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Chapter 1

Introduction

GaAs/Al,Gaj_,As quantum wells belong to the class of two-dimensional semiconduc-
tor heterostructures, where electrons and holes are confined to a nm-thin layer of semi-
conductor material with smaller bandgap sandwiched between barrier material with a
larger bandgap. Due to the alloy composition fluctuations on the atomic scale in the
Al,Gaj_,As alloy near the nominal interfaces, the GaAs/Al,Ga;_,As interface posi-
tion can not be unambiguously defined on the atomic scale [Oga87, Sal93]. Rather,
a some lattice constants wide region exists where it is impossible to decide if a Ga atom
belongs to the GaAs layer or to the Al,Ga;_,As barrier. Concerning the distribution
of the substitutional alloy atoms in the Al,Ga;_,As alloy on the group-III sublattice, a
lot of studies have shown that the a priori assumption of a random, uncorrelated distri-
bution of isovalent atoms in the Al,Ga;_,As alloy is not justified. From the interatomic
distance up to several lattice constants, a correlation between neighbouring atoms has
been found (short range ordering, SRO) [Hei98), [Hei99]. In GaAs/Al,Gay_,As quantum
wells, it was observed that short-range ordering during growth of the interfacial layers
contributes significantly to the observed interface disorder [Reu(()]. On a larger scale,
from nm up to pm, phase separation, clusters and long range ordering (LRO) have
been observed [Kua85]. It is the aim of this thesis to explore the significance of short-
range correlations between Al atoms for optical spectra of narrow GaAs/Al, Ga;_,As
quantum wells, where a few atomic layers of GaAs are sandwiched between barriers of
the substitutional Al,Ga;_,As alloy.

In the recent decades, two-dimensional semiconductor heterostructures composed of
binary/ternary alloy combinations have served as model systems for the investigation
of physical effects resulting from quantum confinement, and have found many appli-
cations in electronic and optoelectronic devices. Due to the reduced dimensionality,
disorder in the heterointerfaces of narrow quantum wells has an important influence on
device quality, e.g., on optical spectra. Early on, it has been recognized that deviations
from in-plane translational symmetry cause lateral localization of Coulomb-correlated
electron-hole pairs (excitons) in the QW plane and result in inhomogeneous broadening
of spatially averaged QW exciton spectra [WeiST]. Subsequently, spatially averaging op-
tical techniques like photoluminescence (PL) spectroscopy have been widely applied to
the characterization of disorder of narrow quantum wells, using inