.9 2.58 0.08 0.18 3000 2.8

6 Schellerhau Granite 2.462 0.13 0.3 14300 17.1 2.58 0.08 0.18 2500 3.0
red CL/ 2.462 0.13 0.3 11000 12.4 2.58 0.08 0.18 2200 2.5
phenocryst 2.47 0.125 0.3 8700 9.6 2.58 0.08 0.18 1500 1.7

6 Schellerhau Granite 2.465 0.13 0.31 11300 16.2 2.58 0.08 0.18 2700 3.9
red CL/ 2.465 0.13 0.31 9300 12.1 2.58 0.08 0.18 2050 2.7
matrix quartz 2.47 0.125 0.3 7700 9.8 2.58 0.08 0.18 1500 1.9

7 Eibenstock Granite 2.48 0.11 0.26 2700 10.3 2.58 0.08 0.18 850 3.3
2.48 0.11 0.26 2400 8.4 2.58 0.08 0.18 820 2.9
2.48 0.11 0.26 2600 8.5 2.58 0.08 0.18 600 2.0

8 Aue Granite 2.48 0.11 0.26 18000 12.3 2.58 0.08 0.18 6525 4.5
2.48 0.11 0.26 15300 11.2 2.58 0.08 0.18 6200 4.5
2.48 0.11 0.26 10500 8.8 2.58 0.08 0.18 5500 4.6

9 Vein Quartz 2.47 0.145 0.34 17000 21.9 2.58 0.08 0.18 4000 5.1
2.47 0.145 0.34 8500 20.5 2.58 0.08 0.18 2000 4.8
2.47 0.125 0.3 2700 15.5 2.58 0.08 0.18 700 4.0

10 Wachtelberg 2.465 0.13 0.31 11770 17.1 2.58 0.08 0.18 2500 3.6
Rhyolite 2.465 0.13 0.31 9800 15.8 2.58 0.08 0.18 1900 3.1
blue CL 2.465 0.13 0.31 9000 15.0 2.58 0.08 0.18 1580 2.6

10 Wachtelberg 2.457 0.137 0.33 7900 14.8 2.58 0.08 0.18 1750 3.3
Rhyolite 2.457 0.137 0.33 6500 13.0 2.58 0.08 0.18 1500 3.0
red CL 2.465 0.125 0.28 5800 11.9 2.58 0.08 0.18 1000 2.1

11 Beucha Rhyolite 2.485 0.12 0.29 11585 13.8 2.58 0.08 0.18 3043 3.6
blue CL 2.485 0.12 0.29 9500 12.3 2.58 0.08 0.18 2800 3.6

2.48 0.12 0.28 9500 12.5 2.58 0.08 0.18 1800 2.4

11 Beucha Rhyolite 2.48 0.125 0.3 10416 17.3 2.58 0.08 0.18 1733 2.9
red CL 2.48 0.125 0.3 9166 15.4 2.58 0.08 0.18 1698 2.8

2.48 0.125 0.3 7500 11.7 2.58 0.08 0.18 1300 2.0

12 Flossenbuerg 2.47 0.13 0.3 29700 19.8 2.58 0.08 0.18 5000 3.3
Granite 2.47 0.13 0.3 25000 18.0 2.58 0.08 0.18 5000 3.6

2.48 0.125 0.3 22500 15.7 2.58 0.08 0.18 3000 2.1

13 Leucosome 2.47 0.127 0.29 14600 19.7 2.58 0.08 0.18 2500 3.4
Quartz 2.47 0.13 0.3 14600 17.3 2.58 0.08 0.18 2700 3.2

2.47 0.125 0.28 15200 15.0 2.58 0.08 0.18 3100 3.1

14 Ramberg Granite 2.465 0.13 0.31 19000 18.0 2.58 0.08 0.18 4000 3.8
2.465 0.125 0.28 14700 15.0 2.58 0.08 0.18 3200 3.3
2.48 0.125 0.3 22500 15.7 2.58 0.08 0.18 3000 2.1

15 Weinheim 2.45 0.138 0.32 36000 18.8 2.571 0.08 0.18 1080
0

5.6

Rhyolite 2.45 0.138 0.32 31400 17.4 2.571 0.08 0.18 1040
0

5.8

blue CL 2.46 0.135 0.32 28000 16.6 2.58 0.08 0.18 7600 4.5

15 Weinheim 2.46 0.125 0.3 11875 14.1 2.58 0.08 0.18 2717 3.2
 Rhyolite 2.46 0.125 0.3 10000 9.5 2.58 0.08 0.18 2420 2.3

red CL 2.46 0.125 0.3 8200 7.9 2.58 0.08 0.18 1900 1.8
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List of CL emission band parameters of quartz (continued)

Sample 2.68 eV - Band 2.79 eV - Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

1 Megaquartz 2.685 0.1 0.23 11000 9.4 2.79 0.11 0.26 10200 8.7
2.685 0.1 0.23 4000 6.1 2.79 0.11 0.26 4100 6.2
2.685 0.1 0.23 3500 5.8 2.79 0.11 0.26 2500 4.2

2 Fissile Quartz 2.685 0.1 0.23 6700 10.9 2.792 0.11 0.26 7300 11.9
2.685 0.1 0.23 6500 10.4 2.792 0.11 0.26 6800 10.8
2.685 0.1 0.23 6150 8.8 2.795 0.11 0.26 6200 8.9

3 Oil-bearing 2.685 0.1 0.23 7200 8.3 2.79 0.11 0.26 8700 10.1
 Quartz 2.685 0.1 0.23 6000 7.3 2.79 0.11 0.26 6000 7.3

2.685 0.1 0.23 4500 6.0 2.79 0.11 0.26 3500 4.7

4 Schoenfeld 2.685 0.1 0.23 13100 11.9 2.79 0.11 0.26 15200 13.8
Rhyolite 2.685 0.1 0.23 11200 11.0 2.79 0.11 0.26 12700 12.5

2.685 0.1 0.23 9800 9.7 2.79 0.11 0.26 10800 10.6

5 Teplice Rhyolite 2.68 0.1 0.24 7060 13.6 2.8 0.11 0.26 8700 16.8
blue CL/ 2.68 0.1 0.24 6000 12.2 2.8 0.11 0.26 7100 14.5
phenocryst 2.68 0.1 0.24 5700 11.0 2.8 0.11 0.26 6300 12.1

5 Teplice Rhyolite 2.685 0.1 0.23 6000 5.5 2.8 0.11 0.26 5800 5.3
red CL/ 2.685 0.1 0.23 6000 5.5 2.8 0.11 0.26 5000 4.6
phenocryst 2.685 0.1 0.23 5300 4.6 2.8 0.11 0.26 5500 4.8

6 Schellerhau Granite 2.68 0.1 0.24 15000 11.6 2.8 0.11 0.26 18500 14.3
blue CL/ 2.68 0.1 0.24 12100 10.2 2.8 0.11 0.26 14200 11.9
phenocryst 2.68 0.1 0.24 9000 8.3 2.8 0.11 0.26 10800 10.0

6 Schellerhau Granite 2.68 0.1 0.24 8000 9.6 2.8 0.11 0.26 8000 9.6
red CL/ 2.68 0.1 0.24 5500 6.2 2.8 0.11 0.26 6300 7.1
phenocryst 2.68 0.1 0.24 5000 5.5 2.8 0.11 0.26 5000 5.5

6 Schellerhau Granite 2.68 0.1 0.24 6700 9.6 2.8 0.11 0.26 8600 12.4
red CL/ 2.68 0.1 0.24 6000 7.8 2.8 0.11 0.26 6700 8.7
matrix quartz 2.68 0.1 0.24 4900 6.2 2.8 0.11 0.26 5600 7.1

7 Eibenstock Granite 2.685 0.1 0.23 2200 8.4 2.79 0.105 0.24 2300 8.8
2.685 0.1 0.23 1980 6.9 2.79 0.105 0.24 2050 7.2
2.685 0.1 0.23 2000 6.5 2.79 0.105 0.24 1850 6.0

8 Aue Granite 2.685 0.1 0.23 15568 10.6 2.785 0.105 0.24 16436 11.2
2.685 0.1 0.23 13700 10.0 2.785 0.105 0.24 14300 10.4
2.685 0.1 0.23 9650 8.1 2.785 0.105 0.24 11200 9.4

9 Vein Quartz 2.685 0.1 0.23 10500 13.5 2.8 0.11 0.26 18000 23.1
2.685 0.1 0.23 5500 13.3 2.8 0.11 0.26 8500 20.5
2.685 0.1 0.23 2250 12.9 2.8 0.11 0.26 2600 14.9

10 Wachtelberg 2.685 0.1 0.23 8100 11.8 2.8 0.11 0.26 8100 11.8
Rhyolite 2.685 0.1 0.23 6735 10.8 2.8 0.11 0.26 6745 10.9
blue CL 2.685 0.1 0.23 6150 10.3 2.8 0.11 0.26 6160 10.3

10 Wachtelberg 2.685 0.1 0.23 4700 8.8 2.8 0.11 0.26 5400 10.1
Rhyolite 2.685 0.1 0.23 3800 7.6 2.8 0.11 0.26 4400 8.8
red CL 2.685 0.1 0.23 4000 8.2 2.8 0.11 0.26 3900 8.0

11 Beucha Rhyolite 2.685 0.1 0.23 9195 10.9 2.79 0.11 0.26 11850 14.1
blue CL 2.685 0.1 0.23 8000 10.4 2.79 0.11 0.26 9000 11.7

2.685 0.1 0.23 6500 8.6 2.79 0.11 0.26 7600 10.0

11 Beucha Rhyolite 2.685 0.1 0.23 6050 10.1 2.79 0.11 0.26 7073 11.8
red CL 2.685 0.1 0.23 5444 9.1 2.79 0.11 0.26 6295 10.5

2.685 0.1 0.23 4900 7.7 2.79 0.11 0.26 5600 8.8

12 Flossenbuerg 2.68 0.1 0.24 17000 11.4 2.79 0.11 0.26 19300 12.9
Granite 2.68 0.1 0.24 15900 11.4 2.795 0.11 0.26 18800 13.5

2.68 0.1 0.24 14500 10.1 2.79 0.11 0.26 16100 11.2

13 Leucosome 2.685 0.1 0.23 9000 12.1 2.79 0.11 0.26 9000 12.1
Quartz 2.685 0.1 0.23 9800 11.6 2.79 0.11 0.26 9200 10.9

2.685 0.1 0.23 10200 10.1 2.79 0.11 0.26 10000 9.9



212

List of CL emission band parameters of quartz (continued)

Sample 2.68 eV - Band 2.79 eV - Band
Position Sigma Half-width If If (%) Position Sigma Half-width If If (%)

(eV) (eV) (eV) (eV) (eV) (eV)

14 Ramberg Granite 2.68 0.1 0.24 11800 11.2 2.8 0.11 0.26 13500 12.8
2.68 0.1 0.24 9300 9.5 2.8 0.11 0.26 10500 10.7
2.68 0.1 0.24 14500 10.1 2.79 0.11 0.26 16100 11.2

15 Weinheim 2.685 0.095 0.22 22300 11.6 2.79 0.11 0.26 26500 13.8
Rhyolite 2.685 0.095 0.22 19000 10.5 2.79 0.11 0.26 25000 13.8
blue CL 2.685 0.1 0.23 17400 10.3 2.79 0.11 0.26 23600 14.0

15 Weinheim 2.685 0.1 0.23 6704 7.9 2.8 0.11 0.26 7800 9.2
 Rhyolite 2.685 0.1 0.23 6750 6.4 2.8 0.11 0.26 7000 6.6
red CL 2.685 0.1 0.23 5300 5.1 2.8 0.11 0.26 5500 5.3

Sample 2.96 eV - Band
Position Sigma Half-width If If (%)

(eV) (eV) (eV)

1 Megaquartz 2.955 0.125 0.28 5200 4.4
2.96 0.125 0.3 2200 3.3
2.96 0.125 0.3 1500 2.5

2 Fissile Quartz 2.96 0.12 0.28 7000 11.4
2.96 0.12 0.28 6000 9.6
2.96 0.12 0.28 5800 8.3

3 Oil-bearing 2.96 0.127 0.3 8700 10.1
 Quartz 2.965 0.125 0.29 6700 8.1

2.96 0.125 0.3 4500 6.0

4 Schoenfeld 2.96 0.13 0.3 22000 20.0
Rhyolite 2.96 0.13 0.3 17800 17.5

2.96 0.13 0.3 15000 14.8

5 Teplice Rhyolite 2.96 0.128 0.3 10000 19.3
blue CL/ 2.96 0.128 0.3 9000 18.4
phenocryst 2.96 0.128 0.3 8200 15.8

5 Teplice Rhyolite 2.97 0.13 0.3 7500 6.8
red CL/ 2.97 0.13 0.3 7500 6.9
phenocryst 2.97 0.13 0.3 7300 6.3

6 Schellerhau Granite 2.965 0.135 0.31 27500 21.3
blue CL/ 2.965 0.135 0.31 22000 18.5
phenocryst 2.965 0.135 0.31 15500 14.3

6 Schellerhau Granite 2.965 0.135 0.31 10000 11.9
red CL/ 2.965 0.135 0.31 7500 8.4
phenocryst 2.965 0.135 0.31 5700 6.3

6 Schellerhau Granite 2.97 0.135 0.32 12500 18.0
red CL/ 2.97 0.135 0.32 10000 13.0
matrix quartz 2.97 0.135 0.32 8000 10.2

7 Eibenstock Granite 2.965 0.13 0.31 3900 14.9
2.965 0.13 0.31 3600 12.6
2.96 0.13 0.3 3500 11.4

8 Aue Granite 2.96 0.125 0.3 23000 15.7
2.96 0.125 0.3 20000 14.6
2.96 0.125 0.3 15700 13.1

9 Vein Quartz 2.96 0.125 0.3 18500 23.8
2.96 0.125 0.3 8900 21.5
2.96 0.125 0.3 3000 17.2

10 Wachtelberg 2.965 0.135 0.31 14470 21.0
Rhyolite 2.965 0.135 0.31 12045 19.4
blue CL 2.965 0.135 0.31 11000 18.3
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List of CL emission band parameters of quartz (continued)

Sample 2.96 eV - Band
Position Sigma Half-width If If (%)

(eV) (eV) (eV)

10 Wachtelberg 2.965 0.135 0.31 9100 17.0
Rhyolite 2.965 0.135 0.31 7600 15.2
red CL 2.965 0.135 0.31 7000 14.4

11 Beucha Rhyolite 2.962 0.135 0.32 17300 20.6
blue CL 2.962 0.135 0.32 14500 18.8

2.962 0.135 0.32 12300 16.2

11 Beucha Rhyolite 2.965 0.135 0.31 12100 20.1
red CL 2.965 0.135 0.31 10000 16.8

2.965 0.135 0.31 9000 14.1

12 Flossenbuerg 2.957 0.13 0.3 29000 19.4
Granite 2.957 0.13 0.3 28000 20.2

2.957 0.13 0.3 24500 17.1

13 Leucosome 2.965 0.135 0.31 14000 18.8
Quartz 2.96 0.135 0.31 15000 17.8

2.965 0.135 0.31 15000 14.8

14 Ramberg Granite 2.965 0.135 0.31 20000 19.0
2.965 0.135 0.31 14500 14.8
2.957 0.13 0.3 24500 17.1

15 Weinheim 2.955 0.135 0.31 42000 21.9
Rhyolite 2.955 0.135 0.31 37000 20.5
blue CL 2.96 0.125 0.3 31000 18.4

15 Weinheim 2.96 0.125 0.3 9000 10.7
 Rhyolite 2.96 0.125 0.3 7600 7.2
red CL 2.96 0.125 0.3 6500 6.2
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Appendix B

List of kinetic law parameters of CL intensity change for the 1.96 and 2.79 eV emission

Function of the 1.96 eV emission increase (and b): Ir = Irs - Ir1 ∗ exp(-t/kr1) - Ir2 ∗ exp(-t/kr2) where Ir = intensity of
red CL at the radiation time t; Irs = intensity of red CL for t ?  8 ;  Ir1 = intensity of the slow increasing CL
component for t ?  8; kr1 = velocity constant of the slow increasing CL component; Ir2 = intensity of the fast
increasing CL component for t ?  8 ;  kr2 = velocity constant of the fast increasing CL component; t = radiation
time.
Function of the 2.79 eV emission decay (and a): Ib = Ibs + Ib1 ∗ exp(-t/kb1) + Ib2 ∗ exp(-t/kb2) where Ib = intensity
of blue CL at the radiation time t; Ibs = intensity of stable blue CL; Ib1 = intensity of the slow decreasing CL
component at t = 0; kb1 = velocity constant of the slow decreasing CL component; Ib2 = intensity of the fast
decreasing CL component at t = 0; kb2 = velocity constant of the fast decreasing CL component; t = radiation
time. Intensities are normalised for the highest measured intensity (Irs of sample 15). The reproducibility of the
parameters lies in the error range of 10 – 20 %.

No. Sample name 1.96 eV emission 2.79 eV emission

Irs (%) Ir1 (%) kr1 Ir2 (%) kr2 Ibs (%) Ib1 (%) kb1 Ib2 (%) kb2

1 Megaquartz 46.2 16.1 512 3.0 7 4.5 4.5 254 72.2 14

2 Fissile Quartz 49.8 30.2 498 7.2 10 12.1 3.5 234 25.7 7

3 Oil quartz 55.0 15.6 470 29.2 36 6.9 10.2 248 37.8 10

4 Schoenfeld Rhyolite 61.6 18.1 502 4.4 36 23.0 9.9 259 17.9 16

5 Teplice rhyolite – blue
CL

23.1 6.6 513 4.9 18 13.0 4.5 250 16.8 8

5 Teplice Rhyolite- red CL 95.6 37.2 522 3.8 11 12.0 0.9 245 4.7 8
6 Schellerhau Granite –

blue CL/phenocryst
64.2 26.0 489 11.0 42 21.0 19.3 261 33.0 15

6 Schellerhau Granite –
red CL/Phenocryst

72.7 26.9 495 23.8 45 9.3 6.4 256 9.8 22

6 Schellerhau Granite –
red CL/matrix quartz

59.2 17.2 504 36.9 33 11.2 6.8 252 14.7 15

7 Eibenstock Granite 21.1 9.3 521 5.6 23 4.8 6.8 243 6.2 10

8 Aue Granite 47.0 8.1 506 9.9 16 22.0 0.6 245 22.5 10

9 Vein Quartz 30.1a 3.5a 244a 1.3a 8a 2.2 22.8 257 74.6 16

10 Wachtelberg Rhyolite –
blue CL

31.8 5.6 491 3.2 26 15.1 24.7 271 11.3 20

10 Wachtelberg Rhyolite –
red CL

35.8 3.3 509 2.4 26 9.4 3.7 240 11.4 20

11 Beucha Rhyolite– blue
CL

44.2 13.6 531 0.5 18 16.7 6.6 255 11.4 20

11 Beucha Rhyolite – red
CL

40.1 6.2 485 2.7 24 12.7 8.2 247 9.0 20

12 Flossenbuerg Granite 80.1 47.3 492 25.4 12 35.2 2.7 254 51.1 8

13 Leucosome Quartz 68.4 44.6 479 6.0 27 24.4b 11.9b 495b 3.9b 24b

14 Ramberg Granite 60.4 16.0 488 22.6 24 21.6 1.4 263 45.3 17

15 Weinheim Rhyolite –
blue CL

78.0 8.0 504 7.1 20 47.5 2.3 254 23.5 10

15 Weinheim Rhyolite – red
CL

100.0 15.6 521 6.8 26 10.4 16.5 247 11.1 8
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Appendix C

List of trace element analysis of quartz (LA ICP-MS)

1 Megaquartz

Sample Li Na Al Ca Ti Cr Mn Fe Ge
hakos01 1 36.5 108.8 229.5 1506.6 14.3 39.8 2.2 44.9 15.7
hakos02 1 29.5 348.1 168.8 1286.5 16.2 42.4 4.4 72.1 11.7
hakos03 1 33.4 378.9 238 1787.9 14.8 35.7 3.0 57.7 12.8
hakos04 1 27.2 225.3 156.4 991 20 30.3 1.8 29.8 14.4
hakos05 1 38.7 309.5 204.8 1371.7 22.2 37.6 2.3 38.3 20.2
hakos06 1 45.8 357.4 217.6 1273.3 12.1 34.2 2.4 43.6 12.4
hakos07 1 34.8 246.2 237.1 893.4 14.2 43.2 1.2 50.0 11.2
hakos08 1 25.8 217.6 178.7 1391.2 18.1 34.2 2.2 44.4 9.8
hakos09 1 36.9 253.9 216.1 1123.1 14.2 37.5 2.4 53.2 12.2
hakos10 1 29.7 264.3 181.1 1023.3 15.3 30.2 1.8 40.3 13.8

2 Fissile quartz

Sample Li Na Al Ca Ti Cr Mn Fe Ge
spalt01 1 2.8 241.4 125.6 464.5 14.4 0.1 4.1 90.3 2.6
spalt02 1 2.7 250.3 144.4 378.2 26.3 2.0 2.1 51.9 0.1
spalt03 1 2.5 241.7 168.3 280.4 20.0 0.9 1.8 63.9 1.1
spalt04 1 2.1 251.4 170.4 7.1 12.2 0.1 1.9 74.7 0.4
spalt05 1 2.2 154.7 103.3 0.1 9.4 0.1 1.5 77.5 0.9
spalt06 1 2.7 247.5 157.9 345.3 11.1 0.8 1.8 72.0 1.2
spalt07 1 2.4 249.2 162.4 0.1 13.6 0.1 1.5 51.6 0.4
spalt08 1 2.3 258.3 167.0 293.2 9.0 0.1 2.0 61.3 1.2
spalt09 1 2.2 138.2 126.8 397.4 12.9 1.7 3.0 77.6 2.1
spalt10 1 2.7 263.9 149.2 0.1 11.2 0.1 3.2 86.5 0.1

3 Oil-bearing quartz

Sample Li Na Al Ca Ti Cr Mn Fe Ge
oel01 1 134.3 1788.2 410.4 200.8 16.8 0.1 0.4 76.4 7.2
oel02 1 118.8 2416.2 472.4 256.5 14.9 0.1 0.2 36.7 6.7
oel03 1 131.2 3458.0 630.3 215.4 15.0 0.1 0.6 60.5 5.5
oel04 1 118.6 3375.5 487.7 125.7 14.6 2.7 0.8 63.6 2.9
oel05 1 119.1 1288.4 597.9 152.1 9.3 0.1 1.7 92.0 7.0
oel06 1 112.8 3921.5 493.7 234.8 10.1 0.1 0.2 44.1 5.4
oel07 1 123.8 3545.2 417.1 176.4 8.2 0.1 0.6 58.6 6.3
oel08 1 109.6 3455.0 518.2 349.2 12.5 0.1 0.8 63.3 3.2
oel09 1 116.3 2392.2 483.7 281.8 13.2 0.1 0.2 36.3 7.3
oel010 1 121.0 1823.3 417.1 175.8 14.5 0.1 1.4 75.5 2.9

5 Teplice Rhyolite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
lug102 1 32.4 89.9 157.4 452.9 99.2 1.8 0.8 61.9 2.2
lug103 1 29.5 79.6 152.7 0.1 124.1 0.1 0.9 81.0 1.3
lug104 1 34.8 75.4 149.3 116.1 167.4 0.1 1.3 57.1 1.9
lug105 1 34.0 0.1 157.6 154.0 93.1 0.1 0.5 0.1 0.4
lug106 1 28.0 0.1 159.2 0.1 107.8 0.1 0.1 0.1 1.5
lug107 1 28.6 6.4 149.9 149.0 124.3 0.1 0.9 0.1 2.4
lug108 1 27.1 88.3 140.6 761.0 85.1 0.1 0.1 8.4 1.6
lug109 1 25.7 424.1 171.2 0.1 60.1 0.1 12.6 17.4 1.2
lug110 1 18.3 393.1 175.1 141.3 35.3 0.1 5.4 0.1 1.3
lug111 1 17.5 70.7 170.4 0.1 50.7 0.1 2.0 0.1 1.4
lug113 1 29.3 0.1 160.2 0.1 54.2 0.1 1.2 0.1 1.0
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List of trace element analysis of quartz (LA ICP-MS) (continued)

5 Teplice Rhyolite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
lug114 1 29.5 0.1 155.1 0.1 74.5 0.1 0.3 0.1 1.2
lug115 1 23.5 26.5 178.1 0.1 69.2 0.1 0.2 6.5 1.3
lug116 1 32.4 0.1 170.0 2180.3 136.2 0.1 0.5 0.1 0.9
lug119 1 27.0 121.6 161.6 133.5 98.6 1.3 3.6 9.0 0.8
lug120 1 30.1 113.8 163.2 363.7 89.1 0.1 1.0 21.8 0.5
lug201 1 31.9 354.8 123.2 453.1 149.4 0.9 3.8 14.4 2.5
lug202 1 34.2 0.1 134.4 260.3 124.9 0.1 0.6 2.2 2.8
lug203 1 35.9 0.1 159.6 0.1 176.6 0.1 1.4 13.1 1.2
lug204 1 37.8 144.9 134.9 0.1 80.6 0.1 11.1 8.8 0.8
lug205 1 26.8 104.1 129.0 0.1 60.7 2.7 16.0 5.1 0.7
lug206 1 33.6 194.4 122.1 491.2 70.1 2.2 1.0 4.0 0.4
lug207 1 33.4 0.1 129.0 0.1 55.0 0.1 0.2 2.1 1.8
lug208 1 31.1 0.1 125.1 70.7 60.4 0.1 0.9 1.7 3.2
lug209 1 39.9 0.1 177.4 0.1 107.9 0.1 2.2 7.3 0.8
lug210 1 30.8 0.1 161.1 290.2 144.3 0.1 1.4 6.3 1.6
lug211 1 34.1 0.1 147.1 0.1 165.1 0.1 0.4 10.8 1.5
lug212 1 38.2 0.1 142.6 0.1 169.9 0.1 0.4 7.0 0.2
lug213 1 28.9 0.1 155.6 0.1 199.8 4.5 0.1 22.9 0.1
lug301 1 30.4 0.1 133.9 0.1 87.0 0.1 1.5 31.0 0.1
lug302 1 32.6 0.1 144.2 179.7 86.2 0.1 4.3 26.9 0.1
lug304 1 35.7 94.9 144.3 475.8 103.2 3.6 1.5 29.8 1.4
lug305 1 33.0 0.1 140.5 162.4 120.2 0.1 0.1 25.1 1.1
lug306 1 30.1 0.1 146.5 240.8 146.7 2.5 0.3 19.3 1.4
lug307 1 32.7 0.1 144.4 0.1 102.5 0.1 0.5 10.8 0.8
lug308 1 26.9 0.1 134.5 0.1 51.6 0.1 0.2 17.1 1.1
lug309 1 22.6 0.1 117.8 224.4 63.0 0.8 0.1 20.1 1.0
lug310 1 24.9 0.1 115.4 105.0 57.3 0.1 0.1 16.6 0.1
lug311 1 22.8 0.1 119.0 185.5 47.2 0.1 0.1 5.0 0.4
lug312 1 25.2 0.1 112.5 196.9 58.3 0.1 0.1 3.1 0.1
lug501 1 26.3 1368.4 183.6 45.6 58.4 14.9 5.0 49.2 1.0
lug502 1 20.1 1110.3 174.5 0.1 64.1 5.3 1.0 41.4 0.2
lug503 1 20.8 1128.7 170.2 0.1 57.3 6.3 2.7 53.8 1.7
lug504 1 22.8 899.5 163.0 135.5 51.4 5.1 0.4 68.5 2.4
lug505 1 20.9 903.4 145.8 0.1 41.7 1.1 0.1 38.8 1.5
lug506 1 19.8 911.1 151.8 224.9 26.6 3.3 0.5 58.7 1.1
lug507 1 20.9 795.1 155.8 29.3 15.4 3.0 0.2 24.8 1.5
lug508 1 20.7 835.5 149.3 26.3 36.2 5.8 0.1 21.1 2.1
lug509 1 19.2 918.8 141.2 41.4 44.6 3.4 0.2 24.2 2.4
lug510 1 16.8 1059.0 141.4 0.1 42.4 7.1 1.8 34.0 0.7
lug511 1 18.7 999.0 150.1 0.1 59.2 4.3 0.1 13.7 1.5
lug512 1 17.3 878.0 151.7 0.1 40.3 6.2 0.1 18.4 2.0
lug513 1 17.8 1034.4 160.2 0.1 20.3 8.0 0.1 12.1 0.9
lug514 1 16.0 1031.9 157.1 0.1 46.8 10.8 0.1 22.9 1.9
lug515 1 14.7 1223.0 158.8 271.4 39.6 5.8 0.2 55.8 1.5
lug516 1 16.4 1202.4 156.4 0.1 46.7 3.8 0.1 48.5 2.1

6 Schellerhau Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
sh69101 29.2 136.3 300.7 3156.9 26.1 17.5 23.0 5.8
sh69102 27.3 19.0 119.0 3043.8 100.7 9.8 7.1 0.1
sh69103 24.5 32.2 87.0 3434.3 83.1 1.7 2.3 7.5
sh69105 20.2 13.3 114.6 2823.5 24.9 5.7 0.1 2.1
sh69106 30.6 282.0 124.2 3345.0 25.6 11.3 0.1 4.1
sh69107 20.4 64.9 96.4 2864.5 10.5 21.9 0.1 1.2
sh69108 29.0 71.9 140.5 2709.6 86.9 13.3 2.2 0.1
sh69109 27.0 1.6 88.5 2706.3 102.0 4.9 0.1 7.8
sh69110 44.8 44.1 444.0 2157.2 123.7 0.1 12.5 0.1
sh69111 43.6 110.0 454.1 2174.7 100.1 4.7 0.1 0.7
sh69112 38.7 14.9 124.5 3641.5 76.0 0.1 0.1 0.1
sh69113 15.2 55.8 183.0 3353.2 30.8 11.9 16.0 0.6
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List of trace element analysis of quartz (LA ICP-MS) (continued)

6 Schellerhau Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
sh69201 35.1 1.8 108.8 3047.9 73.0 0.1 8.8 1.5
sh69202 33.2 2.3 116.8 2786.4 83.6 0.1 63.1 0.1
sh69204 27.7 0.1 138.5 2940.4 57.8 0.8 0.1 2.9
sh69205 35.3 0.1 110.7 3273.3 73.8 0.1 0.1 8.6
sh69206 40.8 0.1 99.4 3757.0 150.3 0.1 32.2 3.3
sh69207 24.5 0.1 108.4 3706.7 9.9 0.1 0.1 0.1
sh69209 37.6 98.7 117.7 3254.6 22.5 0.1 26.4 1.2
sh69210 27.1 0.1 101.4 3442.2 45.2 0.3 0.1 0.1
sh69211 21.9 110.6 124.9 2523.5 62.9 0.1 0.1 0.1
sh69212 20.2 0.1 175.3 2696.9 34.3 0.1 68.3 0.1
sh69401 25.0 423.7 0.1 20.9 24.7 130.9 0.9
sh69402 25.3 216.2 1958.7 15.4 12.9 110.6 2.4
sh69403 26.5 92.2 0.1 13.8 14.3 136.2 0.1
sh69404 29.9 104.8 0.1 21.1 11.9 20.5 0.1
sh69405 33.6 149.4 0.1 20.1 14.3 11.1 0.1
sh69406 34.5 124.0 0.1 20.9 15.4 34.4 28.3
sh69407 24.6 106.1 2230.8 16.1 16.3 73.8 1.4
sh69408 32.2 85.2 1550.0 18.1 10.8 188.7 7.7
sh69409 17.5 106.2 455.6 16.7 19.0 130.9 0.1
sh69410 23.0 79.0 415.1 20.3 14.6 130.5 0.1
sh69411 26.0 263.7 6309.7 18.2 15.5 104.8 0.1
sh70101 21.6 261.3 0.1 16.6 15.8 81.7 51.7
sh70102 31.1 257.0 494.1 16.3 12.8 19.9 28.3
sh70103 40.2 258.8 1761.7 15.9 13.7 0.1 15.3
sh70104 35.7 269.4 2293.9 17.1 15.0 18.9 0.1
sh70105 36.3 283.9 0.1 18.0 13.4 12.9 9.3
sh70106 32.5 229.0 1094.8 15.6 16.5 19.4 19.4
sh70107 27.8 271.5 0.1 18.1 14.4 15.9 0.1
sh70108 39.3 262.5 0.1 18.9 14.2 55.4 0.1
sh70109 23.2 248.0 0.1 12.9 11.8 83.8 0.8
sh70110 22.0 166.1 698.1 23.1 14.2 60.7 20.6
sh70201 32.0 116.1 1418.6 18.7 11.3 102.0 22.6
sh70202 30.2 94.6 0.1 15.0 11.8 99.6 37.5
sh70203 26.5 111.0 1205.4 13.1 16.4 139.8 6.0
sh70204 23.7 104.3 516.9 17.4 17.8 151.6 30.6
sh70205 16.1 96.4 0.1 14.2 14.0 208.4 2.8
sh70206 19.3 126.6 1450.1 19.4 17.8 86.0 0.1
sh70207 29.2 135.6 526.8 12.4 14.3 138.1 49.0
sh70209 29.3 162.6 1005.9 22.3 15.2 56.3 29.5
sh70210 33.7 138.3 293.0 21.8 14.7 30.4 0.1
sh70211 22.8 122.3 541.2 19.3 18.8 4.5 48.5
sh70212 19.8 113.7 1589.9 14.3 11.9 218.2 28.5
sh70213 17.5 91.9 647.8 13.9 13.5 294.0 0.1
sh70214 13.8 110.7 468.4 18.4 18.2 113.0 18.6
sh70215 18.1 108.5 167.3 19.1 12.6 225.6 28.1
sh70303 27.6 261.5 0.1 11.9 13.8 266.7 0.1
sh70304 38.8 189.4 1795.5 12.4 10.5 11.1 0.1
sh70305 39.3 242.9 510.5 21.7 17.9 26.1 0.1
sh70306 28.2 176.6 737.0 18.1 12.8 58.0 48.7
sh70307 33.2 206.3 732.8 16.9 12.1 36.9 0.1
sh70308 28.8 267.7 1266.7 14.4 16.9 41.1 7.3
sh70309 27.7 298.9 0.1 14.7 15.2 42.3 31.2
sh70310 24.9 158.8 456.5 14.6 13.1 31.2 0.1
sh70311 33.8 114.3 2930.2 19.9 18.3 33.8 0.1
sh70312 11.9 125.1 0.1 17.2 16.1 185.7 0.1
sh70313 21.6 235.8 527.7 21.0 15.7 68.8 10.7
sh70314 25.3 192.4 675.2 12.9 19.7 203.8 49.0
sh70315 28.0 176.4 1028.7 19.2 14.4 67.3 0.1
sh70316 22.3 239.6 33.0 13.6 13.4 75.1 17.8
sh72101 23.7 119.6 0.1 13.7 15.6 40.6 0.1
sh72102 20.3 108.0 43.8 13.5 10.0 323.0 0.1
sh72103 25.8 118.4 0.1 15.0 13.9 112.5 0.1
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List of trace element analysis of quartz (LA ICP-MS) (continued)

6 Schellerhau Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
sh72104 29.8 118.8 527.3 17.9 13.0 11.9 0.1
sh72105 24.3 141.6 943.7 18.8 15.1 61.1 0.1
sh72106 26.0 116.0 2011.4 17.3 11.4 58.9 0.1
sh72107 29.9 101.7 204.1 15.3 17.4 81.9 0.1
sh72108 25.7 179.2 0.1 16.6 20.1 168.1 0.1
sh72109 32.5 123.2 636.8 16.9 13.8 90.5 6.8
sh72110 16.2 110.2 1175.5 18.8 13.2 120.2 0.1
sh72111 16.7 109.4 800.6 18.5 12.6 139.7 0.1
sh72112 25.8 98.1 238.1 15.8 15.1 78.3 0.1
sh72113 29.5 103.1 0.1 11.8 13.3 120.7 0.1
sh72114 25.4 98.3 456.9 16.4 13.1 140.5 0.1
sh72115 27.8 91.0 218.0 16.3 12.6 146.1 0.1
sh72116 28.9 133.5 782.9 16.9 13.5 146.5 0.1
sh72117 24.0 114.6 769.8 17.0 15.7 153.9 3.5
sh72201 25.7 185.1 1096.1 15.4 16.6 10.3 3.4
sh72202 30.9 136.1 3925.0 19.7 9.9 41.7 10.2
sh72203 28.3 99.0 115.8 14.8 13.1 148.6 17.0
sh72204 30.2 125.5 1238.7 13.8 13.5 136.1 5.2
sh72205 27.9 83.5 344.5 12.6 15.3 47.9 0.1
sh72206 16.6 66.3 736.8 15.0 13.2 55.4 7.9
sh72208 20.4 141.2 0.1 17.6 16.0 11.4 0.1
sh72209 22.4 120.6 1278.3 16.9 12.6 5.6 44.6
sh72210 23.7 192.7 5354.0 15.1 14.5 9.7 39.1
sh72211 24.5 200.3 407.2 14.2 14.6 7.9 12.2
sh72212 23.3 100.3 138.7 13.9 13.5 34.5 0.1
sh72213 16.2 98.6 1441.2 15.1 6.5 219.4 61.3
sh72214 17.7 109.5 1537.8 16.1 10.8 215.9 12.6
sh72302 28.1 114.3 2848.6 14.1 14.4 24.2 0.1
sh72303 27.9 85.5 4205.8 17.8 11.6 115.1 0.1
sh72304 48.7 259.7 5011.6 7.0 13.2 27.8 92.6
sh72305 29.7 144.1 0.1 18.8 16.9 23.0 0.1
sh72306 33.7 112.8 6278.7 13.2 11.5 26.1 0.1
sh72307 27.2 65.3 2568.9 12.2 12.4 0.1 0.1
sh72308 27.1 93.1 1448.1 18.3 11.0 0.1 0.1
sh72309 25.4 42.5 0.1 13.8 13.3 29.9 1.9
sh72310 21.4 68.8 3507.5 11.6 7.5 65.4 0.1
sh72311 24.4 103.8 1566.7 11.8 6.4 0.1 0.1
sh72312 29.8 103.7 1693.1 15.9 12.9 20.7 0.1
sh72315 31.1 51.4 5600.9 21.9 11.9 97.0 2.5
sh72316 25.7 86.3 4696.6 17.0 14.2 90.0 0.9

7 Eibenstock Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
eiben01 1 25.98 4654.1 696.6 66.3 54.0 1.7 5.2 59.9 2.1
eiben02 1 33.66 3454.4 625.3 83.1 48.3 0.1 5.5 30.2 2.3
eiben03 1 30.36 3815.6 701.7 0.1 52.6 0.9 5.1 50.1 1.9
eiben04 1 32.82 1974.8 726.0 89.0 67.4 2.1 3.8 32.4 1.2
eiben05 1 35.76 1128.3 627.0 0.1 66.2 3.7 0.1 24.6 2.2
eiben06 1 30.3 3954.3 714.2 0.1 55.5 0.7 5.6 43.7 1.8
eiben07 1 26.76 2596.3 635.2 0.1 70.2 2.3 6.3 58.5 2.7
eiben08 1 34.02 4294.4 734.2 112.1 65.4 3.1 5.3 23.7 1.3
eiben09 1 35.04 3867.4 678.5 67.4 68.4 2.3 5.7 51.7 2.1
eiben10 1 33 3444.3 658.4 0.1 53.2 2.1 3.9 32.1 1.9
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List of trace element analysis of quartz (LA ICP-MS) (continued)

8 Aue Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
auer101 1 49.2 491.4 231.0 0.0 46.9 0.0 3.5 33.5 0.0
auer102 1 48.8 403.4 222.7 0.0 75.1 0.5 1.7 24.2 0.1
auer103 1 33.4 386.4 281.4 0.0 62.2 0.0 4.2 52.2 0.1
auer104 1 31.6 578.9 152.4 0.0 71.6 0.0 4.5 49.3 2.0
auer105 1 28.7 427.1 207.4 0.0 80.2 0.4 2.4 27.3 0.4
auer106 1 40.8 552.6 247.7 0.0 53.0 0.0 5.1 54.8 1.4
auer107 1 50.2 545.5 276.5 0.0 78.1 3.5 2.7 38.4 0.6
auer108 1 38.4 511.8 180.8 0.0 59.7 0.0 2.5 24.9 1.4
auer109 1 27.2 308.9 153.9 0.0 44.7 3.5 1.1 17.8 1.1
auer110 1 33.1 643.9 162.8 0.0 67.6 3.8 3.1 26.5 0.5
auer111 1 43.2 466.8 169.8 0.0 80.2 0.0 3.1 34.6 0.2
auer112 1 52.0 379.3 211.8 0.0 63.2 2.4 4.5 48.5 0.7

10 Wachtelberg Rhyolite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
wacht101 1 25.9 922.8 164.6 0.1 90.7 0.1 4.9 40.2 0.2
wacht102 1 25.0 520.6 177.5 0.1 69.4 0.1 0.1 21.8 1.4
wacht103 1 20.4 387.6 154.5 0.1 50.1 0.1 0.1 23.1 0.5
wacht104 1 21.2 622.5 150.4 89.9 55.2 0.1 5.0 42.4 1.8
wacht105 1 21.3 458.8 157.0 161.2 41.1 0.1 1.4 28.5 0.1
wacht108 1 22.6 607.5 158.8 31.3 38.2 0.1 0.5 23.2 0.3
wacht109 1 21.0 796.1 152.2 6.4 28.4 3.2 0.1 37.6 1.5
wacht110 1 20.5 373.3 163.2 53.9 72.0 1.2 3.7 45.8 1.5
wacht111 1 20.9 374.3 175.8 27.9 58.6 0.1 0.1 71.5 1.4
wacht112 1 19.6 293.1 160.1 0.1 74.5 0.1 0.1 39.2 1.7
wacht402 1 24.5 75.1 147.9 41.3 40.8 0.1 0.4 23.3 1.5
wacht403 1 24.4 78.6 127.6 332.9 24.1 5.3 0.1 28.1 1.4
wacht404 1 25.9 111.6 132.6 159.3 12.7 9.2 0.5 21.3 1.5
wacht405 1 29.3 28.3 148.1 173.6 9.1 1.1 0.1 11.6 0.7
wacht406 1 24.7 162.0 135.9 545.8 5.9 4.9 0.1 13.2 1.3
wacht407 1 22.1 10.2 134.4 107.4 11.4 1.9 0.1 24.9 0.8
wacht408 1 21.2 305.8 133.2 0.1 25.5 3.0 7.2 15.3 1.2
wacht409 1 22.5 114.6 134.3 0.1 40.7 0.1 1.3 18.8 2.5
wacht410 1 24.8 163.9 140.3 0.1 98.4 0.1 0.1 21.0 1.6
wacht411 1 22.0 117.3 144.7 0.1 98.4 8.4 0.1 25.1 0.7
wacht501 1 26.4 231.0 186.1 38.0 90.7 0.1 7.3 63.4 2.3
wacht502 1 28.6 526.8 141.7 210.4 108.0 3.2 0.5 58.5 0.7
wacht503 1 22.7 554.3 119.9 271.5 14.2 8.9 0.8 26.0 0.1
wacht504 1 22.2 464.3 124.0 0.1 23.5 0.1 0.1 22.8 2.3
wacht505 1 21.6 290.6 119.2 116.8 22.3 5.7 0.3 26.1 0.8
wacht506 1 22.1 397.7 129.8 0.1 25.2 0.1 0.2 46.9 2.7
wacht507 1 21.5 418.8 141.6 0.1 9.2 7.6 0.1 34.9 0.8
wacht508 1 22.4 365.4 140.1 0.1 80.4 3.9 0.1 32.9 1.3
wacht201 1 23.4 658.5 145.4 0.1 99.0 9.5 4.2 71.8 0.5
wacht202 1 32.0 82.8 149.7 427.3 132.1 1.8 4.0 49.0 0.9
wacht203 1 27.4 0.1 137.8 0.1 108.0 6.7 1.5 40.6 1.9
wacht204 1 23.8 0.1 116.4 0.1 58.0 7.8 0.3 20.7 1.3
wacht205 1 26.0 0.1 114.8 90.1 16.6 3.2 0.3 0.1 0.1
wacht206 1 23.0 0.1 109.5 0.1 30.7 2.8 0.2 4.4 2.9
wacht207 1 27.8 0.1 123.2 0.1 83.5 5.3 0.5 8.2 0.1
wacht208 1 24.6 0.1 118.0 0.1 32.3 0.1 0.1 16.8 1.9
wacht209 1 27.5 0.1 114.5 0.1 21.9 4.4 5.3 21.8 1.6
wacht211 1 22.3 121.3 109.2 0.1 20.2 0.1 2.3 1.0 0.6
wacht212 1 37.1 388.8 112.8 0.1 32.1 0.1 4.5 0.1 0.8
wacht213 1 22.6 328.2 120.6 891.5 23.1 1.6 4.1 25.6 2.0
wacht214 1 36.0 219.4 135.1 0.1 108.4 0.7 3.9 40.9 1.1
wacht215 1 46.8 235.4 153.8 0.1 93.9 0.1 1.5 84.8 0.1
wacht302 1 27.3 0.1 141.3 0.1 113.5 0.1 17.0 68.5 2.0
wacht303 1 26.7 116.9 155.1 0.1 78.0 0.1 14.2 76.9 1.1
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List of trace element analysis of quartz (LA ICP-MS) (continued)

10 Wachtelberg Rhyolite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
wacht304 1 22.2 197.2 161.5 582.7 57.9 3.9 28.0 71.1 0.7
wacht305 1 22.5 0.1 123.2 0.1 39.4 0.1 5.8 54.1 0.8
wacht306 1 28.4 0.1 146.5 591.5 110.7 2.6 1.0 51.6 1.4
wacht307 1 24.5 0.1 126.4 416.9 78.1 2.5 0.1 12.8 1.0
wacht308 1 27.3 0.1 131.8 0.1 93.4 2.4 0.5 10.1 0.2
wacht309 1 23.8 30.7 172.2 0.1 73.1 0.1 0.1 13.0 2.9
wacht310 1 23.8 29.7 154.5 0.1 27.2 0.1 0.1 15.1 0.7
wacht311 1 24.0 0.1 121.6 0.1 44.8 0.1 0.6 21.8 0.4
wacht312 1 29.3 0.1 137.9 0.1 122.3 0.1 0.1 30.1 0.8

11 Beucha Rhyolite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
beuch101 21.78 1486.3 197.5 0.1 79.0 15.7 4.2 32.1 1.5
beuch102 18.54 1178.9 195.0 258.4 71.1 10.9 0.1 45.1 2.0
beuch103 18.18 759.2 190.0 63.2 77.4 7.7 5.1 31.8 2.0
beuch104 18.66 1017.8 186.2 0.1 73.2 10.3 0.1 29.2 1.3
beuch105 19.08 1081.5 211.8 0.1 112.5 4.8 0.1 54.8 1.2
beuch201 22.38 948.9 186.2 164.1 95.7 5.8 0.8 39.9 2.2
beuch202 16.44 958.5 179.7 121.0 80.2 2.2 0.9 42.5 1.9
beuch203 19.74 800.1 178.1 260.8 85.6 7.9 0.3 25.6 0.5
beuch204 18.84 803.9 182.7 151.1 82.0 8.0 0.1 17.6 1.3
beuch205 19.2 971.4 178.0 0.1 83.4 8.4 0.1 29.1 1.5
beuch206 19.44 727.3 188.4 0.1 91.4 1.7 0.1 58.0 1.0

12 Flossenbürg Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
floss01 1 11.3 833.3 49.4 0.1 13.5 0.1 0.1 13.1 1.9
floss02 1 12.5 279.7 71.3 147.2 36.4 0.2 0.1 4.9 2.6
floss03 1 12.7 357.1 84.1 257.2 34.8 0.1 0.1 7.5 2.2
floss04 1 23.1 512.9 145.9 0.1 37.5 0.4 0.1 0.1 0.3
floss05 1 16.9 498.5 116.9 110.4 33.1 0.1 0.1 20.9 1.9
floss06 1 17.9 372.2 138.1 211.2 37.0 0.1 0.1 0.1 2.0
floss07 1 12.0 467.2 68.1 16.6 28.5 1.1 0.1 16.7 1.5
floss08 1 12.3 456.3 85.3 201.4 34.2 0.5 0.1 8.3 1.9
floss09 1 16.4 546.4 72.1 0.1 32.1 0.1 0.1 0.1 2.2
floss10 1 12.5 438.4 110.2 174.2 35.4 0.1 0.1 12.1 1.9

13 Leucosome quartz

Sample Li Na Al Ca Ti Cr Mn Fe Ge
exsud01 1 9.3 273.2 229.6 234.9 27.3 7.9 1.8 140.1 1.1
exsud02 1 12.0 409.5 210.8 306.1 15.4 9.1 1.6 82.0 1.0
exsud03 1 8.5 359.3 234.6 287.6 22.3 7.8 1.9 127.2 1.2
exsud04 1 6.2 346.1 246.5 264.8 23.3 8.0 4.4 100.7 1.6
exsud05 1 5.7 276.0 232.2 192.1 21.8 3.4 3.1 45.5 2.1
exsud06 1 10.3 439.2 243.8 304.7 18.8 7.6 2.1 60.5 1.2
exsud07 1 9.4 297.3 227.5 293.5 25.3 8.1 1.8 58.7 2.1
exsud08 1 6.4 321.2 212.0 253.9 22.6 5.6 3.0 114.2 1.3
exsud09 1 9.2 482.1 250.6 304.5 21.3 9.0 3.3 128.2 3.5
exsud10 2 8.3 403.2 237.9 295.4 22.6 8.9 2.7 94.0 2.0
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List of trace element analysis of quartz (LA ICP-MS) (continued)

14 Ramberg Granite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
ram01 1 13.7 650.5 389.4 880.8 42.8 19.4 2.4 85.6 3.0
ram02 1 13.8 494.0 421.9 483.8 28.3 6.6 1.3 56.6 2.0
ram03 1 19.5 505.4 428.9 282.5 23.1 8.1 0.6 46.2 1.2
ram04 1 14.2 870.5 378.9 1056.0 36.5 5.3 1.3 73.1 2.3
ram05 1 14.7 764.4 471.9 545.3 35.7 14.3 1.0 71.5 2.1
ram06 1 15.6 647.5 479.7 657.4 34.4 6.5 1.4 68.9 2.1
ram07 1 18.5 530.3 398.7 943.2 25.2 8.3 0.8 50.3 3.2
ram08 1 15.3 732.2 456.9 456.3 35.9 11.2 1.6 71.9 2.4
ram09 1 16.5 842.5 498.0 645.3 36.8 9.4 1.3 73.6 2.0
ram10 1 14.3 653.9 423.8 899.7 37.8 6.4 1.7 75.5 1.9

15 Weinheim Rhyolite

Sample Li Na Al Ca Ti Cr Mn Fe Ge
wein101 1 29.2 746.2 185.7 0.1 24.9 1.0 1.7 0.1 1.6
wein102 1 46.5 55.5 179.8 0.1 44.1 0.1 1.3 0.1 2.5
wein103 1 56.2 123.7 171.0 331.4 75.4 6.8 1.2 4.6 5.6
wein104 1 43.7 0.1 169.1 0.1 99.5 6.4 0.4 0.1 3.7
wein105 1 34.8 0.1 169.2 0.1 98.0 0.1 0.3 0.1 1.6
wein106 1 25.9 309.6 170.6 97.2 79.0 0.1 0.4 0.1 1.0
wein107 1 30.8 5474.6 170.3 0.1 87.6 5.8 5.5 0.1 1.3
wein108 1 33.0 1307.6 172.7 0.1 51.7 0.1 9.7 0.1 0.8
wein109 1 24.8 445.5 184.9 268.6 44.3 0.5 1.3 0.1 0.9
wein110 1 22.6 350.8 173.9 283.8 33.7 0.1 0.1 0.1 2.0
wein201 1 31.1 449.4 155.3 547.6 62.3 0.1 0.5 30.7 2.3
wein202 1 37.1 0.1 184.0 247.6 60.1 1.8 1.3 11.3 0.9
wein203 1 34.7 6474.0 214.7 208.3 178.8 10.4 1.7 45.2 3.3
wein204 1 31.0 563.6 192.6 0.1 84.3 0.4 1.5 0.1 2.0
wein206 1 39.4 245.1 196.3 249.2 162.6 10.5 2.2 49.2 0.7
wein207 1 39.7 181.3 189.3 40.5 123.8 0.1 1.4 0.1 1.8
wein208 1 37.9 211.1 170.5 270.9 52.7 0.1 1.2 54.6 1.3
wein209 1 24.8 80.9 162.2 239.4 40.5 4.3 0.1 22.9 2.0
wein301 1 35.9 540.4 152.6 307.9 35.7 1.7 4.8 0.1 1.2
wein302 1 42.8 0.1 154.3 454.1 13.7 0.1 0.5 0.1 0.1
wein303 1 50.6 0.1 162.5 637.3 58.7 0.1 1.5 0.1 3.2
wein304 1 44.8 0.1 165.3 326.3 105.3 2.7 0.7 36.8 2.8
wein305 1 34.7 0.1 172.4 0.1 132.9 0.1 0.7 24.5 0.8
wein308 1 32.1 3122.5 170.2 787.0 186.6 0.1 2.5 28.2 7.6
wein309 1 33.3 1289.3 174.7 0.1 122.0 7.6 6.1 26.4 1.6
wein310 1 32.5 502.6 165.5 344.7 165.6 1.0 8.5 38.2 0.8
wein401 1 28.3 185.2 171.2 246.5 38.5 0.1 0.5 0.1 0.6
wein402 1 27.3 191.7 194.4 77.0 45.5 0.4 0.4 0.1 1.5
wein403 1 31.4 152.8 195.7 281.6 75.8 1.7 0.1 0.1 2.2
wein404 1 34.0 241.9 202.6 314.0 69.4 0.1 0.5 0.1 0.5
wein405 1 32.6 109.1 199.2 4.0 71.1 1.1 0.1 0.1 0.7
wein406 1 27.4 145.4 189.9 239.6 62.8 0.1 0.5 0.1 1.3
wein407 1 26.3 1104.7 189.2 364.0 36.1 0.1 0.8 0.1 1.0
wein408 1 28.1 1611.2 176.9 402.9 26.0 5.2 1.4 0.1 1.5
wein501 1 28.5 544.5 173.7 0.1 66.0 0.6 3.8 19.6 2.5
wein502 1 41.6 556.1 179.2 0.1 113.9 2.5 0.2 32.2 0.1
wein503 1 46.3 776.2 195.7 0.1 241.7 14.4 7.6 30.0 2.1
wein504 1 54.1 899.0 196.2 0.1 305.7 1.5 0.1 55.1 2.5
wein505 1 48.1 1065.4 204.8 0.1 267.0 44.7 0.1 44.0 2.8
wein506 1 42.7 1026.0 223.0 0.1 221.8 1.3 2.2 24.0 0.7
wein507 1 46.7 1289.3 225.7 0.1 259.9 1.3 0.4 38.4 1.7
wein508 1 51.4 909.6 215.5 0.1 203.6 7.2 0.4 23.7 2.2
wein509 1 35.4 944.0 167.8 0.1 50.7 7.9 0.1 19.2 2.8
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Appendix D

List of trace element analysis of quartz (EPMA)

1 Megaquartz                                                               6 Schellerhau Granite
Sample Al Ti K Fe Sample Al Ti K Fe

Megaquartz 158.8 0.0 33.2 15.5 Schell red CL 108.9 16.0 0.0
Megaquartz 142.9 0.0 24.9 7.8 Schell red CL 103.6 18.0 0.0
Megaquartz 153.5 0.0 8.3 15.5 Schell red CL 114.2 18.0 23.3
Megaquartz 127.1 12.0 16.6 15.5 Schell red CL 93.0 18.0 31.1
Megaquartz 5.3 6.0 8.3 7.8 Schell red CL 124.8 18.0 15.5
Megaquartz 5.3 12.0 16.6 15.5 Schell red CL 135.4 16.0 0.0
Megaquartz 5.3 6.0 16.6 0.0 Schell red CL 135.4 18.0 7.8
Megaquartz 5.3 0.0 0.0 0.0 Schell red CL 188.4 29.0 0.0
Megaquartz 5.3 0.0 24.9 0.0 Schell red CL 119.5 24.0 7.8
Megaquartz 5.3 0.0 24.9 7.8 Schell red CL 130.1 21.0 0.0

Schell red CL 93.0 24.0 0.0

2 Fissile quartz Schell red CL 93.0 25.0 0.0

Sample Al Ti K Fe Schell red CL 114.2 24.0 15.5
Fissile 21.2 18.0 33.2 7.8 Schell red CL 103.6 26.0 23.3
Fissile 15.9 0.0 58.1 23.3 Schell red CL 108.9 27.0 0.0
Fissile 21.2 18.0 41.5 0.0 Schell red CL 82.4 31.0 23.3
Fissile 15.9 0.0 49.8 7.8 Schell red CL 119.5 29.0 15.5
Fissile 21.2 6.0 66.4 15.5 Schell red CL 98.3 33.0 0.0
Fissile 26.5 18.0 99.6 15.5 Schell red CL 103.6 35.0 7.8
Fissile 10.6 12.0 66.4 7.8 Schell red CL 135.4 32.0 0.0
Fissile 21.2 6.0 49.8 7.8 Schell red CL 114.2 28.0 0.0
Fissile 21.2 0.0 83.0 0.0 Schell red CL 103.6 30.0 15.5
Fissile 21.2 30.0 58.1 0.0 Schell red CL 93.0 36.0 23.3

