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1 Introduction

Modern telecommunication systems involve complex interactions between distributed
components. Very often, these systems are heterogeneous and their components come
from many different vendors. To ensure that products of different companies can interact
with each other, cross-national organizations such as the Furopean Telecommunications
Standards Institute (ETSI) or the International Telecommunications Union (ITU) de-
fine international standards for protocols.

In the past, these standards were specified in natural language. But since informal
descriptions can be misinterpreted, formal description techniques are applied in many
standards nowadays. Due to their formal semantics, formal description languages allow
for precise, unambiguous specifications. Two specification languages that are used in
the telecommunication area are the Specification and Description Language (SDL) and
Message Sequence Chart (MSC). While SDL is used for the specification of complete
systems, MSC allows to describe single scenarios.

In recent decades, computer science has made great efforts to improve the quality of
software. Nevertheless, a software product has to undergo extensive tests before it can
be used in practice. The process of determining the extent to which an implementation
fulfills the requirements of its specifications is called conformance testing.

Thorough testing is expensive and time-consuming. On the other hand, testing is always
incomplete; it can detect errors in the implementation but it can never prove their
absence. For economical reasons, testing calls for a systematic and efficient approach.
In particular, this goes for the initial phase of conformance testing in which a suitable
set of test cases must be defined for a given protocol. Typically, the standardization
organizations take over this task and provide the manufacturers with test suites that
are specified in a standardized test language such as the Tree and Tabular Combined
Notation 2 (TTCN-2).

If a formal specification is available, test cases can be derived automatically from the
specification. This can be achieved, e.g., by means of simulation. Automatic test gen-
eration based on formal specification leads to a faster, cheaper, and less error-prone
testing process. It ensures that the generated test cases are correct with regard to the
specification. Moreover, their effectiveness can be assessed and quantified.

This thesis deals with the automatic generation of test suites for conformance testing.
In particular, work has been done in the following problem areas:

1. Test case generation for test architectures where the tester itself is a distributed
system.
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2. Efficient exploration of the state space of the specification that retrieves test cases
with a high coverage in a reasonable time.

3. Improved readability of generated test suites by means of user-defined rules and
automatic structuring of data descriptions.

The framework in which all these solutions are embedded is formed by the AUTOLINK
project. During this five-year joint project with TELELOGIC SA, Malmo, the Institute for
Telematics (University of Liibeck) developed a commercial tool that allows to generate
TTCN-2 test suites based on SDL system specifications and MSC test purposes. Various
projects at ETSI have proved the successful application of AUTOLINK.

Beside the AUTOLINK project, two other works in the field of testing and test generation
are considered in this thesis: In 2001, a new universal testing language, called Testing
and Test Control Notation 8 (TTCN-3), was released. The author was involved in its
standardization and developed the first free TTCN-3 syntax checker. Experience with
AUTOLINK has unveiled that the traditional way of simulating a specification raises some
problems that could be solved by symbolic execution. For proof of concept, a prototype
has been developed that demonstrates the benefits of symbolic execution.

The Structure of the Thesis

This thesis consists of eleven chapters. The dependencies between the individual chapters
are shown in figure

In chapters 2/ and [3, the fundamental aspects of testing are outlined. Chapter 2| “Foun-
dations of Testing”, provides an overview of types of testing, test architectures, and test
methods. The ISO/OSI Conformance Testing Methodology and Framework is especially
emphasized. In chapter (3, “Test Languages”, the Tree and Tabular Combined Notation 2
and its successor, the Testing and Test Control Notation 3, are described and compared.

The theoretical foundations of automatic test generation are explained in chapter
“Test Generation Based on Formal Specifications”. It summarizes the main concepts of
the ITU-T Framework on Formal Methods in Conformance Testing and presents dif-
ferent test generation methods. In chapter |5, “High-Level Specification Languages”, the
formal description techniques Message Sequence Chart and Specification and Description
Language are introduced. They are used for automatic test generation in this thesis.

The AUTOLINK project is described in chapters[6/to[9. Chapter[6, “The AUTOLINK Tool”,
provides an overview of the test generation process. In addition, the interpretation of
MSCs for test generation purposes is considered and two case studies are introduced. In
the following three chapters, solutions for specific test generation problems are presented.
Chapter [7, “Test Generation for Distributed Test Architectures”, deals with methods for
specifying synchronization among different test components and presents an algorithm
for the generation of test cases for concurrent TTCN-2. Chapter [8, “The TREE WALK
Search Strategy”, describes a new deterministic search strategy that achieves a higher
system coverage than traditional approaches and produces test cases without redundant
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Figure 1.1: Structure of the thesis

test events. Chapter (9, “Test Suite Representation”, is concerned with the readability of
automatically generated test suites. Two solutions are proposed: Customization by user-
defined rules and automatic constraint structuring with no or only minor intervention
by the test specifier.

One of the greatest challenges in automatic test generation is the modeling of the envi-
ronment when simulating a specification. In chapter “Advanced Test Generation by
Symbolic Execution”, a prototype is presented that demonstrates how to cope with this
problem.

Each of the previous chapters concludes with one or more case studies that are based
on three protocols, namely Inres, Core INAP CS-2, and VB5.2 BBCC. In addition,
possible improvements are discussed, where appropriate. In chapter “Conclusions”,
some ideas on the application and future perspective of automatic test generation in
general are presented.

The document is completed by three appendices: In appendix|A, the abbreviations used
throughout this thesis are listed. Appendices B and [C] include complete TTCN-2 and
TTCN-3 test suites for the Inres protocol of which parts are presented in chapter [3]
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2 Foundations of Testing

Testing is a method or process that aims at detecting errors in a system or a system
component. Beside verifying and analyzing methods, testing is one of the three analyt-
ical ways of ensuring the quality of a product in terms of functionality and reliability
(Liggesmeyer, 1990, p. 28). But since verification mostly fails due to the complexity of
modern systems, and static analyses of their structure and complexity (based on metrics
and control/data flow) can only give hints at potential problems, testing is often the
only practicable method to create confidence in a system.

Testing represents an extensive and multifaceted process within the software and hard-
ware life cycle. A classification and description of different types of testing is given in
section [2.1. This thesis is concerned with conformance testing whose purpose is to de-
termine the extend to which an implementation complies with its specification(s). The
core concepts of conformance testing are presented in section A short survey of
the testing process and the persons involved is given in section [2.3. Finally, section 2.4
discusses the major aspects of abstract test methods and test configurations.

2.1 Classification of Tests

Testing is a generic term that subsumes many different methods, procedures, and ob-
jectives of various application areas (see, e.g., Peng and Wallace (1993); Walter et al.
(1998)). Accordingly, there are several possible ways to define and classify types of tests
(see, e.g., Balzert (1998, chapter 5) and Coward and Ince (1995, chapter 2)).

A first major distinction can be made between static and dynamic test methods:

Static methods are based on the analysis of code. Manual test methods that fall into
this category are review (software requirements, design, and code are presented to an
audience for comments and approval), inspection (the work is examined by a person
or group other than the author), and structured walkthrough (the developer guides his
colleagues through a segment of design or code).

Contrarily, dynamic test methods are based on the execution of the system to be tested.
Typically, the system is stimulated by some input and the resulting output (response)
is observed and appraised.

In the following, dynamic testing is characterized by five properties:
e The type of implementation

e The objective of the test
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e The knowledge of the internal structure of the system
e The authority used for determining the test results

e The selection of the test data

Type of Implementation. According to whether the system to be tested is a physical
device or a piece of software, two types of testing can be distinguished:

e Hardware testing: The system is tested on the level of single transistors, circuits,
or functional entities such as CPU caches or video graphics cards. The exchange
of test data between the tester and the system takes place on the physical layer
where the inputs and outputs are either analog signals or discrete data.

e Software testing: The system represents a program whose behavior is checked
by exchanging test data on the logical, i.e., non-physical, layer. Although a pro-
gram cannot exist without an underlying physical machine, software testing simply
assumes its correctness and abstracts from it.

Both types of testing also occur in combination, e.g., if a hardware device with embedded
software, such as a medical diagnosis system, is tested.

Software testing itself applies to all kinds of programs (and their specific interfaces)
including communication protocol instances (service access points), libraries (application
programming interfaces), and user applications (graphical user interfaces). Tests can be
applied to single methods and functions, classes and methods, or complete systems.

Test Objective. There are different types of requirements that an implementation must
fulfill to work correctly. Accordingly, there are various kinds of test objectives:

e Functional tests check the functional behavior of a system, i.e., its correct in-
put/output behavior in certain states of program execution. PassinEg functional
tests successfully is an essential prerequisite for any implementation.!

¢ Real-time tests are made to test the correct behavior of a system with regard to
its real-time requirements. One can distinguish between two types of requirements:
Hard real-time requirements demand that a system responds to some input within
a fixed period of time (e.g., in flight control systems). Contrarily, soft real-time
requirements, as imposed on multimedia systems, allow for some variance in the
response times. Their compliance is examined by statistical measures (— Quality
of Service tests).

e Performance tests analyze the system with regard to response times, CPU us-
age, memory requirements, or other quantifiable features in normal and overload
situations. Performance data can either be obtained externally (e.g., by measuring
the system’s process time relative to the volume of input data) or by instrumen-
tation of the code (e.g., when measuring the average execution time of a single
function).

!Please note that in literature, functional testing is also used as synonym for black box testing.
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e Load tests are used to check the behavior of a system under heavy load. Their
purpose is to ensure that the system is capable to respond in time, even if the test
data are sent to the system at a high rate.

e Stress tests analyze the behavior of a system under unusual conditions. Excep-
tional states are caused, e.g., by inopportune or malformed test data that are fed
into the system at a high rate.

e Integration tests make sure that several software and/or hardware elements are
combined in such a way that all intermodule communication links are established
correctly.

e Portability tests aim at demonstrating that a software system can be ported to
another hardware or software platform.

e Penetration tests analyze the system with regard to vulnerabilities that allow
a potential attacker to gain unauthorized rights or even to take control of the
system. For that purpose, the system is checked for erroneous configurations and
known software bugs. Typically, the system is a server that is running on a host
connected to a network.

e Usability tests aim at assessing the human-computer interface of a system with
regard to criteria such as adequacy, simplicity, clarity, and consistency. Typically,
usability tests are performed by recording and evaluating the behavior of an exter-
nal test person interacting with the system (gestures, response times, eye move-
ment, etc.).

System Knowledge. The amount of information given about the system implementa-
tion determines the way in which tests can be specified. Three types of testing can be
distinguished:

e Black box testing: The system is considered a component with interfaces to its
environment that is supposed to fulfill a specific task but whose internal structure
is unknown. Black box tests are derived from the specification which the system
is based on as this is the only source of information.

e Gray box testing: Some information about the workings of the system are known
in advance or observable during test execution (e.g., the number of states or the
current state in case of state-machine like implementation). This knowledge can
be used when specifying test cases.

e White box testing (Glass box/Structural testing): All internal details of the
system, typically in form of its program code, are known. The set of appropriate
tests (test data) is determined by a preceding control flow or data flow analysis.

Please note that in literature, the term white box testing is sometimes used to denote tests
during which the internal sequence of events can be inspected by means of monitoring.
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Authority for Test Results. Another criterion for classifying tests is the “authority”
which is used as reference to decide whether a system passes a test successfully.

e Conformance testing is used to determine the extend to which an implemen-
tation conforms to its specification. In general, no information about the internal
structure of the implementation is given, i.e., conformance testing implies black
box testing.

e Interoperability (compatibility) testing is a means to ensure that an im-
plementation, e.g., a protocol entity, is able to work with other implementations.
There are two kinds of interoperability testing: Active testing allows to insert
selective errors in the communication between two systems and monitor their re-
actions, whereas passive testing is restricted to testing valid behavior only.

Even if two implementations that claim to conform to the same specification are
able to interoperate, it does not necessarily mean that they in fact conform to the
specification. The other way round, two systems conforming to the same specifi-
cation do not necessarily interoperate if, e.g., the specification is ambiguous.

e Regression testing is repeated whenever significant code changes are made.
Selective retesting of a product ensures that modifications do not have unintended
side effects and systems requirements are still met. Since former software releases
are assumed to fulfill the system requirements, they are supposed to pass all tests
and can be considered as reference. Thus, only deviations in the test outcome
between the latest release and its predecessors must be considered. (Testing of
new features is called progressive testing.)

e Back-to-Back/Comparison testing is a process by which the output of two
or more systems that are based on the same specification is compared to detect
anomalies. Comparison testing does not detect specific errors but only discrepan-
cies. If all implementations contain the same error, it will not be discovered.

Test Data Selection. During test execution, the system is stimulated with test data
and its response is compared with the set of valid outputs. The extend to which test data
are considered from the input domain of the system determines the comprehensiveness
of the tests.

e Exhaustive testing: Any possible test data is used for every possible point of
execution. In practice, the domain of most inputs is rather large and the response
of (stateful) systems may also depend on former inputs. Thus, exhaustive tests
can only be made for systems with very small complexity.

e Partition testing: The input domain is divided into several disjoint subdomains
from which only one test data is chosen. These subdomains may be determined
by a data flow analysis of the systems or by some general rule. For instance, a
negative value, zero, and a positive value might be chosen for each integer.

2The fact that a specification can be interpreted in different ways may even remain unnoticed until
interoperability tests are performed.
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e Boundary value testing: As a special kind of partition testing, test data are
selected on or around range limits or boundaries. In addition, test data should
be chosen to force the output to its extreme values (or beyond the specification
boundaries). For integers, the value zero often causes problems (e.g., divisions by
zero). For sequences of data, attention should be focused on their first and last
element and on empty lists.

e Random testing: Test data are selected in a random manner.

e Mutation testing: Based on the system specification or the program itself, a
large set of modified versions, mutations, are created that differ from the original
program by a single characteristic such as a missing or modified statement. Test
data are selected in such a way that the test result of at least one test case differs
between each mutant and the original program.

2.2 Conformance Testing Concepts

In the following, the major concepts of conformance testing as defined in ISO/IEC
International Standard 9646 (ISO/IEC, 1994b) are introduced.® ISO/IEC IS 9646 is
a seven-part standard that is better known as Information technology — Open systems
interconnection — Conformance testing methodology and framework (CTMF'). Although
it focuses on OSI protocol testing, most of its concepts apply to conformance testing in
general and even other test methods.

2.2.1 Conformance Requirements

The purpose of conformance testing is to find out whether an implementation conforms
to its base specification(s). In order to do so, an implementation must fulfill both static
and dynamic conformance requirements.

Static conformance requirements specify the minimum set of capabilities which have
to be implemented to facilitate interworking. In addition, they define limitations of the
combination of capabilities. In this context, a capability denotes a set of functions defined
in the protocol specification that is supported by the implementation.

Dynamic conformance requirements specify the observable behavior (in terms of com-
munication) that is permitted according to the base specification(s).

Within the presented framework, conformance testing means functional black box test-
ing. Therefore, while violations of conformance requirements might be detected during
test execution, their absence cannot be guaranteed.

3 An alternative framework for conformance testing is defined by ISO/TEC International Standard 13210
(ISO/IEC,|1994a). It specifies the general requirements and test methods for measuring conformance
to POSIX (Portable Operating System Interface for UNIX) standards.
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2.2.2 Test Cases

A test casel is a specification of all actions that need to be performed to achieve a
specific test purpose. Ideally, a test case should focus on a single or a small set of related
conformance requirements.

IS 9646-1 (ISO/IEC, 1994b, pp. 14-15) defines four types of tests which vary in the
extend to which they give evidence for conformance:

e Basic interconnection tests are used to ensure that the main features of the
specification are implemented correctly and no severe case of non-conformance
exists.

e Capability tests check that the observable capabilities of the system conform
to (a) the allowed combination of capabilities as stated in the static conformance
requirements and (b) the capabilities listed by the supplier in his implementation
conformance statements (ICSs).

e Behavior tests aim at testing the implementation thoroughly, covering the full
range of specification requirements (within the capabilities of the implementation).
Behavior tests represent the majority of all conformance tests.

e Conformance resolution tests provide an in-depth analysis of the behavior of
a system with regard to particular conformance requirements. Typically, they are
non-standardizable as their execution involves system-specific diagnostic facilities.

ISO/IEC IS 9646 distinguishes between two types of test cases that are related to each
other: An abstract test case is specified according to an (abstract) test method (see
section|2.4) which describes how an implementation is to be tested. However, the speci-
fication is made on a level that abstracts from the concrete equipment and procedures,
i.e., the means of testing (MOT'). Thus, for test execution, an executable test case must
be derived from an abstract one.

A test case must be defined in such a way that the system under test (SUT, see 2.4)
starts and ends in a stable testing state which is maintained sufficiently long by the SUT
— without further input from the tester — to bridge the gap between the execution of
two test cases. Typically, the stable testing state is identical to an idle testing state, i.e.,
a state in which there are no open connections and the state of the SUT is independent
from test cases executed previously. This guarantees that all test cases can be executed
in isolation and their execution order does not have any impact on the test result.

A test case consists of sequences of atomic test events such as sending or receiving a
message. A valid test event is a test event that is syntactically and semantically correct
and occurs when allowed to do so by the specification. An invalid test event is a test
event that violates at least one of these conformance requirements. An inopportune test
event is an invalid test event that occurs when not allowed to do so according to the
specification.

4For convenience, the term test is used as a synonym for test case throughout this thesis.
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Each sequence of test events stands for a foreseen test outcome. Conceptionally, a test
case can be structured into three parts:

e The test preamble comprises the sequences of test events from the starting stable
testing state to an initial testing state.

e The test body contains the sequences of test events that achieve the test purpose.

e The test postamble comprises all sequences of test events from the end of the test
body to the final stable testing state.

Test preamble and test postamble are optional elements whose only purpose is to drive
the SUT into the desired states, whereas the real conformance test is made when exe-
cution the test body.

2.2.3 Test Verdicts

To each foreseen test outcome, an abstract test case must assign a test verdict. ISO/IEC
IS 9646 defines three types of verdicts:

e A pass verdict indicates that no invalid test event has occurred and the test out-
come gives evidence that the implementation conforms to its specification(s).

o A fail verdict indicates that at least one invalid test event has occurred or that
the observed test outcome proves non-conformance of the implementation to its
specification(s).

e An inconclusive verdict is assigned if neither a pass nor fail verdict can be as-
signed indisputable. This is the case if the implementation acts conforming to its
specification(s) but no statement can be made about the particular conformance
requirement(s) which are considered by the test purpose.

A preliminary test verdict may be assigned at the end of the test body to indicate that
the test purpose has been achieved. A final test verdict is assigned at the end of the test
case.

If, during test execution, a fault is detected in the test case itself, a test case error is
reported instead of one of the test verdicts above.

2.2.4 Test Suites

A test suite is a collection of test cases that are used to perform conformance tests. In
addition, it contains general information such as the specification(s) and the test method
on which the test suite is based, and statements about its test coverage.

Test suites have a nested structure: Related test cases whose test purposes aim at a
common objective can be combined in a hierarchy of (named) test groups. Test events
within a test case that form a logical unit, such as a test preamble or postamble, can be
described in form of a test step. It can be reused for the description of other test cases.
Test steps are allowed to refer to other test steps.

11
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In analogy to test cases, ISO/IEC IS 9646 distinguishes between abstract test suites
(ATSs) and ezxecutable test suites (ETSs). Throughout this thesis, the terms test suite
and test case are used to denote abstract entities.

2.3 The Conformance Testing Process

Conformance testing comprises several steps that involve single persons or teams with
different roles:

e A client of a test laboratory submits a system or implementation for conformance
testing.

o A test specifier develops the abstract test suite and associated documents.

o A test realizer provides the means of testing that are required for the test opera-
tion.

o A test laboratory carries out the conformance tests.

In the following, the phases test suite development, test preparation, test operation, and
test evaluation are described briefly.

2.3.1 Test Suite Development

The initial task of testing is to define a reasonable set of test cases. As mentioned
in section 2.1} test cases for black-box testing must be derived from the specification(s)
which the implementation is based on. Normally, specifications are available in a textual
and informal manner. In these cases, test cases must be defined manually which bares
the risk that the tests itself contain errors, e.g., due to misinterpretation of the standard.
For that reason, conformance tests and system implementations should be developed by
different teams. If, on the other hand, a specification includes a formal description that
forms a normative part, automatic test generation can be applied. The main part of this
thesis deals with methods on how this can be achieved.

In the telecommunication area, specifications are defined by international standardiza-
tion organizations such as the International Telecommunication Union (ITU), the Eu-
ropean Telecommunication Standards Institute (ETSI), the Institute of Electrical and
FElectronics Engineers (IEEE), or the Internet Engineering Task Force (IETF). In order
to take the burden of developing their own set of test cases from the manufacturers, these
standardization organizations often publish their protocol specifications along with test
specifications in form of abstract test suites.

2.3.2 Test Preparation
In the test preparation phase, the supplier or implementor has to provide all information

that is necessary for a (possibly independent) test laboratory to perform the confor-
mance tests: All relevant specifications to which conformance is claimed are identified

12
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in a system conformance statement (SCS). The capabilities that have been realized for
each specification are listed in implementation conformance statements (ICSs). Finally,
additional information about the implementation and its test environment are given in
implementation extra information for testing (IXIT) statements.

Based on the created document, a suitable abstract test method and a corresponding
abstract test suite is chosen. Thereafter, the test laboratory sets up the SUT and the
means of testing accordingly. Protocol testing often requires tailored tester hardware to
communicate with the SUT. For instance, PCs with special interface devices might be
used. In addition, the tester software, ideally based on a real-time operation system,
needs to be configured. If a test suite is given in a standardized test language like the
ones presented in chapter [3, a compiler or interpreter is able to translate large parts
of an abstract test suite into an executable one. Equipment-specific extensions such as
synchronization between different tester components which an ATS abstracts from are
implemented in a run-time environment.

2.3.3 Test Operation

The test operation phase starts with a static conformance review. The ICSs provided by
the supplier are analyzed respecting the static conformance requirements of the stan-
dards listed in the SCS. The purpose of this review is to detect invalid combinations of
implemented capabilities based on the statements of the supplier. In addition, the IXIT
documents are checked for consistency.

To check the dynamic conformance requirements, the parameters of the test suite(s) are
set according to the declarations in the ICSs and IXITs and the set of applicable test
cases is determined. Afterwards, a test campaign is performed for each parameterized
executable test suite. During each test campaign, the observed sequences of test events
as well as other information about the test execution, e.g., test verdicts, are recorded in
a conformance log.

2.3.4 Test Evaluation

After the test operation, the test results are determined based on the conformance
logs produced during the test campaigns. In case of uncertainty, the correctness of test
verdicts for individual test cases can be checked due to the complete logging of the test
outcome.

In a final step, conformance test reports are created based on the results of the static
conformance review and the test campaigns. They give a summary of the actual con-
formance of the implementation to its specification(s) as well as a detailed list of those
abstract test cases for which executable test cases were executed, together with their
resulting test verdicts.

13
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Figure 2.1: The distributed test method in a multi party context

2.4 Test Methods and Configurations

An important prerequisite for specifying an abstract test suite is to define an adequate
abstract test method that considers the special properties of the specification and the
way it is intended to be implemented. To some extend, the chosen test method also
determines the concrete test configuration that is established during test execution.

ISO/TEC IS 9646 (part 1, p. 25) defines four main abstract test methods, called local,
distributed, coordinated, and remote test method, and several variants for embedded
testing and multi user/multi party testing. These test methods vary in the degree of
controllability and observability of test events sent and received by the implementation.
To illustrate this, the conceptional view of the distributed test method in a multi party
context is presented in figure (2.1l

In each test method, four major entities are identified:
o A system under test (SUT), i.e., a real open system provided by the client.

e An implementation under test (IUT), i.e., the part of the SUT which is subject
to conformance testing.

14
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o A test system (also called tester), i.e., a real system that is provided by the test
laboratory.

e A service provider which is used for communication between the tester and the
SUT.

The SUT may be identical to the IUT or contain additional components. For instance, if
the upper boundary of the IUT is a software interface, facilities to control and observe the
TUT must be provided within the SUT, since the tester is not able to address the interface
directly. This circumstance is reflected by the distributed test method (figure 2.1).

The actual test execution is performed by the following functional entities:

e An upper tester (UT) controls and observes the upper service boundary of the
IUT.

o A lower tester (LT) controls and observes the lower service boundary of the IUT
via an underlying service-provider.

o A lower tester control function (LTCF) coordinates the lower testers and deter-
mines the final test verdict in a multi-party testing context.

In a concrete test configuration, the functional entities listed above are mapped to one
or more test components, i.e., active elements which are executed in parallel. Each test
component realizes the functionality of one or more UTs and LTs. The lower tester
control function is integrated in the main test component (MTC'). The number of test
components depends on the degree of concurrency in the behavior of the tester. In a
multi party context, one test component should be defined for each party. However, it
should be noted that, in principle, several test components again may be executed on
the same physical device.

The interaction of the tester with the IUT can take place at different points of control
and observation (PCOs). Each PCO is modeled by two queues that contain the test
events to be sent to and received from the IUT. Upper testers exchange abstract service
primitives (ASPs) with the IUT; lower testers exchange protocol data units (PDUs)
with the IUT. In practice, these PDUs are encapsulated into ASPs of a service provider
which connects the LT with the IUT.

Synchronization among the UTs, LTs, and the LTCF is achieved by test coordination
procedures (TCPs). Their requirements shall be specified for each ATS — either explicitly
or implicitly by the test language that is used for the definition of the ATS. On the other
hand, the technical realization of test coordination procedures is not prescribed by a test
method.
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The formal specification of tests calls for standardized languages that are widely ac-
cepted. In principle, existing programming or script languages could be used for these
purposes (see, e.g., the DEJAGNU GNU Testing Framework; Savoye, 2001). However,
these languages do not provide the appropriate level of abstraction. For instance, tra-
ditional programming languages make clear assumptions on low-level implementation
aspects such as memory management. On the other hand, high-level testing concepts
like test components are not provided and must be added afterwards on top of these lan-
guages (e.g., by supplementary classes). Moreover, the control structures of languages
like C or Java do not fit to the requirements of testing concurrent systems and lead
to large and confusing specifications. Script languages have been designed but they
are either tailored to a specific test equipment (Moesch, 2001), or to a very restricted
application area (see, e.g., the NESSUS attack scripting language, Deraison (2000)).

For the reasons given above, the Tree and Tabular Combined Notation was developed
and published by the International Organization for Standards (ISO) in 1992. It has
gained wide acceptance during the last decade as the primary language for testing of
telecommunication protocols. In 1997, the second edition of TTCN (TTCN-2) was re-
leased. It is described in section 3.1 and used as the target language for automatic test
generation within the scope of this dissertation.

In recent years, it has become apparent that the strong relationship between TTCN-2
and the OSI conformance testing methodology imposes restrictions on the application
of the language. Therefore, it has been decided to develop a new test language that sup-
ports a wider spectrum of testing types and infrastructures (e.g., the Common Object
Request Broker Architecture, or CORBA for short). As a result, the Testing and Test
Control Notation 3 (TTCN-3) was released by the European Telecommunications Stan-
dards Institute (ETSI) in 2001 with major contributions by the Institute for Telematics,
Liibeck, involving the author himself. Although TTCN-3 is considered the successor of
TTCN-2 and although both languages share many basic concepts, they have totally
different styles. In fact, TTCN-3 was redesigned from scratch. The main features of
TTCN-3 are described in section

The Inres Case Study. The concepts of TTCN-2 and TTCN-3 are illustrated by test
suites for Inres, a service and protocol designed for educational purposes (Hogrefe, 1989).
It is also used in chapter[5 for the description of the formal specification languages MSC
and SDL.!

! Another introduction to TTCN-3, MSC, and SDL by the author with a consistent case study from
process automation is published as Grabowski and Schmitt (2002); Grabowski et al. (2001, 2002).
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Figure 3.1: The Inres service and protocol

Inres — which stands for INitiator-RESponder — is a reliable, asymmetric and connec-
tion-oriented service on the OSI data link layer that ensures the safe transmission of
data over an unreliable medium. For that purpose, a sequence number is transmitted
along with each data. The responder protocol entity must acknowledge each data packet
by the correct sequence number.

The Inres service comprises the three phases connection establishment, data transfer,
and connection release. The message exchange that takes place when a service user A
transmits one data packet to some service user B is shown in the message sequence chart

(MSC) in figure

The main features of TTCN-2 and TTCN-3 are illustrated by test suites for testing the
conformance of Initiator protocol entity implementations. The local test method of the
CTMF is chosen, i.e., both upper and lower tester reside inside the test system. The
upper tester takes the role of Service User A and exchanges Inres ASPs with the SUT via
Inres service access point ISAP1. The lower tester simulates the behavior of a Responder
protocol entity and communicates with the SUT via service access point MSAP2 of the
Medium service provider. The conceptual architecture is shown in figure [3.2.

For simple comparison of both languages, the TTCN-2 and TTCN-3 conformance test
suites for Inres are specified as syntactically and semantically equivalent as possible while
taking into account the characteristics of both languages. In the following sections, only
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Figure 3.2: The local test method applied to Inres

simplified extracts are presented. Complete test suites can be found in appendices B
and [C.

3.1 The Tree and Tabular Combined Notation

The Tree and Tabular Combined Notation, second edition, (TTCN-2) is a language for
the specification of abstract test suites for OSI protocol testing. It is published as the
third part of ISO/IEC International Standard 9646 (ISO/IEC, 1997).

A TTCN-2 document can have two semantically equivalent forms: The graphical rep-
resentation, called TTCN.GR, is based on tables in which the test specifier fills in all
test suite information. The machine processable form, called TTCN.MP, reflects the
structures and contents of these tables in a text-based representation. TTCN.MP is
hard to edit by hand and serves solely for the purpose of storing TTCN-2 test suites
in a canonical way and for exchanging them between different tools. In the following,
examples are given only in the graphical form.

A TTCN-2 test suite is structured into five parts:

e The Test Suite Overview part contains information on the purpose, extent, and
structure of a test suite.

e The Import Part lists objects that are used in the test suite but defined in a
different document.
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Test Suite Structure

Suite Name : TestsForlnres

Standards Ref

PICS Ref

PIXIT Ref

Test Method(s) : Local test method

Comments

Test Group Reference | Selection Ref Test Group Objective Page Nr

BasiclnterconnectionTests/ Determine whether there is sufficient confor- (210
mance for interconnection to be possible

BehaviorTests/ Determine the extent to which dynamic confor- |[210
mance requirements are met

Detailed Comments :

Test Case Index

Test Group Reference Test Case Id Selection Ref Description | Page Nr
BasiclnterconnectionTests/ SingleDataTransfer 210
BehaviorTests/ Dataloss InopportuneEvents 210

Detailed Comments :

Figure 3.3: TTCN-2 — Test suite overview

e The Declarations Part contains definitions and declarations of all objects used in
the other parts of the test suite.

e The Constraints Part defines the values that are to be sent and received by the
tester.

e The Dynamic Part specifies the dynamic test behavior, i.e., the test outcomes.

For each part, TTCN-2 defines a set of table proformas. Depending on the type of table,
a TTCN test suite can have one or more instances. In the following, the main concepts
of each part are described and illustrated by simple examples.

3.1.1 Test Suite Overview and Import Part

In the Test Suite Overview part, general information on the purpose and content of a
test suite are provided. This information includes the structure of the test suite, indexes
of test cases and test steps, and exported objects that can be reused in other test suites.

In figure/3.3, two tables of the test suite overview part are shown. Their overall layout and
their captions (printed in bold font) are prescribed by the TTCN-2 standard. The Test
Suite Structure table specifies the name of the test suite, its supplementary documents
(standards, protocol ICSs (PICSs), and protocol IXITs (PIXITs)), its test method,
and its test groups. In the given example, two test groups, BasicInterconnectionTests
and BehaviorTests, are defined. In the Test Case Index table, all test cases and their
corresponding test groups are listed.

TTCN-2 allows to define selection expressions that apply to either a single test or a
complete test group. A test case/test group is only executed if its selection expression
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evaluates to true. This mechanism allows to choose test cases depending on the capa-
bilities of the IUT. In figure [3.3, second table, test case DataLoss is tied to selection
expression InopportuneEvents (its definition is given in a separate table in appendix B).

The Import Part consists of only one table which lists all objects (type definitions, test
steps, etc.) that are imported from another source. Conceptionally, it is the counterpart
of the Test Suite Exports table in the Test Suite Overview part in which all exportable
objects are declared.

3.1.2 Declarations Part

The Declarations part comprises declarations and definitions for all objects used in
the test suite, including data types, parameters, constants, variables, timers, auxiliary
functions (operations), and elements of test component configurations.

Data Model. TTCN-2 comes along with various predefined simple types, including
INTEGER, BOOLEAN, BIT/HEX/OCTETSTRING, and 12 types of character strings with
varying character set. Based on these basic types, subtypes with restricted value range
or complex data types can be constructed.

In accordance with OSI terminology, TTCN-2 distinguishes between data types, ASP
types, and PDU types. Simple and structured data may appear inside ASPs and PDUs
but they are not allowed to be used directly for send and receive test events. In ad-
dition, coordination messages (CMs) must be defined for communication between two
test components within the tester. For each kind of type, TTCN-2 provides a distinct
table proforma. Normally, each definition is made in a separate table but there are also
compact proformas for multiple definitions to reduce the amount of tables.

In the telecommunication area, it has become common practice to define data types in
the Abstract Syntaz Notation 1 (ASN.1; ITU-T, 1997a). Thus, TTCN-2 permits the
use of ASN.1 as alternative to its own data language. Table proformas are provided to
define ASN.1 data types inside the test suite or to refer to an external ASN.1 module.

In figure 3.4, two ASN.1 definitions are presented. In the first table, PDU type Inres-
PDU is defined as a sequence with the three fields iPDUType, seqNo, and iSDU where
the latter two are optional (depending on iPDUType; cf. figure 3.1). According to the
test method shown in figure [3.2, a medium service provider is used for communica-
tion between the lower tester and the SUT. It exchanges ASPs of type MDATreq and
MDATind with the lower tester in which InresPDUs are embedded. In the second table
of figure[3.4, the definition of MDATreq is given.

