
Automatic Test Generation

Based on Formal Specifications

Practical Procedures for Efficient State Space Exploration
and Improved Representation of Test Cases

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Michael Schmitt

aus Orsoy

Göttingen 2003

D 7

Referent: Prof. Dr. Dieter Hogrefe

Korreferent: Prof. Dr. Jens Grabowski

Tag der mündlichen Prüfung: 3. April 2003

Acknowledgments

I would like to thank my supervisor Prof. Dr. Hogrefe for his assistance and the pos-
sibility to research under perfect conditions. The work at the Institute for Telematics
in Lübeck has been a very positive experience. I appreciate that I was allowed to act
independently and to take on responsibility in a trustful atmosphere.

I would also like to thank my former colleagues in Lübeck who have accompanied me
through the years. Special thanks go to Jens Grabowski and Beat Koch with whom
I worked together in the Autolink project and who shared endless discussions and
debates on testing and test generation with me.

This thesis would not be in its current state without the numerous proof-readers who
spent their spare time on finding typing errors, missing indexes, etc. and who gave
helpful hints at how to improve my dissertation. I thank Zhen Ru Dai, Michael Ebner,
Andreas Heuer, Maeve Hölscher, Helmut Neukirchen, Cornelia Rieckhoff, and Uwe Roth
for their efforts.

Another major contribution to this dissertation was made by my parents who not only
conceived me but also encouraged me to study computer science.

This thesis is dedicated to Susanne. Thanks to her support and care, this dissertation
has become reality. I hope that I will ever be able to return what she has done for me.

Contents

1 Introduction 1

2 Foundations of Testing 5
2.1 Classification of Tests . 5
2.2 Conformance Testing Concepts . 9

2.2.1 Conformance Requirements . 9
2.2.2 Test Cases . 10
2.2.3 Test Verdicts . 11
2.2.4 Test Suites . 11

2.3 The Conformance Testing Process . 12
2.3.1 Test Suite Development . 12
2.3.2 Test Preparation . 12
2.3.3 Test Operation . 13
2.3.4 Test Evaluation . 13

2.4 Test Methods and Configurations . 14

3 Test Languages 17
3.1 The Tree and Tabular Combined Notation 19

3.1.1 Test Suite Overview and Import Part 20
3.1.2 Declarations Part . 21
3.1.3 Constraints Part . 24
3.1.4 Dynamic Part . 26

3.2 The Testing and Test Control Notation 30
3.2.1 Modules and Groups . 30
3.2.2 Data Model . 31
3.2.3 Communication . 32
3.2.4 Test Configurations . 34
3.2.5 Templates . 36
3.2.6 Behavior Descriptions . 37
3.2.7 Development Tools . 40

3.3 Discussion . 40

4 Test Generation Based on Formal Specifications 45
4.1 Formal Methods in Conformance Testing 46

4.1.1 Specification and Implementation 46
4.1.2 Static and Dynamic Conformance 46

i

4.1.3 Testing Concepts . 47

4.1.4 Test Generation . 49

4.2 Test Generation Methods . 49

4.2.1 Fault Models . 50

4.2.2 Test Coverage Criteria . 53

4.2.3 Scenario-Based Requirements . 59

4.3 Test Generation, Verification, and Validation 60

5 High-Level Specification Languages 63

5.1 Message Sequence Chart . 63

5.1.1 Basic Message Sequence Charts 64

5.1.2 Data Model . 67

5.1.3 Structural Concepts . 67

5.1.4 High-Level Message Sequence Charts 68

5.2 Specification and Description Language 70

5.2.1 Agents and Structuring . 70

5.2.2 Communication . 72

5.2.3 Behavior . 72

5.2.4 Object Orientation . 75

5.2.5 SDL Data Model and ASN.1 . 75

5.2.6 Further Language Constructs . 76

5.3 Tool Support . 76

6 The Autolink Tool 79

6.1 The Autolink Test Generation Process 80

6.2 Test Purpose Specification . 80

6.2.1 Manual Specification . 82

6.2.2 Interactive Simulation . 82

6.2.3 Observer Processes . 83

6.2.4 Automatic Computation . 84

6.3 Test Case Generation . 85

6.3.1 State Space Exploration . 85

6.3.2 Direct Translation . 87

6.4 Test Suite Production . 87

6.5 Interpretation of MSC Test Purposes . 89

6.5.1 Partial Order Semantics . 89

6.5.2 Structuring Concepts . 90

6.6 Case Studies . 94

6.6.1 Core INAP CS-2 . 94

6.6.2 VB5.1 and VB5.2 . 97

6.7 Comparison with Other SDL-based Test Tools 98

6.7.1 SaMsTaG . 98

6.7.2 TestComposer . 99

6.8 Discussion . 100

ii

7 Test Generation for Distributed Test Architectures 103

7.1 Concurrency in TTCN-2 . 103

7.2 Definition of Test Component Configurations 105

7.3 Synchronization of Test Components . 106

7.3.1 Implicit Synchronization . 106

7.3.2 Explicit Synchronization . 106

7.4 A Test Generation Procedure . 110

7.4.1 Simulator Requirements . 111

7.4.2 Test Generation for MTC and PTCs 112

7.5 Case Studies . 115

8 The Tree Walk Search Strategy 119

8.1 Classical Search Strategies . 120

8.2 Labeled Transition Systems . 121

8.3 Main Concepts . 122

8.3.1 Root States . 123

8.3.2 Algorithmic Description . 124

8.4 Detection of Identical States . 128

8.4.1 Example . 131

8.4.2 Algorithmic Description . 131

8.5 Case Studies . 134

8.6 Discussion . 138

9 Test Suite Representation 141

9.1 The Autolink Script Language . 142

9.1.1 General Language Concepts . 143

9.1.2 Constraint Rules . 143

9.1.3 Test Suite Structure Rules . 149

9.2 Automatic Structuring of Constraint Descriptions 153

9.2.1 Constraint Factorization . 156

9.2.2 Constraint Merging . 157

9.2.3 Constraint Parameterization . 158

9.2.4 Constraint Derivation . 161

9.2.5 Constraint Defactorization . 162

9.2.6 Case Studies . 163

9.3 A List Pattern Matching and Manipulation Language 164

9.3.1 General Language Concepts . 167

9.3.2 Basic Patterns . 168

9.3.3 Variables and Variable Operators 170

9.3.4 Manipulation Operators . 171

9.3.5 Extension Operator . 172

9.3.6 Search Operators . 172

9.4 Discussion . 173

iii

10 Advanced Test Generation by Symbolic Execution 177
10.1 Motivation . 178
10.2 Checking the Feasibility of Path Conditions 180
10.3 The ValiBOSE Tool . 184

10.3.1 Navigation . 184
10.3.2 Coverage Measurements . 185
10.3.3 Assertions . 185
10.3.4 Bookmarks . 185
10.3.5 Normalization . 186
10.3.6 Test Data Selection . 186
10.3.7 Example . 186

10.4 Discussion . 194

11 Conclusions 197

A List of Abbreviations 199

B TTCN-2 Test Suite for the Inres Protocol 203

C TTCN-3 Module for the Inres Protocol 213

Bibliography 219

iv

List of Figures

1.1 Structure of the thesis . 3

2.1 The distributed test method in a multi party context 14

3.1 The Inres service and protocol . 18

3.2 The local test method applied to Inres 19

3.3 TTCN-2 – Test suite overview . 20

3.4 TTCN-2 – ASN.1 type definitions . 22

3.5 TTCN-2 – Test component configuration 23

3.6 TTCN-2 – Constraints . 25

3.7 TTCN-2 – Test case SingleDataTransfer 26

3.8 TTCN-2 – Test step MediumAccess . 27

3.9 TTCN-2 – Default MTCFailure . 28

3.10 TTCN-3 – Module TestsForInres . 31

3.11 TTCN-3 – Communication . 34

3.12 TTCN-3 – Test configuration . 35

3.13 TTCN-3 – Templates . 36

3.14 TTCN-3 – Test case SingleDataTransfer 37

3.15 TTCN-3 – Function MediumAccess . 38

3.16 TTCN-3 – Altsteps MTCFailure and ReceptionIDISind 40

3.17 Feature proposal – The par statement 43

4.1 Test methods based on control flow . 54

4.2 Test methods based on data flow . 56

4.3 A process model for specification, validation, verification, and test gener-
ation . 62

5.1 Basic MSCs for the Inres protocol . 65

5.2 A High-level Message Sequence Chart 69

5.3 Inres – Structural description . 71

5.4 Excerpt from the description of process Initiator 74

6.1 Test suite generation with Autolink 81

6.2 MSC IN2m A BASIC RR BV 25 . 82

6.3 An observer process for test generation 84

6.4 TTCN-2 test case IN A BASIC RR BV 25 88

v

6.5 Message Sequence Chart PartialOrder 90

6.6 Representation of partially ordered events in TTCN-2 91

6.7 Synchronization among inline expressions 93

6.8 Three test cases described by one HMSC diagram 94

6.9 Computation time of MSC verifications and test generations 96

6.10 A VB5.2 constraint . 98

7.1 Limitations of synchronization . 105

7.2 Inres test purpose with lack of synchronization 107

7.3 Explicit synchronization by means of a coordination message 108

7.4 Coordination messages – Complex example 109

7.5 Explicit synchronization by means of an MSC condition 109

7.6 Automatically generated CM exchange for the condition in figure 7.5 . 110

7.7 MSC DisconnectionSync . 115

7.8 TTCN-2 test case DisconnectionSync – MTC behavior description . . . 116

7.9 TTCN-2 test case DisconnectionSync – PTC behavior descriptions . . . 117

7.10 MSC MultiSync . 117

7.11 Concurrent TTCN-2 test case MultiSync 118

8.1 Tree Walk – Detection of identical states 129

8.2 Running Tree Walk with detection of identical states 130

8.3 Exploration of the Inres protocol . 135

8.4 MSCs generated by Tree Walk . 136

8.5 MSCs generated by Tree Walk (continued) 137

8.6 Exploration of the VB5.2 protocol . 138

9.1 Atomic expressions of the Autolink script language 144

9.2 Autolink script language – A simple constraint rule 145

9.3 Autolink script language – A constraint rule for multiple signal types . 146

9.4 Autolink script language – Using functions in constraint rules 147

9.5 Autolink script language – A conditional constraint rule 147

9.6 Autolink script language – Constraints with wildcards 148

9.7 Autolink script language – Test suite parameters 149

9.8 Test purpose naming scheme for INAP CS-2 151

9.9 Autolink script language – A simple test suite structure rule 151

9.10 Autolink script language - A generalized test suite structure rule . . . 152

9.11 Application of the generalized rule . 153

9.12 Syntax of the Autolink script language in EBNF 154

9.13 Quality factors and criteria . 155

9.14 The impact of type ordering on parameterization 160

9.15 Number of constraints in the VB5.2 and INAP CS-2 test suites 163

9.16 Size of the VB5.2 and INAP CS-2 test suites 163

9.17 Original VB5.2 constraints . 165

9.18 Chained and parameterized constraints for VB5.2 166

9.19 Syntax of the LPML in EBNF . 169

vi

9.20 Classification of search operators . 173
9.21 Application of the search operators . 174

10.1 A simple, harmful MSC test purpose . 179
10.2 CSP example . 183
10.3 ValiBOSE example – Access control . 187
10.4 MSC TestCaseVariable . 195
10.5 Code generation for MSC TestCaseVariable 196

vii

viii

List of Algorithms

7.1 Invocation of the test generation for the PTCs and the MTC 112
7.2 Test generation algorithm for the MTC 113
7.3 Test generation algorithm for PTCi . 114

8.1 Tree Walk – Main function treeWalk 125
8.2 Tree Walk – Subfunction treeSearch 127
8.3 Tree Walk – Subfunction treeSearch with detection of identical states 132
8.4 Tree Walk – Hash table access with n keys 133

ix

x

1 Introduction

Modern telecommunication systems involve complex interactions between distributed
components. Very often, these systems are heterogeneous and their components come
from many different vendors. To ensure that products of different companies can interact
with each other, cross-national organizations such as the European Telecommunications
Standards Institute (ETSI) or the International Telecommunications Union (ITU) de-
fine international standards for protocols.

In the past, these standards were specified in natural language. But since informal
descriptions can be misinterpreted, formal description techniques are applied in many
standards nowadays. Due to their formal semantics, formal description languages allow
for precise, unambiguous specifications. Two specification languages that are used in
the telecommunication area are the Specification and Description Language (SDL) and
Message Sequence Chart (MSC). While SDL is used for the specification of complete
systems, MSC allows to describe single scenarios.

In recent decades, computer science has made great efforts to improve the quality of
software. Nevertheless, a software product has to undergo extensive tests before it can
be used in practice. The process of determining the extent to which an implementation
fulfills the requirements of its specifications is called conformance testing.

Thorough testing is expensive and time-consuming. On the other hand, testing is always
incomplete; it can detect errors in the implementation but it can never prove their
absence. For economical reasons, testing calls for a systematic and efficient approach.
In particular, this goes for the initial phase of conformance testing in which a suitable
set of test cases must be defined for a given protocol. Typically, the standardization
organizations take over this task and provide the manufacturers with test suites that
are specified in a standardized test language such as the Tree and Tabular Combined
Notation 2 (TTCN-2).

If a formal specification is available, test cases can be derived automatically from the
specification. This can be achieved, e.g., by means of simulation. Automatic test gen-
eration based on formal specification leads to a faster, cheaper, and less error-prone
testing process. It ensures that the generated test cases are correct with regard to the
specification. Moreover, their effectiveness can be assessed and quantified.

This thesis deals with the automatic generation of test suites for conformance testing.
In particular, work has been done in the following problem areas:

1. Test case generation for test architectures where the tester itself is a distributed
system.

1

1 Introduction

2. Efficient exploration of the state space of the specification that retrieves test cases
with a high coverage in a reasonable time.

3. Improved readability of generated test suites by means of user-defined rules and
automatic structuring of data descriptions.

The framework in which all these solutions are embedded is formed by the Autolink
project. During this five-year joint project with Telelogic SA, Malmö, the Institute for
Telematics (University of Lübeck) developed a commercial tool that allows to generate
TTCN-2 test suites based on SDL system specifications and MSC test purposes. Various
projects at ETSI have proved the successful application of Autolink.

Beside the Autolink project, two other works in the field of testing and test generation
are considered in this thesis: In 2001, a new universal testing language, called Testing
and Test Control Notation 3 (TTCN-3), was released. The author was involved in its
standardization and developed the first free TTCN-3 syntax checker. Experience with
Autolink has unveiled that the traditional way of simulating a specification raises some
problems that could be solved by symbolic execution. For proof of concept, a prototype
has been developed that demonstrates the benefits of symbolic execution.

The Structure of the Thesis

This thesis consists of eleven chapters. The dependencies between the individual chapters
are shown in figure 1.1.

In chapters 2 and 3, the fundamental aspects of testing are outlined. Chapter 2, “Foun-
dations of Testing”, provides an overview of types of testing, test architectures, and test
methods. The ISO/OSI Conformance Testing Methodology and Framework is especially
emphasized. In chapter 3, “Test Languages”, the Tree and Tabular Combined Notation 2
and its successor, the Testing and Test Control Notation 3, are described and compared.

The theoretical foundations of automatic test generation are explained in chapter 4,
“Test Generation Based on Formal Specifications”. It summarizes the main concepts of
the ITU-T Framework on Formal Methods in Conformance Testing and presents dif-
ferent test generation methods. In chapter 5, “High-Level Specification Languages”, the
formal description techniques Message Sequence Chart and Specification and Description
Language are introduced. They are used for automatic test generation in this thesis.

The Autolink project is described in chapters 6 to 9. Chapter 6,“The Autolink Tool”,
provides an overview of the test generation process. In addition, the interpretation of
MSCs for test generation purposes is considered and two case studies are introduced. In
the following three chapters, solutions for specific test generation problems are presented.
Chapter 7, “Test Generation for Distributed Test Architectures”, deals with methods for
specifying synchronization among different test components and presents an algorithm
for the generation of test cases for concurrent TTCN-2. Chapter 8, “The Tree Walk
Search Strategy”, describes a new deterministic search strategy that achieves a higher
system coverage than traditional approaches and produces test cases without redundant

2

Chapter 2:
Foundations of Testing

Chapter 7:
Test Generation
for Distributed

Test Architectures

Chapter 8:
The Tree Walk
Search Strategy

Chapter 9:
Test Suite

Representation
Chapter 10:
Advanced

Test
Generation

by Symbolic
ExecutionChapter 6:

The Autolink Tool

Chapter 3:
Test Languages

Chapter 1:
Introduction

Chapter 5:
High-Level Specification Languages

Chapter 4:
Test Generation

Based on Formal Specifications

Chapter 11:
Conclusions

Figure 1.1: Structure of the thesis

test events. Chapter 9, “Test Suite Representation”, is concerned with the readability of
automatically generated test suites. Two solutions are proposed: Customization by user-
defined rules and automatic constraint structuring with no or only minor intervention
by the test specifier.

One of the greatest challenges in automatic test generation is the modeling of the envi-
ronment when simulating a specification. In chapter 10, “Advanced Test Generation by
Symbolic Execution”, a prototype is presented that demonstrates how to cope with this
problem.

Each of the previous chapters concludes with one or more case studies that are based
on three protocols, namely Inres, Core INAP CS-2, and VB5.2 BBCC. In addition,
possible improvements are discussed, where appropriate. In chapter 11, “Conclusions”,
some ideas on the application and future perspective of automatic test generation in
general are presented.

The document is completed by three appendices: In appendix A, the abbreviations used
throughout this thesis are listed. Appendices B and C include complete TTCN-2 and
TTCN-3 test suites for the Inres protocol of which parts are presented in chapter 3.

3

1 Introduction

4

2 Foundations of Testing

Testing is a method or process that aims at detecting errors in a system or a system
component. Beside verifying and analyzing methods, testing is one of the three analyt-
ical ways of ensuring the quality of a product in terms of functionality and reliability
(Liggesmeyer, 1990, p. 28). But since verification mostly fails due to the complexity of
modern systems, and static analyses of their structure and complexity (based on metrics
and control/data flow) can only give hints at potential problems, testing is often the
only practicable method to create confidence in a system.

Testing represents an extensive and multifaceted process within the software and hard-
ware life cycle. A classification and description of different types of testing is given in
section 2.1. This thesis is concerned with conformance testing whose purpose is to de-
termine the extend to which an implementation complies with its specification(s). The
core concepts of conformance testing are presented in section 2.2. A short survey of
the testing process and the persons involved is given in section 2.3. Finally, section 2.4
discusses the major aspects of abstract test methods and test configurations.

2.1 Classification of Tests

Testing is a generic term that subsumes many different methods, procedures, and ob-
jectives of various application areas (see, e.g., Peng and Wallace (1993); Walter et al.
(1998)). Accordingly, there are several possible ways to define and classify types of tests
(see, e.g., Balzert (1998, chapter 5) and Coward and Ince (1995, chapter 2)).

A first major distinction can be made between static and dynamic test methods:

Static methods are based on the analysis of code. Manual test methods that fall into
this category are review (software requirements, design, and code are presented to an
audience for comments and approval), inspection (the work is examined by a person
or group other than the author), and structured walkthrough (the developer guides his
colleagues through a segment of design or code).

Contrarily, dynamic test methods are based on the execution of the system to be tested.
Typically, the system is stimulated by some input and the resulting output (response)
is observed and appraised.

In the following, dynamic testing is characterized by five properties:

• The type of implementation

• The objective of the test

5

2 Foundations of Testing

• The knowledge of the internal structure of the system

• The authority used for determining the test results

• The selection of the test data

Type of Implementation. According to whether the system to be tested is a physical
device or a piece of software, two types of testing can be distinguished:

• Hardware testing: The system is tested on the level of single transistors, circuits,
or functional entities such as CPU caches or video graphics cards. The exchange
of test data between the tester and the system takes place on the physical layer
where the inputs and outputs are either analog signals or discrete data.

• Software testing: The system represents a program whose behavior is checked
by exchanging test data on the logical, i.e., non-physical, layer. Although a pro-
gram cannot exist without an underlying physical machine, software testing simply
assumes its correctness and abstracts from it.

Both types of testing also occur in combination, e.g., if a hardware device with embedded
software, such as a medical diagnosis system, is tested.

Software testing itself applies to all kinds of programs (and their specific interfaces)
including communication protocol instances (service access points), libraries (application
programming interfaces), and user applications (graphical user interfaces). Tests can be
applied to single methods and functions, classes and methods, or complete systems.

Test Objective. There are different types of requirements that an implementation must
fulfill to work correctly. Accordingly, there are various kinds of test objectives:

• Functional tests check the functional behavior of a system, i.e., its correct in-
put/output behavior in certain states of program execution. Passing functional
tests successfully is an essential prerequisite for any implementation.1

• Real-time tests are made to test the correct behavior of a system with regard to
its real-time requirements. One can distinguish between two types of requirements:
Hard real-time requirements demand that a system responds to some input within
a fixed period of time (e.g., in flight control systems). Contrarily, soft real-time
requirements, as imposed on multimedia systems, allow for some variance in the
response times. Their compliance is examined by statistical measures (→ Quality
of Service tests).

• Performance tests analyze the system with regard to response times, CPU us-
age, memory requirements, or other quantifiable features in normal and overload
situations. Performance data can either be obtained externally (e.g., by measuring
the system’s process time relative to the volume of input data) or by instrumen-
tation of the code (e.g., when measuring the average execution time of a single
function).

1Please note that in literature, functional testing is also used as synonym for black box testing.

6

2.1 Classification of Tests

• Load tests are used to check the behavior of a system under heavy load. Their
purpose is to ensure that the system is capable to respond in time, even if the test
data are sent to the system at a high rate.

• Stress tests analyze the behavior of a system under unusual conditions. Excep-
tional states are caused, e.g., by inopportune or malformed test data that are fed
into the system at a high rate.

• Integration tests make sure that several software and/or hardware elements are
combined in such a way that all intermodule communication links are established
correctly.

• Portability tests aim at demonstrating that a software system can be ported to
another hardware or software platform.

• Penetration tests analyze the system with regard to vulnerabilities that allow
a potential attacker to gain unauthorized rights or even to take control of the
system. For that purpose, the system is checked for erroneous configurations and
known software bugs. Typically, the system is a server that is running on a host
connected to a network.

• Usability tests aim at assessing the human-computer interface of a system with
regard to criteria such as adequacy, simplicity, clarity, and consistency. Typically,
usability tests are performed by recording and evaluating the behavior of an exter-
nal test person interacting with the system (gestures, response times, eye move-
ment, etc.).

System Knowledge. The amount of information given about the system implementa-
tion determines the way in which tests can be specified. Three types of testing can be
distinguished:

• Black box testing: The system is considered a component with interfaces to its
environment that is supposed to fulfill a specific task but whose internal structure
is unknown. Black box tests are derived from the specification which the system
is based on as this is the only source of information.

• Gray box testing: Some information about the workings of the system are known
in advance or observable during test execution (e.g., the number of states or the
current state in case of state-machine like implementation). This knowledge can
be used when specifying test cases.

• White box testing (Glass box/Structural testing): All internal details of the
system, typically in form of its program code, are known. The set of appropriate
tests (test data) is determined by a preceding control flow or data flow analysis.

Please note that in literature, the term white box testing is sometimes used to denote tests
during which the internal sequence of events can be inspected by means of monitoring.

7

2 Foundations of Testing

Authority for Test Results. Another criterion for classifying tests is the “authority”
which is used as reference to decide whether a system passes a test successfully.

• Conformance testing is used to determine the extend to which an implemen-
tation conforms to its specification. In general, no information about the internal
structure of the implementation is given, i.e., conformance testing implies black
box testing.

• Interoperability (compatibility) testing is a means to ensure that an im-
plementation, e.g., a protocol entity, is able to work with other implementations.
There are two kinds of interoperability testing: Active testing allows to insert
selective errors in the communication between two systems and monitor their re-
actions, whereas passive testing is restricted to testing valid behavior only.

Even if two implementations that claim to conform to the same specification are
able to interoperate, it does not necessarily mean that they in fact conform to the
specification. The other way round, two systems conforming to the same specifi-
cation do not necessarily interoperate if, e.g., the specification is ambiguous.2

• Regression testing is repeated whenever significant code changes are made.
Selective retesting of a product ensures that modifications do not have unintended
side effects and systems requirements are still met. Since former software releases
are assumed to fulfill the system requirements, they are supposed to pass all tests
and can be considered as reference. Thus, only deviations in the test outcome
between the latest release and its predecessors must be considered. (Testing of
new features is called progressive testing.)

• Back-to-Back/Comparison testing is a process by which the output of two
or more systems that are based on the same specification is compared to detect
anomalies. Comparison testing does not detect specific errors but only discrepan-
cies. If all implementations contain the same error, it will not be discovered.

Test Data Selection. During test execution, the system is stimulated with test data
and its response is compared with the set of valid outputs. The extend to which test data
are considered from the input domain of the system determines the comprehensiveness
of the tests.

• Exhaustive testing: Any possible test data is used for every possible point of
execution. In practice, the domain of most inputs is rather large and the response
of (stateful) systems may also depend on former inputs. Thus, exhaustive tests
can only be made for systems with very small complexity.

• Partition testing: The input domain is divided into several disjoint subdomains
from which only one test data is chosen. These subdomains may be determined
by a data flow analysis of the systems or by some general rule. For instance, a
negative value, zero, and a positive value might be chosen for each integer.

2The fact that a specification can be interpreted in different ways may even remain unnoticed until
interoperability tests are performed.

8

2.2 Conformance Testing Concepts

• Boundary value testing: As a special kind of partition testing, test data are
selected on or around range limits or boundaries. In addition, test data should
be chosen to force the output to its extreme values (or beyond the specification
boundaries). For integers, the value zero often causes problems (e.g., divisions by
zero). For sequences of data, attention should be focused on their first and last
element and on empty lists.

• Random testing: Test data are selected in a random manner.

• Mutation testing: Based on the system specification or the program itself, a
large set of modified versions, mutations, are created that differ from the original
program by a single characteristic such as a missing or modified statement. Test
data are selected in such a way that the test result of at least one test case differs
between each mutant and the original program.

2.2 Conformance Testing Concepts

In the following, the major concepts of conformance testing as defined in ISO/IEC
International Standard 9646 (ISO/IEC, 1994b) are introduced.3 ISO/IEC IS 9646 is
a seven-part standard that is better known as Information technology – Open systems
interconnection – Conformance testing methodology and framework (CTMF). Although
it focuses on OSI protocol testing, most of its concepts apply to conformance testing in
general and even other test methods.

2.2.1 Conformance Requirements

The purpose of conformance testing is to find out whether an implementation conforms
to its base specification(s). In order to do so, an implementation must fulfill both static
and dynamic conformance requirements.

Static conformance requirements specify the minimum set of capabilities which have
to be implemented to facilitate interworking. In addition, they define limitations of the
combination of capabilities. In this context, a capability denotes a set of functions defined
in the protocol specification that is supported by the implementation.

Dynamic conformance requirements specify the observable behavior (in terms of com-
munication) that is permitted according to the base specification(s).

Within the presented framework, conformance testing means functional black box test-
ing. Therefore, while violations of conformance requirements might be detected during
test execution, their absence cannot be guaranteed.

3An alternative framework for conformance testing is defined by ISO/IEC International Standard 13210
(ISO/IEC, 1994a). It specifies the general requirements and test methods for measuring conformance
to POSIX (Portable Operating System Interface for UNIX) standards.

9

2 Foundations of Testing

2.2.2 Test Cases

A test case4 is a specification of all actions that need to be performed to achieve a
specific test purpose. Ideally, a test case should focus on a single or a small set of related
conformance requirements.

IS 9646-1 (ISO/IEC, 1994b, pp. 14–15) defines four types of tests which vary in the
extend to which they give evidence for conformance:

• Basic interconnection tests are used to ensure that the main features of the
specification are implemented correctly and no severe case of non-conformance
exists.

• Capability tests check that the observable capabilities of the system conform
to (a) the allowed combination of capabilities as stated in the static conformance
requirements and (b) the capabilities listed by the supplier in his implementation
conformance statements (ICSs).

• Behavior tests aim at testing the implementation thoroughly, covering the full
range of specification requirements (within the capabilities of the implementation).
Behavior tests represent the majority of all conformance tests.

• Conformance resolution tests provide an in-depth analysis of the behavior of
a system with regard to particular conformance requirements. Typically, they are
non-standardizable as their execution involves system-specific diagnostic facilities.

ISO/IEC IS 9646 distinguishes between two types of test cases that are related to each
other: An abstract test case is specified according to an (abstract) test method (see
section 2.4) which describes how an implementation is to be tested. However, the speci-
fication is made on a level that abstracts from the concrete equipment and procedures,
i.e., the means of testing (MOT). Thus, for test execution, an executable test case must
be derived from an abstract one.

A test case must be defined in such a way that the system under test (SUT, see 2.4)
starts and ends in a stable testing state which is maintained sufficiently long by the SUT
– without further input from the tester – to bridge the gap between the execution of
two test cases. Typically, the stable testing state is identical to an idle testing state, i.e.,
a state in which there are no open connections and the state of the SUT is independent
from test cases executed previously. This guarantees that all test cases can be executed
in isolation and their execution order does not have any impact on the test result.

A test case consists of sequences of atomic test events such as sending or receiving a
message. A valid test event is a test event that is syntactically and semantically correct
and occurs when allowed to do so by the specification. An invalid test event is a test
event that violates at least one of these conformance requirements. An inopportune test
event is an invalid test event that occurs when not allowed to do so according to the
specification.

4For convenience, the term test is used as a synonym for test case throughout this thesis.

10

2.2 Conformance Testing Concepts

Each sequence of test events stands for a foreseen test outcome. Conceptionally, a test
case can be structured into three parts:

• The test preamble comprises the sequences of test events from the starting stable
testing state to an initial testing state.

• The test body contains the sequences of test events that achieve the test purpose.

• The test postamble comprises all sequences of test events from the end of the test
body to the final stable testing state.

Test preamble and test postamble are optional elements whose only purpose is to drive
the SUT into the desired states, whereas the real conformance test is made when exe-
cution the test body.

2.2.3 Test Verdicts

To each foreseen test outcome, an abstract test case must assign a test verdict. ISO/IEC
IS 9646 defines three types of verdicts:

• A pass verdict indicates that no invalid test event has occurred and the test out-
come gives evidence that the implementation conforms to its specification(s).

• A fail verdict indicates that at least one invalid test event has occurred or that
the observed test outcome proves non-conformance of the implementation to its
specification(s).

• An inconclusive verdict is assigned if neither a pass nor fail verdict can be as-
signed indisputable. This is the case if the implementation acts conforming to its
specification(s) but no statement can be made about the particular conformance
requirement(s) which are considered by the test purpose.

A preliminary test verdict may be assigned at the end of the test body to indicate that
the test purpose has been achieved. A final test verdict is assigned at the end of the test
case.

If, during test execution, a fault is detected in the test case itself, a test case error is
reported instead of one of the test verdicts above.

2.2.4 Test Suites

A test suite is a collection of test cases that are used to perform conformance tests. In
addition, it contains general information such as the specification(s) and the test method
on which the test suite is based, and statements about its test coverage.

Test suites have a nested structure: Related test cases whose test purposes aim at a
common objective can be combined in a hierarchy of (named) test groups. Test events
within a test case that form a logical unit, such as a test preamble or postamble, can be
described in form of a test step. It can be reused for the description of other test cases.
Test steps are allowed to refer to other test steps.

11

2 Foundations of Testing

In analogy to test cases, ISO/IEC IS 9646 distinguishes between abstract test suites
(ATSs) and executable test suites (ETSs). Throughout this thesis, the terms test suite
and test case are used to denote abstract entities.

2.3 The Conformance Testing Process

Conformance testing comprises several steps that involve single persons or teams with
different roles:

• A client of a test laboratory submits a system or implementation for conformance
testing.

• A test specifier develops the abstract test suite and associated documents.

• A test realizer provides the means of testing that are required for the test opera-
tion.

• A test laboratory carries out the conformance tests.

In the following, the phases test suite development, test preparation, test operation, and
test evaluation are described briefly.

2.3.1 Test Suite Development

The initial task of testing is to define a reasonable set of test cases. As mentioned
in section 2.1, test cases for black-box testing must be derived from the specification(s)
which the implementation is based on. Normally, specifications are available in a textual
and informal manner. In these cases, test cases must be defined manually which bares
the risk that the tests itself contain errors, e.g., due to misinterpretation of the standard.
For that reason, conformance tests and system implementations should be developed by
different teams. If, on the other hand, a specification includes a formal description that
forms a normative part, automatic test generation can be applied. The main part of this
thesis deals with methods on how this can be achieved.

In the telecommunication area, specifications are defined by international standardiza-
tion organizations such as the International Telecommunication Union (ITU), the Eu-
ropean Telecommunication Standards Institute (ETSI), the Institute of Electrical and
Electronics Engineers (IEEE), or the Internet Engineering Task Force (IETF). In order
to take the burden of developing their own set of test cases from the manufacturers, these
standardization organizations often publish their protocol specifications along with test
specifications in form of abstract test suites.

2.3.2 Test Preparation

In the test preparation phase, the supplier or implementor has to provide all information
that is necessary for a (possibly independent) test laboratory to perform the confor-
mance tests: All relevant specifications to which conformance is claimed are identified

12

2.3 The Conformance Testing Process

in a system conformance statement (SCS). The capabilities that have been realized for
each specification are listed in implementation conformance statements (ICSs). Finally,
additional information about the implementation and its test environment are given in
implementation extra information for testing (IXIT) statements.

Based on the created document, a suitable abstract test method and a corresponding
abstract test suite is chosen. Thereafter, the test laboratory sets up the SUT and the
means of testing accordingly. Protocol testing often requires tailored tester hardware to
communicate with the SUT. For instance, PCs with special interface devices might be
used. In addition, the tester software, ideally based on a real-time operation system,
needs to be configured. If a test suite is given in a standardized test language like the
ones presented in chapter 3, a compiler or interpreter is able to translate large parts
of an abstract test suite into an executable one. Equipment-specific extensions such as
synchronization between different tester components which an ATS abstracts from are
implemented in a run-time environment.

2.3.3 Test Operation

The test operation phase starts with a static conformance review. The ICSs provided by
the supplier are analyzed respecting the static conformance requirements of the stan-
dards listed in the SCS. The purpose of this review is to detect invalid combinations of
implemented capabilities based on the statements of the supplier. In addition, the IXIT
documents are checked for consistency.

To check the dynamic conformance requirements, the parameters of the test suite(s) are
set according to the declarations in the ICSs and IXITs and the set of applicable test
cases is determined. Afterwards, a test campaign is performed for each parameterized
executable test suite. During each test campaign, the observed sequences of test events
as well as other information about the test execution, e.g., test verdicts, are recorded in
a conformance log.

2.3.4 Test Evaluation

After the test operation, the test results are determined based on the conformance
logs produced during the test campaigns. In case of uncertainty, the correctness of test
verdicts for individual test cases can be checked due to the complete logging of the test
outcome.

In a final step, conformance test reports are created based on the results of the static
conformance review and the test campaigns. They give a summary of the actual con-
formance of the implementation to its specification(s) as well as a detailed list of those
abstract test cases for which executable test cases were executed, together with their
resulting test verdicts.

13

2 Foundations of Testing

Lower Tester
Control Function

PCO

UTn

PCO

UTi

PCO

LTn

Test System

Test Coordination Procedures

X-ASPs

X-Service-Provider(s)

 (P)-PDUs

Y-ASPs

 TCP

System Under Test

PCO

LT1

PCO

LTi
PCO

UT1

Implementation
Under Test

Figure 2.1: The distributed test method in a multi party context

2.4 Test Methods and Configurations

An important prerequisite for specifying an abstract test suite is to define an adequate
abstract test method that considers the special properties of the specification and the
way it is intended to be implemented. To some extend, the chosen test method also
determines the concrete test configuration that is established during test execution.

ISO/IEC IS 9646 (part 1, p. 25) defines four main abstract test methods, called local,
distributed, coordinated, and remote test method, and several variants for embedded
testing and multi user/multi party testing. These test methods vary in the degree of
controllability and observability of test events sent and received by the implementation.
To illustrate this, the conceptional view of the distributed test method in a multi party
context is presented in figure 2.1.

In each test method, four major entities are identified:

• A system under test (SUT), i.e., a real open system provided by the client.

• An implementation under test (IUT), i.e., the part of the SUT which is subject
to conformance testing.

14

2.4 Test Methods and Configurations

• A test system (also called tester), i.e., a real system that is provided by the test
laboratory.

• A service provider which is used for communication between the tester and the
SUT.

The SUT may be identical to the IUT or contain additional components. For instance, if
the upper boundary of the IUT is a software interface, facilities to control and observe the
IUT must be provided within the SUT, since the tester is not able to address the interface
directly. This circumstance is reflected by the distributed test method (figure 2.1).

The actual test execution is performed by the following functional entities:

• An upper tester (UT) controls and observes the upper service boundary of the
IUT.

• A lower tester (LT) controls and observes the lower service boundary of the IUT
via an underlying service-provider.

• A lower tester control function (LTCF) coordinates the lower testers and deter-
mines the final test verdict in a multi-party testing context.

In a concrete test configuration, the functional entities listed above are mapped to one
or more test components, i.e., active elements which are executed in parallel. Each test
component realizes the functionality of one or more UTs and LTs. The lower tester
control function is integrated in the main test component (MTC). The number of test
components depends on the degree of concurrency in the behavior of the tester. In a
multi party context, one test component should be defined for each party. However, it
should be noted that, in principle, several test components again may be executed on
the same physical device.

The interaction of the tester with the IUT can take place at different points of control
and observation (PCOs). Each PCO is modeled by two queues that contain the test
events to be sent to and received from the IUT. Upper testers exchange abstract service
primitives (ASPs) with the IUT; lower testers exchange protocol data units (PDUs)
with the IUT. In practice, these PDUs are encapsulated into ASPs of a service provider
which connects the LT with the IUT.

Synchronization among the UTs, LTs, and the LTCF is achieved by test coordination
procedures (TCPs). Their requirements shall be specified for each ATS – either explicitly
or implicitly by the test language that is used for the definition of the ATS. On the other
hand, the technical realization of test coordination procedures is not prescribed by a test
method.

15

2 Foundations of Testing

16

3 Test Languages

The formal specification of tests calls for standardized languages that are widely ac-
cepted. In principle, existing programming or script languages could be used for these
purposes (see, e.g., the DejaGNU GNU Testing Framework; Savoye, 2001). However,
these languages do not provide the appropriate level of abstraction. For instance, tra-
ditional programming languages make clear assumptions on low-level implementation
aspects such as memory management. On the other hand, high-level testing concepts
like test components are not provided and must be added afterwards on top of these lan-
guages (e.g., by supplementary classes). Moreover, the control structures of languages
like C or Java do not fit to the requirements of testing concurrent systems and lead
to large and confusing specifications. Script languages have been designed but they
are either tailored to a specific test equipment (Moesch, 2001), or to a very restricted
application area (see, e.g., the Nessus attack scripting language, Deraison (2000)).

For the reasons given above, the Tree and Tabular Combined Notation was developed
and published by the International Organization for Standards (ISO) in 1992. It has
gained wide acceptance during the last decade as the primary language for testing of
telecommunication protocols. In 1997, the second edition of TTCN (TTCN-2) was re-
leased. It is described in section 3.1 and used as the target language for automatic test
generation within the scope of this dissertation.

In recent years, it has become apparent that the strong relationship between TTCN-2
and the OSI conformance testing methodology imposes restrictions on the application
of the language. Therefore, it has been decided to develop a new test language that sup-
ports a wider spectrum of testing types and infrastructures (e.g., the Common Object
Request Broker Architecture, or CORBA for short). As a result, the Testing and Test
Control Notation 3 (TTCN-3) was released by the European Telecommunications Stan-
dards Institute (ETSI) in 2001 with major contributions by the Institute for Telematics,
Lübeck, involving the author himself. Although TTCN-3 is considered the successor of
TTCN-2 and although both languages share many basic concepts, they have totally
different styles. In fact, TTCN-3 was redesigned from scratch. The main features of
TTCN-3 are described in section 3.2.

The Inres Case Study. The concepts of TTCN-2 and TTCN-3 are illustrated by test
suites for Inres, a service and protocol designed for educational purposes (Hogrefe, 1989).
It is also used in chapter 5 for the description of the formal specification languages MSC
and SDL.1

1Another introduction to TTCN-3, MSC, and SDL by the author with a consistent case study from
process automation is published as Grabowski and Schmitt (2002); Grabowski et al. (2001, 2002).

17

3 Test Languages

Service User

User A

Protocol Entity

Initiator

Service Provider

Medium

Protocol Entity

Responder

Service User

User B

disconnected

ICONreq
MDATreq(CR)

MDATind(CR)
ICONind

waiting ICONresp
MDATreq(CC)

MDATind(CC)
ICONconf

connected

IDATreq(data)
MDATreq(DT,no,data)

MDATind(DT,no,data)
IDATind(data)

sending MDATreq(AK,no)

MDATind(AK,no)

connected

IDISreq
MDATreq(DR)

MDATind(DR)
IDISindIDISind

disconnected

msc Inres

Figure 3.1: The Inres service and protocol

Inres – which stands for INitiator-RESponder – is a reliable, asymmetric and connec-
tion-oriented service on the OSI data link layer that ensures the safe transmission of
data over an unreliable medium. For that purpose, a sequence number is transmitted
along with each data. The responder protocol entity must acknowledge each data packet
by the correct sequence number.

The Inres service comprises the three phases connection establishment, data transfer,
and connection release. The message exchange that takes place when a service user A
transmits one data packet to some service user B is shown in the message sequence chart
(MSC) in figure 3.1.

The main features of TTCN-2 and TTCN-3 are illustrated by test suites for testing the
conformance of Initiator protocol entity implementations. The local test method of the
CTMF is chosen, i.e., both upper and lower tester reside inside the test system. The
upper tester takes the role of Service User A and exchanges Inres ASPs with the SUT via
Inres service access point ISAP1. The lower tester simulates the behavior of a Responder
protocol entity and communicates with the SUT via service access point MSAP2 of the
Medium service provider. The conceptual architecture is shown in figure 3.2.

For simple comparison of both languages, the TTCN-2 and TTCN-3 conformance test
suites for Inres are specified as syntactically and semantically equivalent as possible while
taking into account the characteristics of both languages. In the following sections, only

18

3.1 The Tree and Tabular Combined Notation

Test System

TCP
CP CoordinationPoint

Medium-ASPs
(MDATreq, MDATind)

Service-Provider Medium

System Under Test

IUT
Initiator

Inres-ASPs
(ICONreq, ICONconf, ...)

 PCO ISAP1

PCO MSAP2

Lower Tester

Parallel Test Component
ParallelTC

Upper Tester

Main Test Component
 MainTC

Figure 3.2: The local test method applied to Inres

simplified extracts are presented. Complete test suites can be found in appendices B
and C.

3.1 The Tree and Tabular Combined Notation

The Tree and Tabular Combined Notation, second edition, (TTCN-2) is a language for
the specification of abstract test suites for OSI protocol testing. It is published as the
third part of ISO/IEC International Standard 9646 (ISO/IEC, 1997).

A TTCN-2 document can have two semantically equivalent forms: The graphical rep-
resentation, called TTCN.GR, is based on tables in which the test specifier fills in all
test suite information. The machine processable form, called TTCN.MP, reflects the
structures and contents of these tables in a text-based representation. TTCN.MP is
hard to edit by hand and serves solely for the purpose of storing TTCN-2 test suites
in a canonical way and for exchanging them between different tools. In the following,
examples are given only in the graphical form.

A TTCN-2 test suite is structured into five parts:

• The Test Suite Overview part contains information on the purpose, extent, and
structure of a test suite.

• The Import Part lists objects that are used in the test suite but defined in a
different document.

19

3 Test Languages

Test Suite Structure

Suite Name : TestsForInres

Standards Ref :

PICS Ref :

PIXIT Ref :

Test Method(s) : Local test method

Comments :

Test Group Reference Selection Ref Test Group Objective Page Nr

BasicInterconnectionTests/ Determine whether there is sufficient confor-
mance for interconnection to be possible

210

BehaviorTests/ Determine the extent to which dynamic confor-
mance requirements are met

210

Detailed Comments :

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page Nr

BasicInterconnectionTests/ SingleDataTransfer 210

BehaviorTests/ DataLoss InopportuneEvents 210

Detailed Comments :

Figure 3.3: TTCN-2 – Test suite overview

• The Declarations Part contains definitions and declarations of all objects used in
the other parts of the test suite.

• The Constraints Part defines the values that are to be sent and received by the
tester.

• The Dynamic Part specifies the dynamic test behavior, i.e., the test outcomes.

For each part, TTCN-2 defines a set of table proformas. Depending on the type of table,
a TTCN test suite can have one or more instances. In the following, the main concepts
of each part are described and illustrated by simple examples.

3.1.1 Test Suite Overview and Import Part

In the Test Suite Overview part, general information on the purpose and content of a
test suite are provided. This information includes the structure of the test suite, indexes
of test cases and test steps, and exported objects that can be reused in other test suites.

In figure 3.3, two tables of the test suite overview part are shown. Their overall layout and
their captions (printed in bold font) are prescribed by the TTCN-2 standard. The Test
Suite Structure table specifies the name of the test suite, its supplementary documents
(standards, protocol ICSs (PICSs), and protocol IXITs (PIXITs)), its test method,
and its test groups. In the given example, two test groups, BasicInterconnectionTests
and BehaviorTests, are defined. In the Test Case Index table, all test cases and their
corresponding test groups are listed.

TTCN-2 allows to define selection expressions that apply to either a single test or a
complete test group. A test case/test group is only executed if its selection expression

20

3.1 The Tree and Tabular Combined Notation

evaluates to true. This mechanism allows to choose test cases depending on the capa-
bilities of the IUT. In figure 3.3, second table, test case DataLoss is tied to selection
expression InopportuneEvents (its definition is given in a separate table in appendix B).

The Import Part consists of only one table which lists all objects (type definitions, test
steps, etc.) that are imported from another source. Conceptionally, it is the counterpart
of the Test Suite Exports table in the Test Suite Overview part in which all exportable
objects are declared.

3.1.2 Declarations Part

The Declarations part comprises declarations and definitions for all objects used in
the test suite, including data types, parameters, constants, variables, timers, auxiliary
functions (operations), and elements of test component configurations.

Data Model. TTCN-2 comes along with various predefined simple types, including
INTEGER, BOOLEAN, BIT/HEX/OCTETSTRING, and 12 types of character strings with
varying character set. Based on these basic types, subtypes with restricted value range
or complex data types can be constructed.

In accordance with OSI terminology, TTCN-2 distinguishes between data types, ASP
types, and PDU types. Simple and structured data may appear inside ASPs and PDUs
but they are not allowed to be used directly for send and receive test events. In ad-
dition, coordination messages (CMs) must be defined for communication between two
test components within the tester. For each kind of type, TTCN-2 provides a distinct
table proforma. Normally, each definition is made in a separate table but there are also
compact proformas for multiple definitions to reduce the amount of tables.

In the telecommunication area, it has become common practice to define data types in
the Abstract Syntax Notation 1 (ASN.1 ; ITU-T, 1997a). Thus, TTCN-2 permits the
use of ASN.1 as alternative to its own data language. Table proformas are provided to
define ASN.1 data types inside the test suite or to refer to an external ASN.1 module.

In figure 3.4, two ASN.1 definitions are presented. In the first table, PDU type Inres-
PDU is defined as a sequence with the three fields iPDUType, seqNo, and iSDU where
the latter two are optional (depending on iPDUType; cf. figure 3.1). According to the
test method shown in figure 3.2, a medium service provider is used for communica-
tion between the lower tester and the SUT. It exchanges ASPs of type MDATreq and
MDATind with the lower tester in which InresPDUs are embedded. In the second table
of figure 3.4, the definition of MDATreq is given.

By default, TTCN-2 does not make any assumptions on the ranges of integers and floats,
since these details are tightly coupled with aspects of data encoding which is outside the
scope of the language itself. However, the test specifier may assign encoding rules to the
whole test suite or to single data types and PDU types. The semantics of these rules is
determined in some external manner, e.g., by the test system. In figure 3.4, first table,

21

3 Test Languages

ASN.1 PDU Type Definition

PDU Name : InresPDU

PCO Type :

Encoding Rule Name : PER BASIC UNALIGNED 1997

Encoding Variation :

Comments : Apply Packed Encoding Rules

Type Definition

SEQUENCE {
iPDUType InresPDUType, -- CR, CC , DR, DT , or AK

seqNo SequenceNumber OPTIONAL, -- zero or one

iSDU UserPDU OPTIONAL
}
Detailed Comments : A User PDU on layer n+1 becomes an Inres SDU on layer n

ASN.1 ASP Type Definition

ASP Name : MDATreq

PCO Type : MediumSAP

Comments :

Type Definition

SEQUENCE { mSDU InresPDU }
Detailed Comments : An Inres PDU on layer n becomes a Medium SDU on layer n-1

Figure 3.4: TTCN-2 – ASN.1 type definitions

the specification of encoding rule PER BASIC UNALIGNED 1997 means that PDUs
of type InresPDU must be encoded according to the ASN.1 Packed Encoding Rules.

Parameters, Constants, and Variables. Test suites can be parameterized for re-use in
different contexts. Thereby, properties of the IUT can be passed to a test suite and, e.g.,
used in test selection expressions. Test suite parameters are considered global constants.
For each parameter, a reference to the corresponding entry in a PICS/PIXIT document
must be given. Further global constants that are not derived from a PICS or PIXIT can
be defined in a separate Test Suite Constant Declaration table.

Variables can be defined with two different scopes and life-times. Test suite variables
exist during the execution of the whole test suite and thus can be used to pass infor-
mation from one test case to another (e.g., test verdicts). Test suite variables are only
accessible by the main test component. In contrast, the life-time of test case variables
is restricted to each single test case. All test components, i.e., both the main and the
parallel test components, obtain their own complete set of variable instances at the time
of creation.

Test Component Configurations. TTCN-2 allows to define one or more test compo-
nent configurations in a test suite. A test component configuration is characterized by
a main test component (MTC), zero or more parallel test components (PTCs), and the
communication links among these components and between the test components and
the SUT. If no test component configuration is given, a default configuration with only
one test component is assumed. Each test component executes in parallel. Test compo-
nent configurations must be defined statically, i.e., the number of components and their

22

3.1 The Tree and Tabular Combined Notation

PCO Declarations

PCO Name PCO Type Role Comments

ISAP1 InitiatorSAP UT

MSAP2 MediumSAP LT

Detailed Comments :

Coordination Point Declarations

CP Name Comments

CoordinationPoint Message exchange between MTC and PTC

Detailed Comments :

Test Component Declarations

Component Name Component Role Nr PCOs Nr CPs Comments

MainTC MTC 1 1

ParallelTC PTC 1 1

Detailed Comments :

Test Component Configuration Declaration

Configuration Name : StandardConfiguration

Comments :

Components Used PCOs Used CPs Used Comments

MainTC ISAP1 CoordinationPoint

ParallelTC MSAP2 CoordinationPoint

Detailed Comments :

Figure 3.5: TTCN-2 – Test component configuration

communication links are fixed. However, all PTCs are created dynamically at execution
time by the MTC (see section 3.1.4).

In TTCN-2, communication is based on asynchronous message exchange. A test com-
ponent communicates with the SUT by one or more points of control and observation
(PCOs). The semantic counterpart for communication between two test components
is called coordination point (CP). Each PCO and CP is modeled by one input queue
for incoming messages and one output queue for outgoing messages. Both queues have
infinite capacity such that messages never get lost, even if they cannot be processed
immediately.

In figure 3.5, a test component configuration is defined that corresponds to the local
method presented in figure 3.2. The PCO Declarations table defines the two PCOs
ISAP1 and MSAP2. For each PCO, the corresponding role, i.e., upper tester (UT)
or lower tester (LT), is specified. A CP, cleverly called CoordinationPoint, is specified
in the Coordination Point Declarations table. The Test Component Declarations table
defines the two components MainTC and ParallelTC, their roles (MTC/PTC) and
their numbers of PCOs and CPs. Finally, the configuration is specified in the Test
Component Configuration Declaration table that lists all test components involved and
assigns concrete PCOs and CPs to them.2

2Obviously, the scattering and duplication of information in several tables causes a significant overhead
and only pays off if more than one test component configuration is defined.

23

3 Test Languages

Test Suite Operations. TTCN-2 provides a number of predefined operators for arith-
metic and boolean operations, comparisons, conversions (e.g., from HEXSTRING to
INTEGER), for determining the presence of optional data fields, and for finding out
the length/size of sequences and strings. If these operations are insufficient, the test
specifier can define his own operations in terms of functions with input parameters
and result value. Two different table types are provided for either a procedural or a
textual (i.e., informal) description. For the first case, TTCN-2 provides a rudimentary
imperative language that comprises assignments as well as RETURN, IF, WHILE, and CASE

statements.

3.1.3 Constraints Part

In TTCN-2, test data, i.e., the concrete messages that are exchanged during test exe-
cution, are described by constraints. The constraints concept provides a simple way to
organize and re-use test data. In analogy to the declarations part, TTCN-2 distinguishes
between constraints for structured types, ASP types, PDU types, and CM types. For
all kinds, similar table proformas are provided.

One of the strengths of TTCN-2 that makes it particularly suitable for test specification
is the flexible way in which messages can be specified. In many cases, messages sent by
the SUT are not exactly compared with a concrete value by the tester. For instance,
some message parameters may not be relevant for a specific test purpose and thus do
not have to be checked. More important, the responses of the SUT often depend on the
test history or are even at random, e.g., when the SUT exchanges sequence numbers
with the tester.

For that reason, constraints for receive events may make use of matching mechanisms.
Instead of concrete values, special operators can be specified that match, e.g., any value,
a list of single values, a range of values, the complement of a value list or all permutations
of a given sequence. There are also operators for handling optional data and for imposing
restrictions on the length of strings and sets.

In figure 3.6, three ASN.1 Constraint Declaration tables are shown. In the first table,
a question mark is specified instead of a concrete value for data field seqNo. It means
that any sequence number is accepted for a receive event that refers to constraint Data-
Transfer. Nevertheless, the value that is actually received can be retrieved during test
execution. In figure 3.8, line number 4, the value for seqNo is stored in variable seqNum-
ber and used for the successive reply (see line number 5, Constraints Ref column).

Structuring Concepts. Constraint descriptions can become very large and complex.3

In order to reduce their size and improve readability, constraints can be structured in
three ways:

• Constraint parameterization

3See chapter 9 for a detailed discussion on this topic.

24

3.1 The Tree and Tabular Combined Notation

ASN.1 ASP Constraint Declaration

Constraint Name : DataTransfer(data : UserPDU)

ASP Type : MDATind

Derivation Path :

Comments :

Constraint Value

{ mSDU { iPDUType DT, seqNo ?, iSDU data } }
Detailed Comments :

ASN.1 PDU Constraint Declaration

Constraint Name : ConnectionConfirmation

PDU Type : InresPDU

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments : This constraint is used with constraint ’MediumDataRequest’

Constraint Value

{ iPDUType CC }
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : MediumDataRequest(data : InresPDU)

ASP Type : MDATreq

Derivation Path :

Comments :

Constraint Value

{ mSDU data }
Detailed Comments :

Figure 3.6: TTCN-2 – Constraints

• Constraint chaining

• Constraint derivation

In case of constraint parameterization, the parameter may either be a simple/structured
data type or a PDU type. Constraint chaining means that a constraint refers to another
constraint. Two types of chaining are distinguished: If there is an explicit (hard-coded)
constraint reference in the Constraint Value definition, the constraints are chained stat-
ically. Constraint chaining is called dynamic if some value in a constraint is a formal
parameter and a constraint reference is passed as actual parameter. Constraint deriva-
tion is useful if there are many similar constraints of a particular ASP, PDU, CM, or
data type. In this case, one or more base constraints can be defined that specify a set
of default values or wildcards for each field. Then, only those fields have to be specified
in a modified constraint whose values deviate from the corresponding values in the base
constraint.

Constraint parameterization is illustrated by constraint DataTransfer (figure 3.6, first
table) that has data of type UserPDU as formal parameter. In figure 3.8, line 4, a
reference to this constraint is made in column Constraints Ref with actual parameter
someUserPDU. Dynamic constraint chaining is demonstrated by the second and third

25

3 Test Languages

Test Case Dynamic Behaviour

Test Case Name : SingleDataTransfer

Group : BasicInterconnectionTests/

Purpose :

Configuration : StandardConfiguration

Default : MTCFailure

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CREATE(ParallelTC:MediumAccess)

2 START testCaseTimer

3 +Preamble

4 START supervisionTimer restrict time of data
transfer

5 ISAP1 ! IDATreq InresDataRequest
(someUserPDU)

data transfer

6 CoordinationPoint ? Notification acknowledgmentSent (PASS) wait until ’ptc’ has
acknowledged the data

7 CANCEL supervisionTimer cancel timer to avoid a
timeout in the
following

8 +Postamble

9 ? DONE(ParallelTC) R

10 ISAP1 ? IDISind InresDisconnection-
Indication

INCONC

Preamble

11 ISAP1 ! ICONreq InresConnectionRequest

12 ISAP1 ? ICONconf InresConnection-
Confirmation

13 ISAP1 ? IDISind InresDisconnection-
Indication

INCONC

Postamble

14 ISAP1 ! IDISreq InresDisconnection-
Request

15 ISAP1 ? IDISind InresDisconnection-
Indication

Detailed Comments :

Figure 3.7: TTCN-2 – Test case SingleDataTransfer

constraint in figure 3.6. ASP constraint MediumDataRequest expects an InresPDU as
parameter. In test step MediumAccess (figure 3.8, line 3), constraint ConnectionConfir-
mation is passed as actual parameter.

3.1.4 Dynamic Part

In the dynamic part, the test outcomes are specified by means of test cases, test steps,
and default behavior. A test case (see figure 3.7) defines the dynamic behavior of the
MTC. Test steps either describe logically bounded sequences of test events or the beha-
vior of PTCs (see figure 3.8). Defaults allow the handling of unexpected test events in
an elegant way (see figure 3.9).

Control Flow. The dynamic behavior, i.e., the expected sequences of test events, is
described in a tree-like structure. The temporal ordering of events is expressed by in-

26

3.1 The Tree and Tabular Combined Notation

Test Step Dynamic Behaviour

Test Step Name : MediumAccess

Group :

Objective :

Default : PTCFailure

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 MSAP2 ? MDATind ConnectionRequest

2 (receipt := 1) first connection request

3 MSAP2 ! MDATreq MediumDataRequest(Con-
nectionConfirmation)

4 Loop MSAP2 ? MDATind
(seqNumber :=

MDATind.mSDU.seqNo)

DataTransfer(someUser-
PDU)

(PASS)

5 MSAP2 ! MDATreq DataAcknowledgment
(seqNumber)

6 CoordinationPoint ! Notification acknowledgmentSent inform the MTC that
the data have been
acknowledged

7 MSAP2 ? MDATind DisconnectionRequest PASS

8 MSAP2 ? MDATind ConnectionRequest

9 [receipt <= maxRepetitions] connection
confirmation got lost

10 (receipt := receipt + 1) resend it

11 MSAP2 ! MDATreq MediumDataRequest
({ iPDUType CC })

12 -> Loop

13 [receipt > maxRepetitions] FAIL the initiator shall not
resend its request that
often

Detailed Comments :

Figure 3.8: TTCN-2 – Test step MediumAccess

dentation of statements. Alternative test events are specified with the same amount of
indentation.

In figure 3.7, the test events specified in lines 1 to 5 are executed/evaluated from top to
bottom due to increasing indentation. The test events in line 6 and 10 are alternatives.
If, at run-time, the first test events occurs, test execution proceeds in line 7; otherwise
the test case terminates prematurely.

In order to describe loops, TTCN-2 provides a REPEAT statement. It executes a test step
until a break condition is fulfilled. In addition, a GOTO statement (also specified as ->)
allows to jump to any point in the behavior description. The target of a GOTO statement
is denoted by a label that is specified in the second column of the behavior table. In
figure 3.8, the GOTO statement in line 12 makes the test component continue execution
in line 4 (or in line 8 where an alternative event is specified).

Test steps can be embedded into a test case or another test step by means of an at-
tachment statement (+testStepName). They are treated in a macro-like manner and can
be parameterized by PCOs, ASPs, PDUs, or simple/structured data. Test steps can be
defined either locally inside a test case description or by a separate Test Step Dynamic

27

3 Test Languages

Default Dynamic Behaviour

Default Name : MTCFailure

Group : Failures/

Objective :

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 ISAP1 ? OTHERWISE FAIL

2 ? TIMEOUT FAIL

Detailed Comments :

Figure 3.9: TTCN-2 – Default MTCFailure

Behaviour table.4 In figure 3.7, two test steps, preamble and postamble, are used inside
test case SingleDataTransfer (lines 3 and 8). They are defined locally in lines 11–13 and
14–15.

In a test case or test step description, the expected sequences of test events should be
specified in a compact way. On the other hand, a tester should be able to react adequately
to events which are unexpected or whose time of occurrence is not predictable. In order
to avoid that all possible alternatives of test events have to be listed explicitly in a test
case description, TTCN-2 provides a default mechanism.

In figure 3.9, default behavior MTCFailure is defined. It is used by test case SingleData-
Transfer (figure 3.7) and makes test execution stop with verdict fail when a timeout
occurs or some message is received at PCO ISAP1 that is not handled explicitly.

TTCN-2 is based on a snapshot semantics. Whenever there are several alternative test
events, the current state of the complete test system, i.e., the state of all PCOs, variables,
etc., is considered as frozen. Then, all foreseen test events are checked from top to
bottom. If none of the test events in question happened, a new snapshot of the system
is taken and the alternative test events are checked again. This process is repeated until
eventually one of the test events occurs.

Statements. Communication in TTCN-2 is based on the asynchronous exchange of
messages via PCOs and CPs by means of send and receive operations. A sender continues
processing immediately after executing a send operation, whereas a receive operation
blocks a test component until the expected message eventually arrives.

The reception of a message by the tester is specified in the form PCOorCP ?Type
where Type is either an ASP, PDU, or CM type. The concrete message is specified by a
constraint whose name is given in the Constraints Ref column in the dynamic behavior
table. To deal with unforeseen test events, the keyword OTHERWISE might be used instead
of a type. PCOorCP ? OTHERWISE makes the tester accept any incoming event at the
specified PCO or CP.

For send events, the notation PCOorCP !Type is used. Since the tester must behave
deterministically, the associated constraint is not allowed to include special matching

4Throughout this thesis, the American spelling is used. The only exception is behaviour if it refers to
a fixed term in a TTCN-2 table header.

28

3.1 The Tree and Tabular Combined Notation

symbols but only specific values. In the remote test method defined by ISO/IEC 9646,
there is no way to control the IUT by an upper tester. Nevertheless, some action might
be necessary to make the IUT issue a PDU or ASP. This action can be indicated by an
implicit send event of the form <IUT !Type> .

Test components can have local timers to control test execution. TTCN-2 provides
various operations for setting and evaluating timers: The START and CANCEL operations
activate and deactivate timers. The expiration of a timer is ascertained by a TIMEOUT

statement. Finally, the READTIMER operation returns the time that has passed since the
activation of the timer.

In figure 3.7, line 4, timer supervisionTimer is used to restrict the time of an Inres data
transfer. If the timer expires before it is stopped in line 7, a timeout occurs. This event
is handled in figure 3.9, line 2.

If there is more than one test component, the MTC is responsible for creating all parallel
test components. For that purpose, CREATE statements must be specified at the beginning
of the test case description. The MTC is only allowed to terminate after all PTCs have
terminated. Otherwise, a test case error occurs. The MTC can check the status of the
PTCs by DONE statements (see figure 3.7, line 9).

Test execution can depend on boolean expressions, called qualifiers. If a qualifier eval-
uates to true, execution continues with the subsequent statement; otherwise, the next
alternative is chosen. In case all alternatives are qualifiers that evaluate to false, a test
case error occurs.

In figure 3.8, lines 9 and 13, the number of connection confirmations that have been
received is compared with the allowed number of repetitions. Depending on the result,
test execution is continued (line 11) or stopped with the verdict FAIL.

Test Verdicts. A test verdict must be assigned to each test sequence of a test case or
test component. Test verdicts are specified in the Verdict column of dynamic behavior
tables. TTCN-2 allows to set three types of verdicts: PASS, FAIL, and INCONC (inconclu-
sive). If a verdict is preliminary, its identifier is put into parentheses (e.g., (PASS)).

For each parallel test component, a local test verdict is maintained that is accessible
as variable R. In the test case description for the MTC, R denotes a global test verdict.
Setting a final verdict causes the immediate termination of the corresponding test com-
ponent. If the MTC terminates, the complete test case execution is stopped. Based on
the test verdicts of all test components, the final global test case verdict is computed.
The necessary communication happens implicitly, i.e., it does not have to be specified
in the test suite.

During test execution, it must be prevented that, e.g., a preliminary (FAIL) verdict
is substituted by a final PASS, because once test execution fails, it fails forever. Thus,
whenever a test verdict is to be set or updated, TTCN-2 applies a set of overwriting
rules that take into account the current verdict.

29

3 Test Languages

3.2 The Testing and Test Control Notation

The Testing and Test Control Notation version 3 (TTCN-3 ; see ETSI, 2002a) is a
universal language for the specification and implementation of tests for distributed sys-
tems. Like its predecessors, TTCN-3 is used for functional black box testing. But in
contrast to TTCN-2, it does not contain any language constructs specific to OSI con-
formance testing. TTCN-3 extends and generalizes many TTCN-2 concepts to open
the language towards other testing methodologies and application domains such as the
Common Object Request Broker Architecture (CORBA) or Application Programming
Interfaces (APIs).

The TTCN-3 standard comprises a textual core language whose syntax resembles tradi-
tional imperative programming languages. In addition, ETSI European Standard 201 873
provides for the definition of presentation formats. Currently, there are two standard-
ized formats: The tabular presentation format (TFT ; ETSI, 2002b) is similar to TTCN-2
and helps TTCN users to migrate to the new version. The graphical presentation for-
mat (GFT ; ETSI, 2002c) is based on a dialect of Message Sequence Chart (MSC ; see
section 5.1) with testing-specific extensions.

3.2.1 Modules and Groups

The topmost structuring concept in TTCN-3 is the module. A module may define a
complete abstract test suite or a library that can be used by another module. By analogy
with TTCN-2 test suites, modules can be parameterized to re-use them in different
contexts.

Modules consist of two parts: The definitions part includes definitions of data types,
constants, communication data (messages, procedure signatures, and templates), test
configuration elements (ports, components), and the dynamic behavior (test cases, func-
tions, and altsteps). The control part is the main program of a TTCN-3 module. It allows
to state explicitly the order in which test cases are to be executed. Moreover, execution
of single test cases can be made dependent on some selection criteria, e.g., the outcome
of a preceding test case.

A module can import arbitrary definitions from other modules. There is no explicit ex-
port construct in TTCN-3; all definitions in the module definitions part can be imported
from another module.

Within a module, definitions can be arranged in nested groups in order to enhance
readability and structure the test suite with regard to logical aspects. Groups do not
define scopes in general, i.e., it is not allowed to define a constant twice in distinct
groups. However, it is possible to refer to a complete group when importing definitions
from another module.

In figure 3.10, a TTCN-3 module for testing conformance of an Inres Initiator protocol
entity is presented. Its definition part starts with an import statement (line 2–5) to
adopt data type UserPDU and constant someUserPDU from an external module called

30

3.2 The Testing and Test Control Notation

1: module TestsForInres(integer maxRepetitions, boolean testInopportuneEvents) {
2: import from ServiceUser language ”ASN.1:1997” {
3: type UserPDU;
4: const someUserPDU;
5: }

6: group BasicDefinitions {
7: type enumerated InresPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };
8: type enumerated SequenceNumber { zero(0), one(1) };
9: type record InresPDU {

10: InresPDUType iPDUType,
11: SequenceNumber seqNo optional,
12: UserPDU iSDU optional

13: }
14: } with { encode ”PER-BASIC-UNALIGNED:1997” }

15: const float maxTestCaseTime := 50;

16: . . . further definitions . . .

17: control {
18: var verdicttype overallVerdict := pass;
19: overallVerdict := execute(SingleDataTransfer(), maxTestCaseTime);
20: if (overallVerdict == pass and testInopportuneEvents == true) {
21: overallVerdict := execute(DataLoss());
22: }
23: }
24: } with { encode ”BER:1997” }

Figure 3.10: TTCN-3 – Module TestsForInres

ServiceUser. All data type definitions that are needed to describe an Inres PDU are com-
bined in group BasicDefinitions (lines 6–14). Thereafter, a global constant (maxTest-
CaseTime) is declared in line 15. Module TestsForInres includes many more definitions.
For better readability and comprehension, these definitions are presented separately in
figures 3.11–3.16.

In the module control part (lines 17–23), test case SingleDataTransfer is executed first.
Depending on whether its execution has been successful (test verdict is pass) and module
parameter testInopportuneEvents equals true, a second test case (DataLoss) is invoked.

3.2.2 Data Model

TTCN-3 defines its own data model. It covers many basic types known from program-
ming languages like integer, char, universal char (as defined in ISO/IEC 10646, 1993),
float, boolean, and various types of strings that differ in the character set allowed for their
elements. Furthermore, a special type handling test verdicts (verdicttype) is provided.
TTCN-3 does not support dynamic data structures and thus does not have a pointer
concept. However, variables of the type address can be used for references to entities
inside the SUT.

The test specifier can define different structured types based on enumerations, records,
sets, arrays, and unions. Both records and sets allow the definition of optional fields.

31

3 Test Languages

Records and sets are equal except that the ordering of fields is not significant in sets,
an aspect which is relevant for data encoding. For the same reason, records and sets
with all fields being of the same type are treated separately. Semantically, they are
equal to ordered resp. unordered arrays. In situations where data have to be handled
whose exact type is unknown (e.g., PDUs), they can be assigned to a variable of type
anytype, a short-hand for a union of all known types in a TTCN-3 module. Moreover,
data structures are allowed to be defined recursively – a compensation for the lack of
dynamic data structures.

TTCN-3 comes along with a large set of predefined functions that allow to convert a data
value into a value of another type. There are also functions for retrieving the number
of elements in a string, record, or set, for checking the presence of optional fields in a
record, and for generating random numbers.

Subtypes of both basic and structured types can be defined by imposing restrictions
on the set of valid values. For that purpose, the user may specify value ranges, values
lists or length restrictions. As with its predecessor, data encoding is outside the scope
of the TTCN-3. However, the test specifier may assign optional encoding attributes to
modules, groups, type definitions, or single fields in record/set types.

In figure 3.10, two encoding rules are specified. The encoding attribute in line 24 states
that the ASN.1 Basic Encoding Rules are applied to all data used inside module Tests-
ForInres by default. Only Inres PDUs and their fields are transmitted based on ASN.1
Packed Encoding Rules (line 14).

Even though the TTCN-3 data concept suits most applications, it might be of advantage
or necessary to use data descriptions provided in the implementation or specification
language of the SUT. When importing definitions from an external module, a module
language different from TTCN-3 can be specified. For telecommunication applications,
existing ASN.1 data descriptions can be reused. For testing of distributed systems that
are based on the CORBA middleware platform, a mapping of IDL interface specifications
to TTCN-3 is defined in Ebner et al. (2002).

In figure 3.10, ServiceUser is declared to be an ASN.1 module. According to the ASN.1
transformation rules given in the TTCN-3 standard, UserPDU and someUserPDU are
transformed into an equivalent TTCN-3 type and constant respectively.

3.2.3 Communication

In TTCN-3, communication within the test system and between the tester and the SUT
can be either message-based or procedure-based.

Messages in TTCN-3 correspond to ASPs, PDUs, and coordination messages in TTCN-2.
They are exchanged asynchronously by send and receive operations. A sender imme-
diately continues processing after executing a send operation, whereas a receive oper-
ation blocks a component until the expected message eventually arrives. Messages are
specified just as common data types (typically as records).

32

3.2 The Testing and Test Control Notation

Procedure-based communication is required for testing, e.g., CORBA or DCOM (Dis-
tributed Common Object Model) platforms. A remote procedure is invoked by a call

operation. Incoming calls are awaited at the callee side by a blocking getcall opera-
tion. Conceptionally, procedure calls can be considered both non-blocking and blocking
with regard to the caller. In the latter case, the callee is expected to conclude proce-
dure execution with a reply operation. The caller handles the answer with a getreply

operation that is directly following its call operation.

Procedures can have an arbitrary number of parameters (with call-by-value and call-
by-reference semantics) as well as a dedicated return value by which information can
be exchanged between caller and callee. Moreover, procedures can be declared to raise
exceptions that a caller should be able to catch. In a TTCN-3 test suite, the signature of a
procedure, i.e., its interface definition, is required to check the semantics of corresponding
communication operations.

In TTCN-3, communication takes place over connections that are terminated by com-
munication endpoints. These endpoints are called ports. Any communication opera-
tion refers to a port rather than to the connection itself. Port types can be defined
for message-based, procedure-based or mixed communication. In contrast to PCOs in
TTCN-2, ports are directional. A port type is characterized by the set of valid messages
and/or procedure types together with the direction (in/out/inout) for each individual
message/procedure.

A port is modeled by a queue with infinite capacity to handle incoming messages/pro-
cedure calls, even if they are not processed directly by the tester. The above-mentioned
receive, getcall, getreply, and catch operations check only the first element in the
queue. However, a trigger operation can be used instead of receive that consumes
all messages from the input queue until eventually a message with a certain property is
found. Port queues can be cleared during execution. In addition, communication can be
suppressed at a specific port and resumed later.

In figure 3.11(a), definitions for message-based communication are presented. ICONreq
and IDATreq (lines 1 and 2) are – among others – two messages (ASPs) that can be sent
to the Initiator entity of the Inres protocol. A port type definition is given in lines 3–6.
The keywords out and in indicate that messages ICONreq, IDATreq, and IDISreq can be
sent and ICONconf and IDISind can be received by a corresponding port instance. For
communication with the Medium, similar definitions are made in lines 7–12. A concrete
message exchange is described in the test case shown in figure 3.14. In lines 11, 12,
14, 19, and 20 various messages are sent and received at port ISAP1 which is of type
InitiatorSAP.

A simple example of procedure-based communication is introduced in figure 3.11(b). In
line 1, procedure acknowledgmentSent is defined which has neither a parameter nor a
return value. It is used for coordination between the components of the tester. Concep-
tionally, it resides at the MTC.5 Two contrary port types are defined for it: PortAtMTC

5Please note that the procedure is not implemented as such. Instead, only its invocation and termination
is modeled by the MTC by getcall and reply operations. The procedure-based communication in
the given example is only made for illustration purposes.

33

3 Test Languages

1: type record ICONreq {};
2: type record IDATreq { UserPDU iSDU };

3: type port InitiatorSAP message {
4: out ICONreq, IDATreq, IDISreq;
5: in ICONconf, IDISind;
6: }

7: type record MDATreq { InresPDU mSDU };
8: type record MDATind { InresPDU mSDU };

9: type port MediumSAP message {
10: in MDATind;
11: out MDATreq;
12: }

1: signature acknowledgmentSent();

2: type port PortAtMTC procedure {
3: in acknowledgmentSent;
4: }

5: type port PortAtPTC procedure {
6: out acknowledgmentSent;
7: }

(a) Message-based (b) Procedure-based

Figure 3.11: TTCN-3 – Communication

(lines 2–4) accepts incoming calls, whereas PortAtPTC (lines 5–7) is used to invoke the
remote procedure. A concrete procedure call is realized in figure 3.14, lines 15 and 16,
and figure 3.15, lines 21 and 22.

3.2.4 Test Configurations

TTCN-3 supports the specification of distributed test architectures. A test configuration
is made up of a set of test components along with their ports, an abstract test system
interface, connections between the ports of the test components, and associations be-
tween the ports and the test system interface. Unlike TTCN-2, TTCN-3 does not require
test configurations to be declared statically but allows to modify them dynamically at
run-time. This means, ports can be connected with and disconnected from other ports
at any time during test execution. Moreover, ports can be connected in a one-to-many
relationship to allow multicasts.

In figure 3.12(a), a conceptual view of the test configuration used in the Inres example
is given. The tester consists of two test components called MainTC and ParallelTC.
They communicate with each other via a connection established between the ports
CoordinationPTC and CoordinationMTC. In addition, one port in each test component,
namely ISAP1 and MSAP2, is mapped to a port with the same name of the abstract
test system interface. TTCN-3 abstracts from implementation issues such as encoding.
Therefore, conceptionally the ports of the tester are not directly linked with the SUT
itself. Instead, it is assumed that interaction with the SUT is realized by a real test
system interface which is outside the scope of TTCN-3.

Figure 3.12(b) presents TTCN-3 test component definitions for MainTC, ParallelTC
and the abstract test system (TestSystem) which is defined just like a common test
component type. In addition to an arbitrary number of ports, a TTCN-3 test component
can have its own set of local timers, variables and constants. For example, any component
of type MainTC has a supervisionTimer at its disposal (line 4).

34

3.2 The Testing and Test Control Notation

MainTC

ISAP1

Coordina-
tionPTC

Abstract Test System Interface

ParallelTC

TTCN-3 Test System

Coordina-
tionMTC

SUT

Real Test System Interface

MSAP2

ISAP1 MSAP2

1: type component MainTC {
2: port InitiatorSAP ISAP1;
3: port PortAtMTC CoordinationPTC;
4: timer supervisionTimer;
5: }

6: type component ParallelTC {
7: port MediumSAP MSAP2;
8: port PortAtPTC CoordinationMTC;
9: }

10: type component TestSystem {
11: port InitiatorSAP ISAP1;
12: port MediumSAP MSAP2;
13: }

(a) Conceptual view (b) Component type definitions

Figure 3.12: TTCN-3 – Test configuration

Each test configuration consists of exactly one main test component (MTC) that is
created implicitly when a test case is started. It behaves according to the statements
in the test case description. One or more additional parallel test components (PTCs)
can be created explicitly during test execution — either by the MTC or another PTC.
When a PTC is started, it is associated with a function that describes its behavior.

All PTCs run independently from each other, i.e., termination of a test component does
not cause its children to halt as well. A test component stops either implicitly when
leaving its associated function or explicitly by executing a stop statement. It may also
be stopped remotely by another test component. Test case execution comes to a complete
halt if the MTC terminates. TTCN-3 provides two operations for checking the status
of a test component: The running operation can be used to test whether a particular
component (or all components) has completed execution, whereas the blocking done

operation makes its caller wait until a designated test component eventually stops.

In the module control part of the TTCN-3 example test suite (figure 3.10, line 19), test
case SingleDataTransfer is executed. Its definition is given in figure 3.14. According to
its signature (line 1), it runs on a component of type MainTC and conforms to the
abstract interface TestSystem. In line 4, a parallel test component of type ParallelTC is
created. Thereafter, the ports ISAP1 and MSAP2 of the MTC (denoted by component
reference self) and the PTC (denoted by ptc) are mapped to the ports of the test
system interface (lines 5–6) and a connection is established between the MTC and the
PTC (line 7). Execution of the PTC is actually started in line 8 by assigning function
MediumAccess to it.

Before test case SingleDataTransfer ends, the MTC makes sure that function Medi-
umAccess running on ptc has already terminated. This check is necessary to ensure
that all communication between the PTC and the SUT has taken place. Execution of
the MTC is blocked in line 21 until all PTCs (only one PTC in this example) have
completed.

35

3 Test Languages

1: template MDATind ConnectionRequest := {
2: mSDU := { iPDUType := CR, seqNo := omit, iSDU := omit }
3: }

4: template InresPDU ConnectionConfirmation := { // this template is used with
5: iPDUType := CC, seqNo := omit, iSDU := omit // template ’MediumDataRequest’
6: }

7: template MDATreq MediumDataRequest(template InresPDU data) := {
8: mSDU := data
9: }

10: template MDATind DataTransfer(UserPDU data) := {
11: mSDU := { iPDUType := DT, seqNo := ?, iSDU := data }
12: }

Figure 3.13: TTCN-3 – Templates

3.2.5 Templates

The description of messages and procedures is made by templates. The template concept
is an extension of the constraint concept in TTCN-2. Templates can be defined for both
message- and procedure-based communication. For receiving messages and incoming
procedure calls/replies, TTCN-3 provides more or less the same matching mechanisms
as TTCN-2. However, the set of operators for string matching has been extended to
obtain the expressiveness of regular expressions.

Templates can be structured in the same way as constraints in TTCN-2, i.e., by param-
eterization, referencing, and modification (derivation). But while TTCN-2 distinguishes
between a dynamic part and a constraint part, TTCN-3 does not enforce a clear sepa-
ration between the control and data aspects of a test case — templates can either be
referenced or specified inline within a test case or function. The latter alternative is
suitable for messages and procedures with no or only a few fields/parameters where a
standalone template definition means unnecessary expense and aggravates readability.

In figure 3.13, various templates are defined that are used in function MediumAccess (fig-
ure 3.15). Template ConnectionRequest (lines 1–3) specifies a message of type MDATind
where the fields mSDU.seqNO and mSDU.iSDU shall have no value. It is used in com-
bination with a receive statement in figure 3.15, line 5.

The two templates ConnectionConfirmation and MediumDataRequest (figure 3.13, lines
4–9) illustrate the dynamic chaining of templates. MediumDataRequest is parameter-
ized by a template of type InresPDU. In figure 3.15, line 7, it is instantiated with
template ConnectionConfirmation as actual parameter. Template DataTransfer (line
10–12) makes use of a simple matching mechanism. Operator “?” states that any value
for seqNo is acceptable in an incoming message.

Many templates are defined inline in test case SingleDataTransfer (figure 3.14, lines 11,
12, 15, 16, 19, and 20) and function MediumAccess (figure 3.15, lines 11, 21, 22, 23). In
particular, many messages exchanged with the SUT via port ISAP1 are distinguished
by their type only. Hence, there is no need for template definitions whose bodies would
only consist of empty brackets syntactically.

36

3.2 The Testing and Test Control Notation

1: testcase SingleDataTransfer() runs on MainTC system TestSystem {
2: var ParallelTC ptc;
3: var default def1, def2;

4: ptc := ParallelTC.create;

5: map(self :ISAP1, system:ISAP1);
6: map(ptc:MSAP2, system:MSAP2);
7: connect(self :CoordinationPTC, ptc:CoordinationMTC);

8: ptc.start(MediumAccess());

9: def1 := activate(MTCFailure());
10: def2 := activate(ReceptionIDISind(inconc));

11: ISAP1.send(ICONreq : {}); // connection request
12: ISAP1.receive(ICONconf : {}); // connection confirmation

13: supervisionTimer.start(maxTransferTime); // restrict time of data transfer
14: ISAP1.send(InresDataRequest(someUserPDU)); // data transfer
15: CoordinationPTC.getcall(acknowledgmentSent : {});
16: CoordinationPTC.reply(acknowledgmentSent : {});
17: supervisionTimer.stop; // cancel timer to avoid a timeout in the following

18: deactivate(def2);

19: ISAP1.send(IDISreq : {}); // disconnection request
20: ISAP1.receive(IDISind : {}); // disconnection indication

21: all component.done;
22: setverdict(pass);
23: }

Figure 3.14: TTCN-3 – Test case SingleDataTransfer

3.2.6 Behavior Descriptions

In TTCN-3, the functional behavior is described by test cases, functions, and altsteps.
Like in TTCN-2, a test case describes the dynamic behavior of an MTC (see test case
SingleDataTransfer in figure 3.14). Functions in TTCN-3 correspond to TTCN-2 test
steps and test suite operations. In figure 3.15, function MediumAccess is shown that runs
on a test component of type ParallelTC. The altstep mechanism is similar to TTCN-2
defaults.

Control Structures. TTCN-3 supports most control structures known from imperative
programming languages. These are if ... else, for, while, and do ... while. For a
simpler transformation of existing TTCN-2 test suites, goto statements can be used to
jump to a labeled position in the program code.

In TTCN-2, test cases are specified in a tree-like notation. If different branches contain
a common test sequence (e.g., a preamble), its statements have to be duplicated or
put in a separate test step. In contrast, behavior descriptions in TTCN-3 are described
in a sequential manner. Alternative behavior is described by an alt statement. Each
alternative within an alt statement consists of (a) an optional boolean expression (b) a
guard operation which may by either a done operation, a timeout operation, or any
receiving operation, and (c) a statement block. The latter is executed if the expression
evaluates to true (or no expression is specified) and the guard operation can be executed.

37

3 Test Languages

1: function MediumAccess() runs on ParallelTC {
2: var integer receipt;
3: var default def := activate(PTCFailure());
4: var MDATind indication;

5: MSAP2.receive(ConnectionRequest);
6: receipt := 1; // first (received) connection request of the initiator
7: MSAP2.send(MediumDataRequest(ConnectionConfirmation));

8: alt {
9: [receipt <= maxRepetitions] MSAP2.receive(ConnectionRequest) {

10: receipt := receipt + 1;
11: MSAP2.send(MediumDataRequest({ CC, omit, omit }));
12: repeat;
13: }
14: [receipt > maxRepetitions] MSAP2.receive(ConnectionRequest) {
15: setverdict(fail);
16: stop;
17: }
18: [] MSAP2.receive(DataTransfer(someUserPDU)) -> value indication { /*empty*/ }
19: }

20: MSAP2.send(DataAcknowledgment(indication.mSDU.seqNo));

21: CoordinationMTC.call(acknowledgmentSent : {});
22: CoordinationMTC.getreply(acknowledgmentSent : {});

23: MSAP2.receive(MDATind : { mSDU := { DR, omit, omit } });
24: setverdict(pass); // disconnection request
25: }

Figure 3.15: TTCN-3 – Function MediumAccess

Similarly to TTCN-2, TTCN-3 defines a snapshot semantics for the processing of alt

statements, i.e., the state of a test component is recorded before the alternatives are
evaluated from top to bottom. If none of the alternatives can be executed, another
snapshot is taken.

In figure 3.15, line 8–19, an alt statement with three alternatives is specified. It handles
different messages sent by the SUT in response to a preceding connection confirmation
(line 7). The first two alternatives consider the case that the confirmation got lost and
hence the SUT resends its connection request. As long as the number of requests is
less than or equal to constant maxRepetitions (line 9), the test component confirms the
request once again.

By using the repeat statement in line 12, a re-evaluation of the whole alt statement is
caused. However, if receipt > maxRepetitions (line 14), the SUT is not allowed to send
another connection request and hence the test case fails. In the normal case, the tester
receives a data transfer message (line 18) and test case execution is continued after the
alt statements.

If a test component controls more than one port, the exact order in which messages
and procedure calls arrive might be unpredictable, for instance, if the SUT broadcasts
a message. Instead of listing all possible sequences in terms of a large alt statement, an
interleave statement can be used. Syntactically, an interleave statement is similar
to an alt statement but it is not allowed to guard a branch by a boolean expression.

38

3.2 The Testing and Test Control Notation

Timers. Test components can have local timers to control test execution. TTCN-3
provides various operations for setting and evaluating timers: The start and stop op-
erations activate and deactivate timers. The expiration of a timer is ascertained by a
timeout statement. The current status of a timer can be retrieved by a running op-
eration. In contrast to timeout which blocks the execution of a test component until
the timeout occurs eventually, the running operation returns a boolean value instanta-
neously which can be evaluated in a condition. Finally, the read operation returns the
time that has passed since the activation of the timer.

In figure 3.14, line 13, timer supervisionTimer is used to restrict the time of a data
transfer of the SUT. If the timer expires before it is stopped in line 17, a timeout occurs
which is handled in figure 3.16, line 6 (see the one but next paragraph for a description
of the altstep concept). The execution of a complete test case can also be limited by
an implicit timer. In figure 3.10, line 19, test case SingleDataTransfer is invoked. If its
execution time exceeds maxTestCaseTime, all test components are stopped and the test
case fails.

Test Verdicts. Test verdicts are objects of type verdicttype. They can take one out
of five different values: pass, fail, inconc, none, and error. Each test component
maintains its own implicit local verdict. The value of this local verdict can be set and
retrieved by setverdict and getverdict operations where setverdict applies pre-
defined overwriting rules to ensure that, e.g., a fail test verdict does not become a
pass during test case execution. In addition, there is a global verdict that is updated
implicitly according to the overwriting rules whenever a test component terminates. If
a test case ends, the global verdict is returned. In contrast to TTCN-2, setting a verdict
does not stop the execution of a test component. Moreover, there are no preliminary
test verdicts in TTCN-3.

Altsteps. In TTCN-3, the default mechanism of TTCN-2 has been replaced and ex-
tended by the altstep concept. Altsteps are a collection of alternatives that are taken
into account whenever a test component awaits a response from the SUT or another test
component or the expiration of a timer. Their syntax is identical to alternatives within
an alt statement (see section 3.2.6).

In figure 3.16, altstep MTCFailure is defined. Like its TTCN-2 counterpart, it makes
test execution fail if a message is received at port ISAP1 that is not handled elsewhere
or a timer expires. Altstep ReceptionIDISind (same figure) illustrates the definition of a
parameterized altstep. Depending on variable result, the reception of message IDISind
leads to different test verdicts.

Altsteps can be activated and deactivated at any time during test execution. They can
also be invoked explicitly from within a single alt statement. In figure 3.14, lines 9
and 10, the two above-mentioned altsteps are considered for the successive execution.
In line 18, ReceptionIDISind is deactivated again because a disconnection indication is
not an undesirable event any longer. Since a parameterized altstep can be instantiated

39

3 Test Languages

1: altstep MTCFailure() runs on MainTC {
2: [] ISAP1.receive {
3: setverdict(fail);
4: stop;
5: }
6: [] any timer.timeout {
7: setverdict(fail);
8: stop;
9: }

10: }

11: altstep ReceptionIDISind(verdicttype result) runs on MainTC {
12: [] ISAP1.receive(IDISind : {}) {
13: setverdict(result);
14: stop;
15: }
16: }

Figure 3.16: TTCN-3 – Altsteps MTCFailure and ReceptionIDISind

several times with different values, the activate statement returns a handle of type
default. This handle must be specified in a deactivate statement.

3.2.7 Development Tools

The first version of TTCN-3 was released as a European standard in July 2001. A revised
edition was developed in 2002 by ETSI. Further extensions and corrections are going to
be published in the future depending on user requests.

Though the standard is still rather new, there are already a lot of tools available for the
TTCN-3 core language and the standardized presentation formats (Testing Technologies,
2002; Da Vinci Communications, 2002; Telelogic, 2002b). These tools facilitate the edit-
ing, compilation, debugging, and execution of TTCN-3 modules.

In parallel to the development of the TTCN-3 standard, a syntax checker has been devel-
oped by the author. The implementation and application of the parser made it possible
to detect ambiguities among different language constructs, errors in the EBNF gram-
mar, and inconsistencies between the language description and corresponding examples
in the standard document. It also helped to address semantic issues as many of TTCN-3’s
static semantic rules are hard-coded in the grammar. The work on the TTCN-3 syntax
checker has proven invaluable for TTCN-3 itself as it allowed to uncover problems at a
very early stage of standardization.

3.3 Discussion

TTCN-3 symbolizes a major step towards a universal test language. It supports many
different platforms and application areas by providing both message- and procedure-
based communication, dynamic concurrent test configurations, and interfaces for exter-

40

3.3 Discussion

nal data languages and encoding rules. In addition, TTCN-3 breaks with some termi-
nology of TTCN-2 which focuses too much on OSI conformance testing.

Despite the benefits of TTCN-3, there are still various language elements and concepts
that could be improved or generalized. A few possible enhancements are sketched in the
following.

Object-oriented Language Model. TTCN-3 provides several special data types,
e.g., component, port, and verdict, with a set of predefined operations. Though an object-
oriented notation (object.method) is used for these operations, the language description
of TTCN-3 does not reflect this view. An object-oriented model might be helpful to
describe the language elements and their relationships.

Clarification of the Role of Templates, Data Types, and Data Values. The
semantic classification of templates in TTCN-3 is rather vague. If a template of type
T does not make use of any matching mechanisms, it can be considered an expression
of type T . However, if a matching operator is used, the template can be considered a
subtype T ′ of T . The main characteristic of this subtype T ′ is that it can only be decided
at run-time whether a data value of type T is also in the domain of type T ′. Obviously,
such a check consumes a lot of computation time and should be avoided if possible.

With regard to data types, the situation is similar: For most data types, type checks
can be made statically at compile-time. However, TTCN-3 allows the definition of sub-
types T ’ (based on type T) with length or value range restrictions. Additional run-time
checks are required whenever the value of a variable of type T is assigned to a variable
of type T ′.

A rigorous approach to clarify the role of templates would be to replace the existing
template concept by a new class of data types and map the current concepts as follows:

Existing concepts New concepts

data type ⇒ data type

subtype ⇒ dynamic data type (with run-time checks)

template w/ matching mechanisms ⇒ dynamic data type (with run-time checks)

template w/o matching mechanisms ⇒ data expression

data expression ⇒ data expression

Enhanced Matching Mechanisms. TTCN-3 allows characters patterns in templates
to define the format of characters strings. These character patterns have the same ex-
pressive power as regular expressions. On the level of structured types, less powerful
matching mechanisms are provided. In templates for arrays or sets/records of a single
type, the matching operator “*” can be used as a wildcard for a sequence of zero or more
elements (Example: { 1, *, 3 }) .6 However, there is no way to express, for instance,
that a record with variable length shall consist of only one particular element. Listing
all elements explicitly is not possible due to the unknown size of the record.

Hence, regular expressions should also be available for arrays, sets, and records. For
example, the following notation might be used inside templates: x#(min,max) matches

6Please note that TTCN-3 has two different interpretations for the “*” symbol: When used on the high-
est level inside an array, its meaning is AnyElementsOrNone, otherwise it means AnyValueOrNone.

41

3 Test Languages

with at least min and at most max occurrences of x where x is either a single element
or a group of sequential elements. If min or max is left unspecified, 0 or ∞ is used
as default. Sequences of elements can be grouped by < . . . >. For the description of
alternatives, the existing notation for value lists is adopted.

var integer myInt := 8;

template record of integer RegExp :=

{ <1, 2>#(2,5), 3#(,), 4, (5, 6, 7), myInt, ? };

The example above illustrates what regular expressions for arrays, records, and sets
could look like in TTCN-3. Template RegExp would match a record of integers which
consists of the following elements: at least two and at most five times 1 followed by 2;
zero or more 3’s; a single 4; either 5, 6 or 7; the value of variable myInt ; an arbitrary
number.

Time Constraints. Timers allow to control the temporal execution of test events.
Typically, they are used to postpone the execution of a send event or to check that a
receive event took place in time. If a receive event shall happen within a given period of
time (with lower and upper boundary), the TTCN-3 behavior description becomes rather
complex: First, a timer is started that must expire before the receive event happens. As
soon as the timer expires, it is re-started. Then, the receive event must occur before the
timer expires. In total, two alt statements are required.

In situations like these, timer operations as an explicit means to supervise execution
are not appropriate. Instead, a declarative approach where single operations or whole
statement blocks are annotated with time constraints is preferable. Time constraints
have already been introduced into the latest revision of Message Sequence Chart (sec-
tion 5.1). A real-time extension for TTCN-3, called Timed TTCN-3, is proposed by
Dai et al. (2002).

External Clocks. TTCN-3 has no notion of external clocks that are available on the
test system. This makes it impossible to specify a test module where the execution of
test cases is triggered by a specific time or date. Therefore, if a test engineer wants to
execute his tests at 2 AM (because test execution within a production environment shall
not affect the work of other users), then this constraint must be handled directly by the
test system as it is outside the scope of TTCN-3.

On the other hand, external clocks could be integrated easily in TTCN-3 by a now

operator that returns the current time and date. Since the test system may consist
of several hardware devices, each test component as well as the module control part
should have its own local clock, i.e., now may return totally different results even when
executed in parallel on different test components. A solution for external clocks has also
been integrated into Timed TTCN-3.

Nested Modules as a Replacement of the Group Concept. Modules are the
top-level structuring element in TTCN-3. They serve two purposes: combining related
data definitions, test configurations, communications data, and behavior descriptions
in a logical unit; and controlling the execution of test cases by means of the module
control part. Unfortunately, modules cannot be nested. Definitions can be combined in

42

3.3 Discussion

1: module TestsForInres(integer maxNoOfProcesses, boolean testInopportuneEvents) {

2: . . .

3: control {
4: var verdicttype v := pass, v1 := pass, v2 := pass;

5: par (maxNoOfTestCases) {
6: basic [true] {
7: v := execute(BasicInterconnectionTest());
8: }
9: cap1 [v == pass and basic == true] {

10: v1 := execute(CapabilityTest1());
11: }
12: cap2 [v == pass and basic == true and testInopportuneEvents == true] {
13: v2 := execute(CapabilityTest2());
14: }
15: }
16: }
17: }

Figure 3.17: Feature proposal – The par statement

groups but a group does not define a new scope and has no semantics except when being
imported by another module. Moreover, TTCN-3 assumes that the entire test execution
is controlled by the control part of the current module and some auxiliary functions.

Parallel Execution of Test Cases. The selection of test cases and the order in which
they are executed is specified in the module control part. Unfortunately, the execution
of a test case always blocks the execution of the control part, i.e., no further test cases
can be executed in parallel. In practice, the sequential execution of test cases may be
too time-consuming. Hence, one should be able to specify which test cases can be run in
parallel. At the same time, there should also be a way to describe dependencies among
test cases elegantly.

For that purpose, some ideas from the Unix tool make can be adopted. An input file
for make consists of a number of dependency rules in the form

target : [prerequisite] commands.

A target (typically a file) is achieved by running the corresponding commands. Before
these commands can be executed, an optional prerequisite (which may be the target
of another dependency rule) must be fulfilled. If the prerequisites of two targets are
fulfilled, their commands can be executed in parallel.

For TTCN-3, a new par statement is suggested. Its general structure is illustrated by a
simple example in figure 3.17. Three goals – basic, cap1, and cap2 – are defined within
the par statement. For each goal, a boolean variable with the same name and the scope
of the par operator is defined implicitly. Initially, all variables are set to false. If the
prerequisite of a goal (provided as a boolean expression in square brackets) is fulfilled,
the corresponding statement block is executed. After its termination, the goal variable
is automatically set to true. In order to restrict the degree of concurrency, the par
operator has an optional parameter that specifies the maximum number of parallel test
cases (maxNoOfTestCases in the given example).

43

3 Test Languages

The details of the semantics of the parallel statement – When are the prerequisites
tested? What happens if the prerequisite of some goals cannot be fulfilled during exe-
cution? – are subject to further studies.

44

4 Test Generation Based on Formal
Specifications

Test generation is the process of deriving a set of test cases from a formal specification.1

A specification is a formal object that prescribes the behavior of a system. A specification
is called formal if it is defined by means of a formal description technique (FDT). Formal
specifications allow for a non-ambiguous interpretation and thus facilitate verification,
validation, and automatic test generation. Formal descriptions techniques include LO-
TOS, Estelle, and the Specification and Description Language (SDL; see section 5.2).

Automatic test generation based on formal specification provides many advantages over
manual test specification:

• Efficiency of test specification: Automatic test generation requires little human
intervention and thus accelerates the availability of test suites.

• Correctness of test cases: The derivation of test cases directly from the specification
ensures that the test cases are semantically correct with regard to the specification.
In addition, syntactical correctness with regard to the test language is warranted
by test generation tools.

• Effectiveness of test cases: Coverage analysis techniques that are applied during
test generation allow to measure the quality of a test suite.

• Efficiency of test execution: Smaller test cases result in faster test execution. So-
phisticated test generation algorithms minimize the size of test cases, i.e., the
number of test events that are needed to serve a particular test purpose.

In this chapter, some fundamental concepts and techniques of automatic test generation
based on formal specifications are presented. In section 4.1, the concepts of conformance
testing and test generation are formalized. Several test generation techniques for increas-
ing and assessing the effectiveness of test cases are presented in section 4.2. When dealing
with formal specifications, automatic test generation is only one step in the development
cycle. The relationship between test generation, verification, and validation is explained
in section 4.3.

1From a theoretical point of view, it makes no difference whether several test cases or just a single
large test case is generated. In practice, of course, a set of small(er) test cases where each test case
has its own test purpose is preferable.

45

4 Test Generation Based on Formal Specifications

4.1 Formal Methods in Conformance Testing

In section 2, ISO/IEC IS 9646 has been introduced as an informal framework and
methodology for conformance testing. On the other hand, automatic test generation
based on FDTs demands for a formal interpretation of testing concepts such as confor-
mance, test cases, or test execution. In ITU-T Standard Z.500 Framework on Formal
Methods in Conformance Testing (FMCT ; ITU-T, 1997b), their meaning is formalized
in terms of mathematical concepts. The main results of FMCT are presented in the
following.

4.1.1 Specification and Implementation

The formalization of conformance testing concepts is based on models for both specifi-
cations and implementations. In general, a model is a representation and an abstraction
of anything such as a system, concept, problem, or phenomenon.

A specification s can be considered an element from the set of all possible specifications
SPECS. Specifications might be parameterized to offer implementation options to the
implementor. The set of valid combinations of parameter values can be defined as some
set Ds. Then, a parameterized specification s is considered a function that maps from
the parameter domain Ds to the set SPECS of all instantiated specifications:

s : Ds → SPECS

The supplier of an IUT must specify the chosen implementation options in the imple-
mentation conformance statement (ICS). Thus, conformance is always determined based
on an instantiated specification.

The set of all implementations is denoted as IMPS. In contrast to a specification, an IUT
is a physical object for which formal reasoning is not possible. However, the general test
assumption is made that any implementation can be modeled as some mIUT ∈ MODS.
MODS is a formalism that may be identical to SPECS. The purpose of testing is to gain
information about the IUT such that mIUT can be constructed in sufficient details. Of
course, a given implementation can be modeled by several equivalent models m ∈ MODS.
Since these models cannot be distinguished during testing, it is sufficient to consider only
one them.

4.1.2 Static and Dynamic Conformance

In order to conform to a given specification, an IUT must meet both static and dynamic
conformance requirements.

Static conformance is achieved if the ICS for an IUT defines a valid set of implemen-
tation options, i.e., the parameterized specification is instantiated correctly. Formally,
this means that ICSIUT ∈ Ds.

46

4.1 Formal Methods in Conformance Testing

Dynamic conformance is established if the observable behavior of the IUT is permit-
ted by the specification. Dynamic conformance is characterized by an implementation
relation:

imp ⊆ MODS × SPECS

An IUT mIUT conforms to a (parameterized) specification s if mIUT imp s(ICSIUT).

The implementation relation imp is not fixed. Instead, a large number of “reasonable”
implementation relations have been proposed in literature (De Nicola and Hennessy,
1984; Hoare, 1985; Milner, 1989; van Glabbeek, 1993). Some well-known implementation
relations are:

• Trace equivalence: The set of execution traces of the implementation must be
equal to the set of traces of the specification, i.e., the implementation must show
exactly the same behavior as the specification.

• Trace preorder: The set of execution traces of the implementation must be a
subset of the set of traces of the specification, i.e., the implementation is allowed to
show only a subset of the behavior of the specification but no additional behavior.

• Failure preorder: The set of traces of the specification must be a subset of the
set of traces of the implementation and the implementation shall not produce any
unspecified deadlocks.

The set of all implementations conforming to an instantiated specification s is given by

Ms = {m ∈ MODS | m imp s}

If dynamic conformance is defined in terms of a collection of single conformance require-
ments, a modified formalism is necessary. In that case, an instantiated specification s

is expressed as set of requirements Rs ⊆ REQS where REQS denotes the set of all re-
quirements that can be expressed in the requirements language. The set of all possible
specifications is defined as SPECS := P(REQS).

The role of the implementation relation is taken by a satisfaction relation sat with

sat ⊆ MODS × REQS

An IUT mIUT conforms dynamically to a set of (instantiated) requirements Rs if ∀r ∈
Rs : mIUT sat r.

4.1.3 Testing Concepts

Testing aims at gaining information about a system in order to be able to decide whether
the system has a certain property or not. This is achieved by executing a series of test
cases that are formalized in a test notation TESTS. Since a test suite ts is a set of test
cases, it holds that ts ⊆ TESTS and ts ∈ P(TESTS), respectively. It is assumed that
the test cases are correctly implemented in the tester.

47

4 Test Generation Based on Formal Specifications

In a generalized model, the tester does not interact directly with the IUT but with an
SUT. The part of the SUT that surrounds the IUT is called the test context. The observ-
able behavior of the IUT at its access points may not be identical with the observable
behavior of the test context at its PCOs. Thus, the text context is defined as a function

C : MODS → MODS

that maps the model of the IUT to the model of the test context. Then, C(mIUT)
represents the observable behavior of the IUT at the PCOs.

Execution of test case t ∈ TESTS means running it in combination with an IUT mIUT ∈
MODS in a test context C. During execution, an observation σ ∈ OBS is made where
OBS denotes the set of all possible observations. Observation σ may include a complete
log of all test events and other relevant information. Test execution can be formalized
by some function exec:

exec : TESTS × MODS → OBS

For a concrete test case t ∈ TESTS, an implementation modeled by mIUT, and a test
context C, exec(C(mIUT)) defines the corresponding observation.

For each observation of a given test case t, a verdict assignment verdt is defined:

verdt : OBS → {pass, inconclusive, fail}

An IUT is said to pass a correctly implemented test case t if and only if the execution
of the test case results in an observation σ to which the verdict pass is assigned.

IUT passes t ⇔ verdt(σ) = pass

⇔ verdt(exec(t, C(mIUT))) = pass

The test purpose of a test case t can be formalized as the set of models m for which t

results in verdict pass:

Pt = {m ∈ MODS | verdt(exect(t, C(mIUT))) = pass}

In other words, the objective of the test case is to find out whether the model of the
IUT belongs to those models that show the correct behavior.

The execution of a (finite) test suite T ⊆ TESTS means executing all t ∈ T . Obviously,
an IUT passes a test suite if it passes all of its test cases:

IUT passes T ⇔ ∀t ∈ T : IUT passes t

⇔ mIUT ∈
⋂

t∈T

Pt

The purpose of a test suite is the intersection of the test purposes of all of its test cases:

PT =
⋂

t∈T

Pt

The quality of a test suite T for some specification s is determined by the relation
between its test purpose PT and the set of all correct implementations Ms:

48

4.2 Test Generation Methods

Relation Property Meaning

PT ⊆ Ms Exhaustiveness All implementations passing the test suite are
compliant to the specification

PT ⊇ Ms Soundness All implementations that do not pass the test
are not compliant to the specification

PT = Ms Completeness The test suite is both exhaustive and sound

Soundness is a fundamental prerequisite for any well-defined test suite, whereas exhaus-
tiveness (and thus completeness) cannot be achieved in general.

4.1.4 Test Generation

Test generation is a process by which a set of test cases is generated from a formal
specification. In practice, a high-level formal description technique (FDT) is used for
specification rather than low-level formalisms like petri nets, labeled transition systems,
or finite state machines. However, a model in a high-level language is typically trans-
formed into a model in a simpler formalism according to the semantics of the FDT.

Test generation can be modeled as a function gen that takes an (instantiated) specifi-
cation as input and returns a test suite:

genC
imp : SPECS → P(TESTS)

The generated test suite is dependent on the underlying conformance relation imp and
the expected test context C of the IUT. A test suite t = genC

imp(s) for a specification s

must be sound, i.e., ∀m ∈ MODS : m imp s ⇒ m ∈ Pt.

If a parameterized specification s : Ds → SPECS is given, a parameterized test suite
t : Ds → P(TESTS) should be generated that can be applied to implementations with
different ICSs. Test generation that operates on parameterized specifications rather than
instantiated ones, is modeled by a function pgen:

pgenc
imp : (Ds → s) → (Ds → P(TESTS))

A parameterized test suite t : Ds → P(TESTS) must be sound for all ICS, i.e., ∀ICS ∈
Ds : t(ICS) is sound.

4.2 Test Generation Methods

Except for trivial systems, exhaustive testing requires a very large or even infinite num-
ber of test cases. Due to the fact that test execution is subject to time constraints, the
amount of test cases must be restricted. This again implies that not necessarily all faults
in an IUT might be detected.

When a test suite of reduced size (with respect to an exhaustive test suite) is generated,
some criterion is needed to assess its effectiveness. For test generation based on formal

49

4 Test Generation Based on Formal Specifications

specifications, there are three general approaches for generating and assessing test cases
in a systematic way. These are based on fault models, test coverage criteria, and scenario-
like requirements. In the following, each approach is described in detail.

4.2.1 Fault Models

A fault model is a hypothetical model of what types of faults may occur in an imple-
mentation. A fault model can be used for evaluating and optimizing a test suite. It also
allows to formalize the test purpose concept.

Formally, a fault model F is a subset of all models of non-conforming implementations
(ITU-T, 1997b, p. 24):

F ⊆ MODS − Ms

Typically, a fault model does not include all non-conforming implementations but only
those with a particular property. A fault model can also be considered a mutant of
specification s ∈ SPECS. For a given modification ∆s ∈ SPECS of s, the corresponding
fault model is M∆s

− Ms.

The extent to which a test suite approximates exhaustiveness with regard to a given
fault model F is denoted as fault coverage. It allows to quantify the quality of a test suite
with regard to the ability to detect errors. Fault coverage is formalized as a function

covF : P(TESTS) → [0, 1]

that maps a test suite into a real number between 0 (no coverage) and 1 (full coverage).

While the exact definition of covF depends on a concrete fault model F , a general
requirement is that the coverage must increase if more faulty implementations in F are
detected. Given two test suites T1 and T2, the following condition must hold

F − PT1
⊆ F − PT2

⇒ covF (T1) ≤ covF (T2)

where PTi
is the formal test purpose of test suite Ti, i.e., the set of all implementation

models that pass the test suite, and F − PTi
is the set of models of implementations

that fail with Ti.

Fault models are defined dependent on the formalism of the specification or the imple-
mentation model. For instance, if the specification is defined in SDL (see next chapter),
one possible fault model is that messages are sent to the wrong receiver. Typical faults
of software specified in an imperative programming language are missing alternatives,
incorrect operators (e.g., ≤ instead of <), negation of boolean expressions in an if

statement, improper block structuring, and missing or wrong initialization of variables.

Test Generation Based on Finite State Machines

A formalism for which many test generation methods have been developed are finite
state machines (FSMs).

50

4.2 Test Generation Methods

Definition 1 (Deterministic Finite State Machine) A deterministic finite state
machine (FSM) is a 6-tuple FSM = 〈S, I, O, σ, ϕ, so〉 where

• S = {s1, . . . , sn} is a finite set of states

• I = {i1, . . . , ik} is a finite set of inputs

• O = {o1, . . . , ol} is a finite set of outputs

• σ : S × I → S is a transition function that determines the next state after some
input

• ϕ : S × I → O is a function that determines the output for every transition

An FSM can be represented as a graph G = 〈N, E〉 where N = S is a finite set of nodes
and E = S × (I × O) × S = {(s, (i, o), s′)|σ(s, i) = s′ ∧ ϕ(s, i) = o} is a finite set of
directed and labeled edges.

With regard to FSMs, two fault models can be identified:

• A transfer fault occurs when a state transition drives the implementation in a
wrong state, i.e., σ is implemented incorrectly.

• An output fault occurs when an IUT responds with a wrong output in a given
state and for a given input, i.e., function ϕ is implemented incorrectly.

In order to create test cases for both fault models, several algorithms have been proposed
that are sketched in the following. They are all based on the following three assumptions:

1. The FSM describing the specification is strongly connected2, i.e., all states are
reachable.

2. The FSM describing the specification is minimized, i.e., there are no states that
are strongly equivalent3.

3. The FSM describing the implementation has at least as many states as the FSM
of the specification.

The third assumption is essential, because otherwise an FSM can be constructed that
passes all tests by simply using as many states as transitions in the test sequence.

Transition Tours. The transition tour method (Naito and Tsunoyama, 1981) aims at
generating test sequences that cover all transitions of the FSM at least once. A transition
tour is suitable for checking whether the implementation produces incorrect outputs. But
it does not check whether the FSM of the implementation is in the right state after each
input (transfer fault).

2An FSM is strongly connected if for any two states si and sj , there exists an input sequence such that
sj is reachable from si.

3Two states si and sj are strongly equivalent if any input sequence results in identical output sequences
for si and sj .

51

4 Test Generation Based on Formal Specifications

Distinguishing Sequences. A distinguishing sequence (DS) is a sequence of inputs
that produces different outputs for each state of a given FSM. This means that for two
starting states s1 and s2 (s1 6= s2), the distinguishing sequence ds = i1, . . . in will make
the FSM produce different outputs. If a distinguishing sequence can be determined for
the FSM of the specification, a two-step algorithm suggested by Kohavi (1978) can be
applied:

In the state verification phase, the response of the implementation to the distinguishing
sequence is retrieved for each of its states. This is achieved in three steps:

1. The IUT is reset, i.e., it is set back to the initial state.

2. A fixed preamble p(i) is applied that is supposed to drive the implementation into
a state pi which is isomorphic to state si of the implementation.

3. The DS is applied to the implementation and the output is checked for equality
with the output of the specification if the DS is applied in state si.

State verification ensures that the implementation has at least as many states as the
specification. Nevertheless, there might be transition faults when executing both the
preambles and the DS.

Thus, in the transition verification step, each single transition t = 〈si, (i, o), sj〉 is tested.
This is achieved in three phases:

1. The implementation is put into state pi which is DS-isomorphic to si by resetting
the implementation and applying preamble p(i).

2. Input i is applied to the implementation and the actual output is compared with
the expected output o.

3. The new state pj of the implementation is checked to be DS-isomorphic to sj

by applying the distinguishing sequence to pj and sj and checking the resulting
output for equality.

The W Method. An FSM does not necessarily have a distinguishing sequence and
thus the test method above cannot be applied in all cases. The W method (Vasilevskii,
1973; Chow, 1978) solves this problem by considering a set W = {w1, . . . , wn} of input
sequences. For any state si, the application of all wj ∈ W uniquely identifies si.

The W method follows the general approach of the DS algorithm. In the state verification
phase, the response of the implementation to all sequences in W is retrieved for each
state. As a consequence, the IUT must be reset |W | times for each state. In the transition
verification phase, the procedure for distinguishing sequences is repeated for each wi ∈
W .

Unique Input Output Sequences. The former test generation methods tend to produce
very long test cases. Thus, Sabnani and Dahbura (1988) have introduced the concept of
unique input/output (UIO) sequences. A UIO for some state si, denoted by UIO(i), is

52

4.2 Test Generation Methods

a sequence of inputs and outputs that uniquely identify si. It can be proven that if a
state has a UIO, it is at most as long as a distinguishing sequence (or W set) common
for all states; in practice, they are much shorter.

To prove that all UIOs are indeed unique for their corresponding state, in the state
verification phase it is checked that they are rejected for all other states. For all i and
j with i 6= j the following procedure is applied:

1. The implementation is put into state pi which is UIO-isomorphic to si by resetting
the implementation and applying preamble p(i).

2. UIO(j) is applied to the implementation and the actual output is checked whether
it is not identical to the expected output of UIO(j) applied to state sj .

In the transition verification phase, all transitions are tested in a way similar to the
DS method. Various optimizations to the UIO method as well as solutions for the
case that a state does not have a UIO have been proposed. An overview is given by
Cavalli and Anido (1997).

The above-mentioned test generation methods have had a strong influence in the past,
but their applicability is restricted for two reasons. First, today’s specification have
become too large to compute exhaustive test cases within a reasonable period of time.
Second, they are based on deterministic FSMs and thus only consider the control flow
of deterministic specifications.

For most modern protocols this is no longer adequate and extended FSMs (EFSMs) and
their variants which support variables and conditional transitions are a more suitable.
Obviously, simplifying an EFSM into an FSM by ignoring all internal variables, input
parameters, and enabling conditions is not appropriate.4 Bourhfir et al. (1997) present
a test generation algorithm for EFSMs that combines the UIO approach with the all-du
paths coverage criterion (see section 4.2.2.2) to take into account both control flow and
data flow aspects.

4.2.2 Test Coverage Criteria

The coverage of a system is a measure for the extend to which a set of test cases is
complete. Test coverage is always related to a particular test method5. In the following
subsections, different test methods based on control flow and data flow are presented.

Normally, test coverage is determined for white box tests where the control/data flow
of IUT itself is subject to investigation. In the context of automatic test generation,
the test coverage can only be measured with regard to the control/data flow of the
specification, although the tests are applied to the IUT. Since the control and data flow
of the specification and the IUT differ, no statements can be made about the coverage of

4In addition, many generated test cases will be infeasible.
5In this context, the term test method refers to the choice of test cases rather than the test architecture

as in section 2.4.

53

4 Test Generation Based on Formal Specifications

statement
coverage (C0) test

branch
coverage (C1) test

boundary interior
path test

structured
path test

path
coverage test

LCSAJ-based
test

multiple condition
coverage test

minimal mult. cond.
coverage test

simple condition
coverage test

subsumes

Figure 4.1: Test methods based on control flow

the IUT, i.e., a test suite with a total coverage of the formal specification may leave large
parts of the IUT untouched. On the other hand, considering test coverage for automatic
test generation can be valuable to ensure that all system requirements (which are given
in the specification) are actually tested.

4.2.2.1 Control Flow Criteria

Test methods based on the control of a program or specification consider structuring
elements such as statements, branches, and conditions to define test cases. A program is
modeled by a control flow graph where each node corresponds to a program statement
and the directed edges define the control flow (possibly constrained by conditions).
Depending on the requirements on testing (e.g., thoroughness), different test methods
can be applied. A hierarchy of control flow-based test methods is shown in figure 4.1.

Statement and Branch Coverage Tests. A statement coverage test – also called C0
test – aims at executing all statements of a given program or specification at least once.
The actual coverage is computed by Number of executed statements

Total number of statements .

A branch coverage test (C1 test) requires that all edges of the control flow graphs are
executed at least once. That means, for every statement with a condition, tests for all
possible alternatives (e.g., true and false in case of a boolean condition) must be defined.
Total branch coverage implies total statement coverage. Branch coverage is considered
the minimal test criteria in order to place confidence in an implementation.

54

4.2 Test Generation Methods

Path Coverage Tests. A branch coverage test is not sufficient for a profound analysis
of loops because each loop has to be executed only once (hence named C1 test). More-
over, it does not consider the dependencies between single branches. The path test faces
these problems by demanding that all possible paths must be executed. If a program
has two consecutive conditional statements, a path test requires to examine all four
possible paths (with boolean conditions evaluating to true/true, true/false, false/true,
and false/false), whereas only two paths (e.g., true/true, false/false) must executed for
a branch coverage tests.

Due to the large number of possible paths6 for non-trivial programs, path tests have no
practical relevance and thus one of the weaker path coverage tests must be chosen. The
boundary interior path test considers all paths except those for which a loop has to be
executed more than once. A generalization of this test criteria is the structured path test
which ignores only those paths for which an innermost loop (i.e., a loop that contains
no other loop) is not executed more than k times (Ck test).

For LCSAJ (Linear Code Sequence And Jump) tests, each linear sequence of executable
statements and the target to which control flow is transferred at the end of the sequence
is considered. This test criteria has been designed for programs with many jumps and
thus can be ignored for modern (structured) programs.

Condition Coverage Tests. If a program contains statements with complex conditions,
even a path test might be insufficient. Given the statement

if (((x ≥ 0) ∧ (x ≤ 100)) ∧ (x mod 2 = 0)) {. . .} else {. . .}

a path test is only concerned with the condition evaluating to true or false as a whole
such that both statement blocks can be executed. In contrast, a condition coverage test
regards each atomic condition, i.e., x ≥ 0, x ≤ 100, and x mod 2 = 0, separately.

Three types of condition coverage tests are distinguished: For a simple condition coverage
test, all atomic conditions in a program must evaluate both to true and false at least
once. This simple test method does not guarantee that all statements are covered. If
x is set to −1 and 101 in the given example, all three atomic conditions once evaluate
to true and false. On the other, the composed condition always evaluates to false such
that the statement block of the if statement is never executed. For that reason, simple
condition coverage tests should always be combined with other test methods.

Multiple condition coverage tests aim at testing all possible combinations of truth values
for the atomic conditions. A condition with n atomic boolean expressions will result in
2n combinations. In practice, not all of these combinations are feasible. For example,
there is no variable assignment that makes both atomic conditions in ((x = 1)∨(x = 2))
evaluate to true. The minimal multiple condition coverage test avoids this problem by
only demanding that all atomic as well as all composed conditions must evaluate to true
and false at least once. If a condition is structured hierarchically (where the structure

6In most cases, the number of paths is only limited because the range of data types and the size of
buffers etc. is restricted. (Due to limited memory, a computer can take only a finite number of states.)

55

4 Test Generation Based on Formal Specifications

all c-uses
coverage test

simple data context
coverage test

ordered data context
coverage test

all du paths
coverage test

required k-tuples
test

all p-uses / some
c-uses coverage test

path
coverage test

all uses
coverage test

all defs
coverage test

all p-uses
coverage test

branch
coverage (C1) test

all c-uses / some
p-uses coverage test

Figure 4.2: Test methods based on data flow

is determined by bracketing and operator precedence), all subconditions must evaluate
to true and false as well. For condition

(((x ≥ 0) ∧ (x ≤ 100)) ∧ (x mod 2 = 1))

the whole expression as well as its substructures (x ≥ 0) ∧ (x ≤ 100), x ≥ 0, x ≤ 100,
and x mod 2 = 0 must be considered.

4.2.2.2 Data Flow Criteria

Data flow-oriented test methods analyze the usage of program variables to define a set
of test cases. A hierarchy of data flow test criteria and their relation to methods based
on control flow (printed in dotted boxes) is shown in figure 4.2.

Every access to some variable v can be placed in one of the following categories:

• Definition (def): A new value is assigned to v, i.e., the variable appears either on
the left-hand side of an assignment statement or in an input statement.

• Computational use (c-use): The variable is used within an expression on the right-
hand side of an assignment statement or in an output statement.

• Predicate use (p-use): The variable affects the control flow, i.e., it is used within
a condition.

56

4.2 Test Generation Methods

The statement y := x∗2+5 contains a computational use of x, denoted by c-use(x), and
a definition of y (def(y)). In statement if (x! = 0) {. . .}, a predicate use of x (p-use(x))
is made.

For any program or specification, the data flow can be described by a data flow graph
(DFG). A DFG is graph G = 〈N, E〉 where the finite set of nodes N represents the
functional units of a program (single statements, sequences of statements, or even pro-
cedures) and the set of directed edges E = N × N represents the flow of data objects.
Definitions and computational uses only occur in the nodes of the DFG while predicate
uses only appear in its edges.

A common property of data flow-based test methods is that they consider the impact
of the definition of variables on their successive use. Therefore, paths from a variable
definition to all computation uses and/or predicate uses are examined.

Definition 2 (Global definitions and c-uses) A variable definition def(v) is called
global if it is not followed by a c-use(v) within the same node. A c-use(v) for some
variable v in a node n ∈ N of the DFG is called global if there is no previous variable
definition def(v) within the same node.

For each node ni, def(ni) denotes the set of globally defined variables and c-use(ni)
denotes the set of variables for which there is a global computation use. p-use(ni, nj)
denotes the set of variables with predicate use at edge (ni, nj).

Definition 3 (dcu and dpu) For any nodes nd, nc, np ∈ N and any variable v, the set
of paths from a definition to a computational/predicate use is defined as follows:

dcu-path(nd, v, nc) :=























{〈n1, . . . , nl〉 | n1 = nd ∧ nl = nc∧ v ∈ def(nd)∧

∀i, 1 ≤ i ≤ l − 1 : (ni, ni+1) ∈ E∧ v ∈ c-use(nc)

∀i, 2 ≤ i ≤ l − 1 : v 6∈ def(ni)}

∅ otherwise

dpu-path(nd, v, np) :=























{〈n1, . . . , nl〉 | n1 = nd ∧ nl = np∧ v ∈ def(nd)∧

∀i, 1 ≤ i ≤ l − 1 : (ni, ni+1) ∈ E∧ v ∈ p-use(nl−1, np)

∀i, 2 ≤ i ≤ l − 1 : v 6∈ def(ni)}

∅ otherwise

dcu-path(nd, v) :=
⋃

np∈N

dcu-path(nd, v, nc)

dpu-path(nd, v) :=
⋃

np∈N

dpu-path(nd, v, np)

dcu(nd, v) := {nc ∈ N | dpu-path(nd, v, nc) 6= ∅}

dpu(nd, v) := {np ∈ N | dpu-path(nd, v, np) 6= ∅}

57

4 Test Generation Based on Formal Specifications

If a variable v is defined globally at node nd and used computationally in node nc, then
dcu(nd, v, nc) denotes the set of all paths from nd to nc such that v is not re-defined
in between. This means the definition at node dd has an impact on the computation in
node nc.

Based on the former definitions, seven coverage criteria can be defined:

• all defs: All variable definitions must be tested with either a computational or
predicate use, i.e., for all nd ∈ N and for all v ∈ def(nd), at least one path in
dcu-path(nd, v) ∪ dpu-path(nd, v) must executed.

• all c-uses: All variable definitions must be tested with all successive computational
uses, i.e., for all nd ∈ N , for all v ∈ def(nd), and for all nc ∈ dcu(nd, v) at least
one path in dcu-path(nd, v, nc) must be executed.

• all p-uses: All variable definitions must be tested with all successive predicate uses,
i.e., for all nd ∈ N , for all v ∈ def(nd), and for all np ∈ dpu(nd, v), at least one
path in dpu-path(nd, v, np) must be executed.

• all c-uses/some p-uses: In addition to the all c-uses criteria, a variable definition
must be tested with a predicate use in case there is no successive computational
use. I.e., for all nd ∈ N and for all v ∈ def(nd), if dcu(nd, v) 6= ∅, then for all
nc ∈ dcu(nd, v) at least one path in dcu-path(nd, v, nc) must be executed; otherwise
one path in dpu-path(nd, v) must be executed.

• all p-uses/some c-uses: In addition to the all p-uses criteria, a variable definition
must be tested with a computational use in case there is no successive predicate
use. I.e., for all nd ∈ N and for all v ∈ def(nd), if dpu(nd, v) 6= ∅, then for all
np ∈ dpu(np, v) at least one path in dpu-path(nd, v, np) must be executed; otherwise
one path in dcu-path(nd, v) must be executed.

• all uses: Both the all c-uses and the all p-uses criteria must be met.

• all du paths: All variable definitions must be tested with all successive
computational and predicate uses; in contrast to the all uses criterion, all
paths from a definition to a variable use that are cycle-free or simple-
cycles must be executed. I.e., all cycle-free and simple-cyclic paths in
⋃

nd∈N

⋃

v (dcu-path(nd, v) ∪ dpu-path(nd, v)) must be executed.

Studies by Girgis and Woodward (1986) have shown that the all c-uses criteria detects
more errors than the all p-uses criteria.

Simple and Ordered Data Context Coverage Test. The underlying idea of the simple
and ordered data context coverage test is that if a variable is used in a statement, than
at least one path from every possible preceeding definition to that statement must be
tested. If more than one variable is used in a statement, than a path must be chosen for
each possible combination of preceeding definitions.

Let dn(v) denote the definition of variable v at node n. dn(v) is said to be live at
statement m if there is a definition-free path from n to m with regard to v. An elementary

58

4.2 Test Generation Methods

context of statement s consists of the definitions that are live at statement s for a
particular path to statement s. The simple data context DC(i) of statement s is defined
as the set of all of its elementary contexts. The ordered data context ODC(i) also takes
into account the order in which definitions occur.

Example: For some statement x := y + z in state s6, all possible combinations of defini-
tions that are live in s6 are described by

DC(6) = {〈d1(x), d4(y)〉, 〈d1(y), d3(x)〉, 〈d3(x), d4(y)〉}

The simple data context coverage test requires that paths for all elements in DC(i) must
be tested. For the first element of DC(6), a paths covering the three states 1, 4, and 6
must be tested. In some cases the definitions can be executed in varying order. If both
〈di(x), dj(y)〉 and 〈dj(y), di(x)〉 are part of an ordered data context, the ordered data
context coverage test requires that two paths must be tested.

4.2.3 Scenario-Based Requirements

Test generation based on fault models and coverage criteria allows for thorough testing
but the number and size of the tests generated may be too high for practical application.
On the other hand, a test specifier often has a clear notion of what functionality must
be tested to gain confidence in an implementation.

In principle, there are two kinds of specifications:

• Scenario-based specifications describe the behavior by a (possibly incomplete) set
of single traces.

• System-based specifications describe all possible behavior by a single model.

In scenario-based specifications, each trace (scenario) describes one (or several) par-
ticular requirement(s) of the system. Thus, such scenarios can be interpreted as test
purposes. In contrast, a system-based specification describes a (possibly infinite) set of
traces.

Scenario-based requirements can be described in various ways, ranging from basic (tem-
poral) logics such as the computation tree logic (CTL; Clarke and Emerson, 1981) and
automata-based models (see observer processes in section 6.2.3) to high-level and more
user-friendly notations such as Message Sequence Chart (MSC ; see section 5.1).

The general distinction between specifications and implementations mainly depends
on the level of abstraction and the stage in the development process. System-based
specifications often abstract from implementation issues. On the other hand, a very
detailed system-based specification may be considered a reference implementation.

For test generation purposes, it is admissive to consider single scenarios as requirement
specifications on a system-based specification. Thus, a pragmatic approach is to gener-
ate a test case for each of these requirements. In this context, test generation means to
complement the traces with regard to events resulting in inconclusive and fail verdicts,

59

4 Test Generation Based on Formal Specifications

and to transform them into another representation in a desired test language.7 A sce-
nario may be incomplete in so far as it does not describe all observable events that are
necessary to drive a system from an idle state to the same or another idle state. For
instance, the test specifier may leave out the preamble and postamble. In that case, a
complete trace must be determined that subsumes the given one.

Very often, at least informal scenarios are defined prior to a system-based specification
by a protocol or system designer. If no scenarios are available, the task to define them
is left to the test specifier. By simulation techniques, the test specifier is able to derive
single scenarios interactively from a system-based specification.

4.3 Test Generation, Verification, and Validation

Test generation based on formal specifications is not an isolated task but often inter-
twined with other activities. Two analysis methods for formal requirements and system
specifications are verification and validation.

• Verification is the process of evaluating a system or component to determine
whether the products of the given development phase satisfy the conditions im-
posed at the start of that phase (IEEE, 1990). Verification ensures that a model
is transformed from one form into another with sufficient accuracy. It aims at
answering the question “Have we built the system right?”

• Validation determines the correctness of the products of software development
with respect to the user needs and requirements (IEEE, 1990). Validation is re-
garded as an informal process, because the requirements are only in the user’s
mind (Kneuper, 1992). It aims at answering the question “Have we built the right
system?”

The terms verification and validation are often used as synonyms or even get mixed
up in literature. Some authors consider verification as a static method based on formal
proofs while validation involves dynamic execution of a model.

In fact, verification of a model can either follow an axiomatic or a simulation approach.
In the latter case, a model checker determines whether the reachability state graph
contains paths that exhibit a specific property. There exist three types of properties
that differ in the number of paths that must exhibit the property:

Property Class Paths

Safety none

Liveness some

Invariance all

A invariance property is the logical complement of a safety complement. To check a
model for safety or invariance properties, the simulation must be exhaustive. Model

7Of course, these procedures are also necessary for fault-based and coverage-based test generation.

60

4.3 Test Generation, Verification, and Validation

checkers employ various methods to reduce the complexity of search (see section 8) but
for complex models the state space is nevertheless infinite. Thus, model checkers cannot
prove safety and invariance properties but only refute them by providing a counter-
example.

Verification and validation tools such as the Tau SDL Validator (Telelogic, 2001)
provide a number of predefined general and language specific rules that are checked
during simulation. In addition, the user may specify his own individual rules. Whenever
a rule is satisfied during state space exploration (i.e., a liveness property is proven or
a safety/invariance property is refuted), a report with the current path through the
reachability graph is stored for later investigation. For parallel systems, undesired beha-
vior such as deadlocks and livelocks can be detected. If communication in a distributed
system is based on message exchange, it can be checked whether the receiver specified
in an output statement exists and is reachable by the sender at run-time. Further rules
check for arithmetic and array operations such as divisions by zero or out-of-bounds
accesses.

A Process Model. Validation, verification and test generation are closely related to
each other, in particular in the context of scenario-based test generation. All three
techniques are based on the dynamic execution of a system-based specification. By
validating the system, traces are generated that can be used as input for scenario-based
test generation. During test generation, a given scenario is verified implicitly as a liveness
property of the system. If there is no path in the reachability graph that matches with
the scenario, the system-based specification and the scenario are contradictory and no
test case can be generated.

In figure 4.3, a process model for specification, validation, verification, and test gen-
eration is presented. Typically, the development process starts by stating the system
requirements by means of simplified scenarios. Based on these scenarios, a complete
system specification based on another formalism is derived. This system specification is
subject to validation, verification, and test generation.

If validation uncovers a fault, the system specification must be modified. By verification,
the system specification is checked against the system requirements. Model checking may
fail due to various reasons: If the requirement is violated by the system specification, the
latter must be modified. There are, however, situations, where the system requirements
themselves turn out to be improper, e.g., because some technical aspects were not taken
into account when they were specified or because they are too informal or imprecise
for automatic model checking. In this case, the original system requirements must be
modified or refined.

Only after validation and verification of the system specification have been completed
successfully, i.e., the system specification is considered “stable”, automatic test genera-
tion is performed. The resulting test suite is validated by the test specifier. If a fault is
detected, either the system requirements or the system specification must be adapted.

61

4
T
est

G
en

era
tio

n
B

a
sed

o
n

F
o
rm

a
l
S
p
ecifi

ca
tio

n
s

Requirement is violated

OKFault

Requirement is improper

Test case indicates error in the specification

Test case indicates improper requirement

OK

OK

System
specification

System
requirements

Modify
specification

Modify/refine
requirements

Specify
requirements

Specify/Derive
system

Validate
specification

Verifiy
specification

Generate
test cases

Test suite

Validate
test suite

Figure 4.3: A process model for specification, validation, verification, and test generation

62

5 High-Level Specification Languages

The necessity to apply modeling methods for the development of software and tech-
nical systems is undisputed as the complexity of these systems is increasing contin-
uously. Requirement and system specification not only presupposes appropriate basic
concepts, such as asynchronous process communication, but also standardized high-level
languages.

In the telecommunication area, Message Sequence Chart (MSC, see ITU-T 1999d;
1996b) and the Specification and Description Language (SDL, ITU-T 1999a; 1996a;
1992) have become the dominating modeling languages. MSC allows to specify the in-
teraction between a number of independent instances by describing single scenarios. It
is typically used during requirement analysis but it can also be applied for testing. On
the other hand, SDL is used for the specification of complete systems. It has concepts
for describing both behavior, data, and structuring. SDL is applied in the design and
implementation phase.

MSC and SDL have many properties in common that suggest a combined use. First of all,
both languages have a graphical and a textual notation. While the phrase representation
is mainly intended for exchange between tools, the graphical format allows to present
information about structure or order of events in an intuitive way. Secondly, SDL and
MSC are formal languages, i.e., a formal semantics is available that allows to interpret
a given specification in an unambiguous way. This feature distinguishes SDL and MSC
from many other graphical languages used in software engineering, e.g., the Unified Mod-
eling Language (UML; see Rumbaugh et al., 1999; Object Management Group, 1999).
Even though SDL and MSC can be used for sequential programs, their main focus is on
the description of distributed systems whose components communicate by asynchronous
message passing.

In the following, a short introduction to the main language concepts of MSC and SDL
is given.1 Their application is illustrated by examples based on the Inres protocol.

5.1 Message Sequence Chart

Message Sequence Chart is a graphical specification language standardized by the ITU-T
as Recommendation Z.120. MSC can be used for describing the communication behavior
among system components and their environment where communication is realized by

1A modified version of the introduction to SDL has been published as Grabowski et al. (2002).

63

5 High-Level Specification Languages

asynchronous message exchange. Each MSC diagram2 depicts one or more traces of the
system.

MSC provides three types of diagrams: A (basic) MSC describes the concrete events
that take place at the various system components and their temporal ordering. Possible
events include the sending and receiving of messages, local actions, timer operations
and instance creation/termination. A High-level MSC (HMSC) abstracts from system
components but provides a road map of how to combine sets of MSCs. HMSCs allow to
arrange MSCs sequentially, as alternatives, and in parallel. Finally, an MSC document
provides a kind of table of contents. It contains general information, e.g., it lists all
MSC diagrams that belong to a project, declares the instances and data used within
these diagrams, and refers to related documents. In practice, MSC documents are used
seldomly. In the following, the main features of basic MSCs and HMSCs will be discussed
in detail.

5.1.1 Basic Message Sequence Charts

Instances, Messages, and Control Flow. The main language concepts of MSC are
instance and message. Instances represent components that exchange messages asyn-
chronously with each other and with the system environment. An instance has a name
and an optional type.

A message is characterized by its name and an optional number of parameters. A mes-
sage exchange defines two events: The sending/output and the reception/input of the
message. Typically, a message involves two instances (components) or one instance and
the environment. However, there also exist special symbols in order to describe messages
that are lost or come from an unknown sender.

Figure 5.1(a) shows an MSC with two instances, Station Ini and Medium, that are
displayed as vertical lines with an additional rectangle for the instance header and
a horizontal bar for denoting the instance end. Instance Station Ini is a block that
represents an Inres protocol instance at the sender (initiator) side. Instance Medium
represents an underlying medium over which data are exchanged with some imaginary
responder. The MSC describes the typical scenario of a connection establishment: If
Station Ini receives message ICONreq (represented by the annotated arrow pointing
from the diagram border to the instance axis), the connection request is forwarded via
the medium (messages MDATreq(CR) and MDATind(CR)). Provided that the other
party responds with a confirmation (MDATreq(CC) and MDATind(CC)), a confirmation
message (ICONconf) is sent by Station Ini. Typically, the description of an instance
finishes with a special end symbol. However, this symbol does not mean that the instance
actually terminates.

MSC defines a total ordering along each separate instance axis where each instance has
to be interpreted from top to bottom. Events on different instances are only partially

2In the following, the term MSC may denote both the MSC language as well as a single MSC diagram.
An explicit linguistic distinction between MSC language and MSC diagram is only made when there
is an ambiguity otherwise.

64

5.1 Message Sequence Chart

block

Station Ini

block

Medium

disconnected

idle

ICONreq

counter:=1

T,5
MDATreq(CR)

MDATind(CR)

idle

MDATreq(CC)

MDATind(CC)

idle

ICONconf

connected

msc ConnectionEstablishment

(a) Basic MSC

env

ISAP1

IniBlock
decomposed as IniProcs

Initiator

block

Medium

env

MSAP2

ICONreq MDATind(CR)

ICONconf MDATreq(CC)ConnectionEstablishment

IDATreq(42)

MDATreq(DT,one,42)

loop <4,4>

IDISind

MDATreq(DT,one,42)

MDATind(DT,one,42)

MDATreq(AK,one)

MDATind(AK,one)

IDISreq

IDISind

MDATreq(DR)

MDATind(DR)

alt

msc DataTransfer

(b) MSC Expressions, Coregions, and Gates

Figure 5.1: Basic MSCs for the Inres protocol

ordered by message exchange in the sense that a message has to be sent before it can be
received. For that reason, it is semantically irrelevant whether a message arrow points
upwards or downwards even though the latter representation is supposed to be more
intuitive for the viewer.

Due to the partial ordering, an MSC often represents not just one trace but a set of
(similar) traces. In some cases, it is even too restrictive to have the events along one
instance ordered totally. For example, if an instance receives messages from different
sources, the order in which the messages arrive may be unpredictable and irrelevant.
MSC allows to mark parts of an instance as a coregion in which all events are unordered.
In figure 5.1(b), a coregion (represented by a dashed line) has been specified for instance
Station Ini, since the order in which IDISind and MDATreq(DR) are emitted is irrelevant
and hence should be left unspecified.

Besides asynchronous message exchange, MSC supports method calls and replies as
another communication mechanism. Method calls may be either asynchronous or syn-
chronous. In the first case, the caller can proceed execution without waiting for the
reply, whereas a synchronous call put the caller in a suspension mode until the reply of
the method arrives.

65

5 High-Level Specification Languages

Environment and Gates. Each MSC diagram is delimited by a rectangular frame that
represents the environment. Instances are allowed to communicate with this environment
by message exchange. Each message input or output event that is associated with the
environment is assigned to a gate whose name is given either explicitly or implicitly by
the corresponding message. Gates are a kind of interface that allows to compose several
MSCs in a vertical manner, i.e., a message may be sent from some instance A to a gate
in one diagram and sent from the same gate to another instance B in a second diagram.
An example for re-using MSCs with gates is given by MSC DataTransfer (figure 5.1(b))
that refers to MSC ConnectionEstablishment.

In contrast to instances, the environment as a whole as well as all input and output
events belonging to the same gate are not totally ordered. Therefore, if the gate concept
is not needed for combining MSCs, in many cases it is better to represent the system
environment by one or more additional instances as done in figure 5.1(b).

Actions. In addition to message communication, the internal actions of an instance
can be described in an MSC. An action is represented by a rectangular symbol and may
either contain a formal statement or an informal text. In figure 5.1(a), instance Initiator
has an action box in which variable counter is set to 1.

Conditions. MSC provides two kinds of conditions: A setting condition defines the
current state of one or more instances where the state is described by a name. In con-
trast, guarding conditions restrict the behavior of instances by making the execution
of subsequent events dependent on a boolean expression or a state which the instance
should be in. Guarding conditions are typically used in combination with alternatives.

In figure 5.1(a), the states of instances Station Ini and Medium are shown by five (set-
ting) conditions which are represented as hexagons. After a successful connection estab-
lishment, Station Ini changes from state disconnected to connect.

Conditions may not only be associated to a single instance but can also refer to several
or even all instances of an MSC. A setting condition that involves all instances describes
a current global system state.

Timers and Time Constraints. The description of timers is supported by three events,
namely start, timeout and stop. In MSC, a timer is associated with exactly one instance,
i.e., there is no notion of a global timer that is accessible by all instances (though
MSC assumes a global clock). Hence, a start event and a corresponding timeout/stop
event have to be specified at the same instance axis. In MSC ConnectionEstablishment
(figure 5.1(a)), timer T guards the reception of a connection confirmation. In the given
scenario, message MDATind(CC) arrives in time and the timer is stopped.

MSC-2000, the latest revision of the standard, provides extensive support for the de-
scription of real-time systems. MSC constructs can be annotated with time constraints
that (a) specify the point in time of single events (absolute timing) or (b) define a time

66

5.1 Message Sequence Chart

interval between two events (relative timing). Time constraints can be defined as exact
time points or as time intervals with upper and lower bounds.

Both relative time measurements (which observe the value of a global clock) and absolute
time measurements (which observe the time distance between pairs of events) can be
made. Their results are stored in a time variable and can be used for succeeding time
constraints. For greatest flexibility, MSC makes no assumption on whether the time
domain is dense or discrete but leaves this decision to the developer.

Instance Creation and Stop. MSC provides constructs for creating and terminating
instances. An instance is created by another instance. Graphically, this is expressed by a
dashed arrow likewise a message. On the other, the termination is always caused by the
instance itself. Due to the fact, that each newly created instance is shown explictly in
an MSC, there is no way to express that one instance creates a varying number of child
instances. Though this can be considered a restriction of the expressiveness of MSC,
one has to keep in mind that MSC is not designed for describing complete systems but
single scenarios where the number of instances involved is known.

5.1.2 Data Model

MSC does not have its own data language. Instead, it defines a general interface that
allows to use type declarations, variables, and expressions with the syntax and seman-
tics of arbitrary languages such as C, Java, SDL, or TTCN. This approach makes it
possible to adopt the data model of the later implementation language and to use it
already in the requirement specification phase. For instance, the notation and semantics
of the SDL data model can be used for the specification of actions, conditions, and mes-
sage/timer/instance creation parameters. Only very few requirements have to be met
by the embedded data language. For instance, a boolean data type must be available
for the definition of guarding conditions. Natural number expressions are required for
specifying boundaries in loop expressions. Finally, a data type must be provided that is
suitable for specifying time constraints.

5.1.3 Structural Concepts

Inline Expressions. Inline expressions allow to compose complex and alternative traces
based on partial traces within a single MSC diagram. An inline expression consists of an
operator and one or more MSC regions (i.e., events among a set of instances) to which the
operator applies. MSC provides several inline operators to describe alternatives, parallel
composition and loops: The alt operator is applied to two or more MSC sections. Its
semantics is that exactly one of the alternatives is executed. The opt operator is used
to describe optional events inside an MSC. Exceptional cases are handled best by the
exc operator – either the events inside the inline expression are executed and the MSC
is finished, or the events following the inline expression are executed. Both opt and
exc expressions are syntactic shorthands and can easily be replaced by semantically

67

5 High-Level Specification Languages

equivalent alt expressions. The par operator defines the parallel execution of MSC
sections. No assumption is made about the overall event order except that the event
order within each section is preserved. The loop<min,max> operator means that the
events in the MSC section are executed min to max times. Instead of concrete upper
and lower boundaries, the keyword inf can be used to specify infinite loops.

In figure 5.1(b), two nested inline expressions are shown. The loop expression means that
message MDATreq is sent and received four times. The outer alt expression describes
two different scenarios of the Inres protocol which are separated by a dashed line. The
first alternative describes the case where a data transfer fails due to a problem with
the unreliable medium and the Initiator sends a disconnection indication to ISAP1. In
the second alternative, the data transfer is successful and the connection is terminated
intentionally by ISAP1 afterwards.

MSC References. In order to re-use MSCs in other MSC diagrams, MSC references can
be used. A simple MSC reference consists of the name of the MSCs to be included and an
optional list of actual parameters. More complex MSC references can be constructed by
textual reference expressions that make use of the same operators as inline expressions
plus an additional sequence operator seq. MSC references are interpreted rather in a
macro-like than in a function-like manner, i.e., the execution of MSC instances is not
synchronized implicitly before and after an MSC reference. MSC references result in a
hierarchy of nested MSC diagrams if an MSC has a reference to another MSC that again
includes an MSC reference.

In figure 5.1(b), a simple reference is made to MSC ConnectionEstablishment which is
shown in figure 5.1(a). In figure 5.2 (see section 5.1.4 for a description of this diagram
type), “loop<0,inf> ConnectionFailure” denotes an MSC reference expression which
causes the execution of the events in MSC ConnectionFailure arbitrarily often (or never
at all).

Decomposition. While MSC references allow to divide the message flow into different
diagrams (by horizontal splitting), instance decomposition is a technique to describe the
inner structure and behavior of a single instance kind by another MSC diagram (vertical
splitting). Decomposition can be applied to describe the interaction between instances
on different levels of detail. For example, in figure 5.1(a) Initiator is a block instance
which can be subdivided into processes. Its internal structure is defined by an MSC
called IniProcs (not shown here) as indicated in the instance header.

5.1.4 High-Level Message Sequence Charts

A High-level Message Sequence Chart (HMSC) describes how single MSCs can be com-
bined. An HMSC consists of one or more directed graphs where each node is either a
(unique) start node, an end node, a connector, an MSC reference (expression), a condi-
tion, or an HMSC itself. HMSCs do not consider single instances. Hence a condition in

68

5.1 Message Sequence Chart

This HMSC refers to
several other MSCs

MSC Overview 1(1)

disconnected

ConnectionSuccess

loop <0,inf> ConnectionFailure

connected

TransmissionSuccess TransmissionFailure

ConnectionRelease

disconnected

disconnected

Figure 5.2: A High-level Message Sequence Chart

an HMSC refers to some global system state. Reference expressions used in an HMSC
may either involve Basic MSCs and/or other HMSCs.

In figure 5.2, an HMSC is shown for Inres. After zero or more (potentially infinite
many) failures, a connection is finally established. If the succeeding data transmission
is successful, it can either be repeated or the existing connection can be released. In
case any data transmission attempt fails, the system is directly set back into state
disconnected.

Figure 5.2 illustrates two important aspects that hold for inline and reference expres-
sions as well: First, an MSC does not necessarily describe deterministic behavior. In
the given example, no assumption is made about when to leave the infinite loop cover-
ing the reference to TransmissionSuccess. The diagram only states that the connection
may eventually be released. Second, alternatives are not required to be immediately
distinguishable. For example, MSC TransmissionSuccess and TransmissionFailure may
certainly start with the same messages. Therefore, MSCs are defined semantically by a
delayed choice operator.

69

5 High-Level Specification Languages

5.2 Specification and Description Language

The Specification and Description Language (SDL; see ITU-T 1999a) is a graphical
language for the modeling of distributed systems. It allows to specify both the functional
behavior, data, and the structure of a system.

SDL is a formal language with a non-ambiguous semantics based on abstract state
machines (Prinz et al., 2000). Therefore, SDL specifications cannot only be used as
informal addenda but also as normative parts in standardization. In addition, most
SDL constructs can be transformed into efficient executable code which makes SDL also
suitable as a high-level implementation language.

Conceptionally, an SDL specification can be considered a set of communicating extended
finite state machines (CEFSMs) that are executed in parallel. Each CEFSM has its own
local variables and timers. Communication among CEFSMs takes place by asynchronous
message exchange over channels that connect sender and receiver. In addition, SDL
provides syntactic shorthand notations for describing synchronous communication in
the form of remote procedure calls which are modeled implicitly by the exchange of two
signals.

5.2.1 Agents and Structuring

An SDL specification consists of a number of diagrams which, in combination, describe
the hierarchical structure of a distributed system. The building blocks of SDL are agents.
An agent is described by one or more diagrams and may consist of a state machine,
procedures, and variables. Furthermore, agents are allowed to contain other agents.
There are two kinds of agents – blocks and processes – that differ in the degree of
concurrency: In blocks, the state machine of the agent itself and the state machines of
its embedded agents execute in parallel. In processes, the state machines are executed
in an alternating manner. Transitions are interpreted sequentially and atomically, even
if they involve several actions. The top-level block is called system.

Figure 5.3(a) shows the SDL system diagram for Inres. The system consists of two
blocks that represent logically independent entities. Block Station Ini models a protocol
instance at the sender side, block Medium describes the behavior of the underlying
medium.

In a complete SDL specification, each agent that is referred to must be defined in a
further diagram. A definition of block Station Ini is given in figure 5.3(b). Once again,
the block itself is composed of two process agents, named Initiator and Coder Ini.

In principle, it is possible to associate state machines with blocks or to divide processes
into blocks. However, traditionally, blocks are used to describe the hierarchical structure
of a system according to some logical or implementation aspects, whereas processes are
used on the lowest level for specifying the functional behavior.

70

5.2 Specification and Description Language

System inres 1(2)

Station_Ini

Medium

ISAP1

 ICONconf, IDISind

 ICONreq, IDATreq, IDISreq

MSAP1

 MDATreq

 MDATind

MSAP2

MDATind

MDATreq

(a) System specification

Block Station_Ini 1(1)

Initiator (1, 1)

Coder_Ini (1, 1)

ISAP1

MSAP1

ISAP

ICONconf,
IDISind

ICONreq,
IDATreq,
IDISreq

IPDU

CR,
DT,
DR

CC,
DR,
AK

MSAP

MDATreq

MDATind

(b) Block Station Ini

Figure 5.3: Inres – Structural description

71

5 High-Level Specification Languages

5.2.2 Communication

In SDL, communication among the state machines of agents takes places by asyn-
chronous exchange of signals. A signal is characterized by a name (which is the signal
type) and an optional number of parameters.

In order to exchange signals, the sending and the receiving agent must be connected by
a channel. Channels can be either unidirectional or bidirectional where the latter are
modeled by two unidirectional channels. Furthermore, a channel may transmit signals
either with or without delay.3

In figure 5.3(a), the two blocks Station Ini and Medium are connected with each other
by (delaying) channel MSAP1. In the SDL specification, Inres is modeled as an open
system that interacts with its environment. The Service Access Points (SAPs) of the
initiator and the medium (at the responder side) are associated with two channels called
ISAP1 and MSAP2.

For each direction of a channel, a list of valid signals has to be specified. For example,
signals ICONreq, IDATreq, and IDISreq are allowed to be sent to Station Ini via ISAP1.
In the opposite direction, the block may respond with ICONconf or IDISind.

If a block or process agent communicates with its environment, one or more gates have to
be specified at the diagram boundaries. These gates must be defined both in the diagram
that defines the agent as well as in all diagrams that refer to the agent. Gates are required
to ensure the consistency between the various diagrams of an SDL specification. By
means of gates, it can be determined which state machines can communicate with each
other, even if the communication paths are given indirectly by a hierarchy of diagrams.
In figure 5.3(b), there are two gates named ISAP1 and MSAP1 which allow to embed
the block diagram unambiguously into the system diagram in figure 5.3(a).

5.2.3 Behavior

The dynamic behavior of an SDL system is described by extended finite state machines.
An EFSM is characterized by a finite number of states and state transitions. In SDL,
each EFSM has one input queue in which all incoming signals are stored.

A state machine either waits for a new signal to arrive in its input queue or performs a
state transition. The state machine and its input queue work independently such that in-
coming signals are not get lost, even if the EFSM performs a state transition. Two signals
that arrive at the same time from different sources or via different channels are queued
in arbitrary order. Since the exact execution order is not predictable in a distributed
system, race conditions may occur that make the system behave indeterministically.

During a transition, a state machine can execute various actions, e.g., assigning a new
value to a local variable. Typically, a state machine reacts upon an incoming signal

3Delay-free transmission does not imply synchronous communication as the receiving agent may not
necessarily consume the incoming signal at the time of its arrival.

72

5.2 Specification and Description Language

by sending one or more signals where the receiving agent is either stated explicitly or
determined indirectly by the signal and channel involved.

Figure 5.4 shows an extract of the state machine for process Initiator. Coming from the
start state (denoted by an empty oval), the state machine enters state disconnected first.
Then it waits for the arrival of either signal ICONreq or DR. If, e.g., a connection is
requested, process Initiator sets its local variable counter to 1, sends signal CR, starts
a timer (see below), and enters state wait.

For some problems it is inadequate that a transition is triggered by the first signal in
the input queue. Therefore, a few additional language construct have been introduced
into SDL that break the FIFO concept. If, at run-time, there is a signal in the input
queue for which no transition is defined in the current state, the signal is discarded by
default. In some situations it is desirable to keep such a signal until it can be evalu-
ated. In process Initiator, a new request for data transfer (signal IDATreq) cannot be
handled in state sending since the current transfer has to be completed first. The save
construct (represented by a rhombus symbol) preserves the signal such that it can be
processed later. Signals can also be prioritized with regard to a specific state. Finally,
the consumption of signals can depend on a (Boolean) guard expression.

Timers. The behavior of an SDL state machine cannot only be triggered by incoming
signals but also by timer expiration. Each state machine may have an arbitrary number
of local timers on which the operations set and reset can be applied. Operation set
activates a timer and has the expiration time as its parameter (typically, an expression
such as now+5). Reset stops a timer. If a timeout occurs, a signal with the name of the
timer is placed into the input queue.4

Timers are useful in order to prevent agents that wait for a particular input from being
blocked. If an expected signal does not arrive within a given period of time, a supervision
timer expires and a timer signal triggers a state transition. Timers can also be applied
for describing events that re-occur with a certain time-lag.

In state sending of process Initiator (see figure 5.4(b)), timer T is used to guard the
data transfer. If the receiving party does not acknowledge within a given period of time,
T expires and the data is retransmitted. If signal AK is not received even after the
fourth attempt, signal IDISind is sent in order to indicate that the connection has been
closed.

SDL does not define time units. Therefore it is left to the reader whether p in the
text box of figure 5.4(a) is interpreted as 5 seconds, 5 light years, or another duration.
In addition, no assumptions are made about the execution time of actions. For that
reason it is possible that timers with the same duration expire in reverse order of their
activation.

Dynamic Agent Creation. SDL supports the dynamic creation of agents. Therefore it
is possible to describe, e.g., server architectures where each service request is handled

4Formally, a timer is modeled as a separate process that exchanges signals with its parent process.

73

5 High-Level Specification Languages

Process Initiator 1(3)

DCL
 counter integer,
 d ISDUType,
 num,
 number Sequencenumber;

TIMER
 T;

SYNONYM p Duration = 5;

 disconnected

ICONreq

counter := 1

 CR

SET
(now + p, T)

 Wait

DR

IDISind

 disconnected

(a) State disconnected

Process Initiator 3(3)

sending

T

counter < 4

IDISind

 disconnected

DT(number, d)

counter :=
counter + 1

SET(now + p, T)

 sending

 AK(num)

RESET
(T)

num = number

number :=
succ(number)

 connected

IDATreq IDISreq

 false
 true

 false

 true

(b) State sending

Figure 5.4: Excerpt from the description of process Initiator

74

5.2 Specification and Description Language

by a distinct agent. Each agent has a unique process identifier (pid). At agent creation,
pids are exchanged implicitly between parent and child agent.

In SDL, no agent can enforce the termination of another one. Instead each agent is
responsible for its own termination. However, it is possible to specify an agent in such
a way that it accepts a particular signal in all states that makes the agent terminate.

5.2.4 Object Orientation

SDL fully conforms to the object-oriented programming paradigm. Just like data types,
agent types, procedures, and signals can be specialized by inheritance. In this way it is
possible to add new properties or to modify existing ones. With regard to agents this
means that single state transitions can be overwritten in a derived agent.

All kinds of SDL types can be parameterized for easier re-use in different contexts (sim-
ilar to the template concept in C++). Furthermore, type definitions can be combined
in packages and imported by other SDL documents.

5.2.5 SDL Data Model and ASN.1

In contrast to MSC which allows to embed an external data language by some meta
data concept, SDL provides its own data types and operations. Former versions of SDL
were based on abstract data types whose properties were – among others – defined by
axioms. Since these axioms cannot be evaluated efficiently by tools, the abstract data
type concept has been dropped for SDL-2000 and replaced by a data model that has
many similarities with the ones used in modern object-oriented programming languages.

SDL provides a couple of predefined standard data types such as boolean, character,
integer, or real and a few special purpose data types that can be used for communication
(pids) or timer operations (duration). Based on the simple data types, several complex
data types can be constructed (struct, array, choice, etc.).

SDL distinguishes between values and objects. The latter are references to values. The
semantics of SDL objects is very similar to the semantics of references in the Java
programming language.

A specialty of SDL is the any expression which returns an unspecified value of a given
data type. With any it is possible to describe nondeterminism in the behavior of a
system.

In addition to SDL’s own data language, the Abstract Syntax Notation One (ASN.1,
see ITU-T 1997a) can be used. ASN.1 is a standardized notation for data types and
values that is commonly used in the telecommunication area. Its main benefit is the
definition of encoding rules that specify the representation of values on the bit level
during transfer. Moreover, ASN.1 can be used in TTCN test suites which makes the
data language an ideal mediator between SDL and TTCN. On the other hand, ASN.1
does not define any operations on its data types.

75

5 High-Level Specification Languages

There are two standards that define how to use ASN.1 in combination with SDL. Z.105
(ITU-T 1999b) defines a mapping of ASN.1 constructs to equivalent SDL constructs
and a small extension to SDL that allows to import data types and values from ASN.1
modules. Z.107 (ITU-T 1999c) goes even further by describing how ASN.1 notation can
be used directly within an SDL specification.

5.2.6 Further Language Constructs

SDL provides a number of additional language constructs that cannot be discussed here
in detail. For example, SDL has a number of control structures that allow to describe
complex algorithms in both a graphical and a textual notation. Another feature of SDL is
its exception handling that has been taken over from C++. For further information and
a complete description of SDL, the reader is kindly referred to the SDL Forum Society.

5.3 Tool Support

The success of a language is closely coupled with the availability of powerful development
tools. For MSC and SDL, there exist a number of commercial and academic software
packages (SDL Forum Society, 2002b). Their tools range from graphical editors that
support the developer with predefined symbols and incremental syntax checkers, to
compilers for the automatic generation of C++ and Java code from SDL specifications.

The semantic closeness of SDL and MSC allows to use both languages in combination.
For instance, during the step-wise simulation of an SDL specification, the current trace
can be presented in form of an MSC. In the other direction, it can be verified whether
the behavior of an SDL system conforms to some requirements expressed in an MSC.

In addition to simulators or debuggers, validation and verification tools can be applied
that allow to explore the state space of an SDL system interactively or automatically
and analyze the specification with regard to violations of the dynamic semantics of SDL
(e.g., whether a signal is sent to a process which has already terminated). Such tools can
also find other potential problems such as deadlocks or implicit signal consumptions.

A Syntax Checker for SDL-2000. Since its introduction in 1976, SDL has undergone
regular modifications. These changes were motivated by new application areas, the need
for object-oriented design, and harmonization with other languages such as C++ and
UML. In November 1999, Study Group 10 of the ITU-T has approved the latest version of
SDL, called SDL-2000. Because of its many changes (in particular in the organization of
the standard and on the level of grammar rules), there is a strong demand for completely
redesigned software tools.

The first step in the development chain of any SDL tool is the construction of a parser
which builds an abstract syntax tree. However, even though SDL-2000 comes along
with a complete grammar for the textual representation, it is not possible to simply

76

5.3 Tool Support

feed the grammar rules into a compiler construction tool. Instead, considerable effort
has to be spent on transforming them into an appropriate input format and resolving
nondeterminisms.

Within a project of 4 man months, the author has developed the first available SDL-2000
parser/syntax checker. Except for macros, it supports the complete SDL-2000 definition.
Technically, it is based on the same concepts and tools as the TTCN-3 parser described
in section 3.2.7 on page 40. The SDL parser has been used partially for the ValiBOSE
project (section 10.3) as well as for external projects (e.g., Zieren, 2000) The work on
the parser has unveiled several errors and inconsistencies in the Z.100 standard. Nine
change requests have been submitted to the SDL rapporteur at ITU-T and taken into
account for a Master list of changes. For detailed information on implementation issues,
the reader is referred to Schmitt (2000).

77

5 High-Level Specification Languages

78

6 The Autolink Tool

Within the Autolink research and development project, a tool for the automatic gener-
ation of TTCN-2 test suites based on SDL system specifications and MSC test purposes
has been developed. The Autolink project was started in 1996 by the Institute for
Telematics in Lübeck and Telelogic AB in Malmö, Sweden. It has been documented
in a large number of publications, see, e.g., Ek et al. (1997); Grabowski et al. (1999);
Koch et al. (1998); Schmitt et al. (1997, 1998, 2000); Schmitt and Koch (2001).

Autolink is integrated into Telelogic’s Tau development environment. Tau provides
tools for the design, analysis, and compilation of systems and protocols specified in SDL,
MSC, and TTCN. It supports most features of the SDL-96 standard and allows the
combined use of SDL with ASN.1.

In practice, many test generation methods – such as the more advanced ones presented
in section 4 – fail due to their complexity. Similarly, many academic test generation tools
are practically useless due to implementation-specific restrictions. A major goal of the
Autolink project was to develop a tool that is capable to handle large-scale industrial
specifications.

Autolink has been used for in-house developments at all major telecommunication
companies (Nokia, Ericsson, and Motorola). Furthermore, standardized test suites
have been developed at the European Telecommunications Standards Institute (ETSI).

During the five-year project, it has turned out that test specifiers are often tackling subtle
problems that strongly differ from “classical” academic questions. Thus, the project was
driven to a large extend by practical experience and user feedback.

In this chapter, the Autolink test generation methodology is presented. In section 6.1,
an overview of the Autolink test generation process is given. The three phases of
the Autolink test generation process are described in sections 6.2, 6.3, and 6.4. Vari-
ous ways of interpreting MSCs for test generation are discussed in section 6.5. Two
Autolink case studies are described in section 6.6. Finally, a comparison of Autolink
with other SDL-based test generation tools and a number of open issues are presented
in sections 6.7 and 6.8.

Within the Autolink project, solutions have been elaborated to generate test cases for
distributed test architectures, to cope with the state space explosion problem, and to
produce well-structured and readable test suites. These topics are described in detail in
chapters 7 to 9.

79

6 The Autolink Tool

6.1 The Autolink Test Generation Process

Test generation with Autolink follows a three-step process that comprises the phases
test purpose specification, test case generation, and test suite production. The overall
process is outlined as a UML activity diagram in figure 6.1.

During test generation, a given SDL system is considered as the system under test and
the SDL channels to the system environment are mapped to PCOs. Signals transmitted
over these channels become send and receive test events in TTCN-2.1

In the first step, the test specifier has to define a set of test purposes. In Autolink, a
test purpose is a sequence of input and output events that are to be exchanged between
the SDL system and its environment. Test purposes are developed either manually,
interactively, or fully automatically. Autolink uses MSC as a uniform format for the
representation of test purposes.

Based on a set of MSC test purposes, test case generation takes place. As result, an
internal data structure is constructed that describes the dynamic behavior of each test
case and the associated constraints.2 Normally, a test case is computed by a state space
exploration of the synchronized product of the SDL system and an MSC. However,
sometimes it is impossible to simulate/verify an MSC test purpose. In these cases, the
MSC can be transformed directly into an internal test case representation.

In a final step, a TTCN-2 test suite in MP format is produced based on the internal rep-
resentations. It comprises tables in the declarations part, constraints part, and dynamic
part.

The test generation process is controlled by several user-defined options. Among others,
they allow to customize the appearance of the generated test suite with regard to con-
straints, test configuration, and test suite structure.

6.2 Test Purpose Specification

Autolink derives test cases from paths which have to be provided by the test specifier.
A path is a sequence of SDL events which drive the system from a start state to an end
state in the state space of the SDL system. A path is stored as a Message Sequence Chart.
Normally, an MSC test purpose generated by Autolink only shows the externally
observable interaction that takes place between the SDL system and its environment.
It consists of one instance axis representing the SDL system and one instance axis for
each channel linked to the environment.

A typical MSC for the Core INAP CS-2 protocol (see section 6.6.1) is shown in figure 6.2.
Instance CS2 INAP denotes the system and SCF, SigCon A, and SigCon B represent
channels to the test environment that are mapped to PCOs in TTCN-2.

1In the following, if no source or destination is specified, a communication event is described from the
point of view of the test environment. That means, a send event refers to a message sent from the
test environment via some PCO/channel to the system, whereas a receive event is received by the
tester.

2The term constraint is used according to the TTCN-2 terminology.

80

6.2 Test Purpose Specification

Test purpose specification

Automatic
computation

Interactive
simulation

Manual
specification

MSC
test purposes

Direct
translation

State space
exploration

ConstraintsDynamic
behavior

verifiable inopportune behavior

TTCN-2 test
suite export

Internal representation

TTCN-2
test suite

Setup test
environment

"complete"
SDL system

"incomplete"
SDL system

coverage-based test scenario-based
test

Test case generation

Test suite production

Options:
Test configuration,
Test suite structure

Options:
Constraint rules

Options:
Search heuristics

Figure 6.1: Test suite generation with Autolink

81

6 The Autolink Tool

SCF CS2 INAP SigCon A SigCon B

O OS

TC InvokeReq(1, 51, 2, RRB, short, rRBArg : { bcsmEvents {
{ eventTypeBCSM oAnswer, monitorMode notifyAndContinue } } })
TC InvokeReq(2, 51, 2, CON, short,

cONArg : { destinationRoutingAddress { ’2001’H } })
TC ContinueReq(51, oSCF)

SetupReq({ callRef 2, calledPartyNumber ’2001’H,

callingPartyNumber ’1000’H })
SetupConf({ callRef 2 })

TC ContinueInd(51, oSSF, TRUE)

TC InvokeInd(102, 51, ERB, TRUE, eRBArg : { eventTypeBCSM oAnswer,

legID receivingSideID : ’02’H, miscCallInfo { messageType request } })
SetupResp({ callRef 1 })

TC EndInd(51, basic, FALSE)

SigConA Release thenB cause10

msc IN2 A BASIC RR BV 25

Figure 6.2: MSC IN2m A BASIC RR BV 25

Test purposes can be specified in several ways: manual specification, interactive sim-
ulation, observer processes, and automatic computation. The different approaches are
described in the following.

6.2.1 Manual Specification

MSC test purposes can be specified manually by using an MSC editor. Manual speci-
fication should only be considered in cases where MSCs are specified prior to the SDL
system or an MSC describes a scenario that is not described by the SDL system.

6.2.2 Interactive Simulation

In order to produce MSC test purposes by means of state space exploration, the test
specifier has to define a set of reasonable input signals. Whenever the SDL system is in
a stable state, i.e., in a state in which the system waits silently for new input from its

82

6.2 Test Purpose Specification

environment or the expiration of a timer, Autolink continues the simulation with each
possible input.

For complex specifications, it is difficult to predict a set of inputs in advance that results
in a good coverage. In addition, due to the fact that each possible signal is tested in
each stable state, the state space may grow excessively with increasing depth. For one
of the test suites of Core INAP CS-2, the SDL system had to be controlled by more
than 130 (!) different input signals.

On the other hand, the test specifier usually knows exactly which signal (parameters)
make sense at which point in time. Therefore, he may want to specify test purposes
by stepwise simulation. This approach corresponds to testing based on scenario-based
requirements as described in section 4.2.3.

6.2.3 Observer Processes

An observer process is a special kind of SDL process that allows to check some property
of an SDL system state. Observer processes are able to inspect the SDL system without
interfering with it and to log the fulfillment of their property. To accomplish this, three
features are implemented in the Tau Validator:3

• The observer process mechanism

By defining processes to be observer processes, the Tau Validator simulates an
SDL specification in a two-step manner. First, the rest of the SDL system executes
one transition, and then all observer processes execute one transition and check
the new system state.

• The assertion mechanism

The assertion mechanism enables an observer process to generate reports during
state space exploration. These reports include the complete search path and can
be transformed into MSCs later.

• The Access abstract data type

The Access abstract data type allows observer processes to examine the internal
states of other processes in the system, i.e., it can check variable values, contents
of queues, etc., without having to modify the observed processes.

The general idea when using observer processes for test generation is to describe one or
more test purposes by an observer process. Then, a corresponding path that satisfies the
requirement(s) expressed by the observer process is searched by space state exploration.

Since observer processes as implemented in the Tau Validator are able to access
variables and functions of the Validator’s run-time environment, they can also be

3Observer processes are non-standardized, tool-specific extensions. For instance, observer processes in
ObjectGEODE (called goal observers) have three kinds of states: Accepting states indicate that
the executed transitions of system are valid. Success states indicate that the observed sequence of
system events meets some requirement. Error states indicate an incorrect sequence of system events.
Whenever an observer reaches a success or error state, the current simulation path is pruned.

83

6 The Autolink Tool

;
SIGNALSET ;

Process Type TG_Cov 1(1)

dcl
 exec integer,
 str charstring;

/*#CODE
#BODY
static int TG_Cov_MaxExec = 0;
*/

S

depth(0) > 50

GetExec
(exec)

exec >
#CODE(’TG_Cov_MaxExec’)

Check if some
new symbols
have been
executed

’’
Store the new number
of executed symbols
in the C code variable
TC_Cov_MaxExec

/*#CODE
TG_Cov_MaxExec = #SDL(exec);
*/

int2str
(exec,str)

Report
(’Cov = ’ // str)

-

false

true

Figure 6.3: An observer process for test generation

used for controlling the state space exploration and encoding general test criteria. In
this case, the application of an observer process may lead to several MSC test purpose.

A simple observer process type is shown in figure 6.3. TG Cov realizes a coverage-based
test method. Each time a trace with length 50 is executed that covers some additional
SDL symbol, a new report is generated. TG Cov is intended to be used in combination
with the Random Walk search strategy that repetitively explores random paths through
the state space (for a critical consideration of Random Walk see section 8.1 on page 120).

6.2.4 Automatic Computation

Autolink allows to derive MSC test purposes fully automatically from an SDL speci-
fication. Based on a state space exploration, a set of test sequences is computed whose
execution shall result in a large structural coverage of the SDL specification.

Autolink defines coverage on the basis of single SDL symbols. However, the execution
of a coverage unit may not be observable when it comes to black-box testing, because
it does not necessarily involve interaction of the SDL system with its environment.

84

6.3 Test Case Generation

Therefore, generating a separate test purpose for each coverage unit leads to many
identical test cases.

To circumvent the problem, Autolink examines larger sequences of coverage units that
lead from one stable state to another one. Each automatically generated test purpose
covers at least one unique observation step. In most cases, an observation step includes
a stimulus from the test environment and one or more corresponding responses from the
system.

Unfortunately, there is no universally applicable search strategy to find paths through
the reachability graph which results in a large coverage. General-purpose search strate-
gies such as depth-first search, breadth-first search, or Random Walk lead to poor cov-
erage or the computed test purposes include many redundant events. For that reason,
Autolink provides a new test generation algorithm, called Tree Walk, that is de-
scribed in detail in chapter 8.

6.3 Test Case Generation

In the test case generation phase, an internal test case representation is generated for
each MSC test purpose. The dynamic behavior description contains all sequences of test
events that lead to either a pass or an inconclusive verdict. Send and receive events are
associated with constraints codifying the SDL/MSC signal parameters. Since constraints
can be shared among several events in different test cases, they are stored separately
from the test case representations.

Autolink merges identical constraints and resolves naming conflicts (for the issue of
constraint naming see also chapter 9.1.2). Furthermore, a configuration language is pro-
vided that allows the test specifier to define rules for the mapping of SDL signals to
TTCN-2 constraints (see chapter 9.1.2).

There are two approaches to generate test cases based on MSC test purposes that are
explained in the following subsections.

6.3.1 State Space Exploration

Ideally, Autolink generates a test case by parallel simulation of the SDL system spec-
ification and a given MSC test purpose (synchronous product simulation). During the
simulation, the SDL system is only triggered by input signals that are specified in the
MSC. In the opposite direction, additional valid signals (test events) can be determined
which are not specified in the test purpose but which the SDL system (i.e., the SUT)
is allowed to send to its environment (i.e., the tester). These test events result in an
inconclusive test verdict.

During simulation, each state is a pair 〈SDLState,MSCState〉. Since Autolink follows
the black box testing approach, only communication between the SDL system and its

85

6 The Autolink Tool

environment must be considered. Therefore, MSC instances that correspond to internal
components of the SDL system are disregarded.

During simulation, for every event that occurs in a transition of the SDL system, one of
the following cases must be considered:

1. The event belongs to the class of internal events ⇒ execution proceeds with the
successor state of the SDL system and the current MSC state.

2. The event matches with an event specified in the MSC ⇒ the event is added to
the test case tree as an event leading to a leaf node with pass verdict; the execution
proceeds with the successor state of both the SDL system and the MSC.

3. The observable event conflicts with a different event in the MSC ⇒ the event is
added to the test case tree as a leaf node with inconclusive verdict.

Like any other verification, validation, or test generation tool, Autolink has to cope
with the state space explosion problem, i.e., the reachability graph grows exponen-
tially with increasing depth. Due to its complexity, it is impossible to store it com-
pletely in memory. Therefore, Autolink constructs the reachability graph on-the-fly.
While traversing, only the system states along the current path are stored. During back-
tracking, state information is removed from memory.

Autolink performs its state space explorations based on the well-known Supertrace
algorithm (Holzmann, 1991). It allows to identify states that have been visited before
along a different path.

Furthermore, Autolink supports several heuristics that avoid the analysis of system
traces which are supposed to be irrelevant. Heuristics are based on assumptions and
experience (rules of thumb). Grabowski et al. (1996) distinguish between different types
of heuristics: Limiting heuristics restrict the length of traces. Possible limiting criteria
are a fixed maximum number of events or a specific state property.4 Filtering heuristics
aim at reducing the branching factor at some states such that the behavior tree becomes
thinner. This can be achieved, e.g., by assigning different priorities to classes of events,
restricting unbounded queues, or defining a limited set of valid input/output signals. As
as third category, the authors present SDL-specific heuristics. For instance, the degree of
concurrency can be reduced by executing a complete SDL state transition as an atomic
event.

In Autolink, various limiting and SDL-specific heuristics can be used for automatic test
purpose computation and test case generation: The queues of channels that connect two
internal processes/blocks can be deactivated if these processes/blocks are supposed to
communicate without delay in a concrete implementation; in each system state, only one
process instance may be considered, even if several processes can perform some action;
during test case generation, inputs from the environment have priority over internal
events of the SDL system, because it is assumed that a tester is faster than its SUT.

4According to Grabowski et al. (1996), approaches that stop exploration if a state is revisited fall into
this category as well. However, these approaches are no real heuristics because soundness can be
proven.

86

6.4 Test Suite Production

Further heuristics concern the capacity of input queues of processes, the atomicity of
SDL transitions, and the time it takes to execute an action (the latter is relevant to
determine when a timer can expire).

6.3.2 Direct Translation

If an MSC test purpose covers aspects of a protocol specification which are not modeled
in the corresponding SDL system, it is obviously not possible to generate a test case
by state space exploration. However, for a uniform test suite development process, it is
desirable to formalize all test purposes as MSCs.

Therefore, Autolink allows to convert MSCs directly into TTCN-2 test cases. Although
no state space exploration is performed, Autolink requires some information about the
interface of the specification to find out which MSC instances represent PCOs and to
check the syntax of the MSC with regard to the signals and signal parameters. An SDL
system has to be provided which at least defines the channels to the system environment,
the signals sent via these channels, and – for the sake of well-formedness – a dummy
process.

Direct translation must be applied with caution. There is no guarantee that an MSC
describes a valid trace of the specification or the implementation, respectively. Further-
more, it is impossible to compute test events which lead to an inconclusive test verdict,
i.e., any deviation from the behavior described in the MSC is considered as a failure.

On the other hand, there are good reasons to use MSCs instead of directly writing
TTCN test cases. First, test cases typically span trees with several leaves because of the
partial order of test events.5 In MSC, the partial order is expressed implicitly. While
it is arduous for a test specifier to write down a complete TTCN test case, Autolink
automatically computes all valid permutations of test events. Second, since Autolink
always translates MSCs into an intermediate internal test case representation, test cases
generated by direct translation can be merged with test cases generated by state space
exploration. This leads to uniform and compact test suites with, e.g., a reduced number
of constraints.

6.4 Test Suite Production

In the test suite production phase, Autolink creates a TTCN-2 test suite in MP format
based on the SDL system and the internal test case representations. In figure 6.4, a
TTCN-2 test case is shown that corresponds to the MSC test purpose in figure 6.2 on
page 82.

5The only way to avoid multiple branches with identical continuations is to introduce a test step for
any unordered sequence of events. However, since the send-first rule is applied — i.e., if the tester can
send a message, it will do so immediately without considering incoming messages — it can become
difficult to identify a test step. In TTCN-3, the situation has been improved by the interleave operator
in combination with the sequential execution of test cases.

87

6 The Autolink Tool

Test Case Dynamic Behaviour

Test Case Name : IN2 A BASIC RR BV 25

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O OS 2

2 SCF ! TC InvokeReq CIR RequestReportBCSMEvent 028(
1, 51)

3 SCF ! TC InvokeReq CIR Connect 001(2, 51)

4 SCF ! TC ContinueReq C TC ContinueReq 001(51)

5 SigCon B ? SetupReq C SetupReq({ callRef 2,
calledPartyNumber ’2001’H,
callingPartyNumber ’1000’H })

6 SigCon B ! SetupConf C SetupConf({ callRef 2 })

7 SCF ? TC ContinueInd C TC ContinueInd 001(51)

8 SCF ? TC InvokeInd CII EventReportBCSM 012(102 , 51)

9 SCF ? TC EndInd C TC EndIndBasic 003(51)

10 SigCon A ? SetupResp C SetupResp({ callRef 1 }) (PASS)

11 +SigConA Release

thenB cause10 2

12 SCF ? TC AbortInd C TC AbortInd(51) INCONC

13 SigCon A ? SetupResp C SetupResp({ callRef 1 })

14 SCF ? TC EndInd C TC EndIndBasic 003(51) (PASS)

15 +SigConA Release

thenB cause10 2

16 SigCon A ? SetupResp C SetupResp({ callRef 1 })

17 SCF ? TC InvokeInd CII EventReportBCSM 012(102 , 51)

18 SCF ? TC EndInd C TC EndIndBasic 003(51) (PASS)

19 +SigConA Release

thenB cause10 2

20 SigCon A ? SetupResp C SetupResp({ callRef 1 })

21 SCF ? TC ContinueInd C TC ContinueInd 001(51)

22 SCF ? TC InvokeInd CII EventReportBCSM 012(102 , 51)

23 SCF ? TC EndInd C TC EndIndBasic 003(51) (PASS)

24 +SigConA Release

thenB cause10 2

25 SCF ? TC AbortInd C TC AbortInd(51) INCONC

26 SigCon B ? SetupReq C SetupReq({ callRef 2,
calledPartyNumber ’2000’H,
callingPartyNumber ’1000’H })

INCONC

Detailed Comments :

Figure 6.4: TTCN-2 test case IN A BASIC RR BV 25

88

6.5 Interpretation of MSC Test Purposes

SDL sort definitions are mapped to ASN.1 type definitions in the TTCN-2 declarations
part. ASN.1 data types defined externally in an ASN.1 module are listed as ASN.1 type
definitions by reference in TTCN. SDL signal definitions become ASN.1 ASP or PDU
type definitions.

The appearance of the test suite can be controlled by various options. For example,
constraints can be stored either as ASN.1 PDU or as ASN.1 ASP constraints. Test steps
can be stored globally in the test step library, as local trees attached to a test case, or
printed inline. In addition, the test specifier can decide whether a monolithic tester or
a distributed test architecture is required.

When exporting a test suite, Autolink checks the consistency of the test cases. For
example, an MSC which is used as postamble for more than one test case does not
necessarily result in identical test steps. Thus, if these test steps are stored globally,
Autolink has to assign unique names to them (by adding a sequence number). Fur-
thermore, naming conflicts are resolved for parameters which are used with varying
values in several test cases.

Autolink assumes trace preorder as conformance relation. That means, the imple-
mentation must show only a subset of the behavior of the SDL specification. This is
achieved by introducing a default behavior table into the TTCN-2 test suite that makes
test execution fail for all events that are not defined by the specification.

6.5 Interpretation of MSC Test Purposes

There are different possibilities to interpret MSCs for test generation purposes. In the
following, a few aspects of a mapping to TTCN-2 test cases are discussed.

6.5.1 Partial Order Semantics

In MSCs, events of different instances are only partially ordered, i.e., typically more
than one valid sequence of events exists. If a test generation tool would generate all
possible test sequences, then send events could appear as alternatives to receive events
in TTCN test cases, rendering them indeterministic and invalid.

For transforming an MSC into a TTCN-2 test case, signals sent from the tester en-
vironment to the system have a higher priority than signals in the opposite direction
by default. This is motivated by the fact that the tester is supposed to be faster than
the SUT. Moreover, it avoids potential deadlocks during test execution if a test case is
generated by direct translation. If there are several possible send events, an arbitrary
order is defined for them.

However, there are situations where this strategy leads to incorrect test cases. Therefore,
Autolink allows to introduce synchronization points by means of MSC conditions that
block the evaluation of events until all events above the synchronization point have been
executed. In chapter 7 on page 103, a formalism is introduced that generalizes the usage

89

6 The Autolink Tool

PCO

A

SUT

System

PCO

B

PCO

C

inform(msg)

broadcast(msg)

broadcast(msg)

broadcast(msg)

msc PartialOrder

Figure 6.5: Message Sequence Chart PartialOrder

of MSC conditions for the synchronization of PCOs that are mapped to distributed test
architectures.

When it comes to unordered events received from the system, there are two possible
approaches to handle them:

1. Create a behavior description that is structured as a tree with branches wherever
the order of events is not fixed.

2. Define some (arbitrary) order of events and create a behavior description with
only one test sequence resulting in a pass verdict.

The difference between these approaches is illustrated by two test case descriptions in
figure 6.6 that are derived from the MSC in figure 6.5. A test case description with
only one valid path can be significantly shorter than a tree-like representation. On the
other hand, error diagnosis might be more difficult with a linear sequence, since the
test case might be stopped at an early stage due to an unreceived event while there are
still unprocessed messages at other PCOs. Moreover, the specification of failures is more
complicated as it is no longer valid to add a statement to the default behavior table that
assigns a FAIL verdict to all unexpected events. Autolink supports both approaches
because either has its pros and cons.

6.5.2 Structuring Concepts

MSC References. In general, test cases are structured logically into several test steps,
for example a preamble, a test body and a postamble. The distinction between several
logical parts of a test case can be expressed in an MSC test purpose by using MSC
references. Figure 6.2 on page 82 shows an MSC with two references. Preamble O OS
drives the SUT into the testing state and postamble SigConA Release thenB cause10
drives it back into the initial state. Test steps may refer to other test steps. During test
case generation, Autolink keeps track of the nested structure of test cases and test
steps.

For the purpose of test generation, the semantics of MSC references (and reference
expressions) has to be modified. ITU-T recommendation Z.120 considers references as
macros, i.e., they are replaced with the content of the referred MSC for semantic analysis.

90

6.5 Interpretation of MSC Test Purposes

Test Case Dynamic Behaviour

Test Case Name : PartialOrder

Group :

Purpose :

Configuration : StandardConfiguration

Default : OtherwiseFail

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 A ! inform c inform

2 A ? broadcast c broadcast

3 B ? broadcast c broadcast

4 C ? broadcast c broadcast PASS

5 C ? broadcast c broadcast

6 B ? broadcast c broadcast PASS

7 B ? broadcast c broadcast

8 A ? broadcast c broadcast

9 C ? broadcast c broadcast PASS

10 C ? broadcast c broadcast

11 A ? broadcast c broadcast PASS

12 C ? broadcast c broadcast

13 A ? broadcast c broadcast

14 B ? broadcast c broadcast PASS

15 B ? broadcast c broadcast

16 A ? broadcast c broadcast PASS

Detailed Comments :

(a) TTCN-2 test case description with multiple paths

Test Case Dynamic Behaviour

Test Case Name : PartialOrder

Group :

Purpose :

Configuration : StandardConfiguration

Default :

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 A ! inform c inform

2 A ? broadcast c broadcast

3 B ? broadcast c broadcast

4 C ? broadcast c broadcast PASS

5 A ? OTHERWISE FAIL

6 B ? OTHERWISE FAIL

7 A ? OTHERWISE FAIL

Detailed Comments :

(b) TTCN-2 test case description with only one valid test sequence

Figure 6.6: Representation of partially ordered events in TTCN-2

91

6 The Autolink Tool

Since there is only a partial ordering among different instances, MSC permits traces
where the order of events does not reflect the order of the MSCs involved. For example,
in figure 6.2 the first TC InvokeReq signal might be sent before MSC O OS is evaluated
completely. In order to be able to preserve the MSC structure, Autolink requires that
a test step is evaluated as a unit. Therefore, an implicit synchronization is made before
and after each reference.

Inline and Reference Expressions. A system under test may not behave deterministi-
cally. By the use of inline expressions and reference expressions, it is possible to describe
test cases where the tester reacts flexibly depending on the system behavior.

Moreover, if some test cases differ only slightly, inline and reference expressions can be
used to describe different behavior of the tester. In that case, separate test cases are
generated.

The following operators are supported in MSC expressions:

• The alternative operator (alt) is suitable for the description of situations where
the continuation of a test case depends on the former output of the system. If both
alternatives start with a message sent from the system to the test environment,
two branches are generated within a single test case. The alternative operator may
also be used to specify two alternative test sequences. If both alternatives start
with a signal sent by the test environment, two distinct test cases are generated.

• The optional operator (opt) can be used, e.g., to specify messages which may or
may not be sent by the system or to react to unexpected signals in a way that the
test case can be continued normally afterwards.

• The exception operator (exc) is intended to be used for error handling. An excep-
tion expression may contain signals which prevent the test system from continuing
the regular test execution. Optionally, an exception includes a sequence of signals
which drives the SUT back into a stable testing state. An exception always results
in an INCONC verdict.

• The loop operator (loop) can be used to describe the iterative execution of a
(portion of a) test case.

• Finally, the sequence operator (seq) can be used within reference expressions in
order to state that one test step follows another.

Of course, the usage of the different operators is not restricted to the applications de-
scribed above. On the other hand, not all MSCs containing inline or reference expressions
describe reasonable test cases. E.g., if one alternative starts with a send event from the
tester while the other starts with a sent event from the system (considering of the
preference of send events), the MSC describes an invalid test case.

As mentioned above, an implicit synchronization is made at the beginning and the end of
MSC references. MSC reference expressions are a generalization of plain MSC references.
For that reason, it makes sense to synchronize at MSC references, too, and to generate
distinct TTCN test steps for each of the MSCs involved in the expression.

92

6.5 Interpretation of MSC Test Purposes

env

ISAP1

system

SUT

env

MSAP2

Send A

Receive B

Receive C

alt

Send D

Receive E

msc Sync1

env

ISAP1

system

SUT

env

MSAP2

Send A

Opt Receive B

opt

Send C

Receive D

msc Sync2

Figure 6.7: Synchronization among inline expressions

When it comes to inline expressions, it is not necessary to synchronize since they do not
result in different test steps. Nevertheless, it has been decided to do so for consistency
reasons. There are cases where synchronization among inline expressions is preferable,
while in other situations, the resulting test case does not match the intention of the test
specifier or even no valid test case can be produced.

In figure 6.7, two examples are given. With synchronization at the inline expression, MSC
Sync1 maps to a test case that waits for ReceiveB or ReceiveC before test execution
proceeds with Send D. If Autolink did not synchronize at the end of the alternative
expression, SendD would be sent before ReceiveB (please note that send events are
prioritized). Moreover, since both alternatives are evaluated independently and com-
bined in a single behavior tree afterwards, the send event env1 ! Send D would become
an alternative to the receive event env1 ?ReceiveC . This, of course, is not allowed in
TTCN-2.

For MSC Sync2 in figure 6.7, the following faulty event tree is generated in case of
synchronization:

Env1 ! SendA

Env2 ? OptReceiveB

Env1 ! SendC

Env2 ? ReceiveD

Env1 ! SendC

Env2 ? ReceiveD

Whenever there is a conflict between a send and a receive event, the test case is erroneous.

High-Level MSCs. HMSC diagrams can be used to illustrate the relationship between
various test cases. For example, even though test cases normally have different test
purposes, they might share the same preamble and postamble. This commonness can
be expressed graphically by the use of an HMSC diagram such as the one in figure 6.8.

93

6 The Autolink Tool

MSC ThreeTests 1(1)

Preamble

Valid Invalid Inopportune

Postamble

Figure 6.8: Three test cases described by one HMSC diagram

Autolink generates separate test cases for each possible path through an HMSC. Of
course, HMSCs may have more than one node with several outgoing edges, resulting in a
potentially large number of test cases. In addition, each path itself may include HMSCs
or MSC reference expressions and hence describe several test cases.

All test cases must have unique names. Thus, whenever there is a branch in the HMSC,
the names of the succeeding MSC references are postfixed to the name of the top-level
MSC (separated by ’ ’). With regard to HMSC ThreeTests in figure 6.8, the resulting test
cases will be named ThreeTests Valid, ThreeTests Invalid, and ThreeTests Inopportune.

6.6 Case Studies

The usefulness of Autolink has been demonstrated in several case studies at the In-
stitute for Telematics, Telelogic, Bosch Telecom, and Nokia (see, e.g., Dai, 1999;
Koch, 2001, chapters 8 and 9; Mayer, 2000). In the following, two case studies are de-
scribed in which comprehensive standardized test suites have been developed at ETSI.
They will also be used for illustration purposes in the following chapters in which par-
ticular aspects of test generation are considered.

6.6.1 Core INAP CS-2

The Core Intelligent Network Application Protocol (Core INAP) was the first proto-
col specified by ETSI for which a machine-processable SDL model is available (ETSI,
1999b). The SDL model was developed by ETSI Sub-Technical Committee SPS3 with
support by the Protocol Expert Group and the Technical Committee ’Methods for Test-
ing and Specification’.

94

6.6 Case Studies

The specification of INAP Capability Set 2 (CS–2) makes use of the object-oriented
features of SDL-96 by inheriting CS–1. Data types are defined in ASN.1.

The SDL specification of ETSI’s INAP CS–2 is voluminous. It comprises more than
450 pages in printed form. The SDL phrase representation is about 1.6 MByte large
(approximately 570 KByte without comments). When translating the specification into
C with Tau’s code generator, about 350,000 lines or 13.6 MByte of source code are
generated.

Test Suite Generation. Three TTCN test suites for INAP CS–2 were developed by
ETSI Specialists Task Force STF 100. A test suite which covers the basic capability
set, i.e., the CS–1 operations with CS–2 additions, was published as the first subpart of
ETSI (2000b).

With respect to the CS–1 operations, test purposes were defined with textual descrip-
tions and rough MSCs, first. Next, these test purposes were formalized as detailed MSCs
using the Tau SDL Simulator. In total, STF 100 specified 126 test purposes (ETSI,
2000a). For 67 test purposes, the MSCs could be simulated in order to produce the
corresponding test cases. The remaining 59 test purposes had to be translated directly
into TTCN due to unspecified parts in the SDL model.

The test suite resulted from a repetitive process of SDL/MSC refinements and modifica-
tions, MSC verifications, and test generation runs. Whenever a modification of the SDL
model was made, all MSCs were verified with the Tau Validator. If an MSC could
not be verified, the SDL model or the MSC were modified again until all MSCs passed
the verification. Thereafter, the test case generation was started using Autolink.

Statistics. Both the MSC verification and the test generation runs were executed at
the Institute for Telematics in Lübeck. The test results discussed below were obtained
on SUN ULTRA 2 workstations with 300 MHz processors.

Figure 6.9 shows the computation time of both the MSC verification and the test gen-
eration with Autolink. The time needed for the verification of an MSC ranged from
1 min 24 sec to 2 h 15 min. It took between 6 min 44 sec and 51 h 49 min (= 3109 min) to
generate a test case.

The larger amount of time needed for test generation is not surprising: During MSC
verification, a path in the state space graph is truncated as soon as an event in an SDL
transition conflicts with the MSC. On the other hand during test generation, the path
needs to be extended until an observable event occurs.

Interestingly, there is no general correlation between the computation time of MSC
verification and test generation. For example, MSC no. 57 in figure 6.9 can be verified
comparably fast, whereas its test case generation takes about 5 hours.

Distributed Test Case Processing. Normally, verification of all MSCs on a single
machine would have taken about a day; generation of all test cases would have taken

95

6 The Autolink Tool

Test case generation

0
120
240
360
480
600
720
840
960

1080
1200
1320
1440

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

MSCs

T
im

e
(m

in
)

3109

MSC verification

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

MSCs

T
im

e
(m

in
)

Figure 6.9: Computation time of MSC verifications and test generations

about a week. Therefore, the processing of test purposes was distributed among up to
fifteen workstations.

As described in section 6.3, Autolink does not directly write a generated test case
into a TTCN MP file. Instead, it stores each test case in an internal representation in
memory. This representation and the corresponding constraints can be saved on disk
and reloaded later. This feature was used to compute each test case separately. After
the computation finished, all test cases were reloaded and combined into a single test
suite. Identical constraints were merged automatically during this process.

By means of shell scripts, test generation runs were executed in batch mode such that
no manual intervention was needed to start the generation of each single test case. This
way, test cases could be generated overnight. Information from previous test generation
runs was used to minimize the computation time by placing time-intensive test cases on
fast machines first.

96

6.6 Case Studies

6.6.2 VB5.1 and VB5.2

From October 1998 to March 1999, ETSI project STF 116 was concerned with the
definition of test purposes and the generation of TTCN-2 test cases for the real time
management coordination (RTMC) protocol used at the VB5.1 reference point. VB5
specifies the physical, procedural, and protocol requirements for interfaces at the ref-
erence point between a broadband access network (AN) and a service node (SN). The
RTMC protocol of the VB5.1 specification is used to communicate management infor-
mation about resources in real time between an AN and an SN.

In June 1999, a follow-up project STF 151 was initiated that lasted until March 2000.
Its aim was to provide a corresponding test suite for the VB5.2 reference point and
its broadband bearer channel control (BBCC) protocol (ETSI, 1999a). VB5.2 extends
VB5.1 by the ability to allocate resources in the AN dynamically under the control of
the associated SN.

In STF 151, the same methodology has been applied as in STF 116. According to the
ETSI approach, two documents have been created: the TSS&TP document (see ETSI
2000c; 2001a) describes the test suite structure and test purposes; the other document
contains the corresponding TTCN-2 test suites for both the AN and SN side (ETSI
2000d; 2001b).

The generation of test purposes and test cases was based on a normative and validated
SDL protocol model such that Autolink could be applied. The SDL system consists of
two blocks that represent the AN and SN. Unfortunately, the original SDL specification
for VB5.2 did not fully specify the PDUs of the BBCC protocol but only those parts
that are relevant for the logic of the protocol. For the sake of test generation, it was
necessary to extend the specification in such a way that the signals exchanged between
AN and SN matched with the official ASN.1 data definitions of the BBCC protocols. In
addition, the SDL specification was extended by fault insertion mechanisms to be able
to simulate exceptional cases.

A major characteristic of VB5.2 is the large size of its PDUs. A typical TTCN-2 con-
straint of the VB5.2 test suite is shown in figure 6.10. The readability of the constraints
was improved by indenting of nested structures in the Constraint Value field but only
at the cost of larger constraint declaration tables. This experience has resulted in the
development of a prototype for automatic constraint structuring (see section 9.2 on
page 153).

MSCs have been produced by interactive simulation. For documentation purposes, large
parts of the signal data have been stripped from the MSC test purposes by means of a
Perl script. The automatically generated test suites were also post-processed by a Perl
script. Among others, test case variables and PIXIT parameters have been introduced
afterwards.

97

6 The Autolink Tool

ASN.1 PDU Constraint Declaration

Constraint Name : cALLOC 14(value : TransIdVal)

PDU Type : Alloc

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments :

Constraint Value

{ commonMsgInfo { protDiscr ’49’H, transId { transIdLength ’03’H, transIdFlag ’0’B, transIdVal
value }, msgType ’40’H, msgCompatInd ’80’H, msgLength TSO MsgLength() }, connRefNoIE {
commonIEInfo { iEType ’00’H, iECompatInd ’80’H, iELength TSO IELength() }, connRefNoVal
PIX ConnRefNoVal PtM1 }, aTMTrfcDscrptrIE send : { commonIEInfo { iEType ’0A’H, iECom-
patInd ’80’H, iELength TSO IELength() }, contents PIX ATM traffic descriptor }, brdbndBcapIE
{ commonIEInfo { iEType ’0B’H, iECompatInd ’80’H, iELength TSO IELength() }, contents
PIX Broadband capability }, qoSParamsIE { commonIEInfo { iEType ’0D’H, iECompatInd ’80’H,
iELength TSO IELength() }, contents PIX QOS parameter }, usrPortConnIdIE { commonIEInfo
{ iEType ’02’H, iECompatInd ’80’H, iELength TSO IELength() }, usrPortConnIdIEOctet5 ’A0’H,
lgclUsrPortId PIX LUP Id1, vpci PIX LUP VCPI3, vci PIX LUP VCI3 }, srvcPortConnIdIE { com-
monIEInfo { iEType ’03’H, iECompatInd ’80’H, iELength TSO IELength() }, srvcPortConnIdIEOctet5
’A0’H, vpci PIX LSP VCPI3, vci PIX LSP VCI3 }, branchIdIE { commonIEInfo { iEType ’08’H,
iECompatInd ’80’H, iELength TSO IELength() }, branchIdVal PIX PtM1 BranchId1 } }
Detailed Comments :

Figure 6.10: A VB5.2 constraint

6.7 Comparison with Other SDL-based Test Tools

In the following, the two test generation tools SaMsTaG and TestComposer are
sketched. Similar to Autolink, they use SDL for system specification and MSC for test
purpose specification.

6.7.1 SaMsTaG

The SaMsTaG (Sdl And Msc baSed Test cAse Generation) method and tool (see, e.g.,
Nahm, 1995; Toggweiler, 1995) was developed at the University of Berne from 1991 to
1997 and partially funded by Swisscom.

In SaMsTaG, an SDL specification is a closed system that describes the complete
architecture, including the IUT, the test context, and the tester processes. Test purposes
are described in terms of MSCs. In contrast to the approach chosen for Autolink, an
MSC test purposes does not have to describe a complete trace with all observable events
that must be performed in order to get a pass verdict. Instead, an MSC may only describe
an internal signal exchange, an internal action, or the fact that a certain process reaches
some specific state.

Based on an MSC test purpose, a TTCN-2 test case is computed in three steps:

1. Computation of possible pass observables (PPOs)

By state space exploration, SaMsTaG searches for SDL traces which include the
events in the MSCs and drive the SDL system from its initial state back to its initial
state. Whenever such a trace is found, all externally visible events are extracted
and considered as a PPO.

98

6.7 Comparison with Other SDL-based Test Tools

2. Computation of a unique pass observable (UPO)

Since there is no unique relation between an SDL system trace and its observables,
i.e., two traces may have the same observable, there is no guarantee that a PPO
indeed fulfills the test purpose. Thus, for a given PPO, all SDL traces are simulated
which include the events in the PPO. If each trace also fulfills the test purpose,
the PPO is considered as a UPO. Only one UPO is needed for test case generation
which is chosen from the shortest ones.

3. Computation of inconclusive observables

By yet another state space exploration, all events are determined that lead to an
inconclusive verdict. For that purpose, the SDL system is simulated with the UPO
determined in the previous step.

A detailed case study for SaMsTaG is presented by Scheurer (1997).

6.7.2 TestComposer

In 1998, Verilog developed the TestComposer tool (Kerbrat et al., 1999) and inte-
grated it into their commercial tool suite ObjectGEODE. TestComposer is based
on former experience with the TGV and TVEDA tools which were developed at IRISA/
Verimag and France Telecom/CNET (Groz and Risser, 1997).

TestComposer follows the overall approach of Autolink and shares many concepts
with it. For instance, test purposes are represented by MSCs6 and TTCN-2 is supported
as a common output language. Nevertheless, the two tools differ in many details and
put their focus onto different steps of the test generation process. The strength of Test-
Composer is the flexible specification of test purposes while Autolink has its strong
points when it comes to the customization of the generated test suites.

TestComposer allows to declare an arbitrary block within an SDL system as the SUT.
All channels connected to this block become PCOs. For each PCO, the test specifier can
define which signals are controllable and observable. Signals that cannot be observed
are suppressed in the test case output, whereas uncontrollable signals become implicit
send events in TTCN. Test purposes may be defined completely (as in Autolink) or
partially (similar to SaMsTaG). In the latter case, missing events are added during
test generation. In addition, postambles can be computed for paths leading to a pass or
inconclusive verdict based on a user-defined goal that characterizes the initial state.

A detailed comparison of Autolink and TestComposer is given by Schmitt et al.
(2000).

6TestComposer also creates scripts in a proprietary format that can be handled more efficiently by
ObjectGEODE.

99

6 The Autolink Tool

6.8 Discussion

The projects at the European Telecommunications Standards Institute, in particular
the Core INAP CS-2 case study, have proven that Autolink is applicable to very
complex specifications. Furthermore, the tool allows to generate TTCN test suites with
increased quality and a reduced amount of cost and time. It is estimated that expenses
were reduced by about 20 percent in the INAP CS-2 project in comparison to manual
test specification.

Nevertheless, the use of Autolink has unveiled a few issues that must be considered
when using SDL and MSC for automatic test generation. Furthermore, there are different
possibilities to enhance the tool that are discussed in the following.

Dynamic Process Creation. A problem that has been identified during the application
of Autolink is dynamic process creation at the boundaries of the system. Autolink
defines the test architecture based on the static SDL system description. That means,
the PCOs are determined by the fixed number of channels to the SDL environment.
However, some SDL systems are designed in such a way that several process instances
are created dynamically for one process type. These instances share the same statically-
defined SDL channels for communication although, in reality, each process instances
might have its own set of channels. In this case, the SDL system must be modified
such that each process instance and its communication links are specified explicitly. Of
course, this is only possible if the number of process instances is fixed and known in
advance.

Defaults and Inconclusive Events. In order to be able to execute test cases consec-
utively, each test case must drive the implementation into the initial state. While a
suitable postamble can be specified in the MSC test purpose for successful test case
execution, there is no way to define a “reset” test sequence for the failure case. The same
holds for inconclusive branches. Ideally, a separate postamble should be computed for
each inconclusive branch. In analogy to the TestComposer, the test specifier should
be able to describe the idle state by a boolean expression over state variables.

Complex Signal Parameters. While MSC has proven a good choice for the description
of system traces, practical experience has shown that signal parameters — in particular
when described by ASN.1 — tend to be voluminous. To enhance the readability of
MSCs, large data descriptions should better be defined separately, e.g., in the header of
an MSC-2000 document. That means, a (non-standardized) reference mechanism should
be introduced into MSC similar to one proposed by Grabowski et al. (1995).

Mapping Signals and Data. One of the major drawbacks of SDL with regard to testing
is the requirement that all communication is realized by signal exchange. In TTCN-2,
there is no corresponding concept. Instead, the tester and the SUT exchange values

100

6.8 Discussion

of arbitrary data type. Hence, if a PDU is defined in an external ASN.1 module, it
needs to be wrapped up in a signal. During test generation, the signal is mapped to an
ASN.1 SEQUENCE which includes the PDU as its only parameter. Since the additional
embedding causes some overhead and influences the PDU encoding, an option had to
be introduced that allows to strip redundant signal definitions for individual signals.
During the standardization process for SDL-2000, the removal of the signal concept has
been considered but dropped again due to incalculable implications on the language.

Efficient State Computation. Both case studies have shown that the time needed to
generate TTCN test cases from MSC test purposes is negligible in comparison to the time
needed to set up a suitable SDL specification and to define test purposes. Nevertheless,
test case computations of 51 hours are not desirable. In the INAP CS-2 study case, it
has turned out that the major bottleneck is the computation of the hash keys needed
for the Supertrace algorithm. For that purpose, the global system state is sequentialized
and written in a large byte array on which simple operators such as xor and + are
applied to compute the two hash keys. In case of the INAP CS-2 specification, a single
SDL state exceeds 100,000 bytes. As a consequence, only 22 states per minute could
be explored on average. A significant performance improvement can be achieved by a
compositional computation of the hash keys, i.e., separate hash values are computed for
individual processes, blocks, and channels first and combined afterwards.

Revision of Implementation Relation. SDL abstracts from implementation-specific
aspects such as process scheduling. That means, the behavior of an SDL system is defined
under consideration of all possible schedulers. However, scheduling may influence the
behavior of a system. This is not taken into account by current SDL test generation
methods. In worst case, an automatic test generation tool like Autolink produces
test cases that never lead to a pass verdict when executed on a peculiar yet correct
implementation. In order to ensure that only valid test cases are generated, it must be
verified that implementation-specific aspects do not have any effect on test execution.
In order to perform these checks, a new state space exploration algorithm needs to
be developed. Unfortunately, such an algorithm is expected to make the state space
explosion problem worse.

101

6 The Autolink Tool

102

7 Test Generation for Distributed Test
Architectures

Most SDL- and MSC-based test generation methods and tools produce test cases for
monolithic testers in which a single process controls and observes the entire system
under test. The use of such test cases becomes problematic if the SUT is a distributed
system with components at different locations. In that case, the test equipment itself
has to be a distributed system.

The implementation of a non-concurrent abstract test case for distributed test equipment
is a complicated and error-prone task and requires a substantial amount of work. On
the other hand, the test languages presented in chapter 3 already provide concepts for
describing test components that are executed in parallel. Thus, a method has been
developed and implemented in Autolink that allows to generate concurrent TTCN-2
test cases directly from SDL system specifications and MSC test purposes.1

This chapter is structured in the following manner: In section 7.1, the major concepts
of concurrency in TTCN-2 are recapitulated and some theoretical aspects of synchro-
nization among test components in TTCN-2 are discussed. (A complete description of
TTCN-2 can be found in section 3.1.) The generation of distributed test cases requires
additional information that cannot be retrieved from an SDL specification or from MSC
test purposes. In section 7.2, the necessary information for setting up a test component
configuration is listed and a generic class of configurations is presented. Different ways
of describing and handling synchronization among different test components in the con-
text of automatic test generation are discussed in section 7.3. In section 7.4, algorithms
for the generation of concurrent test cases are described. Finally, their application is
demonstrated by two examples in section 7.5.

7.1 Concurrency in TTCN-2

Test Component Configuration. In TTCN-2, a distributed test system is structured
into a main test component (MTC) and one or more parallel test components (PTCs).
The MTC is responsible for the creation of the PTCs and the computation of the final
test verdict.

1The methods and algorithms presented in this section have been published before by the author and
two colleagues as (Grabowski et al., 1999). The original paper has been revised and restructured for
better integration in this thesis.

103

7 Test Generation for Distributed Test Architectures

Communication with the SUT takes place at points of control and observation (PCOs).
Each PCO is assigned exclusively to one test component. Coordination among two
test components can be performed by asynchronous exchange of coordination messages
(CMs) at coordination points (CPs). Communication at PCOs and CPs is bidirectional
and asynchronous, i.e., a PCO/CP is modeled by two infinite FIFO buffers.

Even if no CP is specified explicitly between the MTC and a PTC, two types of implicit
communication take place:

• The PTC contributes its test verdict to the global result variable which is used by
the MTC to compute the final test verdict.

• The PTC informs the MTC about its termination.

The relations between the MTC, the PTCs and the SUT are described by a test compo-
nent configuration. A test suite may contain several test component configurations. For
each test case, one of them has to be chosen.

Behavior Description. While the behavior of an MTC is described in a Test Case
Dynamic Behaviour table, PTCs are specified as test steps. Their descriptions may
be given as local trees within the behavior table of the MTC or in separate Test Step
Dynamic Behaviour tables.

An example of a concurrent TTCN-2 test case is shown in figure 7.11 on page 118. The
behavior of the MTC is specified by the main behavior tree. The PTC behavior descrip-
tions are included as local trees. The MTC creates all PTCs by calling the corresponding
behavior descriptions with the CREATE construct (line 1). The termination of the PTCs
is checked by means of DONE events (lines 7 and 11).

Communication among test components is treated in the same way as communication
with the SUT. In figure 7.11, statement MCP 2 !Proceed(Sync2,Y) on line 6 denotes
the sending of CM Proceed(Sync2,Y) via CP MCP 2. The corresponding receive event
is given in line 24.

Synchronization of Test Components. The synchronization of test components may
take place implicitly or explicitly. Implicit synchronization is performed at the beginning
and the end of a test case execution: The MTC creates all PTCs and checks their
termination. Explicit synchronization can be performed by exchanging CMs between
test components.

Coordination messages can be used to coordinate the actions of test components control-
ling different PCOs. But they cannot ensure the correct order of send and receive test
events at different PCOs in all cases. This is due to the asynchronous communication
mechanism of TTCN-2 and can be explained by means of a simple example:

Given two test components, TC1 and TC2, controlling different PCOs. TC1 sends ASP
M1 to the SUT and, in response, the SUT sends ASP M2 to TC2 (see figure 7.1). There
are two conceivable strategies for ensuring the correct order of the sending of M1 by
TC1 and the reception of M2 by TC2 :

104

7.2 Definition of Test Component Configurations

TC1 SUT TC2

M1

M2

msc SyncLimitation

Figure 7.1: Limitations of synchronization

1. TC1 sends a coordination message CM1 to TC2 to indicate that it has sent M1
and M2 is the next message to be received from the SUT.

2. TC2 knows that M2 is the reaction to M1 sent by TC1 and therefore sends a
coordination message CM2 to TC1 as a request to send M1.

In the first case, M2 may overtake CM1 and TC2 will interpret this as a failure, although
the actual order was correct. In the second case, neither TC1 nor TC2 can decide
whether the SUT sends M2 during the transmission of CM2 (i.e., before M1 has been
sent), and an incorrect order will pass the test. Thus, neither of the strategies can be
used to ensure the correct order of sending M1 and receiving M2. Additional knowledge
about the transmission time of messages does not help either. According to the CTMF,
“the relative speed of systems executing the test case should not have an impact on the
test result”.

7.2 Definition of Test Component Configurations

An SDL specification defines the functionality of a system by describing its dynamic be-
havior. Structural concepts can be used to specify a hierarchical system architecture with
regard to logical or implementation aspects. In general, however, the concrete architec-
ture of a system implementation, including the distribution of the different components,
cannot be derived from an SDL specification. Whether two blocks or processes are exe-
cuted on the same machine or on several computers at different locations is outside the
scope of the SDL semantics.

By convention, each block in an SDL system diagram could be considered as an entity
that has to be controlled and observed by a separate test component. But this convention
might impose strong restrictions on the use of SDL’s structural concepts. Since it is
impossible to determine an appropriate test configuration by the analysis of an SDL
specification, additional information has to be provided concerning:

• the test components and their roles (either MTC or PTC),

• the assignment of PCOs to test components (i.e., the connections between the test
components and the SUT),

• the coordination points (CPs), and

105

7 Test Generation for Distributed Test Architectures

• the assignment of CPs to test components (i.e., the connections among test com-
ponents).

This information may be expressed in a graphical form, e.g., in form of a separate SDL
system diagram or by a UML deployment diagram. It is also conceivable to provide it
already in form of TTCN-2 tables or in a tool-specific command language.

A test generation tool may also be able to define a default configuration automatically,
e.g., a test configuration where each PTC handles one PCO only and the MTC is
responsible for PTC creation, synchronization, and computation of the final test verdict.
(In fact, this is the approach that has been realized in Autolink.)

For the automatic generation of TTCN-2 test suites from SDL system specifications and
MSC test purposes, it is reasonable to restrict the set of all possible test configurations.
In the following, a generic class of test configurations is considered that is characterized
by four properties:

• Each PTC handles at least one PCO.

• Each PTC is connected directly to the MTC by a CP.

• The MTC controls and synchronizes the PTCs but it may also handle PCOs on
its own optionally.

• The PTCs do not communicate directly among each other but only indirectly via
the MTC.

7.3 Synchronization of Test Components

As mentioned above, the synchronization of test components is an important issue that
must be taken into account when specifying test purposes. In accordance with TTCN-2,
two types of synchronization are considered: implicit and explicit synchronization.

7.3.1 Implicit Synchronization

Implicit synchronization is carried out at the start and may be carried out at the end
of a test case by the MTC. Obviously, the corresponding CREATE constructs and DONE

events can be added to a test case automatically by a test generation tool and do not
have to be specified in a test purpose.

Further synchronization is needed if the test system has to guarantee that the first
send event happens only after the creation of all PTCs. In this case, one of the explicit
synchronization mechanisms has to be used.

7.3.2 Explicit Synchronization

During the execution of a concurrent TTCN-2 test case, a test component is not aware
of the state of other test components. A lack of synchronization may lead to problems

106

7.3 Synchronization of Test Components

channel

ISAP1

system

Inres

channel

MSAP2

ICONreq

MDATind(CR,zero,0)

MDATreq(CC,one,0)

ICONconf

IDATreq(0)

MDATind(DT,one,0)

MDATreq(AK,one,0)

IDISreq

IDISind

MDATind(DR,one,0)

msc testpurpose

Figure 7.2: Inres test purpose with lack of synchronization

during test execution as illustrated by the MSC given in figure 7.2. According to the
MSC semantics, the sending of IDISreq by ISAP1 may happen before, between, or
after the reception of MDATreq(DT,one,0) and the sending of MDATreq(AK,one,0) by
MSAP2. If ISAP1 ! IDISreq shall always be executed only after the data transfer has
been completed, and if ISAP1 and MSAP2 are handled by different test components,
the latter have to exchange CMs.

Obviously, the points in the control flow of the test components at which such a syn-
chronization must take place cannot be calculated automatically, because they depend
on the intention of the test specifier. Without additional information, a test generation
tool does not know which ASP shall be sent first or whether the order of events is rele-
vant at all. As a consequence, the synchronization of test components has to be defined
explicitly by the test specifier in MSC test purposes.

Depending on the number of test components involved and test events to be coordi-
nated, the CM exchange which is necessary for an explicit synchronization may become
very complex. To cope with simple as well as complex situations, two means for the
specification of explicit synchronization are considered:

• Explicit description of the CM exchange by MSC messages

• Definition of synchronization points by MSC conditions

In the latter case, the concrete exchange of CMs among the test components is derived
automatically.

7.3.2.1 Synchronization by Coordination Messages

The definition of explicit synchronization by describing the exchange of CMs in MSC
test purposes is not as trivial as it seems to be at first glance. The reason is that in
MSCs used for test purpose description, the instances represent PCOs and not the test

107

7 Test Generation for Distributed Test Architectures

MTC

PCO X

PTC Y

PCO Y

PTC Z

PCO Z SUT

a

b

Ready

c

msc Sync 1

Figure 7.3: Explicit synchronization by means of a coordination message

components controlling these PCOs.2 On the other hand, CMs are exchanged between
test components. Neither the actual sender and receiver of a CM nor the coordination
points involved are represented in the MSC test purposes.

Nevertheless, CMs between PCO instances can be specified and interpreted as follows:
A coordination message CM1 with its origin at PCO instance PCO A and its target at
PCO instance PCO B coordinates test events at PCO A and PCO B. The origin refers
to the send event of CM1 by the test component controlling PCO A. The target refers
to the corresponding receive event by the test component controlling PCO B. The order
of events (including send and receive events of CMs) along a PCO instance has to be
preserved by the test component controlling the PCO.

It should be noted that no (graphical) distinction between CMs and ASPs has to be
made in MSC test purposes. Origin and target of a CM arrow are PCO instances. For
ASPs, either the origin or the target has to be the SUT instance.

Figure 7.3 shows an MSC test purpose description. The mapping of PCOs to test com-
ponents is specified in the MSC instance headers, e.g., PCO X belongs to the MTC. The
MSC includes the CM Ready added manually by the test specifier. It is interpreted as
follows: PTC Y shall send the CM Ready after the reception of ASP b at PCO Y, and
PTC Z shall send ASP c after the reception of CM Ready. That means that CM Ready
forces test component PTC Z to postpone the execution of PCO Z ! c until PTC Y
has received b.

The manual specification of CMs becomes difficult if more than two test components
are involved, and if CM receive events are alternatives to receptions of ASPs.

Figure 7.4 shows another test purpose example where the correct specification of a
coordination is less simple. It is interpreted as follows: First, PTC X sends ASP a via
PCO X to the SUT. The system under test in turn answers with ASPs b, c, and d
that are to be observed at PCO Y and PCO Z, respectively. ASP e should be sent via
PCO Z only after the reception of b, c, and d. To ensure this, the reception of b has to
be confirmed by means of CM Ready sent by PTC Y.

ASPs c and d are received via the same FIFO queue PCO Z, and their order is given by
the test purpose. CM Ready is received by PTC Z via a second FIFO queue, i.e., the CP

2Note that a test component may control and observe more than one PCO.

108

7.3 Synchronization of Test Components

MTC

PCO X

PTC Y

PCO Y

PTC Z

PCO Z SUT

a

b

c

d

Ready

par

e

msc Sync 2

Figure 7.4: Coordination messages – Complex example

MTC

PCO X

PTC Y

PCO Y

PTC Z

PCO Z SUT

a

b

c

d

Synchronization

e

msc Sync 3

Figure 7.5: Explicit synchronization by means of an MSC condition

between PTC Y and PTC Z. It cannot be predicted if the CM Ready is received before,
after or between the reception of c and d. Thus, a parallel operator (or, alternatively, a
co-region with general ordering) has to be used to specify all possible orders of reception.

Obviously, the manual drawing of CMs becomes more and more complicated if the
number of test components, CMs, and CPs involved increases. In order to ease test
specification, another possibility to describe explicit synchronization is presented in the
next section.

7.3.2.2 Synchronization by MSC Conditions

MSC conditions are a simple yet robust and consistent means to specify synchronization.
Conditions used for test synchronization purposes only cover PCO instances. These
synchronization conditions define common synchronization points within the message
flow at the different PCOs.

109

7 Test Generation for Distributed Test Architectures

MTC

PCO X

PTC Y

PCO Y

PTC Z

PCO Z SUT

a

b

cReady

d

Ready

Proceed

e

msc Sync 4

Figure 7.6: Automatically generated CM exchange for the condition in figure 7.5

Figure 7.5 shows an MSC test purpose description with a synchronization condition.
The desired effect of the synchronization is the same as in figure 7.4: PTC Z shall not
send ASP e before the ASPs b, c and d have been received.

During test case generation, the synchronization conditions are used to compute the ac-
tual exchange of CMs between test components. There are several possibilities to perform
a synchronization by means of message exchange. For implementation in Autolink, it
has been decided to support a mechanism which allows to synchronize the ASP exchange
of an arbitrary number of PCOs. The synchronization is managed by the MTC, and the
principle of the mechanism is simple:

As already stated above, synchronization conditions define common synchronization
points within the ASP exchange at different PCOs. A PCO can be seen as a sequential
process, and the test component handling the PCO as the process manager. If a PCO
reaches a synchronization point, this is reported to the MTC and the PCO enters a
waiting state. If the test event following the synchronization point is the reception of
an ASP, the PCO simply waits for this ASP. If it is a send event, the PCO has to
wait for a CM from the MTC to get the permission to send the next ASP to the
SUT. This mechanism ensures that all PCOs involved in the synchronization reach the
synchronization point before any new ASP is sent at one of these PCOs.

By applying this approach, the CM exchange shown in figure 7.6 is generated auto-
matically for the condition in figure 7.5. The Ready CMs are used to indicate that the
synchronization point has been reached, and CM Proceed is used to trigger the sending
of ASP e.

7.4 A Test Generation Procedure

In this section, algorithms are presented that allow to derive a concurrent TTCN-2 test
case from an SDL specification and an MSC test purpose where MSC conditions are
used as a means of synchronization.

110

7.4 A Test Generation Procedure

7.4.1 Simulator Requirements

The test generation algorithm is based on the basic functionality provided by a general
purpose state space exploration tool which allows the combined simulation of an SDL
specification and an MSC test purpose (e.g., Grabowski et al., 1993; Telelogic (formerly
Verilog), 2002; Telelogic, 2002a). In particular, the following two functions must be
available:

• statesim.nextEvents()

Given a state statesim, nextEvents returns the set of all events which may occur
next. statesim describes both the current global state of the simulated SDL sys-
tem (i.e., the state, timers, and variable values of each individual process, queue
contents etc.) and the progress in the MSC (i.e., the events which take place next
at each instance). If nextEvents returns the empty set, the MSC is supposed to be
verified completely, i.e., a path through the reachability graph of the SDL system
has been found which satisfies the MSC.3

• statesim.nextState(e)

Given a state statesim and an event e, nextState returns the state which is obtained
if e is executed in statesim.

There are several different types of events that might happen during simulation. Some
of them may only refer to the SDL system (e.g., internal events that are not represented
in the MSC), while others may only refer to the MSC (e.g., events related to synchro-
nization conditions). With regard to the generation of test cases for distributed test
architectures, four types of events are considered:

• Event ’Send from SDL environment ’ (pco ! sig)

ASPs sent from the environment into the SDL system during simulation become
TTCN send events. To be able to specify a send event, the simulator is required to
return both the complete signal and the channel (PCO) through which the ASP
was sent.

• Event ’Send to SDL environment ’ (pco ? sig)

ASPs sent by the SDL system to its environment become receive events in the
TTCN test case. In analogy to send events, the simulator has to report both the
ASP and the PCO.

• Event ’Enter synchronization’ (enterSync(id, pco, Cur, All))

Whenever an instance in the MSC test purpose reaches a synchronization condi-
tion, a special event, called enterSync, has to be returned by function nextEvents.
enterSync has four parameters: id denotes the unique identifier of the condition;
pco is the name of the PCO instance which has reached the synchronization con-
dition; Cur is the set of instances that have reached the condition so far; and All
denotes the set of all instances which are involved in the synchronization.

3For simplicity, the cases that a deadlock occurs or the simulation is stopped, because the behavior of
the SDL system does not comply with the MSC, are neglected.

111

7 Test Generation for Distributed Test Architectures

Algorithm 7.1 Invocation of the test generation for the PTCs and the MTC

1: testgen() {

2: for all i ∈ {1, . . . , n} {

3: rootptc
i

:= newStartNode();

4: testgenPTC(i , rootsim, rootptc
i

);

5: }

6: rootmtc := newStartNode();

7: testgenMTC(rootsim, rootmtc.addTransition(CREATE(PTC1:TestPTC1, . . . ,

8: PTCn:TestPTCn)));

9: }

• Event ’Leave synchronization’ (leaveSync(id, pco))

When all instances engaged in a synchronization have entered the condition, the
simulator skips the condition. For each instance in the MSC which sends a message
directly after the condition, a notification is issued by nextEvents to indicate that
the message is allowed to be sent now. To find out whether such an event has to be
created by the simulator engine, an initial static analysis of the MSC is sufficient.

All other events which might be reported by the simulator engine are skipped during
test generation. This means that they are executed in order to get to the next system
state but they are not transformed into TTCN events.

7.4.2 Test Generation for MTC and PTCs

There are two approaches to generate a distributed test case based on a given SDL spec-
ification and an MSC test purpose: On the one hand, a behavior tree may be generated
first which covers all signals exchanged between the tester and the SUT, plus additional
information about synchronizations. Based on such a complete test description, beha-
vior trees for the MTC and all PTCs can be extracted. Alternatively, separate behavior
trees for the MTC and the PTCs may be created immediately at the time of simulation
of the SDL specification.

The test generation algorithms for both approaches are basically the same. For bet-
ter comprehension, a solution is presented for the latter approach in this thesis. For
Autolink, the first alternative has been chosen, because it allows for generating test
suites for different test component configurations without having to repeat the state
space exploration.

The algorithms 7.1, 7.2, and 7.3 describe the construction of the dynamic behavior trees.
Algorithm 7.1 is the main function that invokes the actual test generation functions. The
algorithms 7.2 and 7.3 for the MTC and the PTCs are structurally similar. To a certain
extend, the algorithm for the MTC is the inverse of the algorithm for the PTCs. For
example, if a PTC sends a coordination message to the MTC, a corresponding receive

112

7.4 A Test Generation Procedure

Algorithm 7.2 Test generation algorithm for the MTC

1: testgenMTC(statesim,statetest) {

2: E := statesim.nextEvents();

3: if (E = ∅) {

4: nextstatetest := statetest.addTransition(?DONE(PTC1, . . . , PTCn));

5: } else if (∃e ∈ E : e = pco ! sig ∧ pco ∈ PCOMTC) {

6: nextstatetest := statetest.addTransition(e);

7: testgenMTC(statesim.nextState(e), nextstatetest);

8: } else if (∃e ∈ E : e = leaveSync(id , pco) ∧

9: ∃i ∈ {1, . . . , n} : pco ∈ PCOi) {

10: nextstatetest := statetest.addTransition(MCPi ! Proceed(id , pco));

11: testgenMTC(statesim.nextState(e), nextstatetest);

12: } else {

13: for all e ∈ E {

14: if (e = pco ? sig ∧ pco ∈ PCOMTC) {

15: nextstatetest := statetest.addTransition(e);

16: } else if (e = enterSync(id , pco, Cur , All) ∧

17: ∃i ∈ {1, . . . , n} : pco ∈ PCOi ∧ (PCOi ∩ All) ⊆ Cur ∧

18: All 6⊆ PCOi) {

19: nextstatetest := statetest.addTransition(MCPi ?Ready(id));

20: } else {

21: nextstatetest := statetest;

22: }

23: testgenMTC(statesim.nextState(e), nextstatetest);

24: }

25: }

26: }

event has to be added to the MTC behavior description. In addition, CREATE statements
and DONE events have to be added at the root and the leaves of the MTC behavior tree
(lines 7 and 8 in algorithm 7.1 and line 4 in algorithm 7.2). Due to the similarity of both
algorithms, only the algorithm for PTCs is described in the following.

For the construction of the behavior tree, two functions are applied:

• newStartNode()

This function returns an (empty) behavior tree with a single state node and no
test events.

• statetest.addTransition(e)

If an outgoing edge from statetest labeled with e exists for a given state statetest

in the behavior tree and a test event e, addTransition simply returns the successor
node; otherwise a new node statenext is added to the behavior tree with an edge
from statetest to statenext labeled with e, and statenext is returned.

113

7 Test Generation for Distributed Test Architectures

Algorithm 7.3 Test generation algorithm for PTCi

1: testgenPTC(i , statesim, statetest) {

2: E := statesim.nextEvents();

3: if (∃e ∈ E : e = pco ! sig ∧ pco ∈ PCOi) {

4: nextstatetest := statetest.addTransition(e);

5: testgenPTC(i , statesim.nextState(e), nextstatetest);

6: } else if (∃e ∈ E : e = enterSync(id , pco, Cur , All) ∧

7: pco ∈ PCOi ∧ (PCOi ∩ All) ⊆ Cur ∧ All 6⊆ PCOi) {

8: nextstatetest := statetest.addTransition(MCPi ! Ready(id));

9: testgenPTC(i , statesim.nextState(e), nextstatetest);

10: } else {

11: for all e ∈ E {

12: if (e = pco ? sig ∧ pco ∈ PCOi) {

13: nextstatetest := statetest.addTransition(e);

14: } else if (e = leaveSync(id , pco) ∧ pco ∈ PCOi) {

15: nextstatetest := statetest.addTransition(MCPi ?Proceed(id , pco));

16: } else {

17: nextstatetest := statetest;

18: }

19: testgenPTC(i , statesim.nextState(e), nextstatetest);

20: }

21: }

22: }

In the following, the PTCs are supposed to be numbered (i ∈ {1, . . . , n}). The set of all
PCOs which belong to parallel test component PTCi is defined as PCOi.

The PTC algorithm (algorithm 7.3) is invoked with three parameters: i denotes the
number of the PTC; statesim is the current node in the reachability graph of the SDL
system (initially the root node; see line 4 in algorithm 7.1) and statetest is the current
node in the behavior tree to be constructed.

At first, all possible next events are requested from the simulator engine by function
nextEvents (line 2 in algorithm 7.3). Then it is checked whether the PTC can send
either an ASP to the SUT (line 3) or a coordination message to the MTC (lines 6
and 7). Whenever a test component can send a signal, it should do so immediately. In
that case, no alternatives are taken into account. Instead, the send event is added to the
behavior tree (lines 4 and 8) and the algorithm is invoked recursively with the successor
node of statesim and nextstatetest (lines 5 and 9). Only if the PTC cannot send a signal,
all (remaining) events have to be considered, as indicated by the loop in lines 11–20.

If an event has to be appended to the behavior tree, a transition to a new node
(nextstatetest) is inserted into the tree (lines 4, 8, 13 and 15). Otherwise, nextstatetest is
set to statetest (line 17). By invoking itself recursively, testgenPTC explores the whole

114

7.5 Case Studies

PCO

ISAP1

system

Inres

PCO

MSAP2

ICONreq

MDATind(CR,zero,0)

MDATreq(CC,one,0)

ICONconf

IDATreq(0)

MDATind(DT,one,0)

MDATreq(AK,one,0)

sync

IDISreq

IDISind

MDATind(DR,one,0)

msc DisconnectionSync

Figure 7.7: MSC DisconnectionSync

state space of the SDL/MSC specification. Due to the interleaving semantics of SDL,
the algorithm might reach a state where it wants to add an already existing edge to the
behavior tree. As described above, this case is captured by function addTransition.

There are two CMs used for the communication between a PTC and the MTC:
CM Ready(id) is sent from a PTC to the MTC in order to indicate that all relevant
instances of the PTC have reached synchronization condition id (line 8). It is only sent if:

1. an enterSync event is reported by the simulator engine,

2. all instances of the PTC which are involved in the synchronization have already
reached the condition ((PCOi ∩ All) ⊆ Cur), and

3. there are other test components which are also involved in the synchronization
(All 6⊆ PCOi).

In reverse, CM Proceed(id, pco) is received from the MTC and indicates that the PTC
is allowed to send further ASPs via pco (line 15).

7.5 Case Studies

The application of the test generation algorithms is demonstrated by two examples.

A Synchronized Inres Test Purpose. The use of a synchronization condition for the
test purpose in figure 7.2 is shown in figure 7.7. Figures 7.8 and 7.9 present the beha-
vior descriptions that were generated automatically by the Autolink tool. Autolink
requires that each PCO is handled by a separate PTC. Thus, a test configuration with
two PTCs (PTC ISAP1/PTC MSAP2) and an MTC that coordinates the PTCs is
assumed.

115

7 Test Generation for Distributed Test Architectures

Test Case Dynamic Behaviour

Test Case Name : DisconnectionSync

Group : Transmission/

Purpose :

Configuration : StandardConfiguration

Default : OtherwiseFail

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CREATE(PTC ISAP1 : (PASS)

DisconnectionSync PTC ISAP1)

2 CREATE(PTC MSAP2 :

DisconnectionSync PTC MSAP2)

3 +Synchronization

4 ?DONE(PTC ISAP1, PTC MSAP2) R

Synchronization

5 CP MSAP2 ? CM Ready Indication

6 CP ISAP1 ? CM Ready Indication

7 CP ISAP1 ! CM Proceed Indication

8 CP ISAP1 ? CM Ready Indication

9 CP MSAP2 ? CM Ready Indication

10 CP ISAP1 ! CM Proceed Indication

Detailed Comments :

Figure 7.8: TTCN-2 test case DisconnectionSync – MTC behavior description

A separate test step is defined for the MTC that describes the coordination messages
resulting from the synchronization condition. Due to the FIFO semantics of PCOs and
CPs, this approach is sound also for the case that events related to a particular synchro-
nization interleave with other events, e.g., events of other synchronizations or message
exchanges with the SUT via some PCO. However, if test execution fails, there might
be unprocessed events in the FIFO queues that are not logged by the test system and
make it more difficult to analyze the cause of the failure.

Multiple Synchronization Conditions. In figure 7.10, an MSC test purpose with two
synchronization conditions covering different sets of instances is shown. For this MSC, a
test configuration with two PTCs and an MTC is assumed. PTC 1 controls two different
PCOs (PCO W and PCO X); PTC 2 communicates with the SUT via PCO Y. The
MTC exchanges signals both with the PTCs via MCP 1 and MCP 2 and with the SUT
via PCO Z.

Figure 7.11 shows the behavior descriptions of the MTC and the two PTCs (named
Test PTC 1 and Test PTC 2). As can be seen, only one synchronization message is sent
to the MTC for each PTC. The size of an MTC behavior description mainly depends
on the number of PTCs which are involved in a synchronization, since the MTC must
be able to receive Ready CMs in every possible order. As described above, a simple way
to minimize the size of the behavior description is to define a separate test step for each
synchronization.

116

7.5 Case Studies

Test Step Dynamic Behaviour

Test Step Name : DisconnectionSync PTC ISAP1

Group : ParallelTestComponents/Transmission

Objective :

Default : OtherwiseFail

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 ISAP1 ! ICONreq Connection Request

2 ISAP1 ? ICONconf Connection Confirmation

3 ISAP1 ! IDATreq Data Request(TestSuitePar)

4 CP ISAP1 ! CM Ready Indication

5 CP ISAP1 ? CM Proceed Indication

6 ISAP1 ! IDISreq Disconnection Request

7 ISAP1 ? IDISind Disconnection Indication PASS

8 ISAP1 ? IDISind Disconnection Indication INCONC

Detailed Comments :

Test Step Dynamic Behaviour

Test Step Name : DisconnectionSync PTC MSAP2

Group : ParallelTestComponents/Transmission

Objective :

Default : OtherwiseFail

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 MSAP2 ? MDATind Medium Connection Request

2 MSAP2 ! MDATreq Medium Connection Confirmation

3 MSAP2 ? MDATind Medium Data Transfer

4 MSAP2 ! MDATreq Medium Data Acknowledgment

5 CP MSAP2 ! CM Ready Indication

6 MSAP2 ? MDATind Medium Disconnection Request PASS

7 MSAP2 ? MDATind Medium Data Transfer INCONC

8 MSAP2 ? MDATind Medium Connection Request INCONC

Detailed Comments :

Figure 7.9: TTCN-2 test case DisconnectionSync – PTC behavior descriptions

PTC 1

PCO W

PTC 1

PCO X

PTC 2

PCO Y

MTC

PCO Z SUT

Sig A

Sig B

Sync1

Sig C

Sig D

Sig E

Sync2

Sig F

Sig G

msc MultiSync

Figure 7.10: MSC MultiSync

117

7 Test Generation for Distributed Test Architectures

Test Case Dynamic Behaviour

Test Case Name : MultiSync

Group :

Purpose :

Configuration : Conf

Default :

Comments: : The tester consists of a main test component and two parallel test components

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CREATE(PTC 1 : Test PTC 1,
PTC 2 : Test PTC 2)

2 MCP 2 ? Ready C Ready(Sync1)

3 PCO Z ! Sig C C Sig C

4 MCP 1 ? Ready C Ready(Sync2)

5 MCP 2 ? Ready C Ready(Sync2)

6 MCP 2 ! Proceed C Proceed(Sync2, Y)

7 ? DONE(PTC 1, PTC 2) R

8 MCP 2 ? Ready C Ready(Sync2)

9 MCP 1 ? Ready C Ready(Sync2)

10 MCP 2 ! Proceed C Proceed(Sync2, Y)

11 ? DONE(PTC 1, PTC 2) R

Test PTC 1

12 PCO X ! Sig A C Sig A

13 PCO X ? Sig D C Sig D

14 PCO W ? Sig E C Sig E

15 MCP 1 ! Ready C Ready(Sync2)

16 PCO W ? Sig G C Sig G (P)

17 PCO W ? Sig E C Sig E

18 PCO X ? Sig D C Sig D

19 MCP 1 ! Ready C Ready(Sync2)

20 PCO W ? Sig G C Sig G (P)

Test PTC 2

21 PCO Y ? Sig B C Sig B

22 MCP 2 ! Ready C Ready(Sync1)

23 MCP 2 ! Ready C Ready(Sync2)

24 MCP2 ? Proceed C Proceed(Sync2, Y)

25 PCO Y ! Sig F C Sig F (P)

Detailed Comments :

Figure 7.11: Concurrent TTCN-2 test case MultiSync

118

8 The Tree Walk Search Strategy

The main problem of verification, validation, and test generation is the inherent com-
plexity of most protocols and applications. This complexity manifests itself in a behavior
tree that grows exponentially with increasing depth. Even for simple, academic proto-
cols, the state space can be too large to be explored completely. Most specification
languages even have language concepts that imply an infinite state space. For instance,
incoming signals of an SDL process are handled by a FIFO queue with infinite capacity.

In order to cope with the state space explosion problem, various reduction techniques
have been proposed in literature such as partial order simulation, symmetry analysis,
symbolic model checking, compositional verification, and data flow analysis.1 Some ap-
proaches aim at ignoring those parts of the state space (states or transitions) that are
irrelevant for test generation or proving a specific system property. Others try to sim-
plify the specification (abstraction) or consider its modules first before analyzing the
system as a whole. Again other techniques allow to represent the complete state space
by an efficient data structure. In addition to theoretically sound methods, heuristics can
be used.

In spite of these approaches, the remaining part of the state space cannot be explored
completely in practice. Thus in the test purpose specification phase, the order in which
it is traversed is very important, because it has a major impact on which coverage can
be achieved in the available period of time. The selected search strategy also determines
the size and structure of a test suite. E.g., some strategies tend to create large traces
with redundant – from a test specifier’s point of view “senseless” – events that do not
contribute to fulfilling the test purpose.

In practice, the requirements on a good search strategy for test generation, i.e., getting
a high test coverage quickly and finding short, reasonable traces, are partially contra-
dictory and hence a good compromise between both requirements is needed.

In this chapter, a new search strategy, called Tree Walk, is presented. It combines the
abilities to find short, reasonable test sequences and to examine deeply hidden parts of
the behaviour tree. Tree Walk is a deterministic algorithm that performs a sequence
of tree searches with increasing depth, starting at various states in the behavior tree.
It is based on the heuristic that in a region of the state space where an increase of the
system coverage has been observed, it is likely to detect further transitions that result
in an even higher coverage.

In section 8.1, a few traditional search strategies are presented and reasons are given
for why they are inadequate for efficient test generation. To formalize some important

1An overview of existing techniques with focus on petri nets is given by Rauhamaa (1990).

119

8 The Tree Walk Search Strategy

aspects of Tree Walk, the concept of labeled transition systems (LTS) is introduced in
section 8.2. The main concepts of Tree Walk and an algorithmic description are given
in section 8.3. For efficiency, a search strategy should always be combined with some state
space reduction techniques. In section 8.4, a new hash algorithm is presented that allows
to prune search paths under certain circumstances if a state is revisited. The superiority
of Tree Walk to iterative depth-first search and Random Walk is demonstrated by two
cases studies in section 8.5. Finally, future enhancements are discussed in section 8.6.

8.1 Classical Search Strategies

Depth-First and Breadth-First Search. Two general-purpose search strategies that
are widely used are depth-first and breadth-first search. A depth-first search (DFS)
is characterized by following one path through the behavior tree before considering
alternatives. I.e., in every state, one of the possible next events is executed and the
search algorithm is invoked recursively with the successor state. Alternative events are
considered only during back-tracking. In the context of telecommunication protocols,
most systems do not terminate and an unbounded DFS will analyze only one large path.
Therefore, the user typically specifies a maximum search depth in which the exploration
is stopped.

A breadth-first search (BFS) solves the problem of infinite paths. For any state s, first all
possible alternative states (with regard to s) are investigated before the successor states
of s are examined. One of the drawbacks of a BFS is that it must keep track on which
states have been visited so far. Therefore, an iterative DFS is used as an approximation
of a BFS, i.e., a sequence DFS(k1), DFS(k2), . . . of ki-bounded DFSs is started where
ki = init + (i− 1) ∗ inc with init being the initial maximum search depth and inc being
the increment for each iteration.

When used for test generation purposes, breadth-first search and iterative depth-first
search result in short test cases but due to the state space explosion problem it is
impossible to find test cases for test purposes that require long sequences of transitions.
On the other hand, a loosely bounded depth search is more likely to achieve a good
coverage but the resulting test cases tend to include initial sequences of non-reasonable
events, as the system is driven accidentally into a desired state.

(Guided) Random Walk. The former search strategies are deterministic, i.e., the ex-
act order in which the transitions in the behavior tree are traversed is predictable. In
contrast, the Random Walk search strategy, as the name indicates, explores the state
space indeterministically. Starting at the start state of the behavior tree, a random
transition is selected repetitively until either an end state (deadlock) is reached or some
limiting heuristic applies, e.g., a maximum search depth is reached. Thereafter, a new
and independent exploration is started from the initial state again.

Random Walk has proven to be an adequate search strategy for validation purposes as it
allows to uncover efficiently many violations of the dynamic semantics of a specification
(West, 1992).

120

8.2 Labeled Transition Systems

In literature, several proposals have been made to improve the efficiency of Random
Walk. A Guided Random Walk classifies all possible next transitions in a given state
and chooses the one with highest priority. For instance, Feijs et al. (2000) suggest assign-
ing different probabilities to input and output events. The Hit-or-Jump algorithm by
Cavalli et al. (1999) combines the Random Walk approach with shallow tree searches;
if the coverage does not increase during a k -bounded DFS/BFS, a random walk with k

transitions is made and another k-bounded DFS/BFS is started at the end state.

With regard to test generation, the usability of Random Walk is restricted for the same
reason why an unbounded depth-first search is inappropriate: The resulting test cases
tend to be very large and contain many events which a human reviewer considers neither
as an essential part of the test preamble nor as part of the test body.

8.2 Labeled Transition Systems

In the following, some concepts of labeled transition systems are introduced. They are
used to formalize complicated aspects of Tree Walk, in particular the extension pre-
sented in section 8.4.

Definition 4 (Labeled Transition System) A labeled transition system (LTS) is a
tuple 〈S, L, T, s0〉, where

• S is a set of system states,

• L is a set of labels (also called actions),

• T ⊆ S × L × S is a set of transitions,

• s0 ∈ S is the initial state of the LTS.

LTSs can be used as a formal model for reactive systems (ITU-T, 1997b, pp. 33 and 34).
Based on such a model, a behavior tree or a directed, acyclic reachability graph can be
constructed. In the following, all LTSs are assumed to be deterministic, i.e., ∀s, s

′

, s
′′

∈
S, l ∈ L : (s, l, s

′

) ∈ T ∧ (s, l, s
′′

) ∈ T ⇒ s′ = s′′. Although a reactive system is not
necessarily deterministic, this requirement is made to reflect the fact that a simulator
must behave deterministically to work properly.

Definition 5 (Notational Conventions) Given an LTS 〈S, L, T, s0〉, s, s′ ∈ S, l ∈ L,
and n ∈ N, the following notational conventions shall apply:

s
l
→ s′ ≡ (s, l, s′) ∈ T

s → s′ ≡ ∃l ∈ L : (s, l, s′) ∈ T

s →n s′ ≡ ∃s0, . . . , sn ∈ S :

s = s0 → s1 → . . . → sn = s′

s →∗ s′ := ∃n ∈ N : s →n s′

s′ is reachable from s := s →∗ s′

121

8 The Tree Walk Search Strategy

Definition 6 (Path and Distance) Given an LTS 〈S, L, T, s0〉. p = l1, l2, . . . , ln with

li ∈ L is a path from state s to state s′ if ∃s0, . . . , sn ∈ S : s = s0
l1−→ s1

l2−→ . . .
ln−→

sn = s′. The set of all possible paths for a given LTS is denoted by Path := PathLTS.

The length |p| of a path p is equal to the number of its actions/events.

Given two paths p = l1, l2, . . . , ln and p′ = l′1, l
′
2, . . . , l

′
m. p is called a subpath of p′ if

n ≤ m ∧ ∀i ∈ {1 . . . n} : li = l′i.

The distance |s, s′| between two states s, s′ ∈ S is defined as

|s, s′| :=

{

n s →n s′ ∧ ∀m < n : ¬(s →m s′)

∞ ¬(s →∗ s′)

Since most systems contain loops or even have an infinite number of states, it is im-
possible to explore a state space completely. Instead, only a small fragment can be
examined.

Definition 7 (Sub-LTS) Given a labeled transition system LTS = 〈S, L, T, s0〉. LTSn
r

denotes the part of the LTS that is reachable from root state r ∈ S by n ∈ N transitions.
It is defined as LTSn

r = 〈Sn, Ln, Tn, r〉 with

Sn := {r} ∪ {s | s ∈ S ∧ ∃k ∈ N, k ≤ n : r →k s in LTS}

Tn := {(s, l, s′) | (s, l, s′) ∈ T ∧ (s = r ∨ ∃k ∈ N, k < n : r →k s in LTS}

Ln := {l | (s, l, s′) ∈ Tn}

With regard to simulation, LTSn
r can be explored by an n-bounded DFS starting at

root state r.

LTSr := LTS∞
r is that part of the LTS that is reachable from root state r.

The set of states that are reachable in n transitions from state r is defined as
States(LTS, r, n) := {s | r →n s}. For LTSn

r , States(LTSn
r , r, n) denotes the states in

maximum depth. For convenience, Front(LTSr
n) := States(LTSn

r , r, n) is used as alter-
native notation.

8.3 Main Concepts

Tree Walk is a search strategy that aims at achieving a good coverage while exploring
only a small fragment of the (possibly infinite) state space. Instead of starting a single
(iterative) DFS or BFS at the initial system state, Tree Walk starts a large number
of shallow, i.e., strongly-bounded, DFSs at different states. These states are called root
states. First, only the initial system state is a root state but the set of root states changes
dynamically, i.e., root states are added and removed at run-time.

Though the exact criteria for a state becoming a root state is outside the scope of Tree
Walk, it is assumed that the state selection is based on some coverage criteria such as

122

8.3 Main Concepts

symbol (C0) coverage. If, during state space exploration, a state (or an event leading to
some state) is found that results in increased coverage, then this state is added to the
set of root states.

Tree Walk is based on the fundamental assumption that it is more likely to find
another state with further coverage increase near a root state than in other parts of
the state space. This assumption is justified by the fact that many telecommunication
systems proceed in different stages. For example, the Inres service involves the three
phases connection establishment, data transfer, and disconnection. In this case, each
phase can be considered independently from the previous ones.

Tree Walk supports this idea by declaring the state in which the connection is es-
tablished as root state r. If both stages take at most c and d steps, i.e., the longest
path for any connection establishment attempt (whether successful or not) comprises c

transitions, then it might be sufficient to explore LTSc
init and LTSd

r to achieve the same
coverage as when exploring LTSc+d

init .

8.3.1 Root States

Tree Walk maintains a list of root states that are used as initial states for exploration.
A root state is characterized by a tuple 〈path, depth, status〉 where

• path ∈ Path is a path from the initial state of system to the root state.

• depth ∈ N is the maximum search depth for the next bounded DFS (initially: 1).

• status ∈ {ok, ignore, done} specifies whether the root state is relevant for state
space exploration and test generation (see below).

The set of all root states is denoted by Root. Whenever a new tree search is to be
started, the root state with the smallest maximum search depth is selected as start
state. If there are two or more root states with the same minimum search depth, a root
state with minimum path length is chosen among them. After tree search, the maximum
search depth is increased by 1.

Without further precautions, the number of root states grows monotonously. On the
other hand, there are cases where a root state r ∈ Root can be dropped or ignored after
LTSn

r is explored:

1. Front(LTSn
r) = ∅, i.e., no new states have been found (possibly due to a deadlock).

2. Front(LTSn
r) ⊆ Root, i.e., all newly found states have become root states.

In the first case, an m-bounded DFS (m > n) will not lead to any new state.
In the second case, all states in Front(LTSm

r), m > n, are also included in
⋃

r
′∈Front(LTSn

r) Front(LTSm−n
r′) ⊆

⋃

r
′∈Root Front(LTSm−n

r′).

For test generation purposes, the root states are of particular interest due to the fact
that the execution of their corresponding path results in coverage increase. Therefore,
even if any of the two situation above arises, the root state should be kept. On the other
hand, if path p1 of some root state r1 is a subpath of path p2 of another root state r2,

123

8 The Tree Walk Search Strategy

then r1 can obviously be ignored for test generation. As a consequence, the status of a
root state is among the following alternatives:

1. ok : The root state is still in use for state space exploration and test generation.

2. ignore: The root state is still used for state space exploration but its path can be
ignored for test generation.

3. done: The root state (actually its path) is stored solely for test generation purposes.

8.3.2 Algorithmic Description

In figures 8.1 and 8.2, the Tree Walk algorithm is given in an abstract programming
language. It is divided into two parts: The main function (figure 8.1) deals with the
selection of root states, the invocation of the search procedure, and the evaluation of
search results. The actual state space exploration is performed by function treeSearch
(figure 8.2).

Requirements on the Simulation Environment. The algorithm makes only few re-
quirements on the simulation environment.

For any state s ∈ States and any event e ∈ Events

• s.nextEvents() returns the set of all events that are executable in state s.

• s.nextState(e) returns the system state s′ that is obtained by executing e in s.

Furthermore,

• initialState() returns the initial state of the system.

For each state s, the simulator must store the sequence of events that were executed to
reach s from the initial system state (typically realized in terms of a transition stack).
This sequence of events can be obtained by calling s.Path(). The other way round,
p.endState() returns the state that is reached if path p is explored.

Function treeWalk. The Tree Walk algorithm (algorithm 8.1) starts by initializing
the global data structure in which information on the current coverage are stored (line 2).
(The hash table operations in lines 3 and 10 are only needed for the extension described
in section 8.4). Then, the set of root states is defined (line 4). Initially, there is only one
root state with the path being the current path, depth = 1, and status = ok.

As long as there is any root state with status 6= done and there is no reason to stop Tree
Walk, the statements in lines 6 to 25 are executed. Among all root states with status ∈
{ok, ignore}, a candidate with minimum depth and path length is chosen (lines 6–8).
Then, the system is driven into the end state of the path, i.e., into the root state, and
a tree search is invoked (lines 9 and 11).

Besides a revised (enlarged) set of root states, function treeSearch returns two boolean
values, named newState and newRoot. For a tree search with maximum search depth

124

8.3 Main Concepts

Algorithm 8.1 Tree Walk – Main function treeWalk

1: P(Path) treeWalk(maxTime : Time, targetCoverage : R
+) {

2: system.resetCoverageTable();

3: system.resetHashTable(); // for detection of identical states only

4: roots := { (path:system.initialState().path(), depth:1, status:ok) };

5: while ((∃r ∈ roots : r .status 6= done) ∧ continue(maxTime, targetCoverage, . . .)) {

6: currentRoot := choose r ∈ roots : r .status 6= done ∧

7: ∀s ∈ roots : (r.depth < s.depth) ∨

8: (r.depth = s.depth ∧ | r.path | ≤ | s.path |);

9: state := currentRoot .path.endState();

10: system.hashTableHit(state, currentRoot .depth + 2); // extended version only

11: (roots, newState, newRoot) := treeSearch(roots, state, 0, currentRoot.depth,

12: maxTime, targetCoverage);

13: switch (newState, newRoot) {

14: case (false, false) : // no new state found

15: roots := roots \ currentRoot ∪ { (path:currentRoot .path,

16: depth:currentRoot .depth, status:done) };

17: case (true, false) : // new state(s) found, none of them being a new root

18: roots := roots \ currentRoot ∪ { (path:currentRoot .path,

19: depth:currentRoot .depth + 1, status:currentRoot .status) };

20: case (false, true) : // new state(s) found, all of them being new roots

21: roots := roots \ currentRoot ;

22: case (true, true) : // new state(s) found, some of them being new roots

23: roots := roots \ currentRoot ∪ { (path:currentRoot .path,

24: depth:currentRoot .depth + 1, status:ignore) };

25: }

26: }

27: return { p | ∃r ∈ roots : p = r .path ∧ r .status 6= ignore ∧ r .path.length() > 0 }

28: }

maxDepth, newState is true if any new state has been found at depth maxDepth that has
not become a root state (Front(LTSmaxdepth

currentRoot)\roots 6= ∅). Contrarily, newRoot = true
indicates that at least one root state was added at depth maxDepth. Depending on the
combination of both boolean values, the set of root states is modified as follows:

• If no new state was found at all, the status of the current root state is set to done
(lines 14–16).

• If only non-root states were found, the maximum search depth of the current root
state is increased by 1 (lines 17–19).

• If only root states were found, the current root state is removed from the set of
root states (lines 20–21).

• If both root states and non-root states were found, the maximum search depth of
the current root state is increased by 1 and its status is set to ignore.

125

8 The Tree Walk Search Strategy

The result of the Tree Walk algorithm is the set of non-empty paths which belong to
root states with status 6= ignore.

Function treeSearch. Function treeSearch (algorithm 8.2) is defined recursively. After
checking the abort criteria (lines 3–5), the local variables newState and newRoot are
initialized (line 6). Then all possible events in the current state are evaluated in a back-
tracking manner (loop from line 7 to 31).

For each event, nextState is computed (line 8) and the (preliminary) decision whether
nextState shall become a root state is stored in the boolean variable addRoot (9).

Then, depending on the current depth and the result of function searchDeeperException-
ally (see below), treeSearch is invoked recursively (lines 11 and 12). Since newState and
newRoot keep track whether any new (root) state has been found in the whole subtree,
their values are combined with the return values newState2 and newRoot2 (line 13).

Depending on the value of addRoot, two cases must be considered (lines 17–30): If
nextState was supposed to become a root state, i.e., addRoot = true, than newRoot is
set to true. (If newRoot2 is true than newRoot has already been true before). Next,
the return values of the recursive call of treeSearch are examined (compare with the
evaluation of newState and newRoot in function treeWalk):

• If no root state was found, nextState is added to the set of root states with status =
ok (lines 19–21).

• If both root states and non-root states were found, nextState is added to the set
of root states with status = ignore (lines 19–21).

• If only root states are found, nextState is not added to the set of root states.

If addRoot is false, the current search depth is compared with maxDepth (line 27). If
it is greater or equal, newState is set to true (line 28). New states in a depth lower
than maxDepth do not modify the variable, because they have been visited before by a
shallower tree search.

External Functions. The Tree Walk algorithm can be adapted to specific needs
by means of external functions. The concrete implementation of the following boolean
functions is left unspecified in the scope of Tree Walk:

• continue(maxTime, targetCoverage, . . .)

Decides whether Tree Walk shall terminate or continue. For example, Tree
Walk might be stopped if the computation time exceeds a user-defined limit or
the targeted coverage is reached. Other possible criteria include the current search
depth or the number of states visited so far. In a real simulation system, the user
should also be able to stop Tree Walk at any time, e.g., by pressing a cancel
button at the user interface.

126

8.3 Main Concepts

Algorithm 8.2 Tree Walk – Subfunction treeSearch

1: P(Root)×bool×bool treeSearch(roots : P(Root), state : State, depth : N0,

2: maxDepth : N, maxTime : Time, targetCoverage : R
+) {

3: if (¬continue(maxTime, targetCoverage, . . .)) {

4: return (roots, false, false);

5: }

6: (newState, newRoot) := (false, false);

7: for all event ∈ state.nextEvents() {

8: nextState := state.nextState(event);

9: addRoot := system.increasedCoverage() ∨ addRootExceptionally(. . .);

10: if (depth + 1 < maxDepth ∨ searchDeeperExceptionally(. . .)) {

11: (roots, newState2 , newRoot2) := treeSearch(roots, nextState, depth + 1,

12: maxDepth, maxTime, targetCoverage);

13: (newState, newRoot) := (newState ∨ newState2 , newRoot ∨ newRoot2);

14: } else {

15: (newState2 , newRoot2) := (false, false);

16: }

17: if (addRoot) {

18: newRoot := true;

19: if (¬newRoot2) {

20: roots := roots ∪ { (path:nextState.path(), depth:1, status:ok) };

21: }

22: if (newRoot2 ∧ newState2) {

23: roots := roots ∪ { (path:nextState.path(), depth:1, status:ignore) };

24: }

25: // (newRoot2 ∧ ¬newState2) ⇒ all successor states are roots

26: } else {

27: if (depth + 1 ≥ maxDepth) {

28: newState := true;

29: }

30: }

31: }

32: return (roots, newState, newRoot);

33: }

127

8 The Tree Walk Search Strategy

• increasedCoverage()

Determines whether the execution of the last event or the reaching of the current
system state has resulted in a higher coverage. The exact coverage criteria is left
unspecified; in principle, the function can be based on any of the criteria presented
in section 4.2.2 on page 53.

• addRootExceptionally()

Allows to declare a state to be a root state, even if coverage has not increased. An
exceptional case in which this might be desirable is the preceding declaration of a
root state in which the system was not quiet. If a coverage increase occurs in the
middle of a stimulus-response observation step, it makes sense to declare all states
as root states up the ones in which the system must wait for new input. In the
end, only those states in which the system is quiet will remain in the set of root
states while all states with subpaths will be dropped automatically in succeeding
steps. In this way, all test sequences generated by Tree Walk are “complete” in
the sense that they drive the system in a stable state.

• searchDeeperExceptionally()

Allows to further investigate the current path, even if the maximum search depth
(maxDepth) is reached. E.g., if a coverage increase is detected at maxDepth, it is
reasonable to continue the current path, since it is likely (according to the Tree
Walk assumption) to find another root state at maxDepth + 1. This way, a lot
of shallow tree searches and the introduction of many temporary root states can
be avoided.

8.4 Detection of Identical States

In order to cope with the state space explosion problem, the Tree Walk algorithm
should be combined with state space reduction techniques and heuristics. One of the
most efficient techniques is to prune the current search path if a state is reached that
has been visited before. But for that purpose, all states must be stored in memory which
is practically impossible, even if the states are stored in compressed form.

Therefore, the Supertrace (bit-state) algorithm (Holzmann, 1991) is used in practice. It
requires far less memory but might prune paths erroneously. The underlying idea is to
compute a hash key for each state and to mark the visit of the state by a single bit in
the corresponding entry in a hash table. To reduce the risk of undetected clashes (two
different states have the same hash key and thus are considered identical), a second hash
function can be used such that each state maps to two bits in the hash table. In practice,
the Supertrace algorithm has gained great popularity due to its simple implementability.

Unfortunately, the Supertrace algorithm cannot be applied directly to Tree Walk,
because Tree Walk requires explicitly that a lot of states are revisited. There are two
reasons: First, several explorations with increasing maximum search depth are started
at each root state. For a k-bounded search, all states up to depth k−1 have been visited

128

8.4 Detection of Identical States

r
1

r
2

s

(a) Two root states with common substate

r
i

r
1

r
n

r

(b) A root state with root states along all paths

Figure 8.1: Tree Walk – Detection of identical states

in former passes. Second, the root state changes after almost every exploration. If some
state s is reachable from two root states r1 and r2, the Supertrace algorithm should
not be applied unrestrictedly, because it might stop tree searches unintentionally. In
particular, if r1

e
−→ r2, a tree search starting at r1 with depth 2 marks all successor

states of r2 as visited such that a later exploration starting at r2 would terminate
immediately.

In a simple approach, the hash table used for the Supertrace algorithm could be cleared
after each single tree search. But this method is not optimal as useful information about
previously visited states is lost. In figure 8.1, two scenarios are presented where a global
solution is beneficial.2

In figure 8.1(a), two root states r1 and r2 have a common successor state s3, i.e., r1 →∗ s3

and r2 →∗ s3. It is assumed that there is no root state on all paths from r1 to s3 and
r2 to s3. Obviously, the state space spanned by s3 does not have to be explored twice.
But this raises the question whether it should be investigated during the tree search
started at r1 or at r2. A k-bounded DFS started at r1 corresponds to a (k − |r1, s3|)-
bounded DFS for state s3. If it turns out, during a successive l-bounded DFS at r2, that
l−|r2, s3| > k−|r1, s3|, then the exploration of LTSs3

should be repeated for maximum
penetration. On the other hand, a k + 1-bounded DFS at r1 should not consider LTSs3

again, since k + 1 − |r1, s3| ≤ l − |r2, s3|.

Figure 8.1(b), illustrates the situation where each path from root state r will eventually
lead to another root state ri. Obviously, the simulation of LTSr can be stopped in each
root state ri, since a separate exploration is started for LTSri

. Moreover, state r should
be removed from the list of root states as soon as no new state can be found. Let k be
the maximum of {|r, ri| | i ∈ {1 . . . n}}. Then no further tree search has to be initiated
for r after a k-bounded DFS.

The examples above demonstrate that it is not sufficient to mark the visit of a state
by a single bit in a hash table. Instead, some additional information about how the
state has been visited must be stored. The fundamental idea is to store the lookahead

2To simplify the representation of identical states, the state space is visualized by a graph instead of a
tree in the following figures. This approach is valid because each behavior tree can be transformed
into an equivalent reachability graph and vice versa.

129

8 The Tree Walk Search Strategy

3,ignore

2,ok 2

1

s
1

s
4

s
3

s
2

(a) Root node: s1, depth: 1

3,ignore

3,ok 2

2
s

3

s
4

s
1

s
2

(b) Root node: s2, depth: 1

4

3,ok 3

2 2,ok

s
2

s
5

s
1

s
3

s
4

(c) Root node: s1, depth: 2

4

3,ok 3

2 3,ok

2 2
s

6

s
1

s
2

s
3

s
4

s
5

s
7

(d) Root node: s5, depth: 1

4

4,done 3

3 3,ok

2 2

s
1

s
2

s
3

s
4

s
5

s
6

s
7

(e) Root node: s2, depth: 2

Figure 8.2: Running Tree Walk with detection of identical states

of a state, i.e., how deep the state space has been explored with the current state as
origin. If a k-bounded DFS is made at root state r, then r has lookahead la = k + 2. A
state s that is visited with path p starting at the root state and |p| = n has lookahead
la = max(k + 2 − n, 1).

Whenever a new state s is investigated, a hash key is computed and the corresponding
hash table entry is looked up. If the current lookahead la is lower than or equal to
the value stored in the hash table, then LTS la

s has already been explored and thus the
exploration can be stopped. Otherwise, la is registered in the hash table. If more than
one hash key is computed for each state, the hash table entries must be checked for
equality. In case they are different, a clash is detected and the state space exploration
continues without altering the hash table.

For the computation of lookahead la, an offset of 2 is used. There are two reasons why
this offset is needed: First, the lookahead should always be ≥ 1, because 0 indicates an
empty field in the hash table. Therefore, an offset of 1 is needed for states found at the
maximum search depth. Moreover, the Tree Walk algorithm is designed to explore
states even beyond the maximum search depth k in exceptional cases. In order to be
able to distinguish between states at depth k and k′ > k, the offset has to be set to 2.
The following example points out why such a distinction is important.

130

8.4 Detection of Identical States

8.4.1 Example

The functionality and efficiency of the lookahead mechanism is illustrated by the example
in figure 8.2. It demonstrates how Tree Walk explores the state space of a system of
which only the start state s1 is known initially. The states are numbered in the order
of occurrence. Root states are represented as filled circles. Next to each state, its status
and the lookahead stored in the hash table are printed.

First, Tree Walk puts s1 on the list of root states and starts a DFS bounded to
depth 1. It turns out that s1 has two successor states, s2 and s4 and that either the
event of the transition from s1 to s2 or the state s2 itself causes a coverage increase. As
a consequence, the state space exploration is continued exceptionally in root state s2

which leads to the detection of state s3. Thereafter, s2 becomes another root state and
the status of s1 is set to ignore. During simulation, the lookahead is computed for each
state and registered in the hash table. Figure 8.2(a) depicts the situation after the DFS
is completed.

In a second step, a DFS with maximum depth 1 is started at root state s2. This time,
the lookahead for s3 is 2, i.e., greater than in the previous run, and thus the hash table
entry is updated. Equally, the lookahead for s2 is increased to 3 (see figure 8.2(b)). No
new states are discovered during this search.

Since there is no other state on the root state list, another exploration is started at
state s1 but this time with 2 as maximum search depth. For s2, the current lookahead
is 2 + 2 − 1 = 3 which is equal to the lookahead stored in the hash table. This means
that the exploration can be stopped at this state because all states that are reachable,
i.e., all state in LTS1

s2
, have already been investigated before. Independently from this,

a new state s5 is found on the other branch. Due to increased coverage, s5 becomes a
new root state. The only state in LTS2

s1
that was not already included in LTS1

s1
is a

root state. Therefore, s1 can be removed from the list of root states (see figure 8.2(c)).

Next, a tree search at root state s5 is started. Two new states, s6 and s7, are found and
their lookaheads (2) are stored in the hash table (figure 8.2(d)).

Again, a new DFS with maximum depth 2 is started at s2. The only successor state
of s3 is s6. According to the formula presented in the previous section, the current
lookahead for s6 is 2 + 2 − 2 = 2. Since the lookahead for s6 in the hash table is 2 as
well, the exploration can be stopped. Since no new state is found (neither root state nor
common state), the status of s2 is set to done, i.e., it will not be considered for further
explorations. But in contrast to s1, s2 is not removed from the root state list because
there is no root state whose path subsumes the path of s2.

8.4.2 Algorithmic Description

An revision of algorithm 8.2 that supports the detection of identical states is given as
algorithm 8.3. In comparison to the original version, lines 10, 11, 19, 22, and 30–32 have
been added and the condition in line 34 has been modified.

131

8 The Tree Walk Search Strategy

Algorithm 8.3 Tree Walk – Subfunction treeSearch with detection of identical states

1: P(Root)×bool×bool treeSearch(roots : P(Root), state : State, depth : N0,

2: maxDepth : N, maxTime : Time, targetCoverage : R
+) {

3: if (¬continue(maxTime, targetCoverage, . . .)) {

4: return (roots, false, false);

5: }

6: (newState, newRoot) := (false, false);

7: for all event ∈ state.nextEvents() {

8: nextState := state.nextState(event);

9: addRoot := system.increasedCoverage() ∨ addRootExceptionally(. . .);

10: tableHit := system.hashTableHit(nextState, max(maxDepth - depth + 1, 1));

11: if (¬tableHit) {

12: if (depth + 1 < maxDepth ∨ searchDeeperExceptionally(. . .)) {

13: (roots, newState2 , newRoot2) := treeSearch(roots, nextState, depth + 1,

14: maxDepth, maxTime, targetCoverage);

15: (newState, newRoot) := (newState ∨ newState2 , newRoot ∨ newRoot2);

16: } else {

17: (newState2 , newRoot2) := (false, false);

18: }

19: }

20: if (addRoot) {

21: newRoot := true;

22: if (¬tableHit) {

23: if (¬newRoot2) {

24: roots := roots ∪ { (path:nextState.path(), depth:1, status:ok) };

25: }

26: if (newRoot2 ∧ newState2) {

27: roots := roots ∪ { (path:nextState.path(), depth:1, status:ignore) };

28: }

29: // (newRoot2 ∧ ¬newState2) ⇒ all successor states are roots

30: } else {

31: roots := roots ∪ { (path:nextState.path(), depth:1, status:done) };

32: }

33: } else {

34: if (¬tableHit ∧ depth + 1 ≥ maxDepth) {

35: newState := true;

36: }

37: }

38: }

39: return (roots, newState, newRoot);

40: }

132

8.4 Detection of Identical States

Algorithm 8.4 Tree Walk – Hash table access with n keys

1: bool hashTableHit(state : State, lookahead : N) {

2: (hkey1,hkey2, . . . , hkeyn) := state.hashKeys();

3: if (∀i, j ∈ {1 . . . n} : htable[hkeyi] = htable[hkeyj]) {

4: if (htable[hkey1] ≥ lookahead) {

5: return true;

6: } else {

7: for all i ∈ {1 . . . n} {

8: htable[hkeyi] := lookahead ;

9: }

10: return false;

11: }

12: } else {

13: return false;

14: }

15: }

Whenever a new state is reached, Tree Walk checks whether this state has been
visited before with a larger lookahead. This is achieved by calling function hashTableHit
in line 10. If its return value (assigned to variable tableHit) is false, i.e., the state must
be investigated, algorithm 8.3 behaves identical to algorithm 8.2. Otherwise, the current
path is pruned. Even if a state is revisited and tableHit = true, it may nevertheless be
identified as a root state, because the transition leading to the state results in increased
coverage. In this case, the state is added to the set of root states with status done.

The definition of hashTableHit is given as algorithm 8.4. hashTableHit first calls some
function hashKeys which returns n hash keys for a given state (line 2). Then, the hash
key entries in the global hash table htable are checked for equivalence (line 3). If their
values are different, they must spring from at least two states that are different from the
current state. That means there is a (detectable) clash in the hash table and hashTableHit
returns false (line 13). Otherwise, the lookahead of the current state is compared with
the hash table entries (line 4). If it is lower or equal, hashTableHit returns true (line 5).
If the lookahead is greater than the current hash table entries, the hash table is updated
accordingly and false is returned (lines 7–10).

The presented algorithm does not make any assumption on the number of bits used for
storing the lookaheads in the hash table. For simple implementation, a slot size of 8
bits might be chosen. It allows for tree searches with a maximum search depth of 253.
However, the case studies described in section 8.5 indicate that the maximum search
depth is typically much smaller (4 and 17 resp.). Thus, the slot size can be reduced to
5 or 6 bits which increases the number of states that can be registered in memory by
37.5% or 25%.

133

8 The Tree Walk Search Strategy

8.5 Case Studies

For proving the superiority of Tree Walk over Random Walk and iterative depth-
first search, all three search strategies have been applied to the SDL systems of the
Inres and VB5.2 protocol. The aim was to explore the state spaces of both protocols
and to obtain the highest possible symbol coverage (i.e., C0 coverage) while exploring a
minimum number of states.

The tests were performed with the Validator of the Telelogic Tau 4.2 tool suite
which supports all three exploration techniques.3 The state space exploration was
stopped when a symbol coverage of 100% was achieved or the computation time ex-
ceeded 1 hour. All tests were performed on a SUN Sparc Ultra II with two 300 Mhz
processors (of which only one was used by the Validator) and the Solaris 7 operating
system.

For Random Walk, the search depth was restricted to 100 transitions and the number
of repetitions was set to a very large number to prevent premature termination. For
iterative DFS, the initial maximum search depth was set to 5 and incremented by 5
with each iteration. For comparable results, the iterative DFS was combined with the
bit-state algorithm. For the Inres protocol, a hash table with 8,000,000 entries (bits)
was used, for VB5.2 the hash table size was set to 240,000,000 bit fields. The Tree
Walk implementation did not require any customization. Its hash table is enlarged
automatically by a factor of 2 if it is filled by more than 3 percent, starting with an
initial size of 1,048,575 bytes.

The choice of appropriate heuristics as well as the set of possible input signals have a
strong influence of the test results. In both case studies, the default settings of the Tau
Validator for state space exploration were kept since (a) the settings restrict the state
space without lowering the attainable symbol coverage for most protocols and (b) a
common user isn’t likely to modify them.

Among others, the default settings assume that SDL transitions are non-interruptible
and that the time it takes for the SDL system to perform internal actions is very small
compared to timeout values and the response time of the environment. Moreover, only
the first process instance in the ready queue is allowed to execute and the input port
queue of each process is restricted to three signals. If a violation of the dynamic semantics
of SDL takes place (e.g., by an implicit signal consumption), the exploration is stopped
at the current state.

The Inres Case Study. For the exploration of the state space of the Inres protocol,
the Validator’s default set of input signals has been extended in such a way that a
symbol coverage of 100% could be achieved.4 Actually, total symbol coverage was gained

3Tree Walk has been implemented by the author and is an integral part of the tool suite.
4The precise set of signals comprises ICONreq, IDATreq(0), IDISreq, MDATreq((.CR, zero, 0.)),

MDATreq((.CC, zero, 0.)), MDATreq((.AK, zero, 0.)), MDATreq((.AK, one, 0.)), MDATreq((.DT,
zero, 0.)), and MDATreq((.DR, zero, 0.)), where MDATreq((.CR, zero, 0.)) and MDATreq((.DT,
zero, 0.)) are syntactically correct but, of course, semantically invalid signals.

134

8.5 Case Studies

1257 2987 55950

1 10 100 1000 10000
Transitions / States

0

20

40

60

80

100
Sy

m
bo

l C
ov

er
ag

e
(%

)

Tree Walk

Iterative Depth First Search

Random Walk

Figure 8.3: Exploration of the Inres protocol

with Tree Walk, Random Walk, and iterative DFS within 1 to 12 seconds.

Figure 8.3 shows the growth of symbol coverage versus the number of computed tran-
sitions/states (states that were reached more than once, were counted multiple times).
One curve is given for each search strategy. The diagram indicates that Tree Walk
outperforms the two other search strategies by only having to compute 1257 states to
reach 100% symbol coverage. Iterative DFS must explore more than twice the number
of states (2987) and Random Walk lags far behind with 55950 states.

During state space exploration, Tree Walk adds 62 states to the list of root states.
32 of them are removed again from the list later when they are proven not to lead
to any new state. The maximum path length (measured from the initial start state)
is 32 transitions. In total, 124 tree searches are initiated from the 62 root states. The
maximum search depth is 4 transitions, i.e., only very shallow explorations are needed.

Tree Walk produces 9 traces whose execution causes 100% symbol coverage. In fig-
ure 8.5, these traces are shown as MSC diagrams. Apparently, the traces look very
similar to traces produced manually by a test specifier. For example, InresTreeWalk 7
and InresTreeWalk 8 correspond to test cases where the tester does not respond to
a request at PCO MSAP2. In InresTreeWalk 9, the responder acknowledges the data
transfer (DT) with the wrong sequence number. As a consequence, the data packet
is re-sent (and ignored three times in the following). All traces describe sensible and
coherent scenarios — there is no way to simplify them.

135

8 The Tree Walk Search Strategy

env

ISAP1

system

Inres

env

MSAP2

MDATreq((.CR,zero,0.))

msc InresTreeWalk 1

env

ISAP1

system

Inres

env

MSAP2

MDATreq((.DR,zero,0.))

IDISind

msc InresTreeWalk 2

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATreq((.DR,zero,0.))

IDISind

msc InresTreeWalk 3

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATreq((.CC,zero,0.))

ICONconf

MDATreq((.DR,zero,0.))

IDISind

msc InresTreeWalk 4

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATreq((.CC,zero,0.))

ICONconf

IDISreq

IDISind

MDATind((.DR,zero,0.))

msc InresTreeWalk 5

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATreq((.CC,zero,0.))

ICONconf

IDATreq(0)

MDATind((.DT,one,0.))

MDATreq((.AK,one,0.))

msc InresTreeWalk 6

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATind((.CR,zero,0.))

MDATind((.CR,zero,0.))

MDATind((.CR,zero,0.))

IDISind

msc InresTreeWalk 7

Figure 8.4: MSCs generated by Tree Walk

136

8.5 Case Studies

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATreq((.CC,zero,0.))

ICONconf

IDATreq(0)

MDATind((.DT,one,0.))

MDATind((.DT,one,0.))

MDATind((.DT,one,0.))

MDATind((.DT,one,0.))

IDISind

msc InresTreeWalk 8

env

ISAP1

system

Inres

env

MSAP2

ICONreq

MDATind((.CR,zero,0.))

MDATreq((.CC,zero,0.))

ICONconf

IDATreq(0)

MDATind((.DT,one,0.))

MDATreq((.AK,zero,0.))

MDATind((.DT,one,0.))

MDATind((.DT,one,0.))

MDATind((.DT,one,0.))

IDISind

msc InresTreeWalk 9

Figure 8.5: MSCs generated by Tree Walk (continued)

The VB5.2 Case Study. The VB5.2 protocol requires very complex signal parameters.
Since the Tau Validator was not able to define a reasonable default set of SDL signals
for stimulating the system, 48 signal definitions were taken from MSC test purposes
defined within ETSI project STF 151.

Even though the extracted signals are supposed to be sufficient for the most common
traces, none of the three search strategies was able to achieve a symbol coverage of at
least 33% within one hour. One explanation for this fact is that the SDL specification is
triggered by several external synonyms which, e.g., activate some special error insertion
code. For that reason, some portions of the SDL system are not reachable in normal
case.

In figure 8.6, the symbol coverage is shown for each search strategy. Due to the large
number of computed transitions/states, a logarithmic scale is chosen for the horizontal
axis. In analogy to the Inres case study, Tree Walk once again proves to be superior
to the other two search strategies. It takes Tree Walk 75,704 states to achieve 32.51%
symbol coverage while Random Walk must visit 972,528 states for a symbol coverage
of only 30.88%. The application of iterative DFS to the VB5.2 protocol results in poor
coverage (27.70%), since a maximum search depth of only 55 transitions was possible
within one hour.

Tree Walk examines the state space starting from 417 different root states. The longest
path between the initial system state and a root state comprises 78 transitions. 1561 tree
searches are started from these root states. The maximum search depth is 17 but only
51 out of the 417 root states are used for explorations with a maximum search depth
≥ 4. Due to the efficient detection of identical and redundant states, 370 root states can
be dropped prematurely. Based on the remaining 47 root states, Tree Walk outputs
33 traces; the paths of 14 root states are ignored because they are contained as prefixes
in other paths.

137

8 The Tree Walk Search Strategy

75704

972528

130980

434718

1 10 100 1000 10000 100000 1000000
Transitions / States

0

5

10

15

20

25

30

Sy
m

bo
l C

ov
er

ag
e

(%
)

Tree Walk

Random Walk

Iterative Depth First Search

Figure 8.6: Exploration of the VB5.2 protocol

8.6 Discussion

The Tree Walk algorithm has been implemented in Autolink. Its efficiency has been
demonstrated by the two case studies described in the previous section.

A major advantage of Tree Walk from the user’s point of view is that it does not need
to be configured. Tree Walk only requires a termination criteria, i.e., a target coverage
and an expiration time, to do its job. In contrast, the iterative DFS strategy requires
a maximum search depth and – if used in conjunction with the Supertrace algorithm –
a fixed hash table size. This information must be provided by the test specifier who is
often not able to assess the impact of the options on the outcome and who needs several
trials until an optimal result is obtained.

Despite the benefits of Tree Walk there are a few aspects that must be taken in
account when running Tree Walk. There are also possible further improvements that
are sketched in the following.

Assumption on Quiescence. An important prerequisite for the use of Tree Walk
(at least as implemented in Autolink) is that, starting from any state, the simulated
system eventually becomes quiescent if no further input is made. Whenever coverage is
increased, Tree Walk continues the state space exploration as long as the system is

138

8.6 Discussion

able to perform some action – regardless of the maximum search depth. As mentioned
before, this extension is useful to produce test cases that include all responses to a former
stimulus, i.e., that do not end abruptly with a signal sent from the test environment.5

Unfortunately, there are specifications that violate this prerequisite. However, such un-
desired behavior can often be suppressed by filtering heuristics such as assigning low
priorities to timer expiration events and SDL spontaneous transitions.

Exceptional Behavior. Without provisions, Tree Walk — like any other search strat-
egy — produces both traces that describe regular behavior as well as traces that describe
exceptional behavior. The latter traces are not always wanted as test purposes.

For instance, consider the medium process as part of the Inres SDL system. In the
original specification, the medium may transmit or drop signals. During the test pur-
pose specification phase, the indeterministic choice and the latter alternative should be
removed from the specification. In other cases, filtering heuristics may allow to hide
unwanted behavior such that the specification itself does not have to be modified.

Missing Postambles. The purpose of Tree Walk is to find paths whose execution
results in a high coverage — it is not concerned with finding postambles. Thus, the
paths obtained by Tree Walk should be completed in such a way that the system is
driven in its initial state again. Preferably, a breath-first search or iterative DFS should
be used for that purpose.

Computation of the Effective Coverage. When generating a test case from a path
generated by Tree Walk, one abstracts from all internal behavior. Thus, it is possible
that a non-deterministic system executes different internal actions while showing the
same input-output behavior. Just like the SaMsTaG tool proves that a possible pass
observable (PPO) is a unique pass observable (UPO), the traces generated by Tree
Walk might be checked in an additional step that they always increase coverage.

5In addition, the exploration will likely result in further coverage increases such that it is reasonable
to proceed the current exploration.

139

8 The Tree Walk Search Strategy

140

9 Test Suite Representation

One aspect of automatic test generation that is neglected in literature is the appropriate
representation of test suites. Tests derived automatically from a formal specification
look different from test suites written by hand. Tools produce test suite documents in
a uniform manner based on templates. Test suites developed manually do not have the
same degree of uniformity as they evolve step-by-step. But, on the other hand, they
tend to be more compact and more readable. There are two major reasons why test
generation tools fail with regard to the readability of their test suites:

• Generic names are assigned to entities that cannot be associated with named
entities in the formal specification.

• Flat structures are used for the representation of both data and behavior.

The problem of generic names concerns all kinds of entities: Test cases and test steps,
constraints, formal parameters, etc. Readability requires intuitive names that indicate
what an entity stands for. For example, the name of a test case should clearly describe
its test purpose; a constraint name should indicate which part of the data definition is
most important.

The lack of structuring results in large test suites in which a lot of information is
replicated. For reusability purposes, test cases should be structured into several test
steps. This also makes the inter-relations and intra-relations of test cases explicit in a
test suite document. Similarly, constraints of the same type often only differ in just a
few data fields and should be combined by means of parameterization, derivation, and
chaining to provide a compact representation.

The problems described above can be reduced to the same cause, namely the lack of
information about the meaning and relationship of entities. What is tested by a spe-
cific test case? What is different/common between two similar constraints of which an
appropriate structuring can be deduced?

There are different ways to overcome the problem:

1. User defined rules

The test specifier tells the test generation tool explicitly how to structure a test
suite. This approach is adequate if test generation proceeds in an interactive way.
For example, in the Autolink tool, the user can specify test purposes as mes-
sage sequence charts whose structure is preserved during the mapping to TTCN.
Moreover, Autolink’s configuration language can be used to name and structure
TTCN constraints and arrange test cases and test steps in test groups.

141

9 Test Suite Representation

2. Syntax-directed heuristics

The specification on which automatic test generation is based may also give some
hints on the meaning of a test. For example, if an SDL save construct is executed
during simulation, the test might be classified as a behavior test rather than a
basic interconnection test, because some exceptional case is covered.

3. Information derived during test case generation

The test case generation process itself may suggest a reasonable structuring and
naming. For instance, information about which part of a generated trace refers to
the test purpose can be derived. If test generation is based on transition coverage,
the input signal which triggered the covered transition, the process in which the
transition took place, and the start and end state of the transition can be used as
criteria for naming and structuring test cases. This approach has been used in the
TestComposer tool.

4. Heuristics based on statistical analysis

If the same information reoccurs at several places in a document, it is of advantage
to merge them. Moreover, if there is a set of entities of the same type and one
of these entities is referred to more often than all others, the conclusion may be
drawn that this entity plays the role of a default or denotes the “normal” case.

Even though one may argue that an automatically generated test suite is not intended
primarily for human inspection, there are good reasons to improve their readability:
Test tools generate abstract test suites (ATSs). These ATSs have to be transformed
further into executable test suites before they can be applied to a concrete SUT. This
processing step requires the intervention of a test realizer who defines a mapping of ATS
elements (e.g., PCOs, send/receive events) to the components of a concrete test system.
ATSs are also published as standards by organizations such as the ATM Forum or ETSI.
And most important, the assessment of (negative) test results becomes easier if an ATS
provides precise and well-structured information.

This chapter presents different solutions to overcome the readability problem. In sec-
tion 9.1, the Autolink script language is presented. It allows to control the appearance
of generated test suites by user-defined rules. In particular, the naming and parame-
terization of TTCN-2 constraints and the structuring of test cases into test groups are
considered. Section 9.2 deals with the automatic structuring of constraint descriptions.
A pragmatic, stepwise procedure is presented that works in polynomial time. Its ef-
fectiveness is demonstrated by two case studies. To simplify the implementation of a
prototype for this procedure, a generic language for pattern matching and manipulation
of lists has been developed. It is described in section 9.3. Finally, section 9.4 discusses
some possible future improvements.

9.1 The Autolink Script Language

Within the Autolink project, a script language has been developed that allows the
test specifier to control the appearance of generated test suites. The Autolink script

142

9.1 The Autolink Script Language

language addresses two problem areas:

1. The representation of constraints (including the introduction of test suite constants
and parameters)

2. The structuring of test cases and test steps into test groups

A script is defined once before a test generation is started. Its automatic evaluation
saves a lot of manual post-processing of a generated TTCN test suite. In particular,
this holds for the case that the SDL specification needs to be refined and thus the test
generation process has to be repeated.

9.1.1 General Language Concepts

An Autolink configuration script consists of a sequence of constraint rules, test suite
structure rules, and auxiliary functions. Rules and functions can be mixed arbitrarily
in a configuration script. Autolink evaluates them in the order in which they are
defined. If several rules are applicable at run-time, only the first one is considered. As a
consequence, more specific rules should be put on top of default rules.

One design goal of the script language was simplicity. Even an unexperienced user shall
be able to comprehend the meaning of existing scripts and specify his own set of rules
within a short period of time. The script syntax is not very strict in the sense that, for
example, function parameters do not have to be declared. Instead, semantic inconsis-
tencies are checked and resolved at run-time like in many other script languages.

The only data type available in the script language is text (character string). Expressions
are constructed by basic elements, called atoms. An atom is either a simple text, a
pattern, a function call, or some context-dependent operator. A list of all types of atoms
is given in figure 9.1. An atom always evaluates to text at run-time. Atoms of different
kinds can be concatenated by means of the “+” operator to build complex terms.

9.1.2 Constraint Rules

The Autolink script language allows to specify how SDL signals are mapped to TTCN
constraints during the test generation process by a set of user-defined constraint rules.
In detail, these rules address the following issues:

Naming of constraints Without user assistance, constraint names have to be created
generically. For instance, a constraint may be named after its signal or the test
case in which it is used. If there are different constraints with the same name,
they must be distinguished by an additional sequence number. In practice, such
a naming scheme is neither satisfying nor flexible enough. By means of constraint
rules, the test specifier is able to define his own mapping.

Parameterization of constraints Parameterization is a proper means to avoid a vast
number of similar constraints. Moreover, values that are strongly context-depend-
ent become actual parameters and are defined directly within that context, i.e.,

143

9 Test Suite Representation

• Simple texts (e.g., "Request" or Request)
Texts must be enclosed by quotation marks if they do not consist of a letter or
underscore followed by an alphanumeric character or underscore.

• Patterns (e.g., "Sig*")
Texts with the special characters “*”, “?”, and “[...]” are interpreted as patterns
in the header of constraint and test suite structure rules, as well as in conditions.

• Function calls (e.g., OpName($3))
Function calls are allowed in the body of constraints rules, test suite structure rules,
and functions.

• References to parameters (e.g., $0, $2)
Within the body of a constraint rule, $n denotes the value of the n-th signal param-
eter; within a function body, it returns the n-th function parameter. As a special
case, $0 denotes the name of the signal or function itself.

• References to atomic expressions (e.g., @2)

Within the body of a constraint or test suite structure rule, @n denotes the

value matching the n-th atom in the rule header. E.g., if a rule with expression

"a" + "*" + "c" in the header is applied to input "abc", then @2 is equal to "b". In

rules with alternative terms in the header, @n refers to the n-th atom in the term

that actually matches the input.

Figure 9.1: Atomic expressions of the Autolink script language

in the constraint references in the specific dynamic behavior description. This
improves the readability.

Replacement of parameter values by wildcards If, during test execution, some param-
eter value of a received message is irrelevant for the computation of the test result,
or the exact value is unpredictable (because it depends on the test history) than
the signal parameter should be represented by an expression with a TTCN match-
ing mechanism in the constraint declaration table. However, Autolink demands
that all signals have specific parameter values in an MSC test purpose.1 If the test
specifier wants to replace some values by arbitrary expressions afterwards, this can
be achieved by a script rule.

Introduction of test suite parameters and constants Test suite constants are useful if
a concrete parameter value does not give any clues about its meaning and hence
should be replaced globally by a more meaningful name. Test suite parameters are
similar to constants except that no value is specified for them. Test suite parame-
ters should be introduced if signal parameters are implementation dependent. For
instance, if a telecommunication system is to be tested that supports free phone

1This requirement has both procedural and technical reasons: When generating MSC test purposes,
Autolink explores the state space of the SDL specification with a number of preset and concrete
input data. As a consequence, the resulting MSC test purposes have signals with concrete data as
well. Moreover, the simulator engine which Autolink is based on is not able to check whether a
specific value matches an expression with matching mechanism.

144

9.1 The Autolink Script Language

TRANSLATE TC_ContinueReq

CONSTRAINT NAME "C_TC_ContinueReq"

PARS $1="Dialog_ID"

END

(a) Constraint rule

ASN.1 ASP Constraint Declaration

Constraint Name : C TC ContinueReq 001(Dialog ID : DialogIDtype)

ASP Type : TC ContinueReq

Derivation Path :

Comments :

Constraint Value

{ dialogIDtype1 Dialog ID, tCoriginType2 oSCF }
Detailed Comments :

(b) Constraint Declaration Table

Figure 9.2: Autolink script language – A simple constraint rule

numbers, the phone number prefix should not be hard-coded in the ATS. Instead,
it should become a test suite parameter, since it varies with the countries. Within
OSI’s CTMF, each test suite parameter refers to a PIXIT document.

In the following, the constraint rules of Autolink’s script language are described by
examples of the INAP CS-2 case study.

Constraint rules can be considered as mapping rules: Autolink translates an SDL signal
into a suitable TTCN constraint. Each constraint rule consists of two parts: The header
specifies one or more signal types to which the mapping shall apply. The rule body
defines how concrete signal instances of these types shall be represented in TTCN-2.

A simple constraint rule is shown in figure 9.2(a). The rule states that signals of type
TC ContinueReq shall be mapped to constraints whose name is C TC ContinueReq.
If more than one constraint is built during the test generation, all constraints are dis-
tinguished by an additional sequence number. Moreover, Autolink parameterizes the
resulting constraints with the first parameter of the corresponding signals (referred to by
$1). The name of the formal parameter used in the constraint declaration table is Dia-
log ID. An exemplary constraint declaration table for signal TC ContinueReq(51,oSCF)
is shown in figure 9.2(b). The value 51 has become an actual parameter and is specified
in the references to this constraint in the dynamic behavior part.

The Autolink script language also allows to define a single constraint rule for more
than one signal type. This is especially useful if there are similar signal types which can
be treated in the same way. The constraint rule in figure 9.3 is applied if a constraint
is created for a signal of either type CallProgressInd or CallProgressReq during the test
generation. Following the notation for parameters, the name of the signal itself can be
accessed by $0. The value of $0 (as well as $1, $2, . . .) depends on the concrete signal

145

9 Test Suite Representation

TRANSLATE CallProgressInd | CallProgressReq

CONSTRAINT NAME "C_" + $0

PARS $1="callRef"

END

Figure 9.3: Autolink script language – A constraint rule for multiple signal types

translated at run-time. The resulting constraint name consists of the concatenation of
text ”C ” and the name of the actual signal.

In addition, a formal parameter with name callRef is introduced for the first signal
parameter. When reading a constraint rule, Autolink performs static checks to ensure
that all signal types declared in the rule header have at least as many parameters as
required in the optional CONSTRAINT PARS statement.

Constraint names may not only be composed of plain text and signal names. They can
also depend on signal parameters. However, in some cases it is not desirable to take the
textual representation of a parameter value directly as part of a constraint name. E.g.,
a protocol engineer might encode complicated signal information with abbreviations or
numbers. But for the TTCN test suite output, these abbreviations should be mapped
to extended, more meaningful names.

For that purpose, functions can be defined which take an arbitrary number of input
parameters and map them to some text. A function consists of a sequence of condi-
tion/term pairs that are evaluated from top to bottom. As soon as a condition evaluates
to true, the text described by the corresponding term is returned. A condition checks
whether two terms evaluate to the same text. Single term comparisons can be combined
by the AND operator.2 Typically, a function parameter is compared successively with
predefined values. Function parameters can be accessed by $n , i.e., in the same way as
signal parameters in a constraint rule (cf. figure 9.1).

In figure 9.4(a), the fourth parameter of TC InvokeReq is taken as input for function
OpName. Depending on its value (denoted by $1), the function returns a text which
forms the second half of the constraint name. As a consequence, TC InvokeReq signals
whose fourth parameters differ are mapped automatically to constraints with different
names. A possible constraint declaration table for a TC InvokeReq signal is shown in
figure 9.4(b).

If the translation of a signal should not only depend on the signal type but also on some
signal parameter value, conditional rules can be defined by means of IF statements in
the rule body. Only if the conditions in an IF statement are satisfied, the constraint is
built according to the subsequent specification. A rule body can have several IF clauses
and a final unconditioned block. The first clause whose condition evaluates to true (or
which has no IF statement at all) is applied.

2There is no explicit OR operator. However, the consecutive evaluation of conditions in functions and
rules equals a disjunction.

146

9.1 The Autolink Script Language

TRANSLATE TC_InvokeReq

CONSTRAINT NAME "CIR_" + OpName($4)

PARS $1="Invoke_ID", $2="Dialog_ID"

END

FUNCTION OpName

$1 == "ASF" : "ActivateServiceFiltering"

...

| $1 == "RC" : "ReleaseCall"

...

| $1 == "SL_R" : "SplitLegResult"

| TRUE : "UnknownOpCode"

END

(a) Constraint rule and function

ASN.1 ASP Constraint Declaration

Constraint Name : CIR ReleaseCall(Invoke ID : InvokeIDtype; Dialog ID : DialogIDtype)

ASP Type : TC InvokeReq

Derivation Path :

Comments :

Constraint Value

{ invokeIDtype1 Invoke ID, dialogIDtype2 Dialog ID, opClassType3 4, opCodeType4 RC,
timeoutValType5 short, argType6 rCArg : initialCallSegment : PIX ReleaseCause }
Detailed Comments :

(b) Constraint Declaration Table

Figure 9.4: Autolink script language – Using functions in constraint rules

TRANSLATE TC_EndInd

IF $2 == "basic" THEN

CONSTRAINT NAME "C_" + $0 + "Basic"

PARS $1 = "Dialog_Id"

END

CONSTRAINT NAME "C_" + $0

END

Figure 9.5: Autolink script language – A conditional constraint rule

147

9 Test Suite Representation

TRANSLATE TC_ErrorInd

CONSTRAINT NAME "C_" + $0 + $3

PARS $1 = "Invoke_ID", $2 = "Dialog_ID"

MATCH $4 = "*"

END

(a) Constraint rule

ASN.1 ASP Constraint Declaration

Constraint Name : C TC ErrorIndTRUE(Invoke ID : InvokeIDtype; Dialog ID : DialogIDtype)

ASP Type : TC ErrorInd

Derivation Path :

Comments :

Constraint Value

{ invokeIDtype1 Invoke ID, dialogIDtype2 Dialog ID, boolean3 TRUE, errorType4 * }
Detailed Comments :

(b) Constraint Declaration Table

Figure 9.6: Autolink script language – Constraints with wildcards

The rule in figure 9.5 translates signals of the type TC EndInd into parameterized con-
straints called C TC EndInd Basic if the second signal parameter equals basic. Other-
wise, the unconditioned section is evaluated, i.e., a constraint with name C TC EndInd
is created (without constraint parameters).

If the exact value of a constraint parameter is irrelevant or unpredictable during test
execution, the corresponding signal parameter value should be replaced by a wildcard
during test generation. This can be achieved with a MATCH statement as shown in fig-
ure 9.6(a). The fourth parameter of signals of type TC ErrorInd denotes an error type.
Since different errors might occur during test execution, it is replaced by “*” in the
TTCN-2 test suite (figure 9.6(b)). The application of TTCN matching mechanisms is
only valid for receive events. Hence, MATCH statements are only allowed for signals that
become receive events in TTCN.

Constraint rules also allow to introduce test suite parameters and constants. By defining
a test suite parameter/constant, a concrete signal parameter value in a constraint table
is replaced by a symbolic name. The name is listed either in the TTCN Test Suite
Constant Declarations table (where the value of the substituted signal parameter is
assigned to it) or in the Test Suite Parameter Declarations table (where an optional
reference to a PICS/PIXIT proforma entry is made).

In figure 9.7(a), the rule of figure 9.2 has been extended in such a way that the value of the
first signal parameter is replaced by a global test suite parameter called PIX DialogId.
If more than one TC ContinueReq signal is translated during test generation and the
signals have different values for the first parameter, conflicts are resolved by appending
a sequence number to the test suite parameter name.

148

9.1 The Autolink Script Language

TRANSLATE TC_ContinueReq

CONSTRAINT NAME "C_" + $0

PARS $1 = "Dialog_ID"

TESTSUITE PARS $1 = "PIX_DialogId"

END

(a) Constraint rule

Test Case Dynamic Behaviour

. . .

3 SCF ! TC ContinueReq C TC ContinueReq(PIX DialogId1)

. . .

Detailed Comments :

(b) Test Case Dynamic Behaviour Table

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments

PIX DialogId1 INTEGER

Detailed Comments :

(c) Test Suite Parameter Declarations Table

Figure 9.7: Autolink script language – Test suite parameters

The example demonstrates that constraint parameterization and test suite parameteri-
zation can be applied to the same signal parameter. As a result, a constraint declaration
table for signal TC ContinueReq(51,oSCF) looks essentially the same as with the rule in
figure 9.2. However, the value 51 is replaced by PIX DialogId1 in all constraint references
and an entry is added to the Test Suite Parameter Declarations table (see figure 9.7(b)
and (c)). Test suite constants can be introduced in the same way as test suite param-
eters except that the keyword CONSTS has to be used instead of PARS (for a complete
description of the Autolink script language syntax see figure 9.12).

9.1.3 Test Suite Structure Rules

In TTCN-2, test cases and test steps can be combined in test groups. A test group is
a logical unit that denotes some common property among its members. For example,
a test group may comprise test cases that all aim at testing a particular physical or
logical unit of some IUT. Alternatively, a test group may describe the kind of testing
(stress testing, performance testing, etc.). Test steps can be subsumed, e.g., under two
test groups for preambles and postambles.

A test group itself can be part of another one which results in a hierarchy of test groups.
In that case, the test groups on the different levels should classify the test cases and test
steps according to orthogonal criteria.

149

9 Test Suite Representation

A test specifier should have a clear notion of the test suite structure before he starts
specifying test purposes, i.e., he should first determine what should be tested and how
the tests can be categorized.

When using Autolink, test purposes are described by MSCs. The Autolink script
language allows to define rules that place test cases and test steps3 in different test
groups automatically, depending on the names of their corresponding MSCs. These test
suite structure rules do not only save a lot of manual editing if the test suite has to
be regenerated. Even if the test suite is created just once, writing a small script can be
beneficial since a single rule can apply to several test cases. In the best case, one test
suite structure rule is sufficient to describe the structure of a complete test suite.

In the INAP CS-2 case study, test cases have been classified according to four different
criteria: On the top level, tests are distinguished by the system interface that is inves-
tigated. On the next level, tests are grouped with regard to the protocol components
(common sets) involved. A further subdivision is made based on procedures, i.e., collec-
tions of elementary INAP operations that are tested together. Finally, tests are provided
for four different test categories.

The structuring of the INAP CS-2 test suite is reflected in the names of the test purposes
as shown in figure 9.8. Each name is composed of four acronyms that place the test
purpose uniquely in the test group hierarchy. In addition, a sequence number is used
to distinguish test purposes belonging to the same test group. According to the scheme
in figure 9.8, IN2 A BASIC AT CA 01 is a valid name. It denotes a test that checks
the basic capability of the ActivityTest procedure. During test generation, MSC test
purposes are mapped to test cases with identical names.

In a simple Autolink script, a separate test suite structure rule can be defined for
each path of test groups. The rule in figure 9.9 makes Autolink place the test cases
IN2 A BASIC AC BV 03 and IN2 A BASIC AC BV 04 in a hierarchy of test groups,
with ValidBehavior being the innermost one. The names of the test groups in the path
specification are separated by a slash (’/ ’) in accordance with the notation of test group
references in TTCN-2.

Rules like the one described above can be applied to MSCs with arbitrary names. At
best, one test suite structure rule has to be written for each test group. On the other
hand, the MSC names in the given example adhere to a regular pattern where some
fields of the pattern directly relate to test groups. Thus, instead of a list of concrete
names, such a pattern can be specified in the header of a test suite structure rule. As a
side effect, several rules can be merged.

Patterns in the Autolink script language are specified identically to glob patterns used
for file name substitution in command shells (see Gilly, 1994, page 43). The following
characters have a special meaning when used in the header of test suite structure rules:4

• ’*’ matches any string of zero or more characters.

3In the following, no distinction is made between test cases and test steps as they are handled equally.
4Patterns can also be specified in the header of constraint rules and in conditions.

150

9.1 The Autolink Script Language

Test purpose name pattern:

IN2 i sss pp cc nn

i = interface

A ≡ SSF-SCF interface

B ≡ SSF-SRF interface

C ≡ SCF-SCF interface

sss = common set

BASIC ≡ Basic set for CS-1 complemented for CS-2

CPH ≡ Call Party Handling from CS-2

CTM ≡ Cordless Terminal Mobility from CS-2

pp = procedure name

AC ≡ ApplyCharging

AT ≡ ActivityTest

CA ≡ Cancel

. . . ≡ . . .

cc = test category

CA ≡ Capability tests

BV ≡ Valid behavior tests

BI ≡ Invalid behavior tests

BO ≡ Inopportune behavior tests

nn = sequence number

01 – 99

Figure 9.8: Test purpose naming scheme for INAP CS-2

PLACE IN2_A_BASIC_AC_BV_03 | IN2_A_BASIC_AC_BV_04

IN "BasicSetCS1" / "ApplyCharging" / "ValidBehavior"

END

Figure 9.9: Autolink script language – A simple test suite structure rule

151

9 Test Suite Representation

PLACE "IN2_" + "?" + "_" + "*" + "_" + "*" + "_" + "*" + "_*"

IN sss(@4) / pp(@6) / cc(@8)

END

FUNCTION sss

$1 == "BASIC" : "BasicSetCS1"

| $1 == "CPH" : "CallPartyHandling"

| $1 == "CTM" : "CordlessTerminalMobility"

End

FUNCTION pp

$1 == "AC" : "ApplyCharging"

| $1 == "AT" : "ActivityTest"

| TRUE : "UnknownService"

End

FUNCTION cc

$1 == "CA" : "Capability"

| $1 == "BV" : "ValidBehavior"

| $1 == "BI" : "InvalidBehavior"

| $1 == "BO" : "InopportuneBehavior"

End

Figure 9.10: Autolink script language - A generalized test suite structure rule

• ’?’ matches any single character.

• ’[. . .]’ matches any single character in the enclosed list.

Within [. . .], character ranges are specified by a pair of characters separated by
’-’. For example, [a-z] matches any lowercase letter. If the first character is ’!’,
the expression matches any character not enclosed in the brackets.

When a test suite structure rule is evaluated, it is checked first whether one of the terms
following the keyword PLACE matches the name of the given MSC. The first statement
in figure 9.10 has one term consisting of 9 elements that are concatenated with the ’+’
operator. The splitting of patterns makes it possible to refer to a particular element
(called atom). The ’@n’ operator is used to denote the concrete value of the nth atom
when an MSC name matches the pattern.

Additionally, functions can be defined that map parameters to arbitrary texts. For ex-
ample, function sss in figure 9.10 returns the text ”BasicSetCS1” if the first parameter
passed to sss is equal to ”BASIC”.

The application of the test suite structure rule in figure 9.10 and its helper functions is
illustrated in figure 9.11. First, Autolink checks whether the pattern of the test suite
structure rule matches the given MSC name (IN2 A BASIC AC BV 03). At the same
time, each atom of the pattern is associated with a substring of the MSC name. After
successful matching, the forth atom (”*”) is bound to BASIC. Therefore, the call of
function sss with parameter @4 returns BasicSetCS1.

152

9.2 Automatic Structuring of Constraint Descriptions

MSC name: IN2_A_BASIC_AC_BV_03

Pattern:

Test group:

sss(BASIC)

pp(AC)

cc(BV)

BasicSetCS1 / ApplyCharging / ValidBehavior

Function call:

IN2_ ? _ * _ * _ * _*

Figure 9.11: Application of the generalized rule

9.2 Automatic Structuring of Constraint Descriptions

The Autolink script language presented in the previous section allows to customize a
test suite in a semi-manual way. Among others, it provides the user with a facility to
define rules for the parameterization of constraints. While this approach enhances the
readability of the generated test suite at low effort, it still requires the intervention of
the test specifier.

Preferably, test suites should be optimized automatically. But for that purpose, one
needs to define a function opt : Testsuite 7→ R

+. The optimization of some test suite ts

means to find a semantically equivalent test suite ts′ so that opt(ts′′) ≥ opt(ts′) is true
for all semantically equivalent test suites ts′′. In this context, semantical equivalence
among test suites is defined by trace equivalence. Obviously, there might be more than
one optimal test suite.

But what does optimization mean with regard to abstract tests suites, i.e., what is a
reasonable function opt? ETSI Technical Report 141 (1994) lists 7 factors that contribute
to the overall quality of an ATS and 10 quality criteria that influence these factors (see
figure 9.13). In the given context, only the quality factors usability, maintainability,
testability, flexibility, and reusability are relevant, because the correctness should not be
influenced.

The given quality criteria are largely subjective and thus cannot be formalized. The
size of a test suite might be considered as a weak approximation for an optimization
function, i.e., a minimal test suite (in terms of symbols) is supposed to be optimal.
On the other hand, a compressed document is not preferable per se. Parameterized
entities may be of advantage sometimes but too much parameterization confuses the
reader. When computing the “size” of a test suite, each language element may be given
a weight. E.g., a formal parameter of a constraint contributes to the size with a higher
factor than a constraint name. However, the choice of appropriate weights tends to be
arbitrary.

A more promising approach than trying to define a global optimization function is to
set up a list of design requirements. Then, a test suite is “optimized” by a sequence
of operations that transform it into another one that meets these requirements. Design

153

9 Test Suite Representation

<configuration> ::= { <constraint rule>

| <structure rule>

| <function> }*

<constraint rule> ::= TRANSLATE [SIGNAL] <alt term list>

{ <constraint body if> }* [<constraint body>]

END

<constraint body if> ::= IF <conditions> THEN <constraint body> END

<constraint body> ::= [CONSTRAINT <translation constraint>]

[TESTSUITE <translation testsuite>]

<translation constraint> ::= [NAME <term>]

[PARS <parameter list>]

[MATCH <parameter list>]

<translation testsuite> ::= [CONSTS <parameter list>]

[PARS <ext parameter list>]

<parameter list> ::= <parameter> { , <parameter> }*

<parameter> ::= $ <number> [= <term>]

<ext parameter list> ::= <ext parameter> { , <ext parameter> }*

<ext parameter> ::= $ <number> [= <term>] [/ <term>]

<structure rule> ::= PLACE <alt term list>

{ <structure body if> }* [<structure body>]

END

<structure body if> ::= IF <conditions> THEN <structure body> END

<structure body> ::= IN <term> { / <term> }*

<function> ::= FUNCTION <identifier> <mappings> END

<mappings> ::= <mapping> { | <mapping> }*

<mapping> ::= <conditions> : <term>

<term> ::= <atom> { + <atom> }*

<atom> ::= $ <number>

| @ <number>

| ”text”

| <identifier>

| <function call>

<function call> ::= <identifier> (<seq term list>)

<seq term list> ::= <term> { , <term> }*

<alt term list> ::= <term> { | <term> }*

<conditions> ::= <condition> { AND <condition> }*

<condition> ::= <term> { == | != } <term>

| TRUE

Figure 9.12: Syntax of the Autolink script language in EBNF

154

9.2 Automatic Structuring of Constraint Descriptions

Quality factors

U
sa

b
il
it
y

C
or

re
ct

n
es

s

M
ai

n
ta

in
ab

il
it
y

T
es

ta
b
il
it
y

F
le

x
ib

il
it
y

P
or

ta
b
il
it
y

R
eu

sa
b
il
it
y

Traceability x

Completeness x

Consistency x x

Simplicity x x

Quality Generality x x

criteria Instrumentation x

Self-descriptiveness x x x x x

Operability x

Training x

System independence x x

Figure 9.13: Quality factors and criteria (ETSI TR 141, 1994)

decisions concern, among others, naming conventions, the test suite structure, the use of
timers, and the definition of default trees. With regard to constraints, the test specifier
must decide whether or not to use ASN.1, base/modified constraints, static/dynamic
chaining, and parameterized/constant constraints. Among others, ETSI TR 141 (1994)
proposes the following rules:

1. “Define different base constraints for the send- and receive direction of a PDU
(when applicable).” (p. 36)

2. “Use modified constraints preferably when only a small number of fields or param-
eter values are altered with respect to a given base.” (p. 36)

3. “When modified constraints are used, keep the length of the derivation path small.
[. . .] a length greater than 2 is normally difficult to overview and maintain.” (p. 36)

4. “Make a careful evaluation of which embedded PDUs are needed in ASPs/PDUs
[. . .] to find an appropriate balance between the use of static and/or dynamic
chaining in a particular ATS.” (p. 37)

5. “Make a careful overall evaluation of which field/parameter values are needed in
ASPs and PDUs to find an appropriate balance between the aim of a compa-
rably small number of constraint declarations and readable and understandable
constraint references.” (p. 39)

6. “Keep the number of formal parameters small. [. . .] a number bigger than 5 nor-
mally cannot be handled very well.” (p. 39)

155

9 Test Suite Representation

7. “Constraints used in test steps should be parameterized for simple adaptation of
the test steps to specific test cases (p. 49).”

ETSI TR 141 also notes that some ETSI projects exclude the use of modified constraints
in their ATS design document. Unfortunately, some of these rules are specified vaguely
or are even opposing (2 vs. 7).

The optimization of a test suite cannot be a linear process in the sense that the op-
timization function is decreased with each transformation. Instead, it is necessary to
perform some steps that seem to drift away from the optimal solution but will allow
significant improvements in the following. Due to the large size of a test suite document,
the extend to which the effect of different transformations is examined, must be strictly
limited, leading to the well-known hill-climbing problem and suboptimal solutions.

In the following, a simple yet efficient approach to the automatic structuring of constraint
descriptions is presented that takes into account all kinds of constraint structuring,
i.e., constraint chaining (statically and dynamically), constraint parameterization, and
constraint derivation (cf. section 3.1.3). For the reasons explained above, an optimization
of a test suite in the strict meaning is not possible. Instead, the presented algorithm
may only lead to suboptimal yet sufficiently good solutions.

The principle idea is to split complex constraints into a set of chained constraints first
and to combine these constraints afterwards. In detail, the algorithm comprises four
major steps:

1. Factorization of subconstraints

2. Merging of identical constraints

3. Combination of similar constraints

a) Constraint parameterization

b) Constraint derivation

4. Defactorization of constraints

In each of these steps, some general design decisions and protocol-specific constraints
are taken into account.

9.2.1 Constraint Factorization

The constraint structuring starts by splitting up complex constraints that consist of
nested, structured values and transforming them into a set of chained constraints.

Provided that in the initial state, constraints are neither parameterized nor derived from
another constraint, this transformation can be formalized as follows: As long as there
is a constraint c in the test suite with a structured constraint value {d1, . . . , di, . . . , dn}
where di itself is a structured value, add a constraint c′ with a new, unique name and di

as its constraint value to the test suite. Furthermore, replace di in the value description
of c by a reference to c′ (⇒ {d1, . . . , c

′(), . . . , dn}).

156

9.2 Automatic Structuring of Constraint Descriptions

After the termination of this process, complex constraints are replaced by an increased
number of smaller and simpler constraints which can be handled more flexibly in the
succeeding steps. However, in some cases the test specifier might want to control the
constraint factorization by one or more options:

1. A list of (structured) data types for which constraints are not to be factorized

If a nested, structured constraint value forms an indivisible logical unit, all sub-
values should be kept in the same constraint declaration.

2. A threshold for the size of constraint values which are to be factorized

If the size of a constraint in its textual representation is too small, readability
decreases. Experiments have shown that the textual description of a constraint
value in ASN.1 format should comprise at least 8 words (equals to an ASN.1
sequence with 4 fields) for constraint factorization to become reasonable.

3. A list of (structured) data types for which constraints are to be factorized (disre-
garding the size threshold)

4. A maximum depth for constraint chaining

If constraints are chained, a test engineer has to browse through several tables in
order to view the complete data structure. While horizontal splitting, i.e., having
two or more references on the same level in a constraint, is not problematic, deeply
nested constraints have a negative impact on readability. ETSI’s TTCN-2 style
guide (1994) recommends a maximum nesting depth of 3.

Conditions 2 and 4 can be realized in different way. For example, for a constraint with
nesting depth n and a single data field on each level, there are already

(

n
m

)

possibil-
ities to factorize its substructures such that a maximum chaining of m constraints is
obtained. To apply the restrictions above in a technically simple and unambiguous way,
the factorization process should start at the leaves, i.e., the deepest substructures – if
possible – are factorized first.

A practical problem of factorization is that for each constraint that is defined in a test
suite, a corresponding data type must be defined as well. Just like nested constraints,
nested data types may be specified in a single declaration. In that case, the types for
the data elements are declared inline and no name is given to them. Thus constraint
factorization may also necessitate data type factorization.

9.2.2 Constraint Merging

In the second step, constraints with identical values are merged. As long as there are
two constraints c1 and c2 with identical constraint value, c2 is removed and all references
to c2 are replaced by references to c1.

A simple algorithm to merge constraints is to take one constraint after the other and
compare it with all other constraints (this can be done in O(n2)). However, the order in

157

9 Test Suite Representation

which attempts to merge constraints are made is important. Otherwise, some possible
mergers might not be detected.

In the following, the notation c1 ⇒ c2 is used to describe that the value description
of c1 includes a reference to c2. Two constraint descriptions c1 and c2 are syntactically
equivalent (c1 = c2) if their formal parameters, base constraints, and value descriptions
are identical. Two constraint descriptions c1 and c2 are semantically equivalent (c1 ≡ c2)
if c1 and c2 are syntactically equivalent after relabeling of their formal parameters and
recursive substitution of all constraint references by the values of the corresponding
constraints.

Given the definitions above, consider four constraints c1, . . . , c4 with c1 ⇒ c3, c2 ⇒ c4,
c1 = c2, and c3 ≡ c4. If c1 is compared with all other constraints first, no possible merger
is found. However, after combining c3 and c4, the constraint references in c1 and c2 are
updated which results in c1 ≡ c2. As a consequence, constraints must be processed in
such a way, that those belonging to“deep”data structures are taken first for comparison.
(I.e., for c1 ⇒ ... ⇒ cn, the constraints have to be investigated in reverse order cn, ..., c1)

Constraint factorization and merging correspond to the problem of finding common
subexpressions in compiler construction. With these steps, it is already possible to, e.g.,
unify identical PDUs used in different ASPs, even if these ASPs are of different types
and hence cannot be merged completely.

9.2.3 Constraint Parameterization

After merging identical constraints, constraints of the same type can be further combined
by parameterization. In contrast to the former steps, merging by parameterization does
not necessarily minimize the constraint description, as the introduction of formal and
actual parameters produces some overhead. This overhead does have to be negative in all
cases. If the right fields are chosen as parameters, the reference to a constraint becomes
more expressive.

In principle, any set of constraints of the same type can be merged at the cost of
parameterization. Given a set C of constraints,

Part(C) := { {C1, . . . , Cn} | ∀i ∈ {1 . . . n} : Ci ⊆ P(C),]i∈{1..n}Ci = C,

∀i, j ∈ {1..n}, i 6= j : Ci ∩ Cj = ∅}

denotes the set of all possible partitions of C. The number |Part(C)| of all possible
partitions is given by the Bell numbers (Graham et al., 1994):

B(1) = 1

B(n + 1) =
∑n

k=1

(

n

k

)

B(k)

In an asymptotic approximation, B(n) ∼ n! eer
−1

rn+1
√

2πer
with rer = n . For n = 10, the

number of possible partitions is already 115, 975. Therefore, it is impossible to investi-
gate all possibilities of parameterizing and combining constraints. For the same reason,

158

9.2 Automatic Structuring of Constraint Descriptions

branch-and-bound algorithms do not work satisfyingly as the number of constraints for
a single type in a test suite can exceed 100.

In order to overcome the problem of complexity, a simpler approach must be chosen
that prevents the need to evaluate different possible solutions. A practically applicable
approach chosen for the Autolink project is to iteratively try to merge two constraints.
After each iteration, it is checked whether the intermediate result, i.e., the parameter-
ized constraints and its references, meet certain design criteria. If the unification indeed
improves the constraint representation, the modification is taken over irreversibly. Oth-
erwise, the original constraints are kept and another pair of constraints is investigated.

The run-time complexity of this algorithm is O(n2) with n being the number of con-
straints. If two constraints can be merged with probability p, the average number of
comparisons for n constraints is equal to

n
∑

i=1

(1 − p)i−1(n − i)(1 − p)i−1 =
n
∑

i=1

(1 − p)2i−2(n − i)

For p = 0, the formula above is equal to
∑n

i=1 n− i = n2 − n·(n−1)
2 = n·(n−1)

2 ; for p = 1,
the number of comparisons is n − 1.

There are many imaginable criteria (and even combinations of them) that can be used
to decide whether parameterization of two constraints is favorable. The chosen approach
is to accept all parameterization by default (since one constraint table can be dropped)
and to define a list of criteria when parameterization should be prohibited. For example,
the test specifier may control the parameterization process by the following options:

• A list of data types for which constraints will never be parameterized

• Prevention of dynamic chaining

Dynamic constraint chaining, i.e., constraint references inside actual constraint
parameters, may result in complex structures. If it is disabled, some constraints
might not be mergeable.

• Maximum number of parameters

An upper limit of 3 parameters has proven to be reasonable.

• Maximum ratio of the parameterized constraint and its references to the two orig-
inal constraints and their references

The ratio is measured in words in the ASN.1 definitions and the constraint ref-
erences. A value < 1 means that the test suite is required to shrink, a value > 1
means that the test suite size is allowed to increase. The default value is 1. To
reflect the benefit of reducing the number of constraint tables, a user-defined con-
stant tabsize is taken into account when computing the ratio. Its default value
is 10.

159

9 Test Suite Representation

cref(t1): a()
cref(t1): b()
con(t1): a() := { 1, c() }
con(t1): b() := { 1, d() }
con(t2): c() := { 2, 3 }
con(t2): d() := { 2, 4 }

(a) Original chained constraints and constraint references

cref(t1): a(c(3))
cref(t1): a(c(4))
con(t1): a(fp:t2) := { 1, fp }
con(t2): c(fp:int) := { 2, fp }

(b) First combine constraints of type t1, then constraints of type t2

cref(t1): a(3)
cref(t1): a(4)
con(t1): a(fp:int) := { 1, c(fp) }
con(t2): c(fp:int) := { 2, fp }

(c) First combine constraints of type t2, then constraints of type t1

Figure 9.14: The impact of type ordering on parameterization

• Minimum ratio of the size of the parameterized constraint to the average size of
its references

This option prevents that a large part of the data description becomes actual
parameters. The suggested ratio is 4.

• A list of types whose values are not allowed as parameters

The test specifier may specify data types for which constraint values in both
constraints must be identical, i.e., no parameterization is allowed for them. If the
value of a data field is crucial for the meaning of a constraint, the corresponding
data type should be put on this exclusion list.

A problem with iterative binary parameterization is that the algorithm may produce
suboptimal solutions. For example, consider five constraints with c1() := {2, 8, 4, 2, 1},
c2() := {3, 8, 4, 2, 2}, c3() := {2, 7, 4, 5, 1}, c4() := {2, 5, 4, 3, 1}, and c5() := {2, 3, 4, 9, 1}.
If c1 is merged with c2, the newly created constraint c1+2 is parameterized over the first
and last data field. Successive attempts to merge c1+2 with c3 to c5 will fail because two
more parameters would have to be introduced which exceeds the maximum number of
parameters. If, on the other hand, c1 were merged with c3 first, c1, c3, c4, and c5 could all
be combined at the cost of only two parameters. Methods based on examining different
solutions such as branch-and-bound avoid such dead ends but are not applicable in this
application context.

160

9.2 Automatic Structuring of Constraint Descriptions

In analogy to constraint merging, the order in which constraints of different types are
analyzed has an impact on the result. In figure 9.14(a), two constraint references and
four constraints are given. Constraints a and b are of type t1. They both refer to different
constraints of type t2 (c and d respectively). If the constraints of type t1 are combined
first, the embedded constraint references become actual parameters in the constraint
references to a and b. If c and d (type t2) are united in the following, actual parameters
are introduced in the constraint references to c inside the constraint references to a and
b (see figure 9.14(b)).

If, on the other hand, the constraints of type t2 are parameterized first, the references
in a and b are updated, i.e., both constraints refer to the same new constraint c. As
a consequence, if constraints a and b are merged, the references inside of them do not
have to become actual parameters as a whole but only the parameters inside the con-
straint references. Subjectively, the second way of parameterization is preferable. Thus,
in analogy to constraint merging (section 9.2.2), constraints that are embedded in other
constraints should be considered first. If c1 ⇒ c2, all constraints of the same type as c2

should be considered for parameterization before all constraints with the same type as
c1 are investigated.5

9.2.4 Constraint Derivation

Besides parameterization, constraint derivation is a mechanism to reduce the effort to
describe similar constraints. A constraint is called base constraint if there is a modified
constraint that refers to the base constraint. Within the description of the modified
constraint only those data fields have to be listed that differ from the corresponding
data fields in the base constraint. Accordingly, constraint derivation defines a binary
relation between two constraints. Typically, a base constraint describes the “regular” or
“ideal” case, while a derived constraint describes a special case. In a test suite, there
may be several base constraints of the same data type.

In principle, each pair of constraints of the same type can be checked for whether deriva-
tion leads to the desired saving. If the data descriptions of both constraints are identical
by a certain percentage, say 75% of all words, constraint derivation might be beneficial.
But while constraint parameterization would simply merge the constraints, constraint
derivation imposes a semantical relation between them.

Thus, the question is which — if any — of the two constraints represents the “more
typical” case. There are two heuristics that differ in whether the base constraints are
elements of the set of original constraints and whether the computation is based on
statistical analyses.

5Though TTCN-2 allows recursive data type definitions, mutual inclusion among different data types is
quite unusual. Therefore, it is possible to construct a directed acyclic graph where a node represents
a data type and an arc from t1 to t2 means that type t2 is used inside a structured type t1. During
the parameterization process, a type t must be chosen for which no outgoing arc exists. After the
constraints of this type have been evaluated, the node for t as well as all arcs to the node are removed
from the graph and a new type is selected.

161

9 Test Suite Representation

• Base constraint selection based on the number of references

If there are many more references to one of the two constraints, i.e., the ratio of
the references is above a certain threshold, it is very likely that this constraint
describes the “normal case”.

• Base constraints with default values

A new base constraint is introduced, whose data fields are set to the values of the
two given constraints if they are identical, or set to default values if they differ
(e.g., 0 for integers and floating point numbers, false for booleans, empty sequence
for sequences, etc.). The original constraint descriptions are modified in such a
way that they refer to the new base constraint. If one of the two constraints is
identical to the new base constraint, it is removed from the test suite. This case
occurs if the data values of the constraint are either identical to those of the second
constraint or represent default values.

Constraint modification can be combined with constraint parameterization. For the
prototypical implementation and the case studies in section 9.2.6, constraint derivation
has not been considered. The question, whether the two criteria given above can be
justified empirically, is subject to further studies.

9.2.5 Constraint Defactorization

In order to be able to combine nested data values, factorization is applied initially.
This step leads to a vast number of constraints. After merging and parameterization,
constraints might exist that are used only once. These constraints bloat the test suite
unnecessarily and do not contribute to enhanced readability.

Therefore, all constraints for which only a single reference exists are resolved in a final
step. As a contrary operation to factorization (→ defactorization), all references to these
constraints are replaced by the value descriptions of the constraints and the constraints
are removed from the test suite. (Of course, only those references can be resolved in
TTCN-2 that appear inside the constraint declaration part.)

Surprisingly, a constraint which is used only once may nevertheless be parameterized.
For example, constraint c in figure 9.14(c) has a formal parameter although it is used
exclusively by constraint a.

Defactorization can be controlled by the following settings:

• A (negative) list of types for which constraints will never be defactorized

• A (positive) list of types for which constraints will always be defactorized

By convention, the negative list overrules the positive list.

• A maximum size of constraints which are to be defactorized

The size is measured in words in the ASN.1 definition. By default, the size is set
to infinite so that even large constraints are defactorized.

162

9.2 Automatic Structuring of Constraint Descriptions

Number of constraints Orig Fact Merge Param Defact

VB5.2 71 249 156 53 51

INAP CS-2 324 473 436 200 152

Figure 9.15: Number of constraints in the VB5.2 and INAP CS-2 test suites

Size of test suite Orig Fact Merge Param Defact

VB5.2 3,081 3,615 2,416 1,472 1,460

INAP CS-2 18,670 19,117 18,772 17,610 17,454

Figure 9.16: Size of the VB5.2 and INAP CS-2 test suites

After defactorization, all constraints should be renamed. In particular, if sequence num-
bers are used to distinguish constraints of the same type, this resolves gaps in the
enumeration.

9.2.6 Case Studies

The applicability and benefits of automatic constraint optimization have been demon-
strated by a prototypical implementation that performs the four processing steps fac-
torization, merging, parameterization and defactorization. The prototype is based on a
Prolog system (Zhou, 2000) and makes use of the list manipulation language described
in the next section. It takes a test suite in list form (provided by a modified version of
Autolink) as input and returns a TTCN MP file as output.

The prototype has been applied to test suites derived from the SDL specifications of
VB5.2 and Core INAP CS-2. The VB5.2 case study is based on the same test suite as
the one that has been generated by Autolink for ETSI project STF 151. It comprises
41 test cases and 4 test steps. For INAP CS-2, a test suite consisting of 136 test cases
and 69 test steps has been created.

Figures 9.15 and 9.16 present two statistics on how the original test suites have changed
after each processing step. In figure 9.15, the number of constraints is presented. Starting
with 71 and 324 constraints in the original test suites, the number increases significantly
during factorization. In particular, many constraints are created for the VB5.2 test
suite, as the protocol makes use of deeply nested ASN.1 data types. However, in the
following steps, the number of constraints decreases again. In case of INAP CS-2, the
final test suite comprises less than half as many constraints as in the original one. This
reduction was made possible mainly by merging 191 constraints of the same type into
39 parameterized constraints.

The size of each test suite is given in figure 9.16. It is measured in words in the TTCN MP
file where all keywords and special characters (e.g., brackets, colons) have been removed.

163

9 Test Suite Representation

The declarations part is not considered, either, as it did not change during the constraint
transformations. Surprisingly, there is no correlation between the number of constraints
and the size of a test suite. In the VB5.2 case study, the size of the test suite that is
obtained by factorization and merging of identical constraints is reduced by about 21
percent. At the same time the number of constraints doubles. After defactorization, the
test suite is reduced by more than 50 percent, even though the number of constraints has
decreased only moderately. This phenomenon is explained by the fact that the PDUs of
the VB5.2 protocol have several fields in common. Regarding the INAP CS-2 test suite,
there is only a slight improvement in terms of the size even though a lot of constraints
could be merged.

When it comes to the assessment of the resulting test suites, no objective judgment can
be made. However, discussions with another member of STF 151 gives evidence that the
automatic constraint structuring is a big step in the right direction. An example of how
VB5.2 constraints have been transformed is given in figures 9.17 and 9.18.

9.3 A List Pattern Matching and Manipulation Language

The automatic structuring of test suites presupposes that the various transformation
steps are formalized in an algorithmic way. In the extreme, these transformations are
fully specified in a common programming language and tightly coupled with the internal
representation of test suites. However, this leads to a complicated code, in particular,
if the transformation is to be integrated in an application that does not provide a clear
API. Moreover, it is difficult to maintain and sensitive to changes of the overall data
structure.

A more flexible approach is to regard a test suite as a structured document. A structured
document can be represented as a tree where each intermediate node bares structuring
information and the leave nodes denote the actual content of the document. Provided
that all relevant semantic information is given explicitly in the tree, a test suite manip-
ulation is equal to a tree transformation.6

Transformation of Structured Documents. Kuikka and Penttonen (1995) distinguish
between different types of transformations: Structure-preserving transformations result
only in differences in the leaves of the tree. Local transformations operate on a part
tree. E.g., (nonterminal) children of a nonterminal node are re-ordered. Finally, global
transformations involve several part trees with long distance dependencies. Obviously,
test suite restructuring falls in the latter category since, for example, changing the
name of a constraint in the constraint part of a test suite requires the update of all of
its references in the dynamic behavior part.

6Theoretically, a graph is more appropriate for describing the relations within a structured document.
However, graph transformations are much more difficult to describe. On the other hand, relations
that do not fit to the hierarchical structure of trees can be encoded (syntactically) by additional,
redundant nodes.

164

9.3 A List Pattern Matching and Manipulation Language

ASN.1 PDU Constraint Declaration

Constraint Name : cMODIFY COMP REJ 1

PDU Type : ModifyCompRej

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments :

Constraint Value

{
commonMsgInfo {

protDiscr ’49’H, transId {
transIdLength ’03’H, transIdFlag ’1’B, transIdVal 20

},
msgType ’56’H, msgCompatInd ’80’H, msgLength ’0000’H

},
rejCauseIE {

commonIEInfo {
iEType ’07’H, iECompatInd ’80’H, iELength ’0000’H

},
rejCauseOctet 1

}
}
Detailed Comments :

ASN.1 PDU Constraint Declaration

Constraint Name : cMODIFY COMP REJ 2

PDU Type : ModifyCompRej

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments :

Constraint Value

{
commonMsgInfo {

protDiscr ’49’H, transId {
transIdLength ’03’H, transIdFlag ’1’B, transIdVal 21

},
msgType ’56’H, msgCompatInd ’80’H, msgLength ’0000’H

},
rejCauseIE {

commonIEInfo {
iEType ’07’H, iECompatInd ’80’H, iELength ’0000’H

},
rejCauseOctet 7

}
}
Detailed Comments :

Figure 9.17: Original VB5.2 constraints

165

9 Test Suite Representation

ASN.1 Type Constraint Declaration

Constraint Name : c CommonMsgInfo 1(p transIdFlag 1 : BIT STRING; p transIdVal 2 : INTEGER;
p msgType 3 : OCTET STRING)

ASN1 Type : CommonMsgInfo

Derivation Path :

Encoding Variation :

Comments :

Constraint Value

{
protDiscr ’49’H, transId {

transIdLength ’03’H, transIdFlag p transIdFlag 1, transIdVal p transIdVal 2
},
msgType p msgType 3, msgCompatInd ’80’H, msgLength ’0000’H

}
Detailed Comments :

ASN.1 Type Constraint Declaration

Constraint Name : c RejCauseIE(p rejCauseOctet 1 : INTEGER)

ASN1 Type : RejCauseIE

Derivation Path :

Encoding Variation :

Comments :

Constraint Value

{
commonIEInfo {

iEType ’07’H, iECompatInd ’80’H, iELength ’0000’H
},
rejCauseOctet p rejCauseOctet 1

}
Detailed Comments :

ASN.1 PDU Constraint Declaration

Constraint Name : cMODIFY COMP REJ(p transIdVal 1 : INTEGER; p rejCauseOctet 2 : INTEGER)

PDU Type : ModifyCompRej

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments :

Constraint Value

{
commonMsgInfo c CommonMsgInfo 1(’1’B, p transIdVal 1, ’56’H),
rejCauseIE c RejCauseIE(p rejCauseOctet 2)

}
Detailed Comments :

Figure 9.18: Chained and parameterized constraints for VB5.2

166

9.3 A List Pattern Matching and Manipulation Language

Unfortunately, no self-contained formalism exists for describing all kinds of global trans-
formations. Instead, a heterogeneous approach has to be chosen where some aspects are
specified elegantly in a special, yet restricted, notation and the overall transformation
algorithm is written in a universal programming/script language that allows to perform
arbitrary operations. (Compare this to the processing of text documents by a Perl
script that uses regular expressions as a compact notation for search patterns.)

The transformation of structured documents involves two steps:

• Searching for a particular pattern (with a given context) in the document.

• Replacing those parts of the document that match the pattern.

In traditional text editing tools, these two operations are specified separately. For ex-
ample, the well-known Unix tools Sed and Perl use the notation s/X /Y / to denote
that some string X (described by a regular expression) is to be replaced by Y. However,
if the pattern shall only be replaced in a certain context, this results in redundant and
error-prone duplication. E.g., in order to replace a by b only if surrounded by C1 and
C2, Sed/Perl require to write s/(C1)a(C2)/\1b\2/ where \n is equal to the sequence
of characters that matched with the nth parenthesized subexpression.

Moreover, there is no possibility to make use of the programming language from within
the embedded pattern language. Thus, if a search pattern contains alternatives or itera-
tions and the replacement depends on what text has actually been scanned, the expense
(in terms of code size) to specify the transformation increases unnecessarily.

Evidently, document processing based on tree transformations is more powerful than
substitutions of character strings. On the other hand, it is more difficult to locate one
or all parts of a document (i.e., subtrees) that match a given pattern. Various operators
are needed to specify which parts of the tree are to be inspected.

In the following, a general-purpose pattern matching and manipulation language is pre-
sented. It simplified considerably the development of the prototype described in the
previous section. The List Pattern matching and Manipulation Language (henceforth,
LPML for short) can be applied to nested lists or trees7 where the nodes are decorated
with untyped constants. It provides many built-in operators for both describing tree
patterns and basic tree transformations where the latter are specified directly as part of
a larger pattern.

9.3.1 General Language Concepts

The LPML is based on the unification concept and data model of Prolog (PROgram-
ming in LOGic, see Clocksin and Mellish, 1994), a language that is wide-spread in the
research area of artificial intelligence.

In Prolog, all data are represented by terms. A term is either an atomic constant, a
variable, or a structure. Constants are names (starting with lowercase letters) or num-
bers. Variables are represented by names with initial capital letter. Finally, structures

7Flat and nested lists are special variants of trees; each tree can be transformed into a nested list and
vice versa.

167

9 Test Suite Representation

take the form f(t1, t2, . . . , tn) where f is a functor and ti, i ∈ {1 . . . n} are terms again.
Empty lists are denoted by the special constant ’[]’. Non-empty lists are represented
by binary structures with functor “.”. The term .(H, R) denotes a list with H as the
first element and R as the rest of the list. For convenience, .(H, R) can be written as
[H|R] and a list with n elements, i.e., .(e1, .(e2, .(. . . .(en, []) . . .))), can be described by
the syntactic shorthand [e1, e2, . . . , en].

In logic programming, the concept of variable assignments as known from imperative
languages has been replaced by unification of arbitrary terms. A variable v can be bound
to/unified with some term t1 but the binding of v to a different term t2 afterwards will
fail unless t1 can be unified with t2. As a consequence, it is not allowed to modify existing
ground (variable-free) terms. Similarly, an element cannot be deleted from an existing
list. Instead, a new list must be created that is identical to the former one except for
the missing element.8

According to these concepts, an interpreter for the LPML checks whether a pattern
matches a given list. If it does, the interpreter returns a new list with all transformations
incorporated, and constant fail otherwise. The signature of an LPML interpreter is
match(Pattern, InputList, OutputList), where Pattern must be a term conforming to the
LPML, InputList must be a ground term only consisting of constants and list structures,
and OutputList must be a unbound variable which is bound to a term with constants,
list structures, and variables after successful pattern matching.

The LPML provides various constructs that can be divided into five categories:

• Basic terms for forming simple patterns, including wildcards and operators for the
description of alternatives and iterations

• Variables and operators for retrieving information and recognizing recurring pat-
terns

• Operators for manipulating lists

• Operators for searching and extracting information whose exact position within a
nested list is unknown

• An extension operator for complex transformations that are outside the scope of
the LPML

In the following, each group is described in detail. A complete overview of the LPML
syntax is given in figure 9.19.

9.3.2 Basic Patterns

A ground pattern in the LPML is either a constant (atomic name or number) or a list
consisting of ground patterns. Due to the recursive definition it is possible to specify

8In general, such operations do not cause a relevant memory overhead as different data structures
”share” common subexpressions. This structure sharing is safe due to the fact that ground terms
cannot be modified.

168

9.3 A List Pattern Matching and Manipulation Language

<definition> ::= { <variable> = <pattern> , }* <pattern>

<pattern> ::= [<variable> -]
{ <token>

| <list>
| not (<pattern>)
| or (<pattern> , <pattern>)
| scope (<pattern>)
| collect (<term> , <term list> , <pattern>)
| eval (<external goal>)
| test (<pattern>)
| repeat (<variable> , <pattern>)
| iterate (<term> , <term list> , <pattern>)
| iteratetest (<term> , <term list> , <pattern>)
| replace (<pattern> , <term>)
| replacelist (<bindvar> , <pattern list> , <term>)
| delete (<pattern>)
| find (<term> , <bindvar> , <pattern>)
| findtop (<term> , <bindvar> , <pattern>)
| findalltop (<term list> , <bindvar list> , <pattern>)
| findallrec (<term list> , <bindvar list> , <pattern>) }

<list> ::= ’[’ [<element> { , <element> }*] ’]’
<element> ::= <pattern>

| partlist ({ <list> | <variable> - <list> | <variable> })
| insert (<term>)
| alt (<element>, <element>)
| opt (<element>)
| star (<element>)
| plus (<element>)

<token> ::= any
| <constant>

Figure 9.19: Syntax of the LPML in EBNF

169

9 Test Suite Representation

nested lists of arbitrary depth. A ground pattern only matches itself. For example, the
term [a, [b, c]] represents a pattern that matches a list with two elements where the
first element is the constant a and the second element is a list itself consisting of the
constants b and c.

The special atom any can be used as a wildcard that matches any atom or list. Negation
is expressed by the not operator.

The LPML supports all operators known from regular expressions and string pattern
matching. These operators can be used to describe alternatives (or/alt), optional el-
ements (opt), and the (positive) closure of elements (plus/star). Except for or, they
are only allowed to occur within a list, i.e., they have list elements as parameters.

Two different operators are provided for expressing alternatives: or(pattern, pattern)
can only be used for describing two alternative lists, whereas the alt(element, element)
operator may have partial lists, i.e., subsequences of list elements, as its parameters.
Partial lists are denoted by partlist(list). They are only allowed to be specified inside
a list. Examples: The pattern or([a], [b]) matches with both [a] and [b]. The pattern
[a, alt(partlist([b, c]), [b, c]), d] matches with [a, b, c, d] and [a, [b, c], d].

The pattern [e1, . . ., ei−1, opt(ei), ei+1, . . ., en] with ei being some list element
matches both [e1, . . ., ei−1, ei+1, . . ., en] and [e1, . . ., ei, . . ., en]. Operator star(e)
matches what zero or more consecutive occurrences of element e would match. For in-
stance, the pattern [star([a, opt(b)])] matches any list whose elements are again lists
that have a as their first element, followed by an optional atom b (e.g., [[a], [a, b]]).
plus(e) is a syntactic shorthand; the pattern [. . ., plus(e), . . .] is equivalent to
[. . ., e, star(e), . . .].

9.3.3 Variables and Variable Operators

In order to keep track of what has been recognized, any (sub-)pattern can be prefixed
by a variable. When a pattern is recognized successfully, the variable is bound to the list
that matches the pattern. Typically, a variable is used in conjunction with a pattern that
includes the token any. For example, if pattern [a, V-any] is applied to list [a, [b]],
variable V is equal to [b].

Variables are bound when their corresponding pattern is applied for the first time.
If the same pattern is evaluated another time, the input must be the same as before.
Therefore, variables can be used to ensure that substructures recur identically. Example:
Pattern [star(V-any)] matches any list whose elements are uniform (e.g., [a, a, a] or
[[b], [b]]).

Variables may also be used inside the partlist operator where they are bound to a
sequence of list elements. This extension allows for back references for multiple elements.
For instance, [partlist(V-[a, b]), partlist(V)] matches with [a, b, a, b].

By default, all variables are defined within a global scope. Unfortunately, this is inade-
quate for checking whether an input list is in L1 = {[[x1, x1], [x2, x2], . . . , [xn, xn]] |xi ∈

170

9.3 A List Pattern Matching and Manipulation Language

Constant, n ∈ N}. For instance, the pattern [star([V-any, V-any])] only matches
words in L2 = {[[x, x], . . . , [x, x]] |x ∈ Constant}. In order to express that a new copy
of V shall be created each time within the star operation, the scope operator can
be used. For L1, a conforming pattern is [star(scope([V-any, V-any]))]. Precisely,
scope creates new instances for all variables in its embedded pattern that are unbound
at the time of evaluation; if a variable is bound outside the scope before (such as in
[V-any, star(scope(V-any))]), the scope operator will have no effect.

If a pattern shall apply to all elements of a given list and information on each element
shall be collected, the iterate operator can be used. Its general form is iterate(term,

termlist, pattern) where term contains variables used inside pattern and termlist is an
originally unbound variable. For each list element (that must match with pattern), a
new instantiation of term is added to termlist. Example: iterate(T, TL, [a, T-any])
matches with [[a, b], [a, c]] and TL is bound to [b, c].

If a pattern does not have to match with all list elements, operator iteratetest(term,

termlist, pattern) can be used alternatively. It matches with any list and termlist
contains information only on those list elements that match with the given pattern.
iteratetest can be used with manipulation operators to keep track of when a trans-
formation was possible.

In order to be able to perform static well-formedness checks, the LPML forbids the
usage of unbound variables inside patterns except where indicated in the grammar (see
figure 9.19). As a consequence, it is impossible to describe recursive patterns in the
form X-[a, X]. However, the pattern repeat(X, [a, X]) may be used instead. Moreover,
variables may be bound to patterns prior to the main pattern to describe recursion that
involve more than one variable and to make the LPML as expressive as regular tree
grammars. For instance, the pattern X=or(c, [a, Y]), Y=[b, X], X matches with c, with
[a, [b, c]], with [a, [b, [a, [b, c]]]], and so on.

9.3.4 Manipulation Operators

The LPML provides three basic operators for manipulating lists. An insert operator
can be used as a list element. It matches the empty input and adds a new term to
the output list. Thus, if pattern [any, insert([in, between]), any] is applied to list
[a, b], an LPML interpreter will return [a, [in, between], b] as output list.

The delete operator can be used to remove an element from a list. delete(p) matches
with any input with which p matches as well. If pattern [a, delete(any), b] is ap-
plied to [a, [in, between], b], the output list is [a, b]. For technical reasons, delete
replaces the matching input list by a reserved constant null_pattern. However, this
constant is only visible to the user if the operator is used on top-level where it does
not make sense. If delete is used inside a pattern, null_pattern is removed from the
output list.

Operator replace substitutes a list by an arbitrary term. For instance, [a,

replace([b],b), c] matches with [a, [b], c] and produces output list [a, b, c].

171

9 Test Suite Representation

delete and replace can be used in combination with variables in order to log what
has actually been deleted or replaced. For example, given the pattern [a, replace(V-

any, d), c] and the input list [a, b, c], an LPML interpreter will not only return
[a, d, c] as output list but also bind variable V to b.

For convenience, replacelist can be used as a syntactic shorthand if different kinds of
patterns shall be replaced. replacelist(b, [p1, . . . pn], t) is semantically equivalent to
replace(b-or(p1, or(. . ., or(pn−1, pn). . .), t).9

If the input list shall be modified if it matches a pattern but remain unchanged otherwise,
the test operator can be used. For instance, [a, test(replace(b, d)), c] results in
output list [a, d, c] if applied to [a, b, c] but it also matches with, e.g., [a, e, c].
In fact, test(pattern) is equivalent to or(pattern, any). It should be noted that using
test inside iterate does not make sense in general, because iterate would try to
collect information even in the failure case. Instead, iteratetest should be used.

9.3.5 Extension Operator

The LPML is not a closed language in the sense that any desired transformation can be
expressed within the LPML itself. Complex manipulations may depend on the evaluation
of user-defined predicates. While XSLT (Clark, 1999) has a predefined set of operations,
LPML provides an operator called eval which has an external goal as its argument.
eval matches the empty input but only under the condition that the goal is satisfied.
Otherwise pattern matching fails.

9.3.6 Search Operators

One of the strengths of the LPML are its search operators. A search operator is used for
finding a given pattern within a larger input list. It allows to manipulate substructures
easily in cases where

• the exact position of the substructure within the list is unknown.

• it is complicated and error-prone to specify the position because the format of the
input list is subject to regular changes.

• several substructures match the search pattern that are located at different posi-
tions in the input list.

The general structure of a search operator is search-op(term, bindvar, pattern). search-op
matches a list if pattern matches the list or any of its sublists. In case of success, the
(sub-)list matching the pattern is bound to the variable bindvar and replaced by term
in the output list. In total, there are four operators for finding patterns: find, findtop,
findallrec, and findalltop. They differ with regard to two criteria:

9Obviously, a similar shorthand could be defined for delete as well.

172

9.4 Discussion

Inspection of sublists if main list matches

During Backtracking At the same time No inspection

Number of One find — findtop

solutions All — findallrec findalltop

Figure 9.20: Classification of search operators

• Number of solutions

A search operator may either apply to one or all occurrences of the search pattern.
In the first case, the input list is traversed in preorder, i.e., a (sub-)list is checked for
matching before its elements are checked. If the application of the search operator
is successful, but pattern matching fails for the complete pattern, back-tracking
takes place and another (sub-)list that matches the pattern is searched for. This
procedure is comparable to the one of the star operator (section 9.3.2).

If a search operator applies to all occurrences of the search pattern, term and
bindvar are lists where the nth list matching the pattern is bound to the nth
element of bindvar and replaced by the nth element of term. Since the exact
number of solutions is not known in advance in most cases, an unbound variable
must be specified for term list and bindvar list.

• Inspection of sublists

A pattern may match with a list and one or more of its sublists at the same
time. The search operators can be classified accordingly by whether they explore
the whole list recursively or leave the current list as soon as the search pattern
matches with it.

Figure 9.20 shows how the search operators of the LPML fit into the scheme above. To
illustrate their differences, the operators are applied to three sample lists in figure 9.21.

The operators defined above always traverse all substructures to find a list or token that
matches the search pattern. For large lists, this procedure may be too costly. On the
other hand, depending on the application context it might be known in which sublists a
search pattern will never match. The efficiency of the search operators could be improved
by specifying an additional blocking pattern. If some list l matches the blocking pattern,
the LPML interpreter will not search for the pattern inside of l. Another possibility to
restrict the scope of the search operators is to limit the search depth.

9.4 Discussion

In this section, two ways have been presented for improving the readability of test
suites gained by automatic test generation: Transformations by means of user-defined
rules and automatic constraint structuring with no or only little guidance by the test
specifier. The first approach was realized in the Autolink tool and applied in various

173

9 Test Suite Representation

Application 1: Find occurrences of a given pattern (distinction between
find/findtop and findalltop/findallrec)

Input list: Inlist = [u, [a, b], v, [a, c], w]

Pattern: Pat = [a, any]

Invocations: match(find(Var, BindVar, Pat), Inlist, Outlist)

match(findtop(Var, BindVar, Pat), Inlist, Outlist)

Results: BindVar = [a, b]

Outlist = [u, Var, v, [a, c], w]

Invocations: match(findalltop(Var, BindVar, Pat), Inlist, Outlist)

match(findallrec(Var, BindVar, Pat), Inlist, Outlist)

Results: Var = [Var1, Var2]

BindVar = [[a, b], [a, c]]

Outlist = [u, Var1, v, Var2, w]

Application 2: Find occurrences of a pattern that is also used at another place
(distinction between find and findtop)

Input list: Inlist = [u, [a, [a, [b]]], v, [a, [b]], w]

Pattern: Pat = [a, any]

Invocation: match([u, find(Var, BindVar, Pat), v, BindVar-any, w],

Inlist, Outlist)

Result: BindVar = [a, [b]]

Outlist = [u, [a, Var], v, [a, [b]], w]

Invocation: match([u, findtop(Var, BindVar, Pat), v, BindVar-any, w],

Inlist, Outlist)

Result: matching fails

Application 3: Find all occurrences of a given pattern recursively (distinction
between findalltop and findallreq)

Input list: Inlist = [u, [a, [a, [b]]], v]

Pattern: Pat = [a, any]

Invocation: match(findalltop(Var, BindVar, Pat), Inlist, Outlist)

Result: Var = [Var1]

BindVar = [[a, [a, [b]]]]

Outlist = [u, Var1, v]

Invocation: match(findallrec(Var, BindVar, Pat), Inlist, Outlist)

Result: Var = [Var1, Var2]

BindVar = [[a, [b]], [a, Var1]]

Outlist = [u, Var2, v]

Figure 9.21: Application of the search operators

174

9.4 Discussion

case studies at ETSI; for the latter, a prototype has been implemented and applied to
test suites of Core INAP CS-2 and VB5.2. Furthermore, a language has been described
and implemented that allows for complex syntactic transformations of lists.

Although the Autolink script language and the automatic constraint structuring are
independent developments, their combined use could further enhance the readability of
test suites. For instance, constraint rules could be applied to the new constraints created
by factorization.

Autolink Script Language. Despite its simplicity, the script language has proven to be
sufficiently powerful. Nevertheless, it can easily be extended by built-in functions that
perform any kind of text manipulation such as transforming all alphabetic characters of
a text into lower-case characters.

One restriction of the current implementation is that only top-level signal parameters
can be specified, i. e., it is not possible to address nested parameters. One possible
solution is to support parameter references in the form $x .y .z with x, y, z ∈ N. A
more convenient notation is $n .subpar .subsubpar with n ∈ N and subpar, subsubpar
being symbolic field names.10

The presented approach to the translation of SDL signals to TTCN-2 constraints is
based on signal types, i.e., all transformations (parameterization, replacement of values
by matching mechanisms, etc.) are specified for particular parameters inside particular
signal types. Alternatively, a data type-oriented approach might be chosen. For example,
a rule might state that a signal parameter value of type T always becomes a test suite
parameter, regardless of where T is actually used. Of course, such signal-independent
rules can only be defined if all values of a specific type are handled equally. The question,
which approach is better in meeting the way of thinking of a test specifier and results
in more compact scripts, is subject to further studies.

Automatic Structuring of Constraint Descriptions. The presented prototype for au-
tomatic constraint structuring is closely coupled with Autolink. But enhancing the
quality of a test suite is not only a concern for automatic test generation. It is also
a matter for manual test suite development. Hence, a module for the structuring of
constraints should operate on top of the API of a general-purpose TTCN tool.

At the Institute for Telematics, a parser has been developed that provides access to the
abstract syntax tree of a given TTCN-3 test suite (see Schmitt et al., 2001). An adapted
version of the presented prototype (along with an adapted version of the LPML) that
operates on such an AST would be able to give hints to the user on how to restructure
the constraints (called templates in TTCN-3) or transform a test suite automatically
according to some style guide.11

10The numeric notation has to be kept on the top level, since SDL does not define field names for signal
parameters!

11Due to the reference semantics of Java/C# and the object-oriented features of C++, most concepts
of the LPML can be ported easily to these programming languages.

175

9 Test Suite Representation

The presented prototype is used in a batch mode. If the test specifier is not satisfied with
the output, he can modify the settings and re-run the constraint optimizer until finally
the desired structure is generated. However, interactive, semantics-preserving test suite
manipulations from inside a TTCN editor where the test specifier controls each single
processing step, would also be of great benefit.

In contrast to its predecessor, TTCN-3 allows to define constraints within a test case
itself, i.e., it is not necessary to refer to a constraint that is defined separately. While this
allows for compact test case descriptions, the increased flexibility also involves potential
inconsistencies. Therefore, it becomes even more important to be able to restructure an
existing test suite automatically.

176

10 Advanced Test Generation by Symbolic
Execution

When it comes to simulation, validation, and test generation, one of the most challenging
tasks is to model the environment of the system specification. SDL tools like the Tau
Validator or Autolink trigger the system by signals whose parameters are composed
of predefined values. In addition, they allow the test specifier to define a fixed set of input
signals. However, it is often impossible to foresee all relevant signals. As a consequence,
automatic test generation may lead to tests with only a low system coverage.

One possible solution to this problem is the symbolic execution of specifications. Instead
of specific signals, all inputs are represented by symbolic values. Concrete values are
computed in retrospect at the end of an execution path. Symbolic execution is classified
as a static, structural test in literature (Coward and Ince, 1995, page 12). Nevertheless,
symbolic execution proceeds in the same way as regular program execution except that
values are computed symbolically.

When traversing along a particular path, a path condition is computed. Whenever a
choice point is reached, e.g., in terms of an if statement, the corresponding condition
is added to the path condition by conjunction. Thereafter, it is checked whether the
extended path condition is still satisfiable, i.e., whether there is a variable assignment
such that the path condition holds. If a path condition cannot be fulfilled, an invalid
state is reached and the path must be pruned. By solving the path condition, conclusions
can be made about previous input values. That means at the end of a path, it is known
which inputs have to be used in order to execute this particular path.

Symbolic execution is not a new techniques. Actually, the idea of executing a program
with symbolic values can be traced back to Boyer et al. (1975) and Hantler and King
(1976). Systems for various languages were built since then and a few people have
suggested using symbolic execution also for test generation based on formal description
techniques (see, e.g., Touag and Rouger, 1999). Nevertheless, symbolic execution has
gained hardly any relevance in practice. One explanation why symbolic execution failed
in the past is the effort required to check the feasibility of path conditions. However, in
the recent decade, the computational power has increased significantly. At the same time,
efficient algorithms have been developed for constraint satisfaction and optimization
problems.

In this chapter, the ValiBOSE (VALIdation Based On Symbolic Execution) tool is
presented that has been developed by the author. Although still being a prototype,
it already allows to get an impression on how test generation can benefit from sym-
bolic execution. In section 10.1, a few shortcomings of traditional test generation tools

177

10 Advanced Test Generation by Symbolic Execution

are described and the use of symbolic execution is motivated. Section 10.2 provides an
overview of techniques for checking the feasibility of path conditions, with focus on algo-
rithms that operate on variables with finite domains. The ValiBOSE tool is presented
in section 10.3. Finally, open issues are discussed in section 10.4.

10.1 Motivation

The simulation of modern telecommunication systems and protocols suffers from two
problems. These are:

• the missing or insufficient modeling of the system environment and

• the state space explosion problem.

Both problems are tightly related to each other. When simulating an SDL specification,
there are no general rules for what signals should be used as input. By default, tools like
the Tau Validator/Autolink set up some predefined values for each data type, e.g.,
-55, 0, and 55 for integers. Signals with multiple parameters are composed of combina-
tions of these default values. The choice of values is more or less arbitrary. A positive
value, zero, and a negative value may be suitable in some cases. But in other cases, a
sequence like 1,2,3,. . . might be preferable.

Alternatively, the test specifier can define a fixed set of test signals. But due to the
complexity of the interaction of a system or protocol with its environment, even an expert
cannot foresee all relevant inputs. Moreover, it may even be theoretically impossible to
set up a finite set of signals that allow to cover all possible paths.

On the other hand, different signals may effect the control flow of the system in ex-
actly the same way. As a consequence, the state space exploration becomes inefficient.
Symbolic execution partitions test input data in equivalence classes with regard to their
impact on the control flow. Similarly, the states of the state space are partitioned.

Test generation based on traditional simulation has a few shortcomings. For illustration
purposes, a simple MSC test purpose for the Inres protocol is shown in figure 10.1.
Although the MSC describes a valid test purpose, it is not optimal:

1. No information on data flow and dependencies

The MSC does not express that the parameter of signal IDATreq (i.e.,0) is passed
through the SUT without modifications and is output as the third parameter of
signal MDATind. Ideally, the causal connection between the input and output
values should be indicated explicitly.

Moreover, it not perceptible that the sequence number sent with signal
MDATreq(AK,?) must always be identical to the sequence number received by
the preceding signal MDATind(DT,?,?). Although they are identical in this ex-
ample (zero), no generalization can be made.

178

10.1 Motivation

env

ISAP1

IUT

Initiator

env

MSAP2

ICONreq

MDATind(CR)

MDATreq(CC)

ICONconf

IDATreq(0)

MDATind(DT,zero,0)

MDATreq(AK,zero)

IDISreq

IDISind

MDATind(DR)

msc DataTransfer

Figure 10.1: A simple, harmful MSC test purpose

2. The necessity of test case variables cannot be detected

As mentioned above, the tester must respond with the same sequence number that
has been received before. As a consequence, a test generation tool should create a
test case in which the content of signal MDATind is stored in a test case variable.
Unfortunately, it is impossible to deduce the need for a test case variable from the
MSC test purpose in figure 10.1.

3. Erroneous test verdicts due to “overspecification”

The successful execution of a test case that is derived from the given MSC test
purpose depends on whether the SUT sends zero as sequence number or not. If it
sends one, the test case results in a fail verdict erroneously.

4. Repetitive test execution affects the test verdict

Since the sequence number changes with every data transmission, a second test
case run will always fail if the first one was successful.

There are more cases where a symbolic execution might be beneficial. For example,
traditional simulators cannot handle SDL externals (that map to PIXIT parameters).
Instead, concrete (dummy) values must be used. Since these values may influence the
control flow, a generated test case may only be valid for this particular PIXIT value.
Moreover, from a methodological point of view, it is inappropriate to use a concrete
value first and to replace it by a parameter in a test case description afterwards. A
test generation tool based on symbolic execution is able to cope with parameterized
specifications and might even be able to create test selection expressions automatically.

179

10 Advanced Test Generation by Symbolic Execution

10.2 Checking the Feasibility of Path Conditions

The key problem of symbolic execution is finding a solution for path conditions. Theoret-
ically, a path condition can become arbitrarily complex. The decidability and complexity
of a feasibility test is determined by the variable domains and the types of conditions.

Definition 8 (Constraint System) A constraint system is a triple CS = 〈Σ,CT, C〉
where

• Σ is a signature that contains at least the null-ary symbols true and false.

• CT is a nonempty, consistent constraint theory over Σ.

• C is a set of valid constraints over Σ such that at least true ∈ C and false ∈ C.

Typically, constraint systems are based on terms, boolean algebra, finite domains (FD),
linear equation systems over real or rational numbers, or non-linear equation systems.
In case of boolean algebra, a constraint system is defined in the following way: Σ =
{true, false}, CT describes the boolean algebra itself, and C is the set of all constraints
that can be constructed by variables and the operators =, ¬, ∧, and ∨.

There are many different ways to solve constraints/path conditions. If the path condition
is expressed by or transformed into first degree predicate logic, a resolution calculus
can be applied (see Schöning (1989) for details). The interactive validation tool Smile
(Eertink, 1994) uses a related approach, called narrowing, for the evaluation of LOTOS
data specifications. While this approach is generally applicable, resolutions have a poor
performance in general.

In contrast, linear equation systems can be solved efficiently by the Gaussian elimina-
tion algorithm (Bronstein et al., 1999, p. 885). For linear inequality systems, the Simplex
procedure can be used which is also applied to optimization problems (Bronstein et al.,
1999, p. 846ff). Nonlinear equation systems can be solved by, e.g., the Gröbner bases al-
gorithm, interval arithmetic, and an extension of Newton’s approximation procedure for
finding null points (Frühwirth and Abdennadher, 1997, p. 119ff). Unfortunately, these
approaches do not necessarily describe a solution uniquely. Instead, it can only be ap-
proximated, i.e., for any variable, an interval is determined in which one or more solu-
tions are included. In this context, an important aspect is the termination criteria that
describes the minimal size of such an interval.

Constraint Satisfaction Problems over Finite Domains

Efficient algorithms have been elaborated for constraint systems based on variables with
finite domains (FD). Since the size of a constraint and thus also the number of variables
involved is finite, FD problems are decidable. In the worst case, the solvability of a
constraint satisfaction problem (CSP) is decided in exponential time by enumeration of
all possible variable assignments. In practice, however, a solution (or the non-existence
of a solution) can be determined more efficiently.

180

10.2 Checking the Feasibility of Path Conditions

SDL-2000 does not specify the value ranges of integers and the precision of floating
point numbers. Nevertheless, for simulation purposes it is legitimate to assume that
their domains are finite. A concrete implementation that conforms to the specification
will also rely on some encoding rules that restrict the domains.

A constraint satisfaction problem can be represented by a (hyper-)graph. A hypergraph
is a tuple H = 〈V, E〉, where V is a set of nodes and E ⊆ V ∗ is a set of hyperedges
that connect an arbitrary number of nodes. Each node represents a distinct variable. It
is labeled with the potential values that the variable can take without violating a con-
straint. The edges denote the constraints and link all nodes/variables that are involved
in the constraint. In principle, every constraint satisfaction problem can be represented
by unary and binary constraints only, so that it is sufficient to consider graphs (Tsang,
1996, page 10).

Solving a CSP means finding an assignment for each variable such that all constraints are
satisfied (arc/node consistency). A CSP is unsatisfiable if the domain of some variable
becomes empty.

An efficient approach to solve CSPs is based on two principles: domain reduction and
constraint propagation. Domain reduction means that all values are eliminated from
the variable domain which conflict with some constraint. Constraint propagation is the
process of computing the consequences of a domain reduction on other variables. If a
value is removed from the domain of some variable V , all variables that have a constraint
in common with V , are investigated as well. If their domains can also be reduced,
constraint propagation takes place recursively.

Domain reduction and constraint propagation are performed in polynomial time. How-
ever, they cannot decide alone whether a CSP is satisfiable or not. Therefore, they are
typically combined with a search strategy that recursively chooses a non-instantiated
variable (with |dom(V)| > 1) and restricts its domain to one of the possible values. After
each instantiation, constraint propagation is triggered which restricts the search space
significantly. If a variable instantiation leads to the violation of a constraint, another
value is chosen from the domain during back-tracking.

The efficiency of the search algorithm depends on a number of factors:

• The order of variable instantiations

The next variable to be instantiated should be determined dynamically at each
choice point. Preferably, the most difficult variable should be chosen first (fail-first
principle). Experience has shown that most often this is the one with the smallest
domain. (ILOG, 1999b, p. 119)

• The choice of values for instantiation

If only one solution is needed, the order in which values are selected from the
variable domain is important. Values might be chosen at the lower or upper domain
boundary. In case of integers, a value near zero might be preferable.

181

10 Advanced Test Generation by Symbolic Execution

• The connectivity of the graph

If a graph is unconnected, i.e., there are variables that do not influence each other,
then each subgraph can be examined independently.

Many improvements have been proposed in literature. For instance, if a constraint is
violated, the set of variables that are involved in the conflict can be determined. If
it turns out that the instantiation of the previous variable(s) is irrelevant, then this
information can be used to break the regular back-tracking scheme. Real numbers which
have a very large domain can be handled by interval partitioning instead of instantiation.
An excellent overview of CSP techniques is given by Barták (1996), a comprehensive
description can be found in Tsang (1996).

Example. The efficiency of constraint propagation and domain reduction and its supe-
riority to handwritten code is demonstrated by a simple example. Given three variables
x, y, and z with dom(x) = {1 . . . 10}, dom(y) = {1 . . . 10}, and dom(z) = {1 . . . 10}.
Find all assignments to these variables for which the following (in-)equations hold:

y = x − 4 (10.1)

x − z < 8

y 6= 4

y > 2 · z

A graph G = (N, E) is constructed with nodes N = {x, y, x} and edges E =
{(x, y), (x, z), (y, z), (y, y)}. Initially, node consistency is achieved for node y by excluding
the value 4 from the variable domain (10.2(2)). Next, arc consistency is established for
all non-unary constraints: From y = x − 4 ⇔ x = y + 4 and dom(y) = {1 . . . 3, 5 . . . 10},
the conclusion can be drawn that the domain of x is restricted to at most dom(x) =
{5 . . . 7, 9 . . . 10} (10.2(3)). Moreover, the maximum value of y can be no higher than 6
since max(dom(x)) = 10 (10.2(4)). Constraint y > 2 · z and min(dom(z)) = 1 imply
y > 2 and thus dom(y) = {3, 5 . . . 6} (10.2(5)). In the other direction, y > 2 · z ⇔ z < y

2
and max(dom(y)) = 6 limits the domain of z to {1, 2} (10.2(6)).

The domain reduction for y in the one but last step makes it necessary to check arc
consistency for constraint y = x − 4 with regard to the domain of x again. As a result,
values 5 and 6 are removed from dom(x) (10.2(7)). Hereafter, constraint x − z < 8
is evaluated. Since max(dom(z)) = 2, the equation x < 8 + 2 ⇔ x < 10 must hold,
i.e., 10 can be excluded from the domain of x as well. (10.2(8)). This again triggers a
consistency check for y = x− 4 and the domain of y is reduced to {3, 5} (10.2(9)). After
this last step, consistency is achieved among all arcs in the graphs. However, the fact
that each variable still has a non-empty domain does not necessarily imply the existence
of a valid assignment.

To find all concrete solutions, a choice point is introduced and all possible values of x

are considered separately. After setting x := 7 (10.2(10a)), constraint propagation takes
place again. Variable y is dependent on x by constraint y = x − 4 and thus its domain

182

10.2 Checking the Feasibility of Path Conditions

{1..10}

{1..10}

{1..10}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{1..10}

{1..10}

{1..3,5..10}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{5..7,9..10}

{1..10}

{1..3,5..10}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

(1) Initial state (2) Node: y 6= 4 (3) Arc: y = x − 4

=⇒

{5..7,9..10}

{1..10}

{1..3,5..6}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{5..7,9..10}

{1..10}

{3,5..6}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{5..7,9..10}

{1..2}

{3,5..6}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

(4) Arc: y = x − 4 (5) Arc: y > 2 · z (6) Arc: y > 2 · z

=⇒

{7,9..10}

{1..2}

{3,5..6}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{7,9}

{1..2}

{3,5..6}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{7,9}

{1..2}

{3,5}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

(7) Arc: y = x − 4 (8) Arc: x − z < 8 (9) Arc: y = x − 4

=⇒

{7}

{1..2}

{3,5}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{7}

{1..2}

{3}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{7}

{1}

{3}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

(10a) Choice point: x := 7 (10b) Arc: y = x − 4 (10c) Arc: y > 2 · z

=⇒

{9}

{1..2}

{3,5}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{9}

{1..2}

{5}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

=⇒

{9}

{2}

{5}

x - z < 8 y > 2 * z

y = x - 4
y != 4x y

z

(11a) Choice point: x := 9 (11b) Arc: y = x − 4 (11c) Arc: x − z < 8

Figure 10.2: CSP example

183

10 Advanced Test Generation by Symbolic Execution

gets restricted to value 3 only (10.2(10b)). This again enforces a consistency check for
y > 2 · z and causes the domain of z to be set to {1} (10.2(10c)). Since x − z < 8 holds
for x = 7 and z = 1, arc consistency is achieved. Moreover, a single value is assigned to
each variable. Thus computation stops at this point and (x = 7, y = 3, z = 1) denotes a
solution for the given constraint problem.

If x is set to 9 (10.2(11a)), arc consistency for constraint y = x− 4 is preserved only by
dom(y) = {5}. This time, constraint y > 2 · z does not affect the domain of z. However,
constraint x− z < 8 implies z > x− 8 = 9− 8 = 1 and thus dom(z) = {2}. Once again,
the domains of all variables have exactly one value. (x = 9, y = 5, z = 2) denotes an
alternative valid assignment that fulfills the equations given above.

10.3 The ValiBOSE Tool

In the ValiBOSE (VALIdation Based On Symbolic Execution) project, the applicability
of symbolic execution for validation and test generation has been examined in practice.
CSP techniques have been applied for checking the feasibility of path conditions and
computing concrete test data. The ValiBOSE tool makes use of the ILOG Solver
(ILOG, 1999a), a commercial C++ library for solving constraint satisfaction problems.

A prototypical simulator was developed that takes a sequential program (written in
a subset of the action language of SDL-2000 extended by an input operation to read
variables) and transforms it into an extended finite state machine. The state space of
the EFSM can then be explored either in a step-wise manner or fully automatically by
backtracking.

An important aspect of symbolic execution is its ability to provide the user with a
detailed insight in the functionality of a system, e.g., by showing the dependencies
between input and output data. On the other hand, the user may be flooded by useless
information. Therefore, special attention was drawn to the presentation of simulation
results.

10.3.1 Navigation

The state space of a specification can be explored either in an interactive or automatic
manner. For manual navigation, ValiBOSE provides commands to execute single tran-
sitions, to move up the current path by undoing the last transition, or to jump back to
the start state immediately.

To simplify navigation in case of long sequences of unconditional code, a command is
available that executes all transitions up to the next choice point. Branches for which
it can be proven by normalization (see below), i.e., without the constraint satisfaction
engine, that their condition evaluates to false, are automatically removed from the list
of possible transitions. This allows users to even skip if statements whose conditions
are not dependent on external inputs. Similarly, for statements can be executed in a
single step.

184

10.3 The ValiBOSE Tool

Automatic state space exploration can be performed by means of depth first searches.
ValiBOSE supports iterative deepening where the increment between two iterations
can be specified by the user. During the exploration and at its end, the user is provided
with statistics about the number of executed transitions, the achieved coverage, the
maximum depth, etc.

10.3.2 Coverage Measurements

ValiBOSE supports two control-flow based coverage criteria: branch coverage (C1 cov-
erage) and loop coverage (Cx coverage).

For each transition, the total number of executions is recorded. Thus, branch coverage
(C1 coverage) is easily determined by computing the ratio between transitions that
have been executed at least once and the total number of transitions. Transitions that
have never been executed might be unreachable and indicate a programming error.
ValiBOSE helps to identify such potentially dead code.

For loop coverage detection, two processing steps are needed: When a specification
is loaded, ValiBOSE performs a control flow analysis and marks all transitions that
denote the end of a loop. During simulation, two loop counters are maintained for these
transitions: The first one counts the number of times a loop is executed along the current
path. It is incremented whenever the final loop transition is executed and decremented
during backtracking. The second, global counter is independent from the current path
and stores the maximum value that the first counter has ever reached.

10.3.3 Assertions

ValiBOSE allows to specify assert statements in a specification. They define invariants
of the specification in terms of a boolean expression and can be used for formal proofs.
During simulation, ValiBOSE tries find a variable assignment so that the negation of
the assertion is fulfilled. If such an assignment exists, a Violation bookmark is created
(see below).

10.3.4 Bookmarks

In order to quickly browse through the state space of a specification, ValiBOSE allows
to set bookmarks. If the user visits a state of particular interest, he can define a bookmark
that allows him to directly jump to that state from any other state in the reachability
graph. For that purpose, a bookmark contains the full path, i.e., all transitions, from
the initial state to the target state.

ValiBOSE automatically generates various types of bookmarks during both interactive
and automatic state space exploration. These bookmarks are triggered by state transi-
tions and their corresponding actions. BranchCoverage bookmarks are created whenever
a transition is executed that has never been executed before. LoopCoverage bookmarks

185

10 Advanced Test Generation by Symbolic Execution

are stored if the n-th iteration (n ≤ 5) of a loop was completed for the very first time.
If a condition with some external variable (i.e., a symbolic input value) is infeasible,
a Contradiction bookmark is set. The failure of an assertion is marked by a Violation
bookmark. Finally, a Termination bookmark indicates the end of program execution.

The number of bookmarks generated during automatic state space exploration can be-
come very large. Therefore, a user can view compressed statistics (number of bookmarks,
minimum and maximum path length for each category), print a list of all bookmarks
along with their triggering actions, and remove unneeded bookmarks. For convenience,
Message Sequence Chart diagrams can be produced for one or all bookmarks of a specific
type without actually having to go to their target state.

10.3.5 Normalization

Normalization of variable terms and path conditions is an important means to improve
the readability of the user output and to accelerate the internal processing. During
symbolic execution, the algebraic expressions which represent the variable values be-
come more and more complex. In particular, this holds for loop variables which are
incremented with each iteration and result in terms like 1+1+1+1+1+...+1. ValiBOSE
provides the user with two representations:

• The original expression whose structure reflects the order of computation.

• A normalized expression that is equivalent to the original expression.

For performance improvements, former normalization results are cached so that each
term (or even a subterm inside a larger term) has to be normalized only once. Complex
terms cause a significant performance loss and do not improve comprehension. Therefore,
normalization is triggered as soon as the size of a term surmounts a threshold of 10
symbols (variables, literals, or operators). Then, the original expression is replaced by
the normalized one automatically.

10.3.6 Test Data Selection

For each path, ValiBOSE does not only present the path condition. Instead, it is also
able to print information on valid variable instantiations. If there is more than one
solution, the user can choose whether minimal or maximal values shall be assigned to
the variables. As a third alternative, values close to zero may be retrieved. The test data
selection criterion can be changed at any time during simulation.

10.3.7 Example

The application of the ValiBOSE tool is demonstrated by a simple specification that
models a system for access control. Its code is shown in figure 10.3.

When a user is in front of some imaginary gate, the access control system asks him
to enter his user identification (line 12). In the given specification, only two user IDs

186

10.3 The ValiBOSE Tool

1: {
2: dcl pinUserA, pinUserB, failureNoA, failureNoB INTEGER;
3: dcl stateNo, userID, key, pin, pinOK, failureNo INTEGER;
4:
5: pinUserA := 209; failureNoA := 0;
6: pinUserB := 873; failureNoB := 0;
7: stateNo := 1;
8:
9: for (, ,) { /* Endless loop */

10: decision (stateNo) {
11: (1) : {
12: output(’Please enter your ID.’);
13: input(userID);
14: decision (userID) {
15: (1) : { pinOK := pinUserA; failureNo := failureNoA; }
16: (2) : { pinOK := pinUserB; failureNo := failureNoB; }
17: else : failureNo := 2;
18: }
19: if (failureNo <= 1) {
20: output(’Please enter your PIN.’); stateNo := 2; pin := 0;
21: } else {
22: output(’Invalid user ID.’);
23: }
24: }
25: (2:4) : {
26: input(key);
27: decision (key) {
28: (-2) : { output(’Authentication is canceled.’); stateNo := 1; }
29: (-1) : if (stateNo > 2) {
30: output(’Last PIN digit is deleted.’);
31: pin := pin / 10; stateNo := stateNo - 1;
32: }
33: (0:9) : { pin := pin * 10 + key; stateNo := stateNo + 1; }
34: }
35: }
36: (5) : {
37: if (pin = pinOK) {
38: output(’PIN is correct. The door opens.’);
39: } else {
40: failureNo := failureNo + 1;
41: if (failureNo > 1)
42: output(’PIN is incorrect (2nd time). Your ID is locked.’);
43: else

44: output(’PIN is incorrect. Please retry.’);
45: decision (userID) {
46: (1) : failureNoA := failureNo;
47: (2) : failureNoB := failureNo;
48: }
49: }
50: stateNo := 1;
51: }
52: }
53: }
54: }

Figure 10.3: ValiBOSE example – Access control

187

10 Advanced Test Generation by Symbolic Execution

(namely 1 and 2 ; lines 15 and 16) are accepted; any other ID is rejected immediately.
After entering a valid user ID, the user is requested to enter a 3-digit PIN (line 20).
Each key stroke is processed separately (lines 25–35). Besides entering the digits 0 to 9,
the user is able to abort the authentication process (line 28) and to undo the last input
(lines 29–32) by pressing special keys with represented as values -2 and -1.

As soon as the complete PIN has been entered, the access control system validates
it against the expected PIN stored internally (209 for user ID 1, 873 for user ID 2).
If both are identical, the system displays a confirmation and the user is allowed to
pass the gate (line 38). Otherwise, the user is informed about the incorrect PIN. If, in
addition, a wrong PIN has been entered for the second time (see variable failureNo),
the corresponding user ID is locked (line 42) and successive attempts to authenticate
will fail (lines 19 and 22).

The log of a typical ValiBOSE session for the access control example is printed on
the following pages. Where suitable, the program input and output is annotated to
ease comprehension. The tool demonstration covers most ValiBOSE features including
bookmarks, coverage analysis, and various ways to display path information and external
variables.

The session starts with loading the specification which is converted into an EFSM. Then,
several user commands for manual navigation through the state space are executed until
finally the state is reached in which the system grants access. After listing different
representations of the execution path and storing the current state as bookmark and
MSC, the system is reset into the initial state. Thereafter, an automatic state space
exploration is performed until a 90% branch coverage is achieved. From the list of
generated bookmarks, the one is chosen that drives the system in the state where it
denies access due to an incorrect PIN. Again, different ways to display path information
and selecting external variables are illustrated.

188

1
0
.3

T
h
e

V
a
l
iB

O
S
E

T
o
o
l

--

VALIBOSE - Validation Based On Symbolic Execution

Copyright (C) 2001 Institute for Telematics, University of Luebeck

M. Schmitt (schmitt@itm.mu-luebeck.de)

J. H. Sauselin (valibose@sauselin.de)

--

Type "help" for more information.

[Valibose]$ efsm.load Tests/access-control.sdl ⇐ load the specification and convert it into an extended finite state machine

Parsing file ’Tests/access-control.sdl’...

ILOG Solver 4.400, licensed to "university-luebeck"

1: Instantiation (1:1)⇐ next possible action with reference to the specification document (line/column information)

[Tests/access-control.sdl]$ transition.down 1 ⇐ execute the first transition

1: Assignment (5:3) pinUserA := 209

[Tests/access-control.sdl]$ transition.branch ⇐ continue execution until the next branch

1: Decision (15:21) userID = 1

2: Decision (16:21) userID = 2

3: Decision (15:21) not (userID = 1) and not (userID = 2)

[Tests/access-control.sdl]$ transition.branch 2

1: Decision (28:21) key = -2

2: Decision (29:21) key = -1

3: Decision (33:21) key >= 0 and key <= 9

4: Decision (28:21) not (key = -2) and not (key = -1) and not (key >= 0 and key <= 9)

[Tests/access-control.sdl]$ transition.branch 3

1: Decision (28:21) key = -2

2: Decision (29:21) key = -1

3: Decision (33:21) key >= 0 and key <= 9

4: Decision (28:21) not (key = -2) and not (key = -1) and not (key >= 0 and key <= 9)

[Tests/access-control.sdl]$ transition.branch 3

1: Decision (28:21) key = -2

2: Decision (29:21) key = -1

3: Decision (33:21) key >= 0 and key <= 9

4: Decision (28:21) not (key = -2) and not (key = -1) and not (key >= 0 and key <= 9)

[Tests/access-control.sdl]$ transition.branch 3

1: If statement (37:24) pin = pinOK

2: If statement (37:24) not (pin = pinOK)

[Tests/access-control.sdl]$ transition.down 1

189

1
0

A
d
va

n
ced

T
est

G
en

era
tio

n
b
y

S
y
m

b
o
lic

E
x
ecu

tio
n

1: Enter scope (37:38)

[Tests/access-control.sdl]$ transition.down 1

1: Output (38:21) output(’PIN is correct. The door opens.’)

[Tests/access-control.sdl]$ transition.down 1

1: Leave scope (37:38)

[Tests/access-control.sdl]$ output.toggle ⇐ disable output of possible actions after each command

[Tests/access-control.sdl]$ path.print

No. Name Code => Evaluation => Normal form

0 Instantiation (1:1)

1 Assignment (5:3) pinUserA := 209

2 Assignment (5:20) failureNoA := 0

3 Assignment (6:3) pinUserB := 873

4 Assignment (6:20) failureNoB := 0

5 Assignment (7:3) stateNo := 1

8 Loop condition (0:0) true

10 Decision (11:7) stateNo = 1 => 1 = 1 => true

12 Output (12:19) output(’Please enter your ID.’)

13 Input (13:19) input(userID) => input(userID?11)

19 Decision (16:21) userID = 2 => userID?11 = 2

21 Assignment (16:31) pinOK := pinUserB => pinOK := 873

22 Assignment (16:50) failureNo := failureNoB => failureNo := 0

26 If statement (19:24) failureNo <= 1 => 0 <= 1 => true

28 Output (20:21) output(’Please enter your PIN.’)

29 Assignment (20:57) stateNo := 2

30 Assignment (20:71) pin := 0

8 Loop condition (0:0) true

37 Decision (25:7) stateNo >= 2 and stateNo <= 4 => 2 >= 2 and 2 <= 4 => true

39 Input (26:19) input(key) => input(key?12)

53 Decision (33:21) key >= 0 and key <= 9 => key?12 >= 0 and key?12 <= 9 => not (0 > key?12) and

not (key?12 > 9)

55 Assignment (33:33) pin := pin * 10 + key => pin := 0 * 10 + key?12 => pin := key?12

56 Assignment (33:56) stateNo := stateNo + 1 => stateNo := 2 + 1 => stateNo := 3

8 Loop condition (0:0) true

..

37 Decision (25:7) stateNo >= 2 and stateNo <= 4 => 2 + 1 + 1 >= 2 and 2 + 1 + 1 <= 4 => true

39 Input (26:19) input(key) => input(key?14)

53 Decision (33:21) key >= 0 and key <= 9 => key?14 >= 0 and key?14 <= 9 => not (0 > key?14) and

not (key?14 > 9)

55 Assignment (33:33) pin := pin * 10 + key => pin := ((0 * 10 + key?12) * 10 + => pin := 100 * key?12 +

key?13) * 10 + key?14 10 * key?13 + key?14

56 Assignment (33:56) stateNo := stateNo + 1 => stateNo := 2 + 1 + 1 + 1 => stateNo := 5

190

1
0
.3

T
h
e

V
a
l
iB

O
S
E

T
o
o
l

8 Loop condition (0:0) true

60 Decision (36:7) stateNo = 5 => 2 + 1 + 1 + 1 = 5 => true

62 If statement (37:24) pin = pinOK => 100 * key?12 + 10 * key?13 + key?14 = 873

64 Output (38:21) output(’PIN is correct.

The door opens.’)

[Tests/access-control.sdl]$ path.print -o -v ⇐ print observable events with concrete values for all external variables
No. Name Code => Evaluation => Normal form

0 Instantiation (1:1)

12 Output (12:19) output(’Please enter your ID.’)

13 Input (13:19) input(userID) => input([2]) => input(2)

28 Output (20:21) output(’Please enter your PIN.’)

39 Input (26:19) input(key) => input([8]) => input(8)

39 Input (26:19) input(key) => input([7]) => input(7)

39 Input (26:19) input(key) => input([3]) => input(3)

64 Output (38:21) output(’PIN is correct. The door opens.’)

[Tests/access-control.sdl]$ path.conditions -v ⇐ print all path conditions that involve external variables (with concrete values for the latter)

No. Name Code => Evaluation

19 Decision (16:21) userID = 2 => [2] = 2

53 Decision (33:21) key >= 0 and key <= 9 => [8] >= 0 and [8] <= 9

53 Decision (33:21) key >= 0 and key <= 9 => [7] >= 0 and [7] <= 9

53 Decision (33:21) key >= 0 and key <= 9 => [3] >= 0 and [3] <= 9

62 If statement (37:24) pin = pinOK => 100 * [8] + 10 * [7] + [3] = 873

[Tests/access-control.sdl]$ coverage.statistics

40 out of 85 branches covered (47.0588%). Executions: 0-5.

1 out of 1 loops covered at least once (100%). Max iterations: 4-4.

[Tests/access-control.sdl]$ path.msc access.mpr ⇐ store current path as Message Sequence Diagram

[Tests/access-control.sdl]$ bookmark.add Access ⇐ remember the path to the current state

[Tests/access-control.sdl]$ transition.top ⇐ return to the start state of the specification

[Tests/access-control.sdl]$ statespace.explore -c90 ⇐ perform automatic state space exploration

State space exploration will stop after achieving 90% branch coverage.

Starting depth first search with iterative deepening...

Transitions: 0, Max depth: 1, Branch coverage: 47.0588%, Time: Sat Jun 8 05:14:40 2002

Transitions: 25219, Max depth: 64, Branch coverage: 76.4706%, Time: Sat Jun 8 05:14:50 2002

Transitions: 49916, Max depth: 70, Branch coverage: 82.3529%, Time: Sat Jun 8 05:15:00 2002

State space exploration statistics

Transitions: 72009

Maximum depth: 73

191

1
0

A
d
va

n
ced

T
est

G
en

era
tio

n
b
y

S
y
m

b
o
lic

E
x
ecu

tio
n

Computation time: 28 seconds

77 out of 85 branches covered (90.5882%). Executions: 0-5788.

1 out of 1 loops covered at least once (100%). Max iterations: 6-6.

[Tests/access-control.sdl]$ coverage.deadcode ⇐ list all transitions that have never been executed
Transition No. 7:

Loop condition (0:0)

false ⇐ implicit loop condition is always true

Transition No. 69:

If statement (41:26)

failureNo > 1

Transition No. 70:

Output (42:23)

output(’PIN is incorrect (2nd time). Your ID is locked.’)

...

Transition No. 84:

Termination (1:1)

[Tests/access-control.sdl]$ bookmark.statistics

BranchCoverage : 77 bookmarks. Length: 1-73.

Contradiction : 4 bookmarks. Length: 72-72. ⇐ paths leading to an unsatisfiable condition
LoopCoverage_1x : 1 bookmark. Length: 26.

...

LoopCoverage_5x : 1 bookmark. Length: 58. ⇐ a path with 5 loop iterations
UserBookmark : 1 bookmark. Length: 69.

Total number of bookmarks: 87

[Tests/access-control.sdl]$ bookmark.print

BranchCoverage

1: Depth = 1 - Instantiation (1:1)

2: Depth = 2 - Assignment (5:3) pinUserA := 209

..

72: Depth = 71 - Output (44:23) output(’PIN is incorrect. Please retry.’)

..

77: Depth = 73 - Assignment (47:31) failureNoB := failureNo

Contradiction

78: Depth = 72 - Decision (46:23) not (userID = 1) and not (userID = 2)

79: Depth = 72 - Decision (47:23) userID = 2

80: Depth = 72 - Decision (46:23) not (userID = 1) and not (userID = 2)

81: Depth = 72 - Decision (46:23) userID = 1

LoopCoverage_1x

82: Depth = 26 - Leave scope (9:15)

...

192

1
0
.3

T
h
e

V
a
l
iB

O
S
E

T
o
o
l

LoopCoverage_5x

86: Depth = 58 - Leave scope (9:15)

UserBookmark

87: Depth = 69 - Access

[Tests/access-control.sdl]$ bookmark.goto 72

[Tests/access-control.sdl]$ path.print -o ⇐ print observable events of the current path

No. Name Code => Evaluation => Normal form

0 Instantiation (1:1)

12 Output (12:19) output(’Please enter your ID.’)

13 Input (13:19) input(userID) => input(userID?11)

28 Output (20:21) output(’Please enter your PIN.’)

39 Input (26:19) input(key) => input(key?12)

39 Input (26:19) input(key) => input(key?13)

39 Input (26:19) input(key) => input(key?14)

72 Output (44:23) output(’PIN is incorrect. Please retry.’)

[Tests/access-control.sdl]$ path.conditions

No. Name Code => Evaluation => Normal form

14 Decision (15:21) userID = 1 => userID?11 = 1

53 Decision (33:21) key >= 0 and key <= 9 => key?12 >= 0 and key?12 <= 9 => not (0 > key?12) and not (key?12 > 9)

53 Decision (33:21) key >= 0 and key <= 9 => key?13 >= 0 and key?13 <= 9 => not (0 > key?13) and not (key?13 > 9)

53 Decision (33:21) key >= 0 and key <= 9 => key?14 >= 0 and key?14 <= 9 => not (0 > key?14) and not (key?14 > 9)

66 If statement (37:24) not (pin = pinOK) => not (100 * key?12 + 10 * key?13 +

key?14 = 209)

[Tests/access-control.sdl]$ externals.print ⇐ print all external variables along with a valid assignment
Name Value

userID?11 = [1]

key?12 = [0]

key?13 = [0]

key?14 = [0]

[Tests/access-control.sdl]$ externals.select max ⇐ choose maximum values for external variables

[Tests/access-control.sdl]$ externals.print ⇐ print another valid assignment
Name Value

userID?11 = [1]

key?12 = [9]

key?13 = [9]

key?14 = [9]

[Tests/access-control.sdl]$ quit

Goodbye!193

10 Advanced Test Generation by Symbolic Execution

10.4 Discussion

Combining Symbolic Execution with State Space Reduction Techniques. An open
issue is the combination of symbolic execution with some of the state space reduction
techniques mentioned in chapter 8. Implementing a partial order simulation should be no
problem as long as the algorithm does not depend on variables values. The Independence
Prioritizing Simulation and the Condition Locking Simulation presented by Toggweiler
(1995, chapter 11) solely consider control flow and signal flow aspects and thus can be
used together with symbolic execution techniques.

On the other hand, the Supertrace algorithm is based on comparing global system
states. In the context of symbolic execution, states are not only characterized by sym-
bolic variables values but also by path conditions. To compare two states, both variable
values and path conditions have to be transformed into a canonical form. Thereby, it is
not sufficient to consider them in isolation. Instead, global operations such as relabeling
external variables are needed. In addition, those path conditions which only contain out-
dated external variables must be filtered out. Outdated external variables are variables
which do not occur anymore in the term of any variable and hence do not contribute to
the current system state.

In principle, two identical symbolic states may have path conditions and variable values
of totally different structure such that a substantial amount of normalization operations
is needed to transform them into a canonical form and prove their equality. However,
in distributed systems, identical states mainly occur due to the different ordering of
events. (Another cause for identical states are loops.) In that case, path conditions and
variable terms for two identical states do not differ or differ only slightly.

Therefore, some kind of weak normalization procedure is conceivable that allows to iden-
tify states in acceptable time but at the cost of false negatives. Such a weak normalization
could be restricted to the normalization of individual variables, relabeling/renumbering
of external variables throughout the terms of all system variables (variables are assumed
to be in a fixed order) and reordering of path conditions (the exact order criteria is in-
different).

Another important aspect is the fact that two states may not only be equal or dif-
ferent — one state may also subsume another one. However, detecting such a relation
requires a proof with all -quantified variables. A pragmatic solution for implementing
the Supertrace heuristic is subject to further studies.

External Synonyms. A problem that has been identified within the ValiBOSE project
concerns the handling of system parameters, i.e., SDL external synonyms, and uninitial-
ized system variables when its comes to proving the feasibility of a path. In the existing
prototype, external synonyms are treated like external variables, i.e., the constraint
solver tries to find an assignment such that the path conditions are met.

However, for test generation purposes it is necessary to prove that the given path is
executable for any value that a system parameter can take (because no assumption can

194

10.4 Discussion

P

Port

SUT

System

ConReq

ConInd(sessionId?1)

DatReq(currentId?2,0)

currentId?2 = sessionId?1

DisReq

ConReq

ConInd(sessionId?1+1)

DatReq(currentId?3,0)

currentId?3 = sessionId?1 + 1

DisReq

msc TestCaseVariable

Figure 10.4: MSC TestCaseVariable

be made on the concrete value that is chosen for an implementation). This, of course,
goes beyond the capabilities of existing CSP solvers, i.e., it can only be proven by
enumeration.

Test Case Variables. The test case variable problem discussed in section 10.1 turned
out to be difficult even with symbolic execution. For illustration purposes, see the MSC
in figure 10.4. When a connection is established (ConReq/ConInd), the SUT returns a
unique session id that must be used for subsequent data transmissions (DatReq). The
relation between the value returned by ConInd and the first parameter of DatReq is
clearly described in the MSC.

Nevertheless, an automatic tool fails to produce correct TTCN code for such an MSC for
two reasons: First, the variable term in an output event may not only consist of a single
external variable that can be mapped directly to a test case variable in TTCN (compare
with ConInd(sessionId?1+1)). Second, the relations between output and input values
are expressed by the path condition. These path conditions may become arbitrarily
complex and also involve other relations than equality.

As a compromise, a test generation tool may produce TTCN stubs with annotations
that have to be resolved by the test specifier. A TTCN fragment for the MSC discussed
above is shown in figure 10.5(a), a revised test case produced by manual modifications
is given in figure 10.5(b).

General Limitations of Symbolic Execution. There are several limitations of symbolic
execution that may restrict its application. For example, symbolic execution is only pos-
sible if the source code of the complete program or specification is available. If external
libraries are used, an interface specification in terms of input and output behavior is

195

10 Advanced Test Generation by Symbolic Execution

p.send(ConReq : {});

p.receive(ConInd : { * /*sessionId?1*/ }) -> testCaseVar ;

p.send(DatReq : { ??? /*currentId?2 ; currentId?2 = sessionId?1*/ , 0 });

p.send(DisReq : {});

p.send(ConReq : {});

p.receive(ConInd : { * /*sessionId?1 + 1*/ }) -> testCaseVar ;

p.send(DatReq : { ??? /*currentId?3 ; currentId?3 = sessionId?1 + 1*/ , 0 });

p.send(DisReq : {});

(a) TTCN stub with annotations

p.send(ConReq : {});

p.receive(ConInd : { * }) -> testCaseVar ;

p.send(DatReq : { testCaseVar , 0 });

p.send(DisReq : {});

p.send(ConReq : {});

p.receive(ConInd : { * }) -> testCaseVar ;

p.send(DatReq : { testCaseVar , 0 });

p.send(DisReq : {});

(b) Revised TTCN code

Figure 10.5: Code generation for MSC TestCaseVariable

needed. With regard to test generation based on SDL, it can be assumed that an SDL
specification is complete such that this problem does not occur.

Another problem concerns the access to array elements. Since variable values are de-
scribed by symbolic terms, the array index might not be unique at the time of execution.
Therefore, a choice point with – in worst case – as many alternatives as the size of the
array has to be introduced. A pragmatic solution to circumvent this problem is to in-
stantiate the index variable in such a case, i.e., to partially switch back from symbolic
execution to “regular execution” with concrete values.

Despite the open issues discussed above, the author believes that symbolic execution is
a powerful technique that can cope with the most challenging problems of automatic
test generation. The ValiBOSE tool is subject to further developments. In particular,
it is planned to support a wide range of SDL language concepts.

196

11 Conclusions

In this thesis, the automatic generation of abstract test cases based on formal speci-
fications has been discussed. Solutions have been proposed for various problem areas,
ranging from the generation of test cases for distributed test architectures, to efficient
state space exploration and user-friendly representation of test cases. In addition, sug-
gestions for possible future improvements have been made.

The applicability of automatic test generation has been demonstrated by Autolink, a
commercial tool that was developed in cooperation with Telelogic AB. Autolink al-
lows to generate conformance test suites in TTCN-2 format based on SDL specifications
and MSC test purposes.

Case studies at ETSI have shown that automatic test generation can save both time
and costs. However, there are two key factors which decide about the applicability and
success of automatic test generation:

• The availability of a detailed, formal specification.

• The availability of a powerful and user-friendly test generation tool.

Formal specifications are mainly used by international standardization organizations
such as ETSI or ITU-T and by major telecommunication companies. For test generation
purposes, a formal specification should cover most aspects of the corresponding protocol,
i.e., it should be as close to a concrete implementation as possible.

Concerning tool support, a practical test generation tool must be comprehensive. The
lack of a single feature, e.g., support for test suite parameters, can mean a significant
amount of additional work in terms of manual post-processing. Beyond that, it can
jeopardize the overall applicability of the tool. Moreover, it is essential that test gener-
ation is integrated into the complete development process and a continuous tool chain
is available for this process.

Some test generation techniques require adjustments by the test specifier. This, of course,
presupposes a good knowledge of the underlying algorithms and principles. Feature
interactions make these adjustments even more difficult. A typical example is the choice
of a suitable set of heuristics if a complete state space exploration is impossible. Even
experienced users have difficulties in predicting the consequences of each parameter in
combination with other factors. A user-friendly solution should hide its technology and
adapt itself automatically to a concrete task.

Participation in the Autolink project and in the development of various test suites at
ETSI has shown that there is a large gap between the theoretical concepts of scientists

197

11 Conclusions

on the one hand and the practical work of engineers on the other hand. There are several
reasons why research results have difficulties in finding their way into practice:

• Many sophisticated methods can only be applied to rather small examples. For
instance, fault model-based test generation and the computation of UIO sequences
are feasible for Inres but they are rather unpromising undertakings for protocols
of the size of Core INAP CS-2.

• Theoretical work is based on simplified models and abstracts from implementation
details. In contrast, practical systems are very complex and full of constraints. A
test generation tool for SDL that does not support a wide range of language
constructs is practically irrelevant. For this reason, the correct implementation
of advanced techniques such as partial order simulation can become arbitrarily
complicated and economically unacceptable.

• Scientists and engineers tend to focus on different issues. Very often, the practi-
tioner is struggling with problems that do not draw the attention of the academic
world. In the context of automatic test generation, the readability of abstract test
suites plays no vital role in academia but it is a major concern in standardization.

This thesis builds a bridge between both theory and practice, by providing pragmatic,
scientific solutions for real-life problems.

198

A List of Abbreviations

ADT Abstract Data Type
AN Access Network
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
AST Abstract Syntax Tree
ATM Abstract Test Method / Asynchronous Transfer Mode
ATS Abstract Test Suite
BBCC Broadband Bearer Connection Control
BFS Breadth-First Search
CEFSM Communicating Extended FSM
CM Coordination Message
CORBA Common Object Request Broker Architecture
CP Coordination Point
CSP Constraint Satisfaction Problem
CT Constraint Theory
CTL Computation Tree Logic
CTMF Conformance Testing Methodology and Framework
DCOM Distributed Common Object Model
DFG Data Flow Graph
DFS Depth-First Search
DS Distinguishing Sequence
EBNF Extended Backus-Naur Form
ETS Executable Test Suite
ETSI European Telecommunications Standards Institute
FD Finite Domain
FDT Formal Description Technique
FIFO First In, First Out
FMCT Formal Methods in Conformance Testing
FSM Finite State Machine
HMSC High-level MSC
ICS Implementation Conformance Statement
IDL Interface Definition Language
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
INAP CS-2 Intelligent Network Application Protocol, Capability Set 2

199

A List of Abbreviations

Inres Initiator and Responder
IS International Standard
ISO International Organization for Standardization
ITU-T International Telecommunication Union –

Telecommunication Standardization Sector
IUT Implementation Under Test
IXIT Implementation eXtra Information for Testing
LCSAJ Linear Code Sequence And Jump
LT Lower Tester
LTCF Lower Tester Control Function
LTS Labeled Transition System
MOT Means of Testing
MSC Message Sequence Chart
MTC Main Test Component
OSI Open Systems Interconnection
PCO Point of Control and Observation
PDU Protocol Data Unit
PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation eXtra Information for Testing
POSIX Portable Operating System Interface for UNIX
PPO Possible Pass Observable
PROLOG Programming in Logic
PTC Parallel Test Component
RTMC Real Time Management Co-ordination
SAP Service Access Point
SCS System Conformance Statement
SDL Specification and Description Language
SDU Service Data Unit
SN Service Node
STF Specialist Task Force
SUT System Under Test
TCP Test Coordination Procedures
TR Technical Report
TSS & TP Test Suite Structure and Test Purposes
TTCN-2 Tree and Tabular Combined Notation 2
TTCN.GR TTCN Graphical Form
TTCN.MP TTCN Machine Processable Form
TTCN-3 Testing and Test Control Notation 3
TTCN-3 GFT TTCN-3 Graphical Presentation Format
TTCN-3 TFT TTCN-3 Tabular Presentation Format
UIO Unique Input Output
UML Unified Modeling Language
UPO Unique Pass Observable
UT Upper Tester
ValiBOSE VALIdation Based On Symbolic Execution

200

VB5.1 / 5.2 Broadband “V” reference point 5.1 / 5.2
XSLT Extensible Stylesheet Language Transformations

201

A List of Abbreviations

202

B TTCN-2 Test Suite for the Inres Protocol

Test Suite Overview
Test Suite Structure

Suite Name : TestsForInres

Standards Ref :

PICS Ref :

PIXIT Ref :

Test Method(s) : Local test method

Comments :

Test Group Reference Selection Ref Test Group Objective Page Nr

BasicInterconnectionTests/ Determine whether there is sufficient conformance for inter-
connection to be possible

210

BehaviorTests/ Determine the extent to which dynamic conformance require-
ments are met

210

Detailed Comments :

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page Nr

BasicInterconnectionTests/ SingleDataTransfer 210

BehaviorTests/ DataLoss InopportuneEvents 210

Detailed Comments :

Test Step Index

Test Step Group Reference Test Step Id Description Page Nr

MediumAccess 211

Detailed Comments :

Default Index

Default Group Reference Default Id Description Page Nr

Failures/ MTCFailure 211

Failures/ PTCFailure 211

Detailed Comments :

Import Part

Imports

Source Name : ServiceUser

Source Ref :

Standards Ref :

Comments :

Object Name Object Type Source Name Comments

UserPDU ASN1 PDU TypeDef

someUserPDU ASN1 PDU Constraint

Detailed Comments :

203

B TTCN-2 Test Suite for the Inres Protocol

Declarations Part

ASN.1 Type Definition

Type Name : InresPDUType

Encoding Variation :

Comments :

Type Definition

ENUMERATED { CR(1), CC(2), DR(3), DT(4), AK(5) }
Detailed Comments :

ASN.1 Type Definition

Type Name : SequenceNumber

Encoding Variation :

Comments :

Type Definition

ENUMERATED { zero(0), one(1) }
Detailed Comments :

Encoding Definitions

Encoding Rule Name Reference Default Comments

BER 1997 ITU-T X.690 (12/97) TRUE Basic Encoding Rules

PER BASIC UNALIGNED 1997 ITU-T X.691 (12/97) Packed Encoding Rules

Detailed Comments :

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments

maxRepetitions INTEGER

testInopportuneEvents BOOLEAN e.g., responder does not acknowledge data transfers

Detailed Comments :

Test Case Selection Expression Definitions

Expression Name Selection Expression Comments

InopportuneEvents testInopportuneEvents = TRUE

Detailed Comments :

Test Suite Constant Declarations

Constant Name Type Value Comments

maxTestCaseTime INTEGER 50 maximum execution time of a single test case

maxTransferTime INTEGER 30 maximum execution time of a single data transfer

Detailed Comments :

Test Case Variable Declarations

Variable Name Type Value Comments

receipt INTEGER 0

seqNumber SequenceNumber

Detailed Comments :

204

PCO Type Declarations

PCO Type Role Comments

InitiatorSAP UT

MediumSAP LT

Detailed Comments :

PCO Declarations

PCO Name PCO Type Role Comments

ISAP1 InitiatorSAP UT

MSAP2 MediumSAP LT

Detailed Comments :

Coordination Point Declarations

CP Name Comments

CoordinationPoint Message exchange between MTC and PTC

Detailed Comments :

Timer Declarations

Timer Name Duration Unit Comments

testCaseTimer maxTestCaseTime s

supervisionTimer maxTransferTime s

Detailed Comments :

Test Component Declarations

Component Name Component Role Nr PCOs Nr CPs Comments

MainTC MTC 1 1

ParallelTC PTC 1 1

Detailed Comments :

Test Component Configuration Declaration

Configuration Name : StandardConfiguration

Comments :

Components Used PCOs Used CPs Used Comments

MainTC ISAP1 CoordinationPoint

ParallelTC MSAP2 CoordinationPoint

Detailed Comments :

ASN.1 ASP Type Definition

ASP Name : ICONreq

PCO Type : InitiatorSAP

Comments :

Type Definition

SEQUENCE {}
Detailed Comments :

205

B TTCN-2 Test Suite for the Inres Protocol

ASN.1 ASP Type Definition

ASP Name : ICONconf

PCO Type : InitiatorSAP

Comments :

Type Definition

SEQUENCE {}
Detailed Comments :

ASN.1 ASP Type Definition

ASP Name : IDATreq

PCO Type : InitiatorSAP

Comments :

Type Definition

SEQUENCE { iSDU UserPDU }
Detailed Comments : A User PDU on layer n+1 becomes an Inres SDU on layer n

ASN.1 ASP Type Definition

ASP Name : IDISreq

PCO Type : InitiatorSAP

Comments :

Type Definition

SEQUENCE {}
Detailed Comments :

ASN.1 ASP Type Definition

ASP Name : IDISind

PCO Type : InitiatorSAP

Comments :

Type Definition

SEQUENCE {}
Detailed Comments :

ASN.1 ASP Type Definition

ASP Name : MDATreq

PCO Type : MediumSAP

Comments :

Type Definition

SEQUENCE { mSDU InresPDU }
Detailed Comments : An Inres PDU on layer n becomes a Medium SDU on layer n-1

ASN.1 ASP Type Definition

ASP Name : MDATind

PCO Type : MediumSAP

Comments :

Type Definition

SEQUENCE { mSDU InresPDU }
Detailed Comments : An Inres PDU on layer n becomes a Medium SDU on layer n-1

206

ASN.1 PDU Type Definition

PDU Name : InresPDU

PCO Type :

Encoding Rule Name : PER BASIC UNALIGNED 1997

Encoding Variation :

Comments : Apply Packed Encoding Rules

Type Definition

SEQUENCE {
iPDUType InresPDUType,
seqNo SequenceNumber OPTIONAL,
iSDU UserPDU OPTIONAL

}
Detailed Comments : A User PDU on layer n+1 becomes an Inres SDU on layer n

ASN.1 CM Type Definition

CM Name : Notification

Comments :

Type Definition

SEQUENCE {}
Detailed Comments :

Constraints Part

ASN.1 ASP Constraint Declaration

Constraint Name : InresConnectionRequest

ASP Type : ICONreq

Derivation Path :

Comments :

Constraint Value

{}
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : InresConnectionConfirmation

ASP Type : ICONconf

Derivation Path :

Comments :

Constraint Value

{}
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : InresDataRequest(data : UserPDU)

ASP Type : IDATreq

Derivation Path :

Comments :

Constraint Value

{ iSDU data }
Detailed Comments :

207

B TTCN-2 Test Suite for the Inres Protocol

ASN.1 ASP Constraint Declaration

Constraint Name : InresDisconnectionRequest

ASP Type : IDISreq

Derivation Path :

Comments :

Constraint Value

{}
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : InresDisconnectionIndication

ASP Type : IDISind

Derivation Path :

Comments :

Constraint Value

{}
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : ConnectionRequest

ASP Type : MDATind

Derivation Path :

Comments :

Constraint Value

{ mSDU { iPDUType CR } }
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : MediumDataRequest(data : InresPDU)

ASP Type : MDATreq

Derivation Path :

Comments :

Constraint Value

{ mSDU data }
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : DataTransfer(data : UserPDU)

ASP Type : MDATind

Derivation Path :

Comments :

Constraint Value

{ mSDU { iPDUType DT, seqNo ?, iSDU data } }
Detailed Comments :

208

ASN.1 ASP Constraint Declaration

Constraint Name : DataAcknowledgment(number : SequenceNumber)

ASP Type : MDATreq

Derivation Path :

Comments :

Constraint Value

{ mSDU { iPDUType AK, seqNo number } }
Detailed Comments :

ASN.1 ASP Constraint Declaration

Constraint Name : DisconnectionRequest

ASP Type : MDATind

Derivation Path :

Comments :

Constraint Value

{ mSDU { iPDUType DR } }
Detailed Comments :

ASN.1 PDU Constraint Declaration

Constraint Name : ConnectionConfirmation

PDU Type : InresPDU

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments : This constraint is used with constraint ’MediumDataRequest’

Constraint Value

{ iPDUType CC }
Detailed Comments :

ASN.1 CM Constraint Declaration

Constraint Name : acknowledgmentSent

CM Type : Notification

Derivation Path :

Comments :

Constraint Value

{}
Detailed Comments :

209

B TTCN-2 Test Suite for the Inres Protocol

Dynamic Part

Test Case Dynamic Behaviour

Test Case Name : SingleDataTransfer

Group : BasicInterconnectionTests/

Purpose :

Configuration : StandardConfiguration

Default : MTCFailure

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CREATE(ParallelTC:MediumAccess)

2 START testCaseTimer

3 +Preamble

4 START supervisionTimer restrict time of data
transfer

5 ISAP1 ! IDATreq InresDataRequest
(someUserPDU)

data transfer

6 CoordinationPoint ? Notification acknowledgmentSent (PASS) delay disconnection re-
quest until ’ptc’ has
received and acknowl-
edged the data

7 CANCEL supervisionTimer cancel timer to avoid a
timeout in the following

8 +Postamble

9 ? DONE(ParallelTC) R

10 ISAP1 ? IDISind InresDisconnection-
Indication

INCONC

Preamble

11 ISAP1 ! ICONreq InresConnectionRequest

12 ISAP1 ? ICONconf InresConnection-
Confirmation

13 ISAP1 ? IDISind InresDisconnection-
Indication

INCONC

Postamble

14 ISAP1 ! IDISreq InresDisconnection-
Request

15 ISAP1 ? IDISind InresDisconnection-
Indication

Detailed Comments :

Test Case Dynamic Behaviour

Test Case Name : DataLoss

Group : BehaviorTests/

Purpose :

Configuration : StandardConfiguration

Default : MTCFailure

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

Detailed Comments : This test case is left unspecified

210

Test Step Dynamic Behaviour

Test Step Name : MediumAccess

Group :

Objective :

Default : PTCFailure

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 MSAP2 ? MDATind ConnectionRequest

2 (receipt := 1) first (received) connec-
tion request of the ini-
tiator

3 MSAP2 ! MDATreq MediumDataRequest(Con-
nectionConfirmation)

4 Loop MSAP2 ? MDATind
(seqNumber :=

MDATind.mSDU.seqNo)

DataTransfer(someUser-
PDU)

(PASS)

5 MSAP2 ! MDATreq DataAcknowledgment
(seqNumber)

6 CoordinationPoint ! Notification acknowledgmentSent inform the main test
component that the
data have been received
and acknowledged

7 MSAP2 ? MDATind DisconnectionRequest PASS

8 MSAP2 ? MDATind DataTransfer(someUser-
PDU)

INCONC data acknowledgment
got lost

9 MSAP2 ? MDATind ConnectionRequest

10 [receipt <= maxRepetitions] connection confirma-
tion got lost probably
due to a malfunction of
the medium; resend it

11 (receipt := receipt + 1)

12 MSAP2 ! MDATreq MediumDataRequest
({ iPDUType CC })

13 -> Loop

14 [receipt > maxRepetitions] FAIL even over an unreliable
medium, the initiator
shall not resend its re-
quest that often

Detailed Comments :

Default Dynamic Behaviour

Default Name : MTCFailure

Group : Failures/

Objective :

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 ISAP1 ? OTHERWISE FAIL

2 ? TIMEOUT FAIL

Detailed Comments :

211

B TTCN-2 Test Suite for the Inres Protocol

Default Dynamic Behaviour

Default Name : PTCFailure

Group : Failures/

Objective :

Comments: :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 MSAP2 ? OTHERWISE FAIL

Detailed Comments :

212

C TTCN-3 Module for the Inres Protocol

1: /*
2: * TTCN-3 module for the ’Inres’ protocol
3: *
4: * Copyright (C) 2002 Michael Schmitt <Michael.Schmitt@teststep.org>
5: */
6:
7: module TestsForInres(integer maxRepetitions, boolean testInopportuneEvents) {
8: import from ServiceUser language ”ASN.1:1997” {
9: type UserPDU;

10: const someUserPDU;
11: }
12:
13: group BasicDefinitions {
14: type UserPDU InresSDU; // the PDU on layer n+1 becomes an SDU on layer n
15:
16: type enumerated InresPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };
17:
18: type enumerated SequenceNumber { zero(0), one(1) };
19:
20: type record InresPDU {
21: InresPDUType iPDUType,
22: SequenceNumber seqNo optional,
23: InresSDU iSDU optional
24: }
25:
26: type InresPDU MediumSDU; // the PDU on layer n becomes an SDU on layer n-1
27: } with { encode ”PER-BASIC-UNALIGNED:1997” }
28: // apply Packed Encoding Rules
29:
30: const float maxTestCaseTime := 50; // maximum execution time of a single test case
31: const float maxTransferTime := 30; // maximum execution time of a single data transfer
32:
33: group CommunicationWithInitiator {
34: type record ICONreq {};
35: type record ICONconf {};
36: type record IDATreq { InresSDU iSDU };
37: type record IDISreq {};
38: type record IDISind {};
39:

213

C TTCN-3 Module for the Inres Protocol

40: type port InitiatorSAP message {
41: out ICONreq, IDATreq, IDISreq; // sent to SUT
42: in ICONconf, IDISind; // received from SUT
43: }
44: }
45:
46: group CommunicationWithMedium {
47: type record MDATreq { MediumSDU mSDU };
48: type record MDATind { MediumSDU mSDU };
49:
50: type port MediumSAP message {
51: in MDATind; // received from SUT
52: out MDATreq; // sent to SUT
53: }
54: }
55:
56: group CommunicationBetweenTestComponents {
57: signature acknowledgmentSent();
58:
59: type port PortAtMTC procedure {
60: in acknowledgmentSent;
61: }
62:
63: type port PortAtPTC procedure {
64: out acknowledgmentSent;
65: }
66: }
67:
68: group ComponentDefinitions {
69: type component MainTC {
70: port InitiatorSAP ISAP1;
71: port PortAtMTC CoordinationPTC;
72: timer supervisionTimer;
73: }
74:
75: type component ParallelTC {
76: port MediumSAP MSAP2;
77: port PortAtPTC CoordinationMTC;
78: }
79:
80: type component TestSystem {
81: port InitiatorSAP ISAP1;
82: port MediumSAP MSAP2;
83: }
84: }
85:
86: group TemplateDefinitions {
87: template IDATreq InresDataRequest(InresSDU data) := {
88: iSDU := data
89: }

214

90:
91: template MDATind ConnectionRequest := {
92: mSDU := { iPDUType := CR, seqNo := omit, iSDU := omit }
93: }
94:
95: template MediumSDU ConnectionConfirmation := { // this template is used with
96: iPDUType := CC, seqNo := omit, iSDU := omit // template ’MediumDataRequest’
97: }
98:
99: template MDATreq MediumDataRequest(template MediumSDU data) := {

100: mSDU := data
101: }
102:
103: template MDATind DataTransfer(InresSDU data) := {
104: mSDU := { iPDUType := DT, seqNo := ?, iSDU := data }
105: }
106:
107: template MDATreq DataAcknowledgment(SequenceNumber number) := {
108: mSDU := { iPDUType := AK, seqNo := number, iSDU := omit }
109: }
110: }
111:
112: altstep MTCFailure() runs on MainTC {
113: [] ISAP1.receive {
114: setverdict(fail);
115: stop;
116: }
117: [] any timer.timeout {
118: setverdict(fail);
119: stop;
120: }
121: }
122:
123: altstep PTCFailure() runs on ParallelTC {
124: [] MSAP2.receive {
125: setverdict(fail);
126: stop;
127: }
128: }
129:
130: altstep ReceptionIDISind(verdicttype result) runs on MainTC {
131: [] ISAP1.receive(IDISind : {}) {
132: setverdict(result);
133: stop;
134: }
135: }
136:

215

C TTCN-3 Module for the Inres Protocol

137: function MediumAccess() runs on ParallelTC {
138: var integer receipt;
139: var default def := activate(PTCFailure());
140: var MDATind indication;
141:
142: MSAP2.receive(ConnectionRequest);
143: receipt := 1; // first (received) connection request of the initiator
144:
145: MSAP2.send(MediumDataRequest(ConnectionConfirmation));
146:
147: alt {
148: [receipt <= maxRepetitions] MSAP2.receive(ConnectionRequest) {
149: // connection confirmation got lost probably due
150: // to a malfunction of the medium; resend it
151: receipt := receipt + 1;
152: MSAP2.send(MediumDataRequest({ CC, omit, omit }));
153: repeat;
154: }
155: [receipt > maxRepetitions] MSAP2.receive(ConnectionRequest) {
156: // even over an unreliable medium, the initiator
157: // shall not resend its requests that often
158: setverdict(fail);
159: stop;
160: }
161: [] MSAP2.receive(DataTransfer(someUserPDU)) -> value indication {
162: /* empty */
163: }
164: }
165:
166: MSAP2.send(DataAcknowledgment(indication.mSDU.seqNo));
167:
168: // inform the main test component that the data have been received and acknowledged
169: CoordinationMTC.call(acknowledgmentSent : {});
170: CoordinationMTC.getreply(acknowledgmentSent : {});
171:
172: alt {
173: [] MSAP2.receive(MDATind : { mSDU := { DR, omit, omit } }) {
174: setverdict(pass); // disconnection request
175: }
176: [] MSAP2.receive(DataTransfer(someUserPDU)) { // data acknowledgment got lost
177: setverdict(inconc);
178: }
179: }
180: }
181:
182: testcase SingleDataTransfer() runs on MainTC system TestSystem {
183: var ParallelTC ptc;
184: var default def1, def2;
185:
186: ptc := ParallelTC.create;

216

187:
188: map(self :ISAP1, system:ISAP1);
189: map(ptc:MSAP2, system:MSAP2);
190:
191: connect(self :CoordinationPTC, ptc:CoordinationMTC);
192:
193: ptc.start(MediumAccess());
194:
195: def1 := activate(MTCFailure());
196: def2 := activate(ReceptionIDISind(inconc));
197:
198: ISAP1.send(ICONreq : {}); // connection request
199: ISAP1.receive(ICONconf : {}); // connection confirmation
200:
201: supervisionTimer.start(maxTransferTime); // restrict time of data transfer
202:
203: ISAP1.send(InresDataRequest(someUserPDU)); // data transfer
204:
205: // delay disconnection request until ’ptc’ has received and acknowledged the data
206: CoordinationPTC.getcall(acknowledgmentSent : {});
207: CoordinationPTC.reply(acknowledgmentSent : {});
208:
209: supervisionTimer.stop; // cancel timer to avoid a timeout in the following
210:
211: deactivate(def2); // a disconnection indication is no undesirable event any longer
212:
213: ISAP1.send(IDISreq : {}); // disconnection request
214: ISAP1.receive(IDISind : {}); // disconnection indication
215:
216: all component.done;
217:
218: setverdict(pass);
219: }
220:
221: testcase DataLoss() runs on MainTC system TestSystem {
222: // ...
223: }
224:
225: control {
226: var verdicttype overallVerdict := pass;
227:
228: overallVerdict := execute(SingleDataTransfer(), maxTestCaseTime);
229:
230: if (overallVerdict == pass and testInopportuneEvents == true) {
231: overallVerdict := execute(DataLoss());
232: }
233: }
234: } with { encode ”BER:1997” } // apply Basic Encoding Rules by default

217

C TTCN-3 Module for the Inres Protocol

218

Bibliography

Balzert, H. (1998). Lehrbuch der Software-Technik, volume 2. Spektrum Akademie Verlag, 1st
edition.

Barták, R. (1996). Constraint Programming: In Pursuit of the Holy Grail. ACM Computing
Surveys, 28A(4).

Bourhfir, C., Dssouli, R., Aboulhamid, E., and Rico, N. (1997). Automatic executable test
case generation for efsm specified protocols. In Proceedings of the International Workshop on
Testing of Communicating Systems, pages 75–90. Chapman & Hall.

Boyer, R. S., Elspas, B., and Levitt, K. N. (1975). SELECT – A formal system for testing and
debugging programs by symbolic execution. In Proceedings of the International Conference
on Reliable Software, pages 234–245, New York. ACM.

Bronstein, I. N., Semendjajew, K. A., Musiol, G., and Mühlig, H. (1999). Taschenbuch der
Mathematik. Verlag Harri Deutsch, Frankfurt am Main, 4. edition.

Cavalli, A. R. and Anido, R. (1997). Verification and testing techniques based on the finite state
machine model. Rapport de Recherche 97 09 02, Institut National des Télécommunications,
Evry, France.

Cavalli, A. R., Lee, D., Rinderknecht, C., and Zäıdi, F. (1999). Hit-or-Jump: An algorithm for
embedded testing with applications to IN services. In Proceedings of FORTE/PSTV, pages
41–56.

Chow, T. S. (1978). Testing software design modeled by finite state machines. IEEE-SE,
4(3):178–187.

Clark, J. (1999). XSL Transformations (xslt) version 1.0. W3C Recommendation, http://www.
w3.org/TR/1999/REC-xslt-19991116.

Clarke, E. M. and Emerson, E. A. (1981). Design and synthesis of synchronisation skeletons
using branching time temporal logic. In Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer Verlag.

Clocksin, W. F. and Mellish, C. S. (1994). Programming in PROLOG. Springer Verlag, 4th
edition.

Coward, D. and Ince, D. (1995). The Symbolic Execution of Software – The SYM-BOL system.
Computer Science: Research and Practice. Chapman & Hall, London.

Da Vinci Communications (2002). TTCN-3 tools. http://www.davinci-communications.com/
products_ttcn3.html.

219

Bibliography

Dai, Z. R. (1999). TTCN Test Suite Generation with Autolink — Applied to a 3rd Genera-
tion Mobile Network Protocol. Diploma thesis, Medizinische Universität zu Lübeck, Lübeck,
Germany.

Dai, Z. R., Grabowski, J., and Neukirchen, H. (2002). Timed TTCN-3 – A Real-Time Extension
for TTCN-3. In Testing Internet Technologies and Services. Proceedings of the IFIP TC6
14th International Conference on Testing of Communicating Systems (TestCom 2002), pages
407–424, Berlin.

De Nicola, R. and Hennessy, M. (1984). Testing equivalences for processes. Theoretical Computer
Science, 34:83–133.

Deraison, R. (2000). The Nessus Attack Scripting Language Reference Guide. http://www.

nessus.org/documentation.html, 1.0.0pre2 edition.

Ebner, M., Yin, A., and Li, M. (2002). Definition and Utilisation of OMG IDL to TTCN-3
Mappings. In Schieferdecker, I., König, H., and Wolisz, A., editors, TESTING OF COM-
MUNICATING SYSTEMS XIV — Application to Internet Technologies and Services, pages
443–458. IFIP, Kluwer Academic Publishers.

Eertink, E. H. (1994). Simulation Techniques for the Validation of LOTOS Specifications. PhD
thesis, University of Twente.

Ek, A., Grabowski, J., Hogrefe, D., Jerome, R., Koch, B., and Schmitt, M. (1997). Towards the
Industrial Use of Validation Techniques and Automatic Test Generation Methods for SDL
Specifications. In Cavalli, A. and Sarma, A., editors, SDL ’97 Time for Testing. SDL, MSC
and Trends — Proceedings of the Eighth SDL Forum, pages 245–259, Evry, France. Elsevier.

ETSI, European Telecommunications Standards Institute (1994). Technical Report 141 — Meth-
ods for Testing and Specification (MTS): Protocol and profile conformance testing specifica-
tions; The Tree and Tabular Combined Notation (TTCN) style guide. ETSI, Sophia Antipolis,
France.

ETSI, European Telecommunications Standards Institute (1999a). DEN/SPAN-09047-1 / EN
301 217-1 V1.2.2 — V interfaces at the digital Service Node (SN); Interfaces at the VB5.2
reference point for the support of broadband or combined narrowband and broadband Access
Networks (ANs); Part 1: Interface Specification. ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (1999b). DEN/SPS-03038-1 / EN 301
140-1 V1.3.4 — Intelligent Network (IN); Intelligent Network Application Protocol (INAP);
Capability Set 2 (CS2); Part 1: Protocol Specification. ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (2000a). DEN/SPS-03038-3 / EN 301
140-3 V1.1.3 — Intelligent Network (IN); Intelligent Network Application Protocol (INAP);
Capability Set 2 (CS2); Part 3: Test Suite Structure and Test Purposes (TSS&TP) specifica-
tion for Service Switching Function (SSF). ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (2000b). DEN/SPS-03038-4 / EN 301
140-4 V1.1.3 — Intelligent Network (IN); Intelligent Network Application Protocol (INAP);
Capability Set 2 (CS2); Part 4: Abstract Test Suite (ATS) specification and Partial Proto-
col Implementation eXtra Information for Testing (PIXIT) proforma for Service Switching
Function (SSF). ETSI, Sophia Antipolis, France.

220

Bibliography

ETSI, European Telecommunications Standards Institute (2000c). DEN/SPS-09046-3 / EN 301
005-3 V1.1.2 — V interfaces at the digital Service Node (SN); Interfaces at the VB5.1 reference
point for the support of broadband or combined narrowband and broadband Access Networks
(ANs); Part 3: Test Suite Structure and Test Purposes (TSS&TP) specification. ETSI, Sophia
Antipolis, France.

ETSI, European Telecommunications Standards Institute (2000d). DEN/SPS-09046-4 / EN 301
005-4 V1.1.2 — V interfaces at the digital Service Node (SN); Interfaces at the VB5.1 ref-
erence point for the support of broadband or combined narrowband and broadband Access
Networks (ANs); Part 4: Abstract Test Suite (ATS) and partial Protocol Implementation eX-
tra Information for Testing (PIXIT) proforma specification. ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (2001a). DEN/SPAN-09047-3 / EN
301 217-3 V1.1.1 — V interfaces at the digital Service Node (SN); Interfaces at the VB5.2
reference point for the support of broadband or combined narrowband and broadband Access
Networks (ANs); Part 3: Test Suite Structure and Test Purposes (TSS&TP). ETSI, Sophia
Antipolis, France.

ETSI, European Telecommunications Standards Institute (2001b). DEN/SPAN-09047-4 / EN
301 217-4 V1.1.1 — V interfaces at the digital Service Node (SN); Interfaces at the VB5.2
reference point for the support of broadband or combined narrowband and broadband Access
Networks (ANs); Part 4: Abstract Test Suite (ATS) and partial Protocol Implementation
eXtra Information for Testing (PIXIT). ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (2002a). ES 201 873-1 V2.2.1 — Meth-
ods for Testing and Specification (MTS); The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language. ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (2002b). ES 201 873-2 V2.2.1 — Meth-
ods for Testing and Specification (MTS); The Testing and Test Control Notation version 3;
Part 2: TTCN-3 Tabular presentation Format (TFT). ETSI, Sophia Antipolis, France.

ETSI, European Telecommunications Standards Institute (2002c). TR 101 873-3 V1.1.2 — Meth-
ods for Testing and Specification (MTS); The Testing and Test Control Notation version 3;
Part 3: TTCN-3 Graphical presentation Format (GFT). ETSI, Sophia Antipolis, France.

Feijs, L. M. G., Goga, N., and Mauw, S. (2000). Probabilities in the TorX test derivation
algorithm. In Graf, S., Jard, C., and Lahav, Y., editors, Proceedings of the Second Workshop
on SDL and MSC, pages 173–188, Col de Porte, Grenoble, France.

Frühwirth, T. and Abdennadher, S. (1997). Constraint-Programmierung: Grundlagen und An-
wendungen. Springer Verlag, Berlin, Heidelberg.

Gilly, D. (1994). UNIX in a Nutshell — System V Edition. O’Reilly & Associates, Sebastopol,
California, 2nd edition.

Girgis, M. R. and Woodward, M. R. (1986). An Experimental Comparison of the Error Exposing
Ability of Program Testing Criteria. In Proceedings of the Workshop on Software-Testing,
pages 64–73, Banff.

Grabowski, J., Hogrefe, D., and Nahm, R. (1993). Test Case Generation with Test Purpose
Specification by MSCs. In Færgemand, O. and Sarma, A., editors, SDL ’93 Using Objects.
— Proceedings of the Sixth SDL Forum. North-Holland.

221

Bibliography

Grabowski, J., Hogrefe, D., Nussbaumer, I., and Spichiger, A. (1995). Test Case Specification
Based on MSCs and ASN.1. In Proceedings of the Seventh SDL Forum, Oslo, Norway. Elsevier.

Grabowski, J., Koch, B., Schmitt, M., and Hogrefe, D. (1999). SDL and MSC Based Test
Generation for Distributed Test Architectures. In Dssouli, R., von Bochmann, G., and Lahav,
Y., editors, SDL ’99 The next Millenium — Proceedings of the Nineth SDL Forum, pages
389–404, Montreal, Canada. Elsevier.

Grabowski, J., Rudolph, E., and Schmitt, M. (2001). Die Spezifikationssprachen MSC und SDL
— Teil 1: Message Sequence Chart (MSC). at — Automatisierungstechnik, 49(12):A19–A22.

Grabowski, J., Rudolph, E., and Schmitt, M. (2002). Die Spezifikationssprachen MSC und SDL
— Teil 2: Specification and Description Language (SDL). at — Automatisierungstechnik,
50(2):A1–A4.

Grabowski, J., Scheurer, R., Toggweiler, D., and Hogrefe, D. (1996). Dealing with the complex-
ity of state space exploration algorithms for SDL systems. In Arbeitsberichte des Instituts
für mathematische Maschinen- und Datenverarbeitung (Mathematik),Proceedings of the sixth
GI/ITG Technical Meeting on Formal Description Techniques for Distributed Systems, vol-
ume 20, Erlangen. University of Erlangen.

Grabowski, J. and Schmitt, M. (2002). TTCN-3 — Eine Sprache für die Spezifikation und
Implementierung von Testfällen. at — Automatisierungstechnik, 50(3):A5–A8.

Graham, R. L., Knuth, D. E., and Patashnik, O. (1994). Concrete Mathematics : A Foundation
for Computer Science. Addison–Wesley, 2nd edition.

Groz, R. and Risser, N. (1997). Eight years of experience in test generation from FDTs us-
ing TVEDA. In Mizuno, T., Shiratori, N., Higashino, T., and Togashi, A., editors, Formal
Description Techniques and Protocol Specification, Testing and Verification, pages 465–480.
IFIP, Chapman & Hall.

Hantler, S. L. and King, J. C. (1976). An Introduction to Proving the Correctness of Programs.
ACM Computing Surveys, 8(3):331–353.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice Hall.

Hogrefe, D. (1989). Estelle, LOTOS und SDL — Standard-Spezifikationssprachen für verteilte
Systeme. Springer Verlag, Berlin, Heidelberg, New York.

Holzmann, G. J. (1991). Design and Validation of Computer Protocols. Prentice Hall.

IEEE, Institute of Electrical and Electronics Engineers (1990). IEEE Standard 610.12 — Stan-
dard Glossary of Software Engineering Terminology. IEEE, New York.

ILOG (1999a). ILOG Solver 4.4 – Reference Manual. ILOG S.A., France.

ILOG (1999b). ILOG Solver 4.4 – User’s Manual. ILOG S.A., France.

ISO, International Organization for Standardization and IEC, International electrotechnical
commission (1993). International Standard 10646, second edition: Information Technology
– Universal Multiple Octet-Coded Character Set (UCS). ISO/IEC, Geneva, Switzerland.

222

Bibliography

ISO, International Organization for Standardization and IEC, International electrotechnical com-
mission (1994a). International Standard 13210: Information Technology – Test methods for
measuring conformance to POSIX (ANSI/IEEE Standard 1003.3-1991). ISO/IEC, Geneva,
Switzerland.

ISO, International Organization for Standardization and IEC, International electrotechnical com-
mission (1994b). International Standard 9646-1: Information technology – Open systems in-
terconnection – Conformance testing methodology and framework, part 1: General concepts,
Second Edition. ISO/IEC, Geneva, Switzerland.

ISO, International Organization for Standardization and IEC, International electrotechnical com-
mission (1997). International Standard 9646-3: Information technology – Open systems in-
terconnection – Conformance testing methodology and framework, part 3: Tree and Tabular
Combined Notation, Second Edition. ISO/IEC, Geneva, Switzerland.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1992). Recommendation Z.100 — CCITT Specification and Description Language (SDL).
ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1996a). Addendum 1 (10/96) to Recommendation Z.100 — CCITT Specification and De-
scription Language (SDL). ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1996b). Recommendation Z.120 (10/96) — Message Sequence Chart (MSC). ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1997a). Recommendation X.680 (12/97) — Abstract Syntax Notation One (ASN.1): Speci-
fication of Basic Notation. ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1997b). Recommendation Z.500 (5/97) — Framework on formal methods in conformance
testing. ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1999a). Recommendation Z.100 (11/99) — Specification and Description Language (SDL).
ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sec-
tor (1999b). Recommendation Z.105 (11/99) — SDL combined with ASN.1 modules
(SDL/ASN.1). ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1999c). Recommendation Z.107 (11/99) — SDL with embedded ASN.1. ITU, Geneva.

ITU-T, International Telecommunication Union — Telecommunication Standardization Sector
(1999d). Recommendation Z.120 (11/99) — Message Sequence Chart (MSC). ITU, Geneva.

Kerbrat, A., Jéron, T., and Groz, R. (1999). Automated test generation from SDL specifications.
In Dssouli, R., von Bochmann, G., and Lahav, Y., editors, SDL ’99 The next Millenium —
Proceedings of the Nineth SDL Forum, pages 135–151, Montreal, Canada. Elsevier.

Kneuper, R. (1992). Validation und Verifikation von Software durch symbolische Ausführung. In
Liggesmeyer, P., Sneed, H. M., and Spillner, A., editors, Testen, Analysieren und Verifizieren
von Software, Informatik Aktuell. Springer Verlag, Berlin.

223

Bibliography

Koch, B. (2001). Test-purpose-based Test Generation for Distributed Test Architectures. Inau-
guraldissertation, Medizinische Universität zu Lübeck, Lübeck, Germany.

Koch, B., Grabowski, J., Hogrefe, D., and Schmitt, M. (1998). Autolink — A Tool for Automatic
Test Generation from SDL Specifications. In IEEE International Workshop on Industrial
Strength Formal Specification Techniques (WIFT’98), Boca Raton, Florida.

Kohavi, Z. (1978). Switching and Finite Automata Theory. McGraw-Hill, New York.

Kuikka, E. and Penttonen, M. (1995). Transformation of structured documents. Technical Re-
port CS-95-46, Department of Computer Science, University of Waterloo, Waterloo, Canada.

Liggesmeyer, P. (1990). Modultest und Modulverifikation – State of the Art. BI-Wissenschafts-
verlag, Mannheim.

Mayer, S. (2000). Automatic test generation for the Test Synchronization Protocol 1 with
Autolink. Term paper, Medizinische Universität zu Lübeck, Lübeck, Germany.

Milner, R. (1989). Communication and Concurrency. Prentice Hall.

Moesch, F. (2001). Entwurf und Implementation einer benutzerfreundlichen Eingabesprache für
einen Testautomaten. Term paper, Medizinische Universität zu Lübeck, Lübeck, Germany.

Nahm, R. (1995). Conformance Testing based on Formal Description Techniques and Message
Sequence Charts. PhD thesis, Institut für Informatik, University of Berne, Berne, Swiss.

Naito, S. and Tsunoyama, M. (1981). Fault detection for sequential machines by transition tours.
In Proceedings of the IEEE Fault Tolerant Computing Conference, pages 238–243.

Object Management Group (1999). Unified modeling language specification; version 1.3. http:
//www.rational.com/uml.

Peng, W. W. and Wallace, D. R. (1993). Software error analysis. NIST Special Publication 500–
209, National Institute of Standards and Technology (NIST), U.S. Department of Commerce,
Gaithersburg, MD 20899.

Prinz, A., Eschbach, R., and Gotzhein, R. (2000). An Executable Formal Semantics for SDL-
2000. In Proceedings of the 2nd Workshop on SDL and MSC (SAM 2000), pages 249–261,
Col de Porte, Grenoble. VERIMAG, IRISA, and SDL Forum Society.

Rauhamaa, M. (1990). A comparative study of methods for efficient reachability analysis. Se-
ries A: Research Reports No. 14, Department of Computer Science, Helsinki University of
Technology, Espoo, Finland.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language Reference
Manual. Addison–Wesley, Reading, Massachusetts.

Sabnani, K. K. and Dahbura, A. T. (1988). A protocol test generation procedure. Computer
Networks and ISDN Systems, 15(4):285–297.

Savoye, R. (2001). DejaGNU – The GNU Testing Framework. Free Software Foundation, 1.4.1
revision 0.6.1 edition.

Scheurer, R. (1997). Demonstrating the Applicability of Automatic Test Case Generation Meth-
ods. Inauguraldissertation, Institut für Informatik und angewandte Mathematik, Universität
Bern, Bern.

224

Bibliography

Schmitt, M. (2000). The Development of a Parser for SDL-2000. Schriftenreihe der Institute
für Informatik\Mathematik Report A-00-10, Medizinische Universität zu Lübeck, Lübeck,
Germany.

Schmitt, M., Ebner, M., and Grabowski, J. (2000). Test Generation with Autolink and Test-
Composer. In Graf, S., Jard, C., and Lahav, Y., editors, Proceedings of the Second Workshop
on SDL and MSC, pages 218–232, Col de Porte, Grenoble, France.

Schmitt, M., Ek, A., Grabowski, J., Hogrefe, D., and Koch, B. (1998). Autolink — Putting SDL-
based test generation into practice. In Petrenko, A. and Yevtushenko, N., editors, Testing
of Communicating Systems. Proceedings of the IFIP TC6 11th International Workshop on
Testing of Communicating Systems (IWTCS’98), volume 11, pages 227–243, Tomsk, Russia.
Kluwer Academic Publishers.

Schmitt, M. and Koch, B. (2001). Autolink User Manual. Telelogic AB, Malmö, Sweden.

Schmitt, M., Koch, B., Grabowski, J., and Hogrefe, D. (1997). Autolink — A Tool for the
Automatic and Semi-Automatic Test Generation. In Wolisz, A., Schieferdecker, I., and
Rennoch, A., editors, Proceedings of the Seventh GI/ITG Technical Meeting on Formal
Description Techniques for Distributed Systems, pages 333–341, Berlin, Germany. GMD-
Forschungszentrum Informationstechnik GmbH.

Schmitt, M., Koch, R., and Grabowski, J. (2001). A parser for TTCN-3. http://www.itm.mu-
luebeck.de/research/.

Schöning, U. (1989). Logik für Informatiker, volume 56 of Reihe Informatik. BI-Wissenschafts-
verlag, Mannheim, Wien, Zürich, 2nd edition.

SDL Forum Society (2002a). http://www.sdl-forum.org.

SDL Forum Society (2002b). SDL and MSC Tools. http://www.sdl-forum.org/Tools/index.
htm.

Telelogic (2001). Tau 4.1 User’s Manual. Chapter 53: The SDL Validator. Telelogic, Malmö,
Sweden.

Telelogic (2002a). Tau product description. http://www.telelogic.com/products/tau/.

Telelogic (2002b). TTCN-3 toolset. http://www.telelogic.com/products/tau/languages/

ttcn.cfm.

Telelogic (formerly Verilog) (2002). ObjectGeode product description. http://www.

telelogic.com/products/additional/objectgeode/index.cfm.

Testing Technologies (2002). TT Tool Series. http://www.testingtech.com/products/

TTToolSeries.html.

Toggweiler, D. (1995). Efficient Test Case Generation for distributed Systems specified by Au-
tomata. Inauguraldissertation, University of Berne, Bern.

Touag, A. and Rouger, A. (1999). Methods and Methodology for an Incremental Test Generation
from SDL Specifications. In Dssouli, R., von Bochmann, G., and Lahav, Y., editors, SDL ’99
The next Millenium — Proceedings of the Nineth SDL Forum, pages 153–168, Montreal,
Canada. Elsevier.

225

Bibliography

Tsang, E. (1996). FOUNDATIONS OF CONSTRAINT SATISFACTION. Department of Com-
puter Science, University of Essex, Colchester, Essex, UK.

van Glabbeek, R. J. (1993). The Linear Time-Branching Time Spectrum II: The Semantics of
Sequential Systems with Silent Moves. In Proceedings of the Fourth International Conference
on Concurrency Theory (CONCUR ’93), number 715 in Lecture Notes in Computer Science,
pages 66–81. Springer Verlag.

Vasilevskii, M. P. (1973). Failure diagnosis of automata. Kibernetika, 4:98–108. Original in
Russian.

Walter, T., Schieferdecker, I., and Grabowski, J. (1998). Test Architectures for Distributed
Systems — State of the Art and Beyond. In Petrenko, A. and Yevtushenko, N., editors, Pro-
ceedings of the IFIP TC6 11th International Workshop on Testing of Communicating Systems
(IWTCS’98), volume 11, pages 149–174, Tomsk, Russia. Kluwer Academic Publishers.

West, C. H. (1992). Protocol validation - principles and applications. Computer Networks and
ISDN Systems, 24:219–242. North-Holland.

Zhou, N.-F. (2000). B-Prolog User’s Manual. Department of Computer and Information Science,
Brooklyn College, The City University of New York, New York, USA, 4.0 edition.

Zieren, J. (2000). Automatische Generierung normativer Benutzermodelle aus SDL-
Spezifikationen. Diploma thesis, Lehrstuhl für Technische Informatik, RWTH Aachen.

226

Curriculum Vitae

Michael Schmitt

Persönliche Daten

geboren am 14. Juli 1970 in Orsoy

Eltern Joachim Schmitt, Diplom-Ingenieur,
Ehefrau Elisabeth, geb. Huber

Familienstand ledig

Staatsangehörigkeit deutsch

Ausbildung / Beruflicher Werdegang

1977 – 1981 Grundschule in Neukirchen-Vluyn

1981 – 1990 Julius-Stursberg-Gymnasium in Neukirchen-
Vluyn; Abschluss: Abitur

1990 – 1996 Informatik-Studium an der Universität
Koblenz-Landau, Abteilung Koblenz, mit
dem Anwendungsfach Computerlinguistik;
Abschluss: Diplom mit Auszeichnung

Okt. 1996 – Sept. 2001 wissenschaftlicher Mitarbeiter am Institut
für Telematik der Medizinischen Universität
zu Lübeck

Okt. 2001 – März 2002 wissenschaftlicher Mitarbeiter am Institut
für Telematik e.V., Trier

seit April 2002 wissenschaftlicher Mitarbeiter am Lehrstuhl
von Prof. Meinel an der Universität Trier

	Introduction
	Foundations of Testing
	Classification of Tests
	Conformance Testing Concepts
	Conformance Requirements
	Test Cases
	Test Verdicts
	Test Suites

	The Conformance Testing Process
	Test Suite Development
	Test Preparation
	Test Operation
	Test Evaluation

	Test Methods and Configurations

	Test Languages
	The Tree and Tabular Combined Notation
	Test Suite Overview and Import Part
	Declarations Part
	Constraints Part
	Dynamic Part

	The Testing and Test Control Notation
	Modules and Groups
	Data Model
	Communication
	Test Configurations
	Templates
	Behavior Descriptions
	Development Tools

	Discussion

	Test Generation Based on Formal Specifications
	Formal Methods in Conformance Testing
	Specification and Implementation
	Static and Dynamic Conformance
	Testing Concepts
	Test Generation

	Test Generation Methods
	Fault Models
	Test Coverage Criteria
	Scenario-Based Requirements

	Test Generation, Verification, and Validation

	High-Level Specification Languages
	Message Sequence Chart
	Basic Message Sequence Charts
	Data Model
	Structural Concepts
	High-Level Message Sequence Charts

	Specification and Description Language
	Agents and Structuring
	Communication
	Behavior
	Object Orientation
	SDL Data Model and ASN.1
	Further Language Constructs

	Tool Support

	The Autolink Tool
	The Autolink Test Generation Process
	Test Purpose Specification
	Manual Specification
	Interactive Simulation
	Observer Processes
	Automatic Computation

	Test Case Generation
	State Space Exploration
	Direct Translation

	Test Suite Production
	Interpretation of MSC Test Purposes
	Partial Order Semantics
	Structuring Concepts

	Case Studies
	Core INAP CS-2
	VB5.1 and VB5.2

	Comparison with Other SDL-based Test Tools
	SaMsTaG
	TestComposer

	Discussion

	Test Generation for Distributed Test Architectures
	Concurrency in TTCN-2
	Definition of Test Component Configurations
	Synchronization of Test Components
	Implicit Synchronization
	Explicit Synchronization

	A Test Generation Procedure
	Simulator Requirements
	Test Generation for MTC and PTCs

	Case Studies

	The Tree Walk Search Strategy
	Classical Search Strategies
	Labeled Transition Systems
	Main Concepts
	Root States
	Algorithmic Description

	Detection of Identical States
	Example
	Algorithmic Description

	Case Studies
	Discussion

	Test Suite Representation
	The Autolink Script Language
	General Language Concepts
	Constraint Rules
	Test Suite Structure Rules

	Automatic Structuring of Constraint Descriptions
	Constraint Factorization
	Constraint Merging
	Constraint Parameterization
	Constraint Derivation
	Constraint Defactorization
	Case Studies

	A List Pattern Matching and Manipulation Language
	General Language Concepts
	Basic Patterns
	Variables and Variable Operators
	Manipulation Operators
	Extension Operator
	Search Operators

	Discussion

	Advanced Test Generation by Symbolic Execution
	Motivation
	Checking the Feasibility of Path Conditions
	The ValiBOSE Tool
	Navigation
	Coverage Measurements
	Assertions
	Bookmarks
	Normalization
	Test Data Selection
	Example

	Discussion

	Conclusions
	List of Abbreviations
	TTCN-2 Test Suite for the Inres Protocol
	TTCN-3 Module for the Inres Protocol
	Bibliography