Schell red CL 98.3 36.0 15.5

3 Oil-bearing quartz Schell red CL 130.1 36.0 15.5

Sample Al Ti K Fe Schell red CL 103.6 38.0 15.5
Oil 455.3 0.0 41.5 0.0 Schell red CL 87.7 48.0 7.8
Oil 465.9 0.0 33.2 7.8 Schell blue CL 87.7 36.0 7.8
Oil 460.6 0.0 33.2 31.1 Schell blue CL 124.8 42.0 7.8
Oil 471.2 18.0 24.9 0.0 Schell blue CL 108.9 42.0 7.8
Oil 434.1 18.0 41.5 15.5 Schell blue CL 93.0 42.0 0.0
Oil 434.1 18.0 49.8 0.0 Schell blue CL 93.0 42.0 15.5
Oil 476.5 0.0 58.1 0.0 Schell blue CL 93.0 48.0 7.8
Oil 476.5 6.0 41.5 15.5 Schell blue CL 93.0 50.0 0.0

Schell blue CL 77.1 46.0 0.0

6 Schellerhau Granite Schell blue CL 124.8 51.0 0.0

Sample Al Ti K Fe Schell blue CL 103.6 54.0 15.5
Schel matrix 199.0 0.0 7.8 Schell blue CL 82.4 54.0 7.8
Schel matrix 273.2 0.0 15.5 Schell blue CL 98.3 55.0 7.8
Schel matrix 214.9 21.0 15.5 Schell blue CL 87.7 57.0 15.5
Schel matrix 199.0 17.0 0.0 Schell blue CL 98.3 58.0 15.5
Schel matrix 214.9 19.0 0.0 Schell blue CL 98.3 62.0 0.0

Schel matrix 199.0 25.0 15.5
Schel matrix 225.5 24.0 15.5 8 Aue Granite
Schel matrix 183.1 27.0 15.5 Sample Al Ti K Fe
Schel matrix 156.6 30.0 23.3 aue 58.2 60.0 41.5 23.3
Schel matrix 209.6 30.0 15.5 aue 42.4 60.0 49.8 31.1
Schel matrix 193.7 30.0 15.5 aue 63.5 60.0 41.5 15.5
Schel matrix 206.2 36.0 23.3 aue 68.8 65.9 49.8 38.9
Schell red CL 98.3 11.0 0.0 aue 79.4 65.9 33.2 23.3
Schell red CL 124.8 12.0 23.3 aue 58.2 65.9 33.2 7.8
Schell red CL 98.3 14.0 0.0 aue 74.1 71.9 83.0 23.3
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List of trace element analysis of quartz (EPMA) (continued)

9 Vein quartz                                                               11 Beucha Rhyolite
Sample Al Ti K Fe Sample Al Ti K Fe

Vein 3377.6 30.0 33.2 31.1 beuch red CL 142.9 18.0 16.6 15.5
Vein 3488.7 36.0 41.5 31.1 beuch red CL 153.5 18.0 8.3 31.1
Vein 4155.8 24.0 58.1 15.5 beuch red CL 148.2 18.0 33.2 15.5
Vein 4214.0 30.0 66.4 31.1 beuch red CL 37.1 24.0 16.6 15.5
Vein 3769.3 24.0 41.5 15.5 beuch red CL 52.9 30.0 8.3 7.8
Vein 2779.4 30.0 24.9 23.3 beuch red CL 201.2 30.0 24.9 31.1
Vein 3044.1 18.0 24.9 31.1 beuch red CL 153.5 30.0 8.3 38.9
Vein 2567.6 18.0 33.2 38.9 beuch red CL 15.9 36.0 24.9 31.1
Vein 2721.1 30.0 33.2 23.3 beuch red CL 137.6 36.0 8.3 31.1
Vein 2832.3 24.0 24.9 31.1 beuch red CL 132.4 42.0 8.3 15.5
Vein 2212.9 18.0 24.9 15.5 beuch blue CL 37.1 48.0 8.3 38.9
Vein 2408.8 24.0 16.6 15.5 beuch blue CL 37.1 48.0 16.6 23.3
Vein 4351.7 18.0 356.9 31.1 beuch blue CL 58.2 54.0 8.3 23.3
Vein 3282.3 18.0 33.2 15.5 beuch blue CL 148.2 54.0 8.3 46.6
Vein 3165.8 24.0 16.6 23.3 beuch blue CL 42.4 65.9 24.9 31.1
Vein 3102.3 36.0 41.5 23.3 beuch blue CL 37.1 65.9 16.6 38.9
Vein 3049.3 18.0 33.2 23.3 beuch blue CL 158.8 65.9 8.3 46.6
Vein 2954.1 24.0 33.2 31.1 beuch blue CL 31.8 65.9 24.9 46.6
Vein 3991.7 18.0 16.6 15.5 beuch blue CL 42.4 71.9 8.3 38.9
Vein 4383.4 18.0 16.6 23.3 beuch blue CL 58.2 71.9 8.3 46.6
Vein 4277.6 36.0 24.9 31.1 beuch blue CL 31.8 77.9 24.9 101.0
Vein 4886.4 36.0 24.9 23.3 beuch blue CL 153.5 83.9 0.0 62.2
Vein 4886.4 24.0 16.6 31.1 beuch blue CL 164.1 95.9 8.3 70.0
Vein 3022.9 24.0 24.9 15.5 beuch blue CL 164.1 95.9 8.3 46.6
Vein 3245.2 30.0 41.5 31.1 beuch blue CL 174.7 95.9 0.0 62.2
Vein 3123.5 36.0 33.2 23.3 beuch blue CL 42.4 95.9 16.6 38.9
Vein 3277.0 30.0 33.2 23.3 beuch blue CL 153.5 95.9 8.3 62.2
Vein 3377.6 18.0 33.2 23.3 beuch blue CL 58.2 101.9 33.2 70.0

beuch blue CL 164.1 101.9 8.3 70.0

10 Wachtelberg Rhyolite beuch blue CL 164.1 101.9 8.3 70.0

Sample Al Ti K Fe beuch blue CL 158.8 101.9 16.6 93.3
wachtel1 26.5 42.0 16.6 38.9 beuch blue CL 116.5 113.9 16.6 108.8
wachtel1 21.2 42.0 24.9 38.9 beuch blue CL 42.4 113.9 24.9 101.0
wachtel1 21.2 42.0 16.6 15.5 beuch blue CL 42.4 119.9 8.3 147.7
wachtel1 26.5 42.0 16.6 31.1 beuch blue CL 52.9 119.9 16.6 155.5
wachtel1 26.5 48.0 16.6 15.5 beuch blue CL 42.4 125.9 16.6 241.0
wachtel1 15.9 48.0 16.6 23.3 beuch blue CL 74.1 125.9 24.9 349.8
wachtel1 21.2 54.0 16.6 15.5
wachtel1 31.8 54.0 8.3 31.1
wachtel1 26.5 54.0 8.3 31.1
wachtel1 26.5 60.0 8.3 31.1 12 Flossenbürg Granite
wachtel1 26.5 60.0 16.6 31.1 Sample Al Ti K Fe
wachtel1 31.8 60.0 8.3 31.1 Floss_1 5.3 24.0 8.3 15.5
wachtel1 15.9 65.9 16.6 23.3 Floss_1 5.3 24.0 8.3 15.5
wachtel1 26.5 65.9 16.6 31.1 Floss_2 5.3 24.0 8.3 7.8
wachtel1 21.2 65.9 16.6 23.3 Floss_2 5.3 30.0 8.3 23.3
wachtel1 15.9 65.9 16.6 31.1 Floss_2 5.3 30.0 8.3 15.5
wachtel1 37.1 65.9 8.3 31.1 Floss_2 5.3 30.0 8.3 15.5
wachtel1 21.2 71.9 16.6 23.3 Floss_2 5.3 30.0 8.3 23.3
wachtel1 31.8 71.9 8.3 31.1 Floss_2 5.3 36.0 8.3 15.5
wachtel1 26.5 71.9 16.6 31.1 Floss_2 15.9 42.0 8.3 15.5
wachtel1 26.5 71.9 16.6 38.9 Floss_2 5.3 42.0 0.0 23.3
wachtel1 26.5 77.9 16.6 31.1 Floss_2 5.3 42.0 8.3 7.8
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List of trace element analysis of quartz (EPMA) (continued)

13 Leucosome quartz                                                  15 Weinheim Rhyolite
Sample Al Ti K Fe Sample Al Ti K Fe

Leucosome 84.7 24.0 49.8 7.8 wein blue CL 169.4 71.9 16.6 15.5
Leucosome 100.6 30.0 83.0 15.5 wein blue CL 52.9 71.9 24.9 31.1
Leucosome 84.7 30.0 74.7 7.8 wein blue CL 58.2 89.9 24.9 23.3
Leucosome 95.3 18.0 107.9 7.8 wein red CL 158.8 18.0 8.3 15.5
Leucosome 95.3 0.0 74.7 0.0 wein red CL 127.1 18.0 16.6 15.5
Leucosome 100.6 12.0 132.8 0.0 wein red CL 142.9 18.0 8.3 31.1
Leucosome 90.0 18.0 74.7 0.0 wein red CL 132.4 18.0 16.6 46.6
Leucosome 116.5 12.0 33.2 23.3 wein red CL 142.9 18.0 58.1 70.0
Leucosome 84.7 12.0 33.2 7.8
Leucosome 84.7 24.0 24.9 15.5