By default, TTCN-2 does not make any assumptions on the ranges of integers and floats,
since these details are tightly coupled with aspects of data encoding which is outside the
scope of the language itself. However, the test specifier may assign encoding rules to the
whole test suite or to single data types and PDU types. The semantics of these rules is
determined in some external manner, e.g., by the test system. In figure first table,
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ASN.1 PDU Type Definition
PDU Name : InresPDU
PCO Type :
Encoding Rule Name : PER_BASIC_UNALIGNED_1997
Encoding Variation
Comments . Apply Packed Encoding Rules
Type Definition

SEQUENCE {
iPDUType InresPDUType, -- CR, CC, DR, DT, or AK
seqNo SequenceNumber OPTIONAL, -- zero or one
iSDU UserPDU OPTIONAL

}

Detailed Comments : A User PDU on layer n+1 becomes an Inres SDU on layer n

ASN.1 ASP Type Definition

ASP Name : MDATreq
PCO Type : MediumSAP
Comments

Type Definition

SEQUENCE { mSDU InresPDU }
Detailed Comments : An Inres PDU on layer n becomes a Medium SDU on layer n-1

Figure 3.4: TTCN-2 — ASN.1 type definitions

the specification of encoding rule PER_BASIC_UNALIGNED_1997 means that PDUs
of type InresPDU must be encoded according to the ASN.1 Packed Encoding Rules.

Parameters, Constants, and Variables. Test suites can be parameterized for re-use in
different contexts. Thereby, properties of the IUT can be passed to a test suite and, e.g.,
used in test selection expressions. Test suite parameters are considered global constants.
For each parameter, a reference to the corresponding entry in a PICS/PIXIT document
must be given. Further global constants that are not derived from a PICS or PIXIT can
be defined in a separate Test Suite Constant Declaration table.

Variables can be defined with two different scopes and life-times. Test suite variables
exist during the execution of the whole test suite and thus can be used to pass infor-
mation from one test case to another (e.g., test verdicts). Test suite variables are only
accessible by the main test component. In contrast, the life-time of test case variables
is restricted to each single test case. All test components, i.e., both the main and the
parallel test components, obtain their own complete set of variable instances at the time
of creation.

Test Component Configurations. TTCN-2 allows to define one or more test compo-
nent configurations in a test suite. A test component configuration is characterized by
a main test component (MTC'), zero or more parallel test components (PTCs), and the
communication links among these components and between the test components and
the SUT. If no test component configuration is given, a default configuration with only
one test component is assumed. Each test component executes in parallel. Test compo-
nent configurations must be defined statically, i.e., the number of components and their
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PCO Declarations

PCO Name PCO Type Role | Comments
ISAP1 InitiatorSAP uT
MSAP2 MediumSAP LT

Detailed Comments :

Coordination Point Declarations

CP Name

Comments

CoordinationPoint

Message exchange between MTC and PTC

Detailed Comments :

Test Component Declarations

Component Name | Component Role | Nr PCOs | Nr CPs Comments
MainTC MTC 1 1
ParallelTC PTC 1 1
Detailed Comments :
Test Component Configuration Declaration
Configuration Name : StandardConfiguration
Comments
Components Used PCOs Used CPs Used Comments
MainTC ISAP1 CoordinationPoint
ParallelTC MSAP2 CoordinationPoint

Detailed Comments :

Figure 3.5: TTCN-2 — Test component configuration

communication links are fixed. However, all PTCs are created dynamically at execution
time by the MTC (see section [3.1.4).

In TTCN-2, communication is based on asynchronous message exchange. A test com-
ponent communicates with the SUT by one or more points of control and observation
(PCOs). The semantic counterpart for communication between two test components
is called coordination point (CP). Each PCO and CP is modeled by one input queue
for incoming messages and one output queue for outgoing messages. Both queues have
infinite capacity such that messages never get lost, even if they cannot be processed
immediately.

In figure 3.5] a test component configuration is defined that corresponds to the local
method presented in figure [3.2. The PCO Declarations table defines the two PCOs
ISAP1 and MSAP2. For each PCO, the corresponding role, i.e., upper tester (UT)
or lower tester (LT), is specified. A CP, cleverly called CoordinationPoint, is specified
in the Coordination Point Declarations table. The Test Component Declarations table
defines the two components MainTC and ParallelT'C, their roles (MTC/PTC) and
their numbers of PCOs and CPs. Finally, the configuration is specified in the Test
Component Configuration Declaration table that lists all test components involved and
assigns concrete PCOs and CPs to themﬁ

2Obviously, the scattering and duplication of information in several tables causes a significant overhead
and only pays off if more than one test component configuration is defined.
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Test Suite Operations. TTCN-2 provides a number of predefined operators for arith-
metic and boolean operations, comparisons, conversions (e.g., from HEXSTRING to
INTEGER), for determining the presence of optional data fields, and for finding out
the length/size of sequences and strings. If these operations are insufficient, the test
specifier can define his own operations in terms of functions with input parameters
and result value. Two different table types are provided for either a procedural or a
textual (i.e., informal) description. For the first case, TTCN-2 provides a rudimentary
imperative language that comprises assignments as well as RETURN, IF, WHILE, and CASE
statements.

3.1.3 Constraints Part

In TTCN-2, test data, i.e., the concrete messages that are exchanged during test exe-
cution, are described by constraints. The constraints concept provides a simple way to
organize and re-use test data. In analogy to the declarations part, TTCN-2 distinguishes
between constraints for structured types, ASP types, PDU types, and CM types. For
all kinds, similar table proformas are provided.

One of the strengths of TTCN-2 that makes it particularly suitable for test specification
is the flexible way in which messages can be specified. In many cases, messages sent by
the SUT are not exactly compared with a concrete value by the tester. For instance,
some message parameters may not be relevant for a specific test purpose and thus do
not have to be checked. More important, the responses of the SUT often depend on the
test history or are even at random, e.g., when the SUT exchanges sequence numbers
with the tester.

For that reason, constraints for receive events may make use of matching mechanisms.
Instead of concrete values, special operators can be specified that match, e.g., any value,
a list of single values, a range of values, the complement of a value list or all permutations
of a given sequence. There are also operators for handling optional data and for imposing
restrictions on the length of strings and sets.

In figure 3.6, three ASN.1 Constraint Declaration tables are shown. In the first table,
a question mark is specified instead of a concrete value for data field seqNo. It means
that any sequence number is accepted for a receive event that refers to constraint Data-
Transfer. Nevertheless, the value that is actually received can be retrieved during test
execution. In figure (3.8, line number 4, the value for seqNo is stored in variable segNum-
ber and used for the successive reply (see line number 5, Constraints Ref column).

Structuring Concepts. Constraint descriptions can become very large and complexﬁ
In order to reduce their size and improve readability, constraints can be structured in
three ways:

e Constraint parameterization

3See chapter 9 for a detailed discussion on this topic.
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ASN.1 ASP Constraint Declaration
Constraint Name : DataTransfer( data : UserPDU )
ASP Type : MDATind
Derivation Path
Comments

Constraint Value
{ mSDU { iPDUType DT, seqNo ?, iSDU data } }
Detailed Comments :

ASN.1 PDU Constraint Declaration
Constraint Name . ConnectionConfirmation
PDU Type : InresPDU
Derivation Path
Encoding Rule Name :
Encoding Variation
Comments : This constraint is used with constraint 'MediumDataRequest’
Constraint Value

{ iPDUType CC }
Detailed Comments :

ASN.1 ASP Constraint Declaration
Constraint Name : MediumDataRequest( data : InresPDU )
ASP Type : MDATreq
Derivation Path
Comments

Constraint Value

{ mSDU data }
Detailed Comments :

Figure 3.6: TTCN-2 — Constraints

e Constraint chaining
e Constraint derivation

In case of constraint parameterization, the parameter may either be a simple/structured
data type or a PDU type. Constraint chaining means that a constraint refers to another
constraint. Two types of chaining are distinguished: If there is an explicit (hard-coded)
constraint reference in the Constraint Value definition, the constraints are chained stat-
ically. Constraint chaining is called dynamic if some value in a constraint is a formal
parameter and a constraint reference is passed as actual parameter. Constraint deriva-
tion is useful if there are many similar constraints of a particular ASP, PDU, CM, or
data type. In this case, one or more base constraints can be defined that specify a set
of default values or wildcards for each field. Then, only those fields have to be specified
in a modified constraint whose values deviate from the corresponding values in the base
constraint.

Constraint parameterization is illustrated by constraint DataTransfer (figure 3.6} first
table) that has data of type UserPDU as formal parameter. In figure line 4, a
reference to this constraint is made in column Constraints Ref with actual parameter
someUserPDU. Dynamic constraint chaining is demonstrated by the second and third
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Test Case Dynamic Behaviour
Test Case Name : SingleDataTransfer
Group . BasiclnterconnectionTests/
Purpose :
Configuration . StandardConfiguration
Default : MTCFailure
Comments:
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 CREATE( ParallelTC:MediumAccess )
2 START testCaseTimer
3 +Preamble
4 START supervisionTimer restrict time of data
transfer
5 ISAP1 ! IDATreq InresDataRequest data transfer
( someUserPDU )
6 CoordinationPoint 7 Notification | acknowledgmentSent (PASS) | wait until 'ptc’ has
acknowledged the data
7 CANCEL supervisionTimer cancel timer to avoid a
timeout in the
following
8 +Postamble
9 ? DONE( ParallelTC ) R
10 ISAP1 ? IDISind InresDisconnection- INCONC
Indication
Preamble
11 ISAP1 ! ICONreq InresConnectionRequest
12 ISAP1 ? ICONconf InresConnection-
Confirmation
13 ISAP1 ? IDISind InresDisconnection- INCONC
Indication
Postamble
14 ISAP1 ! IDISreq InresDisconnection-
Request
15 ISAP1 ? IDISind InresDisconnection-
Indication
Detailed Comments :

Figure 3.7: TTCN-2 — Test case SingleDataTransfer

constraint in figure [3.6. ASP constraint MediumDataRequest expects an InresPDU as
parameter. In test step MediumAccess (figure (3.8, line 3), constraint ConnectionConfir-
mation is passed as actual parameter.

3.1.4 Dynamic Part

In the dynamic part, the test outcomes are specified by means of test cases, test steps,
and default behavior. A test case (see figure [3.7) defines the dynamic behavior of the
MTC. Test steps either describe logically bounded sequences of test events or the beha-
vior of PTCs (see figure [3.8)). Defaults allow the handling of unexpected test events in
an elegant way (see figure .

Control Flow. The dynamic behavior, i.e., the expected sequences of test events, is
described in a tree-like structure. The temporal ordering of events is expressed by in-
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Test Step Dynamic Behaviour

Test Step Name : MediumAccess

Group :

Objective :

Default . PTCFailure

Comments:

Nr | Label Behaviour Description Constraints Ref Verdict Comments

1 MSAP2 ? MDATIind ConnectionRequest

2 ( receipt :=1) first connection request

3 MSAP2 | MDATreq MediumDataRequest( Con-

nectionConfirmation )
4 | Loop MSAP2 ? MDATind DataTransfer( someUser- | (PASS)
( seqNumber := PDU )
MDATind.mSDU.seqNo )
5 MSAP2 | MDATreq DataAcknowledgment
( seqNumber )

6 CoordinationPoint ! Notification | acknowledgmentSent inform the MTC that
the data have been
acknowledged

7 MSAP2 ? MDATind DisconnectionRequest PASS

8 MSAP2 ? MDATind ConnectionRequest

9 [ receipt <= maxRepetitions ] connection
confirmation got lost

10 ( receipt := receipt + 1) resend it

11 MSAP2 | MDATreq MediumDataRequest

( { iPDUType CC })

12 -> Loop

13 [ receipt > maxRepetitions | FAIL the initiator shall not
resend its request that
often

Detailed Comments :

Figure 3.8: TTCN-2 — Test step MediumAccess

dentation of statements. Alternative test events are specified with the same amount of
indentation.

In figure the test events specified in lines 1 to 5 are executed/evaluated from top to
bottom due to increasing indentation. The test events in line 6 and 10 are alternatives.
If, at run-time, the first test events occurs, test execution proceeds in line 7; otherwise
the test case terminates prematurely.

In order to describe loops, TTCN-2 provides a REPEAT statement. It executes a test step
until a break condition is fulfilled. In addition, a GOTO statement (also specified as ->)
allows to jump to any point in the behavior description. The target of a GOTO statement
is denoted by a label that is specified in the second column of the behavior table. In
figure (3.8, the GOTO statement in line 12 makes the test component continue execution
in line 4 (or in line 8 where an alternative event is specified).

Test steps can be embedded into a test case or another test step by means of an at-
tachment statement (+testStepName). They are treated in a macro-like manner and can
be parameterized by PCOs, ASPs, PDUs, or simple/structured data. Test steps can be
defined either locally inside a test case description or by a separate Test Step Dynamic
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Default Dynamic Behaviour
Default Name : MTCFailure
Group . Failures/
Objective
Comments:
Nr | Label | Behaviour Description Constraints Ref Verdict Comments
1 ISAP1 ? OTHERWISE FAIL
2 ? TIMEOUT FAIL
Detailed Comments :

Figure 3.9: TTCN-2 — Default MTCFailure

Behaviour tableJZ In figure[3.7, two test steps, preamble and postamble, are used inside
test case SingleDataTransfer (lines 3 and 8). They are defined locally in lines 11-13 and
14-15.

In a test case or test step description, the expected sequences of test events should be
specified in a compact way. On the other hand, a tester should be able to react adequately
to events which are unexpected or whose time of occurrence is not predictable. In order
to avoid that all possible alternatives of test events have to be listed explicitly in a test
case description, TTCN-2 provides a default mechanism.

In figure (3.9, default behavior MTCFuailure is defined. It is used by test case SingleData-
Transfer (figure [3.7) and makes test execution stop with verdict fail when a timeout
occurs or some message is received at PCO ISAP1 that is not handled explicitly.

TTCN-2 is based on a snapshot semantics. Whenever there are several alternative test
events, the current state of the complete test system, i.e., the state of all PCOs, variables,
etc., is considered as frozen. Then, all foreseen test events are checked from top to
bottom. If none of the test events in question happened, a new snapshot of the system
is taken and the alternative test events are checked again. This process is repeated until
eventually one of the test events occurs.

Statements. Communication in TTCN-2 is based on the asynchronous exchange of
messages via PCOs and CPs by means of send and receive operations. A sender continues
processing immediately after executing a send operation, whereas a receive operation
blocks a test component until the expected message eventually arrives.

The reception of a message by the tester is specified in the form PCQorCP? Type
where Type is either an ASP, PDU, or CM type. The concrete message is specified by a
constraint whose name is given in the Constraints Ref column in the dynamic behavior
table. To deal with unforeseen test events, the keyword OTHERWISE might be used instead
of a type. PCQorCP70THERWISE makes the tester accept any incoming event at the
specified PCO or CP.

For send events, the notation PCQorCP ! Type is used. Since the tester must behave
deterministically, the associated constraint is not allowed to include special matching

4Throughout this thesis, the American spelling is used. The only exception is behaviour if it refers to
a fixed term in a TTCN-2 table header.
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symbols but only specific values. In the remote test method defined by ISO/IEC 9646,
there is no way to control the IUT by an upper tester. Nevertheless, some action might
be necessary to make the IUT issue a PDU or ASP. This action can be indicated by an
implicit send event of the form <IUT ! Type> .

Test components can have local timers to control test execution. TTCN-2 provides
various operations for setting and evaluating timers: The START and CANCEL operations
activate and deactivate timers. The expiration of a timer is ascertained by a TIMEQUT
statement. Finally, the READTIMER operation returns the time that has passed since the
activation of the timer.

In figure (3.7, line 4, timer supervisionTimer is used to restrict the time of an Inres data
transfer. If the timer expires before it is stopped in line 7, a timeout occurs. This event
is handled in figure 3.9, line 2.

If there is more than one test component, the MTC is responsible for creating all parallel
test components. For that purpose, CREATE statements must be specified at the beginning
of the test case description. The MTC is only allowed to terminate after all PT'Cs have
terminated. Otherwise, a test case error occurs. The MTC can check the status of the
PTCs by DONE statements (see figure line 9).

Test execution can depend on boolean expressions, called qualifiers. If a qualifier eval-
uates to true, execution continues with the subsequent statement; otherwise, the next
alternative is chosen. In case all alternatives are qualifiers that evaluate to false, a test
case error occurs.

In figure [3.8] lines 9 and 13, the number of connection confirmations that have been
received is compared with the allowed number of repetitions. Depending on the result,
test execution is continued (line 11) or stopped with the verdict FAIL.

Test Verdicts. A test verdict must be assigned to each test sequence of a test case or
test component. Test verdicts are specified in the Verdict column of dynamic behavior
tables. TTCN-2 allows to set three types of verdicts: PASS, FAIL, and INCONC (inconclu-
sive). If a verdict is preliminary, its identifier is put into parentheses (e.g., (PASS)).

For each parallel test component, a local test verdict is maintained that is accessible
as variable R. In the test case description for the MTC, R denotes a global test verdict.
Setting a final verdict causes the immediate termination of the corresponding test com-
ponent. If the MTC terminates, the complete test case execution is stopped. Based on
the test verdicts of all test components, the final global test case verdict is computed.
The necessary communication happens implicitly, i.e., it does not have to be specified
in the test suite.

During test execution, it must be prevented that, e.g., a preliminary (FAIL) verdict
is substituted by a final PASS, because once test execution fails, it fails forever. Thus,
whenever a test verdict is to be set or updated, TTCN-2 applies a set of overwriting
rules that take into account the current verdict.
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3.2 The Testing and Test Control Notation

The Testing and Test Control Notation version 3 (TTCN-3; see ETSI, 2002a) is a
universal language for the specification and implementation of tests for distributed sys-
tems. Like its predecessors, TTCN-3 is used for functional black box testing. But in
contrast to TTCN-2, it does not contain any language constructs specific to OSI con-
formance testing. TTCN-3 extends and generalizes many TTCN-2 concepts to open
the language towards other testing methodologies and application domains such as the
Common Object Request Broker Architecture (CORBA) or Application Programming
Interfaces (APIs).

The TTCN-3 standard comprises a textual core language whose syntax resembles tradi-
tional imperative programming languages. In addition, ETSI European Standard 201 873
provides for the definition of presentation formats. Currently, there are two standard-
ized formats: The tabular presentation format (TFT; ETSI, 2002b) is similar to TTCN-2
and helps TTCN users to migrate to the new version. The graphical presentation for-
mat (GFT; ETSI, 2002c) is based on a dialect of Message Sequence Chart (MSC; see
section [5.1) with testing-specific extensions.

3.2.1 Modules and Groups

The topmost structuring concept in TTCN-3 is the module. A module may define a
complete abstract test suite or a library that can be used by another module. By analogy
with TTCN-2 test suites, modules can be parameterized to re-use them in different
contexts.

Modules consist of two parts: The definitions part includes definitions of data types,
constants, communication data (messages, procedure signatures, and templates), test
configuration elements (ports, components), and the dynamic behavior (test cases, func-
tions, and altsteps). The control part is the main program of a TTCN-3 module. It allows
to state explicitly the order in which test cases are to be executed. Moreover, execution
of single test cases can be made dependent on some selection criteria, e.g., the outcome
of a preceding test case.

A module can import arbitrary definitions from other modules. There is no explicit ex-
port construct in TTCN-3; all definitions in the module definitions part can be imported
from another module.

Within a module, definitions can be arranged in nested groups in order to enhance
readability and structure the test suite with regard to logical aspects. Groups do not
define scopes in general, i.e., it is not allowed to define a constant twice in distinct
groups. However, it is possible to refer to a complete group when importing definitions
from another module.

In figure 3.10, a TTCN-3 module for testing conformance of an Inres Initiator protocol
entity is presented. Its definition part starts with an import statement (line 2-5) to
adopt data type UserPDU and constant someUserPDU from an external module called
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1: module TestsForlnres( integer maxRepetitions, boolean testInopportuneEvents ) {
2: import from ServiceUser language "ASN.1:1997” {
3: type UserPDU;
4: const someUserPDU;
5: }
6 group BasicDefinitions {
7 type enumerated InresPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };
8: type enumerated SequenceNumber { zero(0), one(1) };
9: type record InresPDU {
10: InresPDUType iPDUType,
11: SequenceNumber seqNo optional,
12: UserPDU iSDU optional
13: }
14: } with { encode "PER-BASIC-UNALIGNED:1997” }
15: const float maxTestCaseTime := 50;
16: ... further definitions . ..
17: control {
18: var verdicttype overallVerdict := pass;
19: overallVerdict := execute( SingleDataTransfer(), maxTestCaseTime );
20: if ( overallVerdict == pass and testInopportuneEvents == true ) {
21: overallVerdict := execute( DatalLoss() );
22: }
23: }

24: } with { encode "BER:1997” }

Figure 3.10: TTCN-3 — Module TestsForiInres

ServiceUser. All data type definitions that are needed to describe an Inres PDU are com-
bined in group BasicDefinitions (lines 6-14). Thereafter, a global constant (mazTest-
CaseTime) is declared in line 15. Module TestsForInres includes many more definitions.
For better readability and comprehension, these definitions are presented separately in

figures 3.16.

In the module control part (lines 17-23), test case SingleDataTransfer is executed first.
Depending on whether its execution has been successful (test verdict is pass) and module
parameter testInopportuneFvents equals true, a second test case (DataLoss) is invoked.

3.2.2 Data Model

TTCN-3 defines its own data model. It covers many basic types known from program-
ming languages like integer, char, universal char (as defined in ISO/IEC 10646, 1993),
float, boolean, and various types of strings that differ in the character set allowed for their
elements. Furthermore, a special type handling test verdicts (verdicttype) is provided.
TTCN-3 does not support dynamic data structures and thus does not have a pointer
concept. However, variables of the type address can be used for references to entities
inside the SUT.

The test specifier can define different structured types based on enumerations, records,
sets, arrays, and unions. Both records and sets allow the definition of optional fields.
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Records and sets are equal except that the ordering of fields is not significant in sets,
an aspect which is relevant for data encoding. For the same reason, records and sets
with all fields being of the same type are treated separately. Semantically, they are
equal to ordered resp. unordered arrays. In situations where data have to be handled
whose exact type is unknown (e.g., PDUs), they can be assigned to a variable of type
anytype, a short-hand for a union of all known types in a TTCN-3 module. Moreover,
data structures are allowed to be defined recursively — a compensation for the lack of
dynamic data structures.

TTCN-3 comes along with a large set of predefined functions that allow to convert a data
value into a value of another type. There are also functions for retrieving the number
of elements in a string, record, or set, for checking the presence of optional fields in a
record, and for generating random numbers.

Subtypes of both basic and structured types can be defined by imposing restrictions
on the set of valid values. For that purpose, the user may specify value ranges, values
lists or length restrictions. As with its predecessor, data encoding is outside the scope
of the TTCN-3. However, the test specifier may assign optional encoding attributes to
modules, groups, type definitions, or single fields in record/set types.