Carcoar Granodiorite
14 Ramberg Granite Sample Al Ti K Fe

Sample Al Ti K Fe carcor 350 110 200 30
ramb 5.3 36.0 16.6 15.5 carcor 0 100 30 0
ramb 5.3 42.0 33.2 23.3 carcor 0 80 0 30
ramb 47.6 42.0 16.6 15.5 carcor 0 50 20 20
ramb 127.1 48.0 33.2 23.3 carcor 0 50 30 20
ramb 111.2 60.0 16.6 38.9 carcor 0 40 20 0
ramb 47.6 60.0 24.9 31.1 carcor 180 70 130 20
ramb 95.3 60.0 8.3 7.8 carcor 0 100 0 20
ramb 153.5 77.9 49.8 23.3 carcor 0 90 20 20
ramb 5.3 42.0 8.3 15.5 carcor 240 100 130 30

carcor 250 100 160 30

15 Weinheim Rhyolite carcor 0 80 20 30

Sample Al Ti K Fe carcor 0 70 0 30
wein red CL 180.0 24.0 8.3 23.3 carcor 0 80 0 40
wein red CL 169.4 24.0 24.9 31.1 carcor 0 90 0 40
wein red CL 142.9 24.0 16.6 23.3 carcor 0 90 20 50
wein red CL 142.9 24.0 16.6 31.1 carcor 90 90 80 60
wein red CL 142.9 36.0 8.3 15.5 carcor 0 50 40 70
wein red CL 142.9 36.0 16.6 23.3 carcor 0 50 20 90
wein red CL 148.2 42.0 8.3 15.5 carcor 0 40 0 120
wein red CL 180.0 42.0 8.3 7.8 carcor 0 40 20 170
wein red CL 180.0 42.0 8.3 7.8 carcor 0 40 20 250
wein red CL 180.0 42.0 8.3 15.5 carcor 0 30 40 460
wein red CL 158.8 42.0 8.3 23.3 carcor 0 20 30 470
wein blue CL 185.3 42.0 8.3 7.8 carcor 0 130 20 30
wein blue CL 52.9 42.0 16.6 23.3 carcor 0 120 20 20
wein blue CL 68.8 42.0 33.2 46.6 carcor 0 100 0 40
wein blue CL 153.5 48.0 16.6 15.5 carcor 0 30 20 20
wein blue CL 185.3 48.0 16.6 7.8 carcor 0 100 0 40
wein blue CL 148.2 48.0 16.6 15.5 carcor 0 100 0 30
wein blue CL 169.4 48.0 16.6 23.3 carcor 0 120 20 20
wein blue CL 158.8 54.0 16.6 7.8 carcor 0 140 20 30
wein blue CL 158.8 54.0 8.3 15.5 carcor 0 110 20 20
wein blue CL 74.1 54.0 16.6 31.1 carcor 0 100 0 30
wein blue CL 153.5 54.0 16.6 7.8 carcor 0 100 20 20
wein blue CL 148.2 54.0 8.3 15.5 carcor 0 80 0 20
wein blue CL 169.4 54.0 8.3 15.5 carcor 0 90 20 0
wein blue CL 158.8 54.0 8.3 7.8 carcor 0 90 0 20
wein blue CL 164.1 60.0 16.6 7.8 carcor 0 120 20 20
wein blue CL 169.4 60.0 8.3 31.1 carcor 0 110 20 0
wein blue CL 68.8 60.0 16.6 31.1 carcor 0 110 0 0
wein blue CL 164.1 60.0 24.9 23.3 carcor 0 110 0 0
wein blue CL 137.6 65.9 16.6 7.8 carcor 0 100 20 0
wein blue CL 158.8 65.9 16.6 23.3 carcor 0 110 0 20
wein blue CL 153.5 65.9 16.6 15.5 carcor 0 120 0 30
wein blue CL 185.3 65.9 16.6 7.8 carcor 0 100 30 0
wein blue CL 169.4 65.9 16.6 7.8 carcor 0 120 20 0
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List of trace element analysis of quartz (EPMA) (continued)

Barry Granodiorite                                                  Sunset Hills Granite
Sample Al Ti K Fe Sample Al Ti K Fe

bary 100 60 50 0 sunset 0 60 40 30
bary 230 60 110 0 sunset 0 40 20 20
bary 140 60 60 0 sunset 0 30 0 0
bary 220 50 110 30 sunset 0 40 0 40
bary 0 60 0 0 sunset 470 30 230 40
bary 260 40 0 40 sunset 0 50 0 0
bary 90 90 90 20 sunset 0 90 0 0
bary 0 0 20 12 sunset 150 100 90 20
bary 0 0 0 50 sunset 12 90 20 20
bary 0 0 30 0 sunset 12 90 20 0
bary 0 0 0 0 sunset 380 80 160 0
bary 110 0 60 20 sunset 12 60 20 30
bary 12 20 30 0 sunset 12 160 0 30
bary 12 12 12 0 sunset 90 140 50 40
bary 12 70 30 0 sunset 0 100 0 40
bary 160 60 80 20 sunset 0 20 0 20
bary 0 60 0 0 sunset 0 50 0 0
bary 0 50 0 0 sunset 510 120 20 30
bary 400 60 170 20 sunset 0 120 20 20
bary 0 50 0 20 sunset 0 60 20 20
bary 380 60 170 20 sunset 0 50 0 0
bary 160 40 70 0 sunset 0 30 20 0
bary 150 50 70 0 sunset 0 0 0 20
bary 150 50 60 0 sunset 0 40 0 30
bary 0 20 30 20 sunset 0 0 0 20
bary 180 40 80 0 sunset 0 0 0 20
bary 0 40 0 0
bary 0 70 20 0 Porphyritic topaz-albite granite (Ju 10)
bary 360 50 170 0 Sample Al Ti K Fe
bary 280 60 130 0 Ju_10_1 222.3 60.0 8.3 31.1
bary 0 70 20 20 Ju_10_1 232.9 48.0 24.9 38.9
bary 0 30 0 20 Ju_10_1 185.3 48.0 16.6 23.3
bary 390 50 240 30 Ju_10_1 238.2 60.0 16.6 31.1
bary 90 30 20 20 Ju_10_1 84.7 24.0 16.6 23.3
bary 170 40 60 30 Ju_10_1 238.2 42.0 16.6 31.1
bary 0 20 40 40 Ju_10_1 232.9 42.0 8.3 38.9
bary 0 0 30 60 Ju_10_1 232.9 30.0 16.6 38.9

Ju_10_1 217.1 42.0 8.3 38.9

Sunset Hills Granite Ju_10_1 227.6 36.0 16.6 15.5

Sample Al Ti K Fe Ju_10_1 248.8 30.0 8.3 31.1
sunset 0 90 0 0 Ju_10_1 254.1 42.0 24.9 31.1
sunset 0 70 20 20 Ju_10_1 254.1 54.0 24.9 38.9
sunset 90 80 30 0 Ju_10_1 259.4 48.0 16.6 15.5
sunset 90 90 40 20 Ju_10_1 264.7 48.0 8.3 15.5
sunset 0 70 0 0 Ju_10_1 259.4 54.0 16.6 23.3
sunset 410 80 200 0 Ju_10_1 248.8 36.0 24.9 23.3
sunset 0 60 0 0 Ju_10_1 259.4 48.0 16.6 38.9
sunset 0 60 0 0 Ju_10_1 254.1 54.0 24.9 31.1
sunset 310 70 180 30 Ju_10_1 264.7 54.0 16.6 54.4
sunset 0 60 30 0 Ju_10_1 248.8 48.0 24.9 15.5
sunset 0 100 0 0 Ju_10_1 222.3 42.0 16.6 38.9
sunset 0 90 0 20 Ju_10_1 190.6 42.0 24.9 38.9
sunset 130 120 70 0 Ju_10_1 232.9 48.0 16.6 23.3
sunset 0 120 0 30 Ju_10_1 222.3 54.0 16.6 15.5
sunset 280 0 130 20 Ju_10_1 201.2 54.0 16.6 23.3
sunset 0 140 0 20 Ju_10_1 190.6 60.0 16.6 31.1
sunset 450 50 250 200 Ju_10_1 174.7 54.0 24.9 31.1
sunset 200 70 120 20 Ju_10_1 206.5 48.0 24.9 23.3
sunset 240 30 110 0 Ju_10_1 248.8 65.9 33.2 15.5
sunset 140 60 70 0 Ju_10_1 211.8 54.0 16.6 23.3
sunset 170 70 70 0 Ju_10_1 217.1 48.0 16.6 15.5
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List of trace element analysis of quartz (EPMA) (continued)

Porphyritic topaz-albite granite (Ju 10)                Topaz-albite microgranite (Ju 20)
Sample Al Ti K Fe Sample Al Ti K Fe

Ju_10_1 169.4 42.0 16.6 23.3 Ju_20_1 217.1 42.0 16.6 31.1
Ju_10_1 185.3 60.0 16.6 23.3 Ju_20_1 232.9 36.0 16.6 31.1
Ju_10_1 206.5 54.0 16.6 31.1 Ju_20_1 296.5 36.0 49.8 23.3
Ju_10_1 174.7 36.0 16.6 23.3 Ju_20_1 296.5 48.0 8.3 7.8
Ju_10_1 195.9 48.0 8.3 31.1 Ju_20_1 217.1 36.0 8.3 23.3
Ju_10_1 206.5 42.0 16.6 38.9 Ju_20_1 238.2 24.0 24.9 31.1
Ju_10_1 190.6 65.9 16.6 31.1 Ju_20_1 211.8 42.0 8.3 31.1
Ju_10_1 232.9 36.0 16.6 23.3 Ju_20_1 211.8 18.0 16.6 15.5
Ju_10_1 201.2 42.0 24.9 31.1 Ju_20_1 275.3 36.0 41.5 31.1
Ju_10_1 264.7 36.0 8.3 23.3 Ju_20_1 502.9 36.0 149.4 54.4
Ju_10_1 248.8 42.0 16.6 23.3 Ju_20_1 190.6 24.0 16.6 23.3
Ju_10_1 264.7 48.0 16.6 23.3 Ju_20_1 217.1 36.0 16.6 15.5
Ju_10_1 264.7 36.0 41.5 23.3 Ju_20_1 232.9 24.0 24.9 23.3
Ju_10_1 26.5 24.0 33.2 31.1 Ju_20_1 291.2 24.0 16.6 31.1
Ju_10_1 264.7 30.0 24.9 15.5 Ju_20_1 296.5 18.0 24.9 15.5
Ju_10_1 301.8 30.0 33.2 23.3 Ju_20_1 211.8 24.0 8.3 31.1
Ju_10_1 259.4 30.0 16.6 15.5 Ju_20_1 227.6 36.0 24.9 38.9
Ju_10_1 137.6 24.0 16.6 23.3 Ju_20_1 301.8 36.0 24.9 38.9
Ju_10_1 365.3 24.0 49.8 31.1 Ju_20_1 217.1 30.0 16.6 46.6
Ju_10_1 322.9 24.0 8.3 23.3 Ju_20_1 836.5 48.0 298.8 124.4
Ju_10_1 275.3 24.0 8.3 15.5 Ju_20_1 222.3 12.0 16.6 38.9
Ju_10_1 338.8 24.0 24.9 38.9 Ju_20_1 270.0 24.0 24.9 38.9

Ju_20_1 206.5 18.0 16.6 54.4

Topaz-albite microgranite (Ju 20) Ju_20_1 365.3 24.0 49.8 77.7

Sample Al Ti K Fe Ju_20_1 227.6 18.0 16.6 77.7
Ju_20_1 222.3 48.0 24.9 31.1 Ju_20_1 206.5 18.0 16.6 116.6
Ju_20_1 222.3 36.0 10.0 15.5 Ju_20_1 158.8 18.0 24.9 163.2
Ju_20_1 545.3 48.0 74.7 38.9 Ju_20_1 232.9 30.0 66.4 272.1
Ju_20_1 211.8 48.0 16.6 15.5 Ju_20_2 301.8 30.0 49.8 38.9
Ju_20_1 561.2 48.0 265.6 77.7 Ju_20_2 206.5 48.0 16.6 31.1
Ju_20_1 291.2 48.0 33.2 31.1 Ju_20_2 248.8 42.0 24.9 31.1
Ju_20_1 222.3 30.0 16.6 15.5 Ju_20_2 481.8 36.0 141.1 54.4
Ju_20_1 9.0 12.0 8.3 23.3 Ju_20_2 741.2 36.0 215.8 93.3
Ju_20_1 9.0 12.0 16.6 7.8 Ju_20_2 232.9 30.0 8.3 23.3
Ju_20_1 201.2 48.0 16.6 15.5 Ju_20_2 206.5 48.0 16.6 15.5
Ju_20_1 217.1 42.0 16.6 38.9 Ju_20_2 291.2 42.0 8.3 23.3
Ju_20_1 248.8 54.0 24.9 31.1 Ju_20_2 217.1 42.0 8.3 15.5
Ju_20_1 217.1 48.0 8.3 15.5 Ju_20_2 211.8 30.0 16.6 23.3