In figure 3.10, two encoding rules are specified. The encoding attribute in line 24 states
that the ASN.1 Basic Encoding Rules are applied to all data used inside module Tests-
ForInres by default. Only Inres PDUs and their fields are transmitted based on ASN.1
Packed Encoding Rules (line 14).

Even though the TTCN-3 data concept suits most applications, it might be of advantage
or necessary to use data descriptions provided in the implementation or specification
language of the SUT. When importing definitions from an external module, a module
language different from TTCN-3 can be specified. For telecommunication applications,
existing ASN.1 data descriptions can be reused. For testing of distributed systems that
are based on the CORBA middleware platform, a mapping of IDL interface specifications
to TTCN-3 is defined in Ebner et al. (2002).

In figure(3.10, ServiceUser is declared to be an ASN.1 module. According to the ASN.1
transformation rules given in the TTCN-3 standard, UserPDU and someUserPDU are
transformed into an equivalent TTCN-3 type and constant respectively.

3.2.3 Communication

In TTCN-3, communication within the test system and between the tester and the SUT
can be either message-based or procedure-based.

Messages in TTCN-3 correspond to ASPs, PDUs, and coordination messages in TTCN-2.
They are exchanged asynchronously by send and receive operations. A sender imme-
diately continues processing after executing a send operation, whereas a receive oper-
ation blocks a component until the expected message eventually arrives. Messages are
specified just as common data types (typically as records).

32



3.2 The Testing and Test Control Notation

Procedure-based communication is required for testing, e.g., CORBA or DCOM (Dis-
tributed Common Object Model) platforms. A remote procedure is invoked by a call
operation. Incoming calls are awaited at the callee side by a blocking getcall opera-
tion. Conceptionally, procedure calls can be considered both non-blocking and blocking
with regard to the caller. In the latter case, the callee is expected to conclude proce-
dure execution with a reply operation. The caller handles the answer with a getreply
operation that is directly following its call operation.

Procedures can have an arbitrary number of parameters (with call-by-value and call-
by-reference semantics) as well as a dedicated return value by which information can
be exchanged between caller and callee. Moreover, procedures can be declared to raise
exceptions that a caller should be able to catch. In a TTCN-3 test suite, the signature of a
procedure, i.e., its interface definition, is required to check the semantics of corresponding
communication operations.

In TTCN-3, communication takes place over connections that are terminated by com-
munication endpoints. These endpoints are called ports. Any communication opera-
tion refers to a port rather than to the connection itself. Port types can be defined
for message-based, procedure-based or mixed communication. In contrast to PCOs in
TTCN-2, ports are directional. A port type is characterized by the set of valid messages
and/or procedure types together with the direction (in/out/inout) for each individual
message/procedure.

A port is modeled by a queue with infinite capacity to handle incoming messages/pro-
cedure calls, even if they are not processed directly by the tester. The above-mentioned
receive, getcall, getreply, and catch operations check only the first element in the
queue. However, a trigger operation can be used instead of receive that consumes
all messages from the input queue until eventually a message with a certain property is
found. Port queues can be cleared during execution. In addition, communication can be
suppressed at a specific port and resumed later.

In figure [3.11(a), definitions for message-based communication are presented. ICONreq
and IDATreq (lines 1 and 2) are — among others — two messages (ASPs) that can be sent
to the Initiator entity of the Inres protocol. A port type definition is given in lines 3—6.
The keywords out and in indicate that messages ICONreq, IDATreq, and IDISreq can be
sent and ICONconf and IDISind can be received by a corresponding port instance. For
communication with the Medium, similar definitions are made in lines 7-12. A concrete
message exchange is described in the test case shown in figure In lines 11, 12,
14, 19, and 20 various messages are sent and received at port ISAPI which is of type
InitiatorSAP.

A simple example of procedure-based communication is introduced in figure 3.11(b). In
line 1, procedure acknowledgmentSent is defined which has neither a parameter nor a
return value. It is used for coordination between the components of the tester. Concep-
tionally, it resides at the MTC Two contrary port types are defined for it: PortAtMTC

5Please note that the procedure is not implemented as such. Instead, only its invocation and termination
is modeled by the MTC by getcall and reply operations. The procedure-based communication in
the given example is only made for illustration purposes.
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1: type record ICONreq {}; 1: signature acknowledgmentSent();
2: type record IDATreq { UserPDU iSDU }; 2: type port Port AtMTC procedure {
3: type port InitiatorSAP message { 3: in acknowledgmentSent;
4: out ICONreq, IDATreq, IDISreq; 4: }
5: in ICONconf, IDISind; 5: type port PortAtPTC procedure {
6: } 6: out acknowledgmentSent;
7: type record MDATreq { InresPDU mSDU }; 7}
8: type record MDATind { InresPDU mSDU };
9: type port MediumSAP message {
10: in MDATind;
11: out MDATreq;
12: }
(a) Message-based (b) Procedure-based

Figure 3.11: TTCN-3 — Communication

(lines 2-4) accepts incoming calls, whereas PortAtPTC (lines 5-7) is used to invoke the
remote procedure. A concrete procedure call is realized in figure 3.14, lines 15 and 16,
and figure 3.15, lines 21 and 22.

3.2.4 Test Configurations

TTCN-3 supports the specification of distributed test architectures. A test configuration
is made up of a set of test components along with their ports, an abstract test system
interface, connections between the ports of the test components, and associations be-
tween the ports and the test system interface. Unlike TTCN-2, TTCN-3 does not require
test configurations to be declared statically but allows to modify them dynamically at
run-time. This means, ports can be connected with and disconnected from other ports
at any time during test execution. Moreover, ports can be connected in a one-to-many
relationship to allow multicasts.

In figure [3.12(a), a conceptual view of the test configuration used in the Inres example
is given. The tester consists of two test components called MainTC and ParallelTC.
They communicate with each other via a connection established between the ports
CoordinationPTC and CoordinationMTC. In addition, one port in each test component,
namely ISAP1 and MSAP2, is mapped to a port with the same name of the abstract
test system interface. TTCN-3 abstracts from implementation issues such as encoding.
Therefore, conceptionally the ports of the tester are not directly linked with the SUT
itself. Instead, it is assumed that interaction with the SUT is realized by a real test
system interface which is outside the scope of TTCN-3.

Figure [3.12(b) presents TTCN-3 test component definitions for MainTC, ParallelTC
and the abstract test system (TestSystem) which is defined just like a common test
component type. In addition to an arbitrary number of ports, a TTCN-3 test component
can have its own set of local timers, variables and constants. For example, any component
of type MainTC has a supervisionTimer at its disposal (line 4).
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1: type component MainTC {
TTCN-3 Test System 2 port InitiatorSAP ISAP1;
3 port Port AtAMTC CoordinationPTC;
MainTC ) 4 timer supervisionTimer;
Coordin:
tionPTC ~ PadldTC 5: }
ISAPI— ﬁgﬁﬁ?g 6: type component ParallelTC {
EMSAPQ 7 pOI‘t MediumSAP MSAPQ;
T 8 port PortAtPTC CoordinationMTC;
ISAPL ‘ Abstract Test System Interface ‘ MSAP2 9: }
10: type component TestSystem {

11: port InitiatorSAP ISAP1;
12: port MediumSAP MSAP2;
13: }

(a) Conceptual view (b) Component type definitions

Figure 3.12: TTCN-3 — Test configuration

Each test configuration consists of exactly one main test component (MTC) that is
created implicitly when a test case is started. It behaves according to the statements
in the test case description. One or more additional parallel test components (PTCs)
can be created explicitly during test execution — either by the MTC or another PTC.
When a PTC is started, it is associated with a function that describes its behavior.

All PTCs run independently from each other, i.e., termination of a test component does
not cause its children to halt as well. A test component stops either implicitly when
leaving its associated function or explicitly by executing a stop statement. It may also
be stopped remotely by another test component. Test case execution comes to a complete
halt if the MTC terminates. TTCN-3 provides two operations for checking the status
of a test component: The running operation can be used to test whether a particular
component (or all components) has completed execution, whereas the blocking done
operation makes its caller wait until a designated test component eventually stops.

In the module control part of the TTCN-3 example test suite (figure [3.10, line 19), test
case SingleDataTransfer is executed. Its definition is given in figure [3.14. According to
its signature (line 1), it runs on a component of type MainTC and conforms to the
abstract interface TestSystem. In line 4, a parallel test component of type ParallelTC' is
created. Thereafter, the ports ISAP1 and MSAP2 of the MTC (denoted by component
reference self) and the PTC (denoted by ptc) are mapped to the ports of the test
system interface (lines 5-6) and a connection is established between the MTC and the
PTC (line 7). Execution of the PTC is actually started in line 8 by assigning function
MediumAccess to it.

Before test case SingleDataTransfer ends, the MTC makes sure that function Medi-
umAccess running on ptc has already terminated. This check is necessary to ensure
that all communication between the PTC and the SUT has taken place. Execution of
the MTC is blocked in line 21 until all PTCs (only one PTC in this example) have
completed.
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: template MDATind ConnectionRequest := {
: mSDU := { iPDUType := CR, seqNo := omit, iSDU := omit }
D}

1

2

3

4: template InresPDU ConnectionConfirmation := { // this template is used with

5: iPDUType := CC, seqNo := omit, iSDU := omit // template ’MediumDataRequest’
6: }

7: template MDATreq MediumDataRequest( template InresPDU data ) := {
8: mSDU := data
9: }

10: template MDATind DataTransfer( UserPDU data ) := {

11: mSDU := { iPDUType := DT, seqNo := 7, iSDU := data }

12: }

Figure 3.13: TTCN-3 — Templates

3.2.5 Templates

The description of messages and procedures is made by templates. The template concept
is an extension of the constraint concept in TTCN-2. Templates can be defined for both
message- and procedure-based communication. For receiving messages and incoming
procedure calls/replies, TTCN-3 provides more or less the same matching mechanisms
as TTCN-2. However, the set of operators for string matching has been extended to
obtain the expressiveness of regular expressions.

Templates can be structured in the same way as constraints in TTCN-2, i.e., by param-
eterization, referencing, and modification (derivation). But while TTCN-2 distinguishes
between a dynamic part and a constraint part, TTCN-3 does not enforce a clear sepa-
ration between the control and data aspects of a test case — templates can either be
referenced or specified inline within a test case or function. The latter alternative is
suitable for messages and procedures with no or only a few fields/parameters where a
standalone template definition means unnecessary expense and aggravates readability.

In figure(3.13] various templates are defined that are used in function MediumAccess (fig-
ure(3.15). Template ConnectionRequest (lines 1-3) specifies a message of type MDATind
where the fields mSDU.segNO and mSDU.iSDU shall have no value. It is used in com-
bination with a receive statement in figure line 5.

The two templates ConnectionConfirmation and MediumDataRequest (figure[3.13, lines
4-9) illustrate the dynamic chaining of templates. MediumDataRequest is parameter-
ized by a template of type InresPDU. In figure 3.15, line 7, it is instantiated with
template ConnectionConfirmation as actual parameter. Template DataTransfer (line
10-12) makes use of a simple matching mechanism. Operator “7” states that any value
for seqNo is acceptable in an incoming message.

Many templates are defined inline in test case SingleDataTransfer (figure(3.14, lines 11,
12, 15, 16, 19, and 20) and function MediumAccess (figure[3.15, lines 11, 21, 22, 23). In
particular, many messages exchanged with the SUT via port ISAP1 are distinguished
by their type only. Hence, there is no need for template definitions whose bodies would
only consist of empty brackets syntactically.
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testcase SingleDataTransfer() runs on MainTC system TestSystem {
var ParallelTC ptc;
var default defl, def2;

1:
2
3
4: ptc := ParallelTC.create;

5: map( self:ISAP1, system:ISAP1 );

6: map( ptc:MSAP2, system:MSAP2 );

7 connect( self:CoordinationPTC, ptc:CoordinationMTC );
8 pte.start( MediumAccess() );

9: defl := activate( MTCFailure() );
10: def2 := activate( ReceptionIDISind( inconc ) );

11: ISAP1l.send( ICONreq : {} ); // connection request
12: ISAP1.receive( ICONconf : {} ); // connection confirmation

13: supervisionTimer.start( maxTransferTime ); // restrict time of data transfer
14: ISAP1.send( InresDataRequest( someUserPDU ) ); // data transfer

15: CoordinationPTC.getcall( acknowledgmentSent : {} );

16: CoordinationPTC.reply( acknowledgmentSent : {} );

17: supervisionTimer.stop; // cancel timer to avoid a timeout in the following

18: deactivate( def2 );

19:  ISAPl.send( IDISreq : {} ); // disconnection request
20:  ISAPl.receive( IDISind : {} ); // disconnection indication

21: all component.done;
22: setverdict( pass );
23: }

Figure 3.14: TTCN-3 — Test case SingleDataTransfer

3.2.6 Behavior Descriptions

In TTCN-3, the functional behavior is described by test cases, functions, and altsteps.
Like in TTCN-2, a test case describes the dynamic behavior of an MTC (see test case
SingleDataTransfer in figure [3.14). Functions in TTCN-3 correspond to TTCN-2 test
steps and test suite operations. In figure[3.15, function MediumAccess is shown that runs
on a test component of type ParallelTC. The altstep mechanism is similar to TTCN-2
defaults.

Control Structures. TTCN-3 supports most control structures known from imperative
programming languages. These are if ... else, for, while, and do ... while. For a
simpler transformation of existing TTCN-2 test suites, goto statements can be used to
jump to a labeled position in the program code.

In TTCN-2, test cases are specified in a tree-like notation. If different branches contain
a common test sequence (e.g., a preamble), its statements have to be duplicated or
put in a separate test step. In contrast, behavior descriptions in TTCN-3 are described
in a sequential manner. Alternative behavior is described by an alt statement. Each
alternative within an alt statement consists of (a) an optional boolean expression (b) a
guard operation which may by either a done operation, a timeout operation, or any
receiving operation, and (c) a statement block. The latter is executed if the expression
evaluates to true (or no expression is specified) and the guard operation can be executed.
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function MediumAccess() runs on ParallelTC {
var integer receipt;
var default def := activate( PTCFailure() );
var MDATind indication;

1:

2

3

4

5: MSAP2.receive( ConnectionRequest );

6: receipt := 1; // first (received) connection request of the initiator
7 MSAP2.send( MediumDataRequest( ConnectionConfirmation ) );
8

: alt {
9: [ receipt <= maxRepetitions | MSAP2.receive( ConnectionRequest ) {
10: receipt := receipt + 1;
11: MSAP2.send( MediumDataRequest( { CC, omit, omit } ) );
12: repeat;
13: }
14: [ receipt > maxRepetitions | MSAP2.receive( ConnectionRequest ) {
15: setverdict( fail );
16: stop;
17:
18: [ ] MSAP2.receive( DataTransfer( someUserPDU ) ) -> value indication { /*empty*/ }
19: }

20: MSAP2.send( DataAcknowledgment( indication.mSDU.seqNo ) );

21: CoordinationMTC.call( acknowledgmentSent : {} );
22: CoordinationMTC.getreply( acknowledgmentSent : {} );

23: MSAP2.receive( MDATiInd : { mSDU := { DR, omit, omit } } );
24: setverdict( pass ); // disconnection request
25: }

Figure 3.15: TTCN-3 — Function MediumAccess

Similarly to TTCN-2, TTCN-3 defines a snapshot semantics for the processing of alt
statements, i.e., the state of a test component is recorded before the alternatives are
evaluated from top to bottom. If none of the alternatives can be executed, another
snapshot is taken.

In figure line 8-19, an alt statement with three alternatives is specified. It handles
different messages sent by the SUT in response to a preceding connection confirmation
(line 7). The first two alternatives consider the case that the confirmation got lost and
hence the SUT resends its connection request. As long as the number of requests is
less than or equal to constant mazRepetitions (line 9), the test component confirms the
request once again.

By using the repeat statement in line 12, a re-evaluation of the whole alt statement is
caused. However, if receipt > mazRepetitions (line 14), the SUT is not allowed to send
another connection request and hence the test case fails. In the normal case, the tester
receives a data transfer message (line 18) and test case execution is continued after the
alt statements.

If a test component controls more than one port, the exact order in which messages
and procedure calls arrive might be unpredictable, for instance, if the SUT broadcasts
a message. Instead of listing all possible sequences in terms of a large alt statement, an
interleave statement can be used. Syntactically, an interleave statement is similar
to an alt statement but it is not allowed to guard a branch by a boolean expression.
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Timers. Test components can have local timers to control test execution. TTCN-3
provides various operations for setting and evaluating timers: The start and stop op-
erations activate and deactivate timers. The expiration of a timer is ascertained by a
timeout statement. The current status of a timer can be retrieved by a running op-
eration. In contrast to timeout which blocks the execution of a test component until
the timeout occurs eventually, the running operation returns a boolean value instanta-
neously which can be evaluated in a condition. Finally, the read operation returns the
time that has passed since the activation of the timer.

In figure [3.14, line 13, timer supervisionTimer is used to restrict the time of a data
transfer of the SUT. If the timer expires before it is stopped in line 17, a timeout occurs
which is handled in figure [3.16] line 6 (see the one but next paragraph for a description
of the altstep concept). The execution of a complete test case can also be limited by
an implicit timer. In figure [3.10] line 19, test case SingleDataTransfer is invoked. If its
execution time exceeds maxTestCaseTime, all test components are stopped and the test
case fails.

Test Verdicts. Test verdicts are objects of type werdicttype. They can take one out
of five different values: pass, fail, inconc, none, and error. Each test component
maintains its own implicit local verdict. The value of this local verdict can be set and
retrieved by setverdict and getverdict operations where setverdict applies pre-
defined overwriting rules to ensure that, e.g., a fail test verdict does not become a
pass during test case execution. In addition, there is a global verdict that is updated
implicitly according to the overwriting rules whenever a test component terminates. If
a test case ends, the global verdict is returned. In contrast to TTCN-2, setting a verdict
does not stop the execution of a test component. Moreover, there are no preliminary
test verdicts in TTCN-3.

Altsteps. In TTCN-3, the default mechanism of TTCN-2 has been replaced and ex-
tended by the altstep concept. Altsteps are a collection of alternatives that are taken
into account whenever a test component awaits a response from the SUT or another test
component or the expiration of a timer. Their syntax is identical to alternatives within
an alt statement (see section [3.2.6).

In figure 13.16, altstep MTCFuailure is defined. Like its TTCN-2 counterpart, it makes
test execution fail if a message is received at port ISAP1 that is not handled elsewhere
or a timer expires. Altstep ReceptionIDISind (same figure) illustrates the definition of a
parameterized altstep. Depending on variable result, the reception of message IDISind
leads to different test verdicts.

Altsteps can be activated and deactivated at any time during test execution. They can
also be invoked explicitly from within a single alt statement. In figure [3.14, lines 9
and 10, the two above-mentioned altsteps are considered for the successive execution.
In line 18, ReceptionIDISind is deactivated again because a disconnection indication is
not an undesirable event any longer. Since a parameterized altstep can be instantiated
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1: altstep MTCFailure() runs on MainTC {
2: [ ] ISAP1.receive {
3: setverdict( fail );
4: stop;
5:
6: [] any timer.timeout {
7 setverdict( fail );
8: stop;
9: }
10: }
11: altstep ReceptionIDISind( verdicttype result ) runs on MainTC {
12: [ ] ISAP1.receive( IDISind : {} ) {
13: setverdict( result );
14: stop;
15: }
16: }

Figure 3.16: TTCN-3 — Altsteps MTCFailure and ReceptionIDISind

several times with different values, the activate statement returns a handle of type
default. This handle must be specified in a deactivate statement.

3.2.7 Development Tools

The first version of TTCN-3 was released as a European standard in July 2001. A revised
edition was developed in 2002 by ETSI. Further extensions and corrections are going to
be published in the future depending on user requests.

Though the standard is still rather new, there are already a lot of tools available for the
TTCN-3 core language and the standardized presentation formats (Testing Technologies,
2002; Da Vinci Communications, 2002; Telelogic, 2002b). These tools facilitate the edit-
ing, compilation, debugging, and execution of TTCN-3 modules.

In parallel to the development of the TTCN-3 standard, a syntax checker has been devel-
oped by the author. The implementation and application of the parser made it possible
to detect ambiguities among different language constructs, errors in the EBNF gram-
mar, and inconsistencies between the language description and corresponding examples
in the standard document. It also helped to address semantic issues as many of TTCN-3’s
static semantic rules are hard-coded in the grammar. The work on the TTCN-3 syntax
checker has proven invaluable for TTCN-3 itself as it allowed to uncover problems at a
very early stage of standardization.

3.3 Discussion

TTCN-3 symbolizes a major step towards a universal test language. It supports many
different platforms and application areas by providing both message- and procedure-
based communication, dynamic concurrent test configurations, and interfaces for exter-
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nal data languages and encoding rules. In addition, TTCN-3 breaks with some termi-
nology of TTCN-2 which focuses too much on OSI conformance testing.

Despite the benefits of TTCN-3, there are still various language elements and concepts
that could be improved or generalized. A few possible enhancements are sketched in the
following.

Object-oriented Language Model. TTCN-3 provides several special data types,
e.g., component, port, and verdict, with a set of predefined operations. Though an object-
oriented notation (object.method) is used for these operations, the language description
of TTCN-3 does not reflect this view. An object-oriented model might be helpful to
describe the language elements and their relationships.

Clarification of the Role of Templates, Data Types, and Data Values. The
semantic classification of templates in TTCN-3 is rather vague. If a template of type
T does not make use of any matching mechanisms, it can be considered an expression
of type T. However, if a matching operator is used, the template can be considered a
subtype T of T'. The main characteristic of this subtype 7" is that it can only be decided
at run-time whether a data value of type T is also in the domain of type T’. Obviously,
such a check consumes a lot of computation time and should be avoided if possible.

With regard to data types, the situation is similar: For most data types, type checks
can be made statically at compile-time. However, TTCN-3 allows the definition of sub-
types T (based on type T') with length or value range restrictions. Additional run-time
checks are required whenever the value of a variable of type T is assigned to a variable
of type T".

A rigorous approach to clarify the role of templates would be to replace the existing
template concept by a new class of data types and map the current concepts as follows:

Existing concepts New concepts

data type = data type

subtype = dynamic data type (with run-time checks)
template w/ matching mechanisms = dynamic data type (with run-time checks)
template w/o matching mechanisms =  data expression

data expression = data expression

Enhanced Matching Mechanisms. TTCN-3 allows characters patterns in templates
to define the format of characters strings. These character patterns have the same ex-
pressive power as regular expressions. On the level of structured types, less powerful
matching mechanisms are provided. In templates for arrays or sets/records of a single
type, the matching operator “*” can be used as a wildcard for a sequence of zero or more
elements (Example: { 1, *, 3 }) Ja However, there is no way to express, for instance,
that a record with variable length shall consist of only one particular element. Listing
all elements explicitly is not possible due to the unknown size of the record.

Hence, regular expressions should also be available for arrays, sets, and records. For
example, the following notation might be used inside templates: z# (min,max) matches

Please note that TTCN-3 has two different interpretations for the “*” symbol: When used on the high-
est level inside an array, its meaning is AnyElementsOrNone, otherwise it means AnyValueOrNone.
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with at least min and at most maz occurrences of z where x is either a single element
or a group of sequential elements. If min or max is left unspecified, 0 or oo is used
as default. Sequences of elements can be grouped by < ... >. For the description of
alternatives, the existing notation for value lists is adopted.

var integer myInt := 8;
template record of integer RegExp :=
{ <1, 2>#(2,5), 3#(,), 4, (5, 6, 7), myInt, ? };

The example above illustrates what regular expressions for arrays, records, and sets
could look like in TTCN-3. Template RegEzp would match a record of integers which
consists of the following elements: at least two and at most five times 1 followed by 2;
zero or more 3’s; a single 4; either 5, 6 or 7; the value of variable mylInt; an arbitrary
number.

Time Constraints. Timers allow to control the temporal execution of test events.
Typically, they are used to postpone the execution of a send event or to check that a
receive event took place in time. If a receive event shall happen within a given period of
time (with lower and upper boundary), the TTCN-3 behavior description becomes rather
complex: First, a timer is started that must expire before the receive event happens. As
soon as the timer expires, it is re-started. Then, the receive event must occur before the
timer expires. In total, two alt statements are required.

In situations like these, timer operations as an explicit means to supervise execution
are not appropriate. Instead, a declarative approach where single operations or whole
statement blocks are annotated with time constraints is preferable. Time constraints
have already been introduced into the latest revision of Message Sequence Chart (sec-
tion [5.1). A real-time extension for TTCN-3, called Timed TTCN-3, is proposed by
Dai et al. (2002).

External Clocks. TTCN-3 has no notion of external clocks that are available on the
test system. This makes it impossible to specify a test module where the execution of
test cases is triggered by a specific time or date. Therefore, if a test engineer wants to
execute his tests at 2 AM (because test execution within a production environment shall
not affect the work of other users), then this constraint must be handled directly by the
test system as it is outside the scope of TTCN-3.

On the other hand, external clocks could be integrated easily in TTCN-3 by a now
operator that returns the current time and date. Since the test system may consist
of several hardware devices, each test component as well as the module control part
should have its own local clock, i.e., now may return totally different results even when
executed in parallel on different test components. A solution for external clocks has also
been integrated into Timed TTCN-3.

Nested Modules as a Replacement of the Group Concept. Modules are the
top-level structuring element in TTCN-3. They serve two purposes: combining related
data definitions, test configurations, communications data, and behavior descriptions
in a logical unit; and controlling the execution of test cases by means of the module
control part. Unfortunately, modules cannot be nested. Definitions can be combined in
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1: module TestsForInres( integer maxNoOfProcesses, boolean testInopportuneEvents ) {
2:
3: control {
4: var verdicttype v := pass, vl := pass, v2 := pass;
5: par ( maxNoOfTestCases ) {
6: basic [ true | {
7 v := execute( BasicInterconnectionTest() );
8: }
9: capl [ v == pass and basic == true | {
10: vl := execute( CapabilityTest1() );
11: }
12: cap2 [ v == pass and basic == true and testInopportuneEvents == true | {
13: v2 := execute( CapabilityTest2() );
14: }
15: }
16: }
17: '}

Figure 3.17: Feature proposal — The par statement

groups but a group does not define a new scope and has no semantics except when being
imported by another module. Moreover, TTCN-3 assumes that the entire test execution
is controlled by the control part of the current module and some auxiliary functions.

Parallel Execution of Test Cases. The selection of test cases and the order in which
they are executed is specified in the module control part. Unfortunately, the execution
of a test case always blocks the execution of the control part, i.e., no further test cases
can be executed in parallel. In practice, the sequential execution of test cases may be
too time-consuming. Hence, one should be able to specify which test cases can be run in
parallel. At the same time, there should also be a way to describe dependencies among
test cases elegantly.

For that purpose, some ideas from the UNIX tool MAKE can be adopted. An input file
for MAKE consists of a number of dependency rules in the form

target : [prerequisite] commands.

A target (typically a file) is achieved by running the corresponding commands. Before
these commands can be executed, an optional prerequisite (which may be the target
of another dependency rule) must be fulfilled. If the prerequisites of two targets are
fulfilled, their commands can be executed in parallel.

For TTCN-3, a new par statement is suggested. Its general structure is illustrated by a
simple example in figure [3.17] Three goals — basic, capl, and cap2 — are defined within
the par statement. For each goal, a boolean variable with the same name and the scope
of the par operator is defined implicitly. Initially, all variables are set to false. If the
prerequisite of a goal (provided as a boolean expression in square brackets) is fulfilled,
the corresponding statement block is executed. After its termination, the goal variable
is automatically set to true. In order to restrict the degree of concurrency, the par
operator has an optional parameter that specifies the maximum number of parallel test
cases (mazNoOfTestCases in the given example).
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The details of the semantics of the parallel statement — When are the prerequisites
tested? What happens if the prerequisite of some goals cannot be fulfilled during exe-
cution? — are subject to further studies.
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Specifications

Test generation is the process of deriving a set of test cases from a formal speciﬁcation.E
A specification is a formal object that prescribes the behavior of a system. A specification
is called formal if it is defined by means of a formal description technique (FDT'). Formal
specifications allow for a non-ambiguous interpretation and thus facilitate verification,
validation, and automatic test generation. Formal descriptions techniques include LO-
TOS, ESTELLE, and the Specification and Description Language (SDL; see section [5.2).

Automatic test generation based on formal specification provides many advantages over
manual test specification:

e Efficiency of test specification: Automatic test generation requires little human
intervention and thus accelerates the availability of test suites.

e Correctness of test cases: The derivation of test cases directly from the specification
ensures that the test cases are semantically correct with regard to the specification.
In addition, syntactical correctness with regard to the test language is warranted
by test generation tools.

o Effectiveness of test cases: Coverage analysis techniques that are applied during
test generation allow to measure the quality of a test suite.

e FEfficiency of test execution: Smaller test cases result in faster test execution. So-
phisticated test generation algorithms minimize the size of test cases, i.e., the
number of test events that are needed to serve a particular test purpose.

In this chapter, some fundamental concepts and techniques of automatic test generation
based on formal specifications are presented. In section[4.1] the concepts of conformance
testing and test generation are formalized. Several test generation techniques for increas-
ing and assessing the effectiveness of test cases are presented in section/4.2. When dealing
with formal specifications, automatic test generation is only one step in the development
cycle. The relationship between test generation, verification, and validation is explained
in section [4.3|

'From a theoretical point of view, it makes no difference whether several test cases or just a single
large test case is generated. In practice, of course, a set of small(er) test cases where each test case
has its own test purpose is preferable.
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4.1 Formal Methods in Conformance Testing

In section 2, ISO/IEC IS 9646 has been introduced as an informal framework and
methodology for conformance testing. On the other hand, automatic test generation
based on FDTs demands for a formal interpretation of testing concepts such as confor-
mance, test cases, or test execution. In ITU-T Standard Z.500 Framework on Formal
Methods in Conformance Testing (FMCT; ITU-T, 1997b), their meaning is formalized
in terms of mathematical concepts. The main results of FMCT are presented in the
following.

4.1.1 Specification and Implementation

The formalization of conformance testing concepts is based on models for both specifi-
cations and implementations. In general, a model is a representation and an abstraction
of anything such as a system, concept, problem, or phenomenon.

A specification s can be considered an element from the set of all possible specifications
SPECS. Specifications might be parameterized to offer implementation options to the
implementor. The set of valid combinations of parameter values can be defined as some
set Dg. Then, a parameterized specification s is considered a function that maps from
the parameter domain Dy to the set SPECS of all instantiated specifications:

s: Dy — SPECS

The supplier of an IUT must specify the chosen implementation options in the imple-
mentation conformance statement (ICS). Thus, conformance is always determined based
on an instantiated specification.

The set of all implementations is denoted as IMPS. In contrast to a specification, an ITUT
is a physical object for which formal reasoning is not possible. However, the general test
assumption is made that any implementation can be modeled as some m;yr € MODS.
MODS is a formalism that may be identical to SPECS. The purpose of testing is to gain
information about the IUT such that mjyr can be constructed in sufficient details. Of
course, a given implementation can be modeled by several equivalent models m € MODS.
Since these models cannot be distinguished during testing, it is sufficient to consider only
one them.

4.1.2 Static and Dynamic Conformance
In order to conform to a given specification, an ITUT must meet both static and dynamic
conformance requirements.

Static conformance is achieved if the ICS for an IUT defines a valid set of implemen-
tation options, i.e., the parameterized specification is instantiated correctly. Formally,
this means that ICS;yr € Ds.
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Dynamic conformance is established if the observable behavior of the IUT is permit-
ted by the specification. Dynamic conformance is characterized by an implementation
relation:

mmp € MODS x SPECS

An TUT myyr conforms to a (parameterized) specification s if myr imp s(ICSiyr).

The implementation relation imp is not fixed. Instead, a large number of “reasonable”
implementation relations have been proposed in literature (De Nicola and Hennessy,
1984; Hoare, 1985; Milner, 1989; van Glabbeek, 1993). Some well-known implementation
relations are:

e Trace equivalence: The set of execution traces of the implementation must be
equal to the set of traces of the specification, i.e., the implementation must show
exactly the same behavior as the specification.

e Trace preorder: The set of execution traces of the implementation must be a
subset of the set of traces of the specification, i.e., the implementation is allowed to
show only a subset of the behavior of the specification but no additional behavior.

e Failure preorder: The set of traces of the specification must be a subset of the
set of traces of the implementation and the implementation shall not produce any
unspecified deadlocks.

The set of all implementations conforming to an instantiated specification s is given by

Ms; ={m € MODS | m imp s}

If dynamic conformance is defined in terms of a collection of single conformance require-
ments, a modified formalism is necessary. In that case, an instantiated specification s
is expressed as set of requirements Ry C REQS where REQS denotes the set of all re-
quirements that can be expressed in the requirements language. The set of all possible

specifications is defined as SPECS := P(REQS).

The role of the implementation relation is taken by a satisfaction relation sat with
sat C MODS x REQS

An IUT mjyr conforms dynamically to a set of (instantiated) requirements Ry if Vr €
R : myr satr.

4.1.3 Testing Concepts

Testing aims at gaining information about a system in order to be able to decide whether
the system has a certain property or not. This is achieved by executing a series of test
cases that are formalized in a test notation TESTS. Since a test suite ¢s is a set of test
cases, it holds that ts C TESTS and ts € P(TESTS), respectively. It is assumed that
the test cases are correctly implemented in the tester.
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4 Test Generation Based on Formal Specifications

In a generalized model, the tester does not interact directly with the IUT but with an
SUT. The part of the SUT that surrounds the IUT is called the test context. The observ-
able behavior of the IUT at its access points may not be identical with the observable
behavior of the test context at its PCOs. Thus, the text context is defined as a function

C: MODS — MODS
that maps the model of the IUT to the model of the test context. Then, C(myr)
represents the observable behavior of the IUT at the PCOs.

Execution of test case t € TESTS means running it in combination with an IUT myr €
MODS in a test context C. During execution, an observation ¢ € OBS is made where
OBS denotes the set of all possible observations. Observation ¢ may include a complete
log of all test events and other relevant information. Test execution can be formalized
by some function ezec:

exec: TESTS x MODS — OBS

For a concrete test case t € TESTS, an implementation modeled by myr, and a test
context C, exec(C(myyr)) defines the corresponding observation.

For each observation of a given test case t, a verd