Ju_20_1 534.7 60.0 149.4 38.9
Ju_20_1 227.6 54.0 24.9 23.3
Ju_20_1 354.7 48.0 74.7 38.9 Podlesi dyke granite
Ju_20_1 217.1 48.0 8.3 23.3 Sample Al Ti K Fe
Ju_20_1 238.2 30.0 24.9 23.3 Podlesi 160 40 20 0
Ju_20_1 238.2 54.0 16.6 15.5 Podlesi 150 30 20 10
Ju_20_1 259.4 42.0 16.6 15.5 Podlesi 180 30 10 10
Ju_20_1 222.3 42.0 16.6 7.8 Podlesi 160 40 20 10
Ju_20_1 270.0 42.0 33.2 31.1 Podlesi 160 10 20 0
Ju_20_1 211.8 54.0 24.9 7.8 Podlesi 230 30 20 0
Ju_20_1 232.9 54.0 16.6 23.3 Podlesi 270 20 30 20
Ju_20_1 248.8 42.0 24.9 23.3 Podlesi 250 40 10 10
Ju_20_1 254.1 30.0 24.9 23.3 Podlesi 350 30 30 0
Ju_20_1 264.7 54.0 16.6 7.8 Podlesi 170 20 20 20
Ju_20_1 349.4 48.0 74.7 31.1 Podlesi 480 30 30 0
Ju_20_1 328.2 48.0 33.2 15.5 Podlesi 490 20 30 0
Ju_20_1 222.3 48.0 24.9 23.3 Podlesi 570 20 30 20
Ju_20_1 217.1 42.0 16.6 31.1 Podlesi 620 20 20 20
Ju_20_1 238.2 36.0 33.2 15.5 Podlesi 480 20 40 20
Ju_20_1 222.3 54.0 16.6 15.5 Podlesi 410 30 20 0
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List of trace element analysis of quartz (EPMA) (continued)

Podlesi dyke granite                                                Schellerhau SG3
Sample Al Ti K Fe Sample Al Ti K Fe

Podlesi 410 20 0 0 Schell G27 330 20 0 10
Podlesi 570 20 30 10 Schell G28 10 20 20 0
Podlesi 400 10 20 10 Schell G29 370 20 0 10
Podlesi 2000 20 30 10 Schell G30 270 40 10 10
Podlesi 280 40 20 10 Schell G31 100 30 10 0
Podlesi 390 20 20 10 Schell G32 10 0 10 0
Podlesi 2000 30 1140 90 Schell G33 80 20 20 10
Podlesi 130 20 20 20 Schell G34 70 30 10 0
Podlesi 220 20 10 10 Schell G35 130 40 0 10
Podlesi 120 10 20 20 Schell G36 520 30 20 10
Podlesi 160 20 60 0 Schell G37 130 40 10 0
Podlesi 490 30 170 0 Schell G38 130 30 10 20
Podlesi 570 30 150 0 Schell G39 0 40 10 10
Podlesi 120 10 30 10 Schell G40 160 30 20 0
Podlesi 130 10 10 20 Schell G41 230 20 20 0
Podlesi 2000 50 20 90 Schell G42 130 20 10 0
Podlesi 880 30 30 40 Schell G43 230 10 0 10
Podlesi 260 20 20 40 Schell G44 100 20 0 0
Podlesi 280 20 10 50 Schell G45 70 20 10 0
Podlesi 180 10 20 60 Schell G46 30 0 10 0
Podlesi 280 20 40 90 Schell G47 30 10 0 0
Podlesi 510 30 80 110 Schell G48 40 10 10 10

Schell G49 0 30 10 20
Schell G50 30 10 0 10

Schellerhau SG3 Schell G51 80 10 50 10

Sample Al Ti K Fe Schell G52 40 20 10 10
Schell G3 720 60 10 20 Schell G53 30 0 0 0
Schell G4 120 50 10 10 Schell G54 20 30 0 0
Schell G5 50 20 0 10 Schell G55 10 10 10 0
Schell G6 490 20 10 0 Schell G56 30 20 10 0
Schell G7 10 10 10 0 Schell G57 30 20 0 0
Schell G8 30 30 10 0 Schell G58 10 20 0 10
Schell G9 30 30 10 20 Schell G59 0 20 0 0
Schell G10 280 10 20 10 Schell G60 0 10 0 0
Schell G11 370 30 10 10 Schell G61 0 10 10 10
Schell G12 280 50 10 10 Schell G62 0 0 0 0
Schell G13 280 40 10 0 Schell G63 0 20 20 10
Schell G14 270 40 10 10 Schell G64 0 20 10 0
Schell G15 1810 30 0 10 Schell G65 0 10 10 10
Schell G16 410 40 20 20 Schell G66 0 10 0 10
Schell G17 580 20 10 0 Schell G67 0 20 10 10
Schell G18 240 60 20 30 Schell G68 0 0 10 0
Schell G19 690 20 20 10 Schell G69 0 0 0 10
Schell G20 500 20 0 0 Schell G70 0 10 0 0
Schell G21 1150 40 0 0 Schell G71 0 0 10 10
Schell G22 1740 40 50 10 Schell G72 0 20 0 10
Schell G23 260 30 20 10 Schell G73 0 30 20 0
Schell G24 380 20 20 0 Schell G74 0 20 10 0
Schell G25 350 10 10 0 Schell G75 0 30 20 10
Schell G26 30 20 20 0 Schell G76 0 10 0 0
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Appendix E

List of trace element analysis of quartz (SIMS) given in relative concentrations (X/30Si)

1 Megaquartz
Sample 6Li/30Si 23Na/30Si 27Al/30Si 39K/30Si 48Ti/30Si 54Fe/30Si

Hak01 2.16E-04 3.78E-05 1.54E-02 2.12E-05 2.52E-06 2.88E-06
Hak02 1.06E-05 1.51E-05 3.10E-03 1.72E-05 1.14E-06 2.67E-07
Hak03 2.84E-04 2.39E-05 1.50E-02 9.12E-06 2.07E-06 2.75E-06
Hak04 2.21E-04 1.69E-05 1.03E-02 5.36E-06 1.82E-06 2.15E-06
Hak05 3.02E-04 1.92E-05 1.53E-02 6.55E-06 1.66E-06 3.48E-06
Hak06 7.17E-06 1.93E-05 7.87E-04 1.09E-05 8.76E-12 1.47E-07

8 Aue Granite
Sample 6Li/30Si 23Na/30Si 27Al/30Si 39K/30Si 48Ti/30Si 54Fe/30Si

AUE01 5.20E-04 3.86E-04 2.80E-02 6.64E-04 1.82E-04 1.40E-05
AUE02 5.25E-04 1.43E-04 2.56E-02 1.27E-04 1.77E-04 1.13E-05
AUE03 4.90E-04 1.79E-04 2.53E-02 1.30E-04 1.90E-04 1.28E-05
AUE04 3.90E-04 1.70E-04 2.10E-02 1.23E-04 2.04E-04 1.20E-05
AUE05 4.16E-04 1.06E-04 2.05E-02 6.77E-05 1.92E-04 9.15E-06
AUE06 3.04E-04 1.06E-04 1.56E-02 7.66E-05 2.22E-04 7.41E-06
AUE07 2.89E-04 1.51E-04 1.60E-02 9.13E-05 2.24E-04 8.69E-06
AUE08 1.29E-04 1.92E-04 1.16E-02 1.49E-04 2.70E-05 6.15E-06
AUE10 3.25E-04 2.81E-04 2.14E-02 2.36E-04 2.02E-04 1.26E-05
AUE11 1.23E-04 9.85E-04 1.47E-02 4.32E-04 1.33E-04 9.44E-06
AUE12 1.79E-04 4.69E-04 1.77E-02 1.97E-04 2.07E-04 1.08E-05
AUE14 1.87E-04 3.08E-04 1.53E-02 1.54E-04 2.10E-04 9.91E-06
AUE15 1.89E-04 3.70E-04 1.62E-02 1.96E-04 2.06E-04 1.15E-05
AUE17 1.73E-04 2.24E-04 1.50E-02 1.46E-04 1.89E-04 1.10E-05
AUE18 2.23E-04 1.80E-04 1.60E-02 1.28E-04 1.92E-04 1.07E-05
AUE19 2.33E-04 1.77E-04 1.67E-02 1.29E-04 2.01E-04 1.11E-05
AUE20 3.23E-04 1.87E-04 2.31E-02 1.47E-04 2.31E-04 1.83E-05
AUE21 3.26E-04 1.48E-04 1.67E-02 9.06E-05 2.26E-04 8.31E-06
AUE24 2.26E-04 1.49E-04 1.67E-02 1.10E-04 2.23E-04 1.60E-05
AUE25 2.79E-04 2.32E-04 2.14E-02 1.49E-04 1.39E-04 2.94E-05
AUE27 1.17E-04 3.38E-04 1.38E-02 1.85E-04 8.42E-06 5.52E-05
AUE28 1.90E-04 1.44E-03 2.93E-02 3.74E-04 1.28E-04 3.01E-05
AUE29 1.89E-04 6.53E-04 1.98E-02 4.89E-04 0.000129 2.78E-05
AUE30 2.26E-04 2.94E-04 2.08E-02 2.15E-04 1.27E-04 2.23E-05
AUE31 2.89E-04 3.28E-04 2.37E-02 2.71E-04 1.27E-04 2.35E-05
AUE32 2.46E-04 5.01E-04 2.21E-02 3.28E-04 1.37E-04 2.02E-05
AUE33 2.22E-04 4.98E-04 2.15E-02 3.52E-04 1.59E-04 2.20E-05
AUE35 1.49E-04 4.71E-04 1.74E-02 3.85E-04 2.06E-04 1.82E-05
AUE36 1.63E-04 3.99E-04 1.78E-02 2.12E-04 2.03E-04 1.61E-05
AUE38 2.90E-04 4.33E-04 2.78E-02 3.14E-04 9.90E-05 2.98E-05
AUE39 1.31E-04 8.14E-04 1.64E-02 5.72E-04 1.64E-04 1.85E-05
AUE40 2.54E-04 2.80E-04 1.87E-02 2.00E-04 2.00E-04 1.91E-05

15 Weinheim Rhyolite
Sample 6Li/30Si 23Na/30Si 27Al/30Si 39K/30Si 48Ti/30Si 54Fe/30Si

Rhy01 2.32E-04 2.05E-04 1.83E-02 1.87E-04 1.76E-04 2.26E-05
Rhy02 2.18E-04 2.16E-04 1.61E-02 1.94E-04 2.26E-04 1.90E-05
Rhy04 9.44E-05 2.43E-04 1.66E-02 2.11E-04 2.44E-04 1.91E-05
Rhy05 1.10E-04 2.39E-04 1.63E-02 2.15E-04 2.37E-04 2.02E-05
Rhy06 9.01E-05 2.19E-04 1.61E-02 1.98E-04 2.38E-04 1.89E-05
Rhy07 9.22E-05 2.52E-04 1.53E-02 2.18E-04 2.28E-04 1.87E-05
Rhy08 1.34E-04 2.66E-04 1.75E-02 2.53E-04 1.86E-04 2.09E-05
Rhy09 2.46E-04 1.35E-03 3.20E-02 3.04E-03 2.97E-04 4.04E-05
Rhy10 2.91E-04 2.60E-03 3.38E-02 3.34E-03 3.07E-04 4.31E-05
Rhy11 3.66E-04 6.38E-04 2.29E-02 7.56E-04 2.41E-04 3.06E-05
Rhy13 2.79E-04 2.70E-04 1.64E-02 2.31E-04 7.65E-05 1.93E-05
Rhy14 2.18E-04 2.47E-04 1.40E-02 1.98E-04 4.64E-05 1.80E-05
Rhy15 1.55E-04 1.53E-03 1.94E-02 1.03E-03 1.29E-04 5.97E-05
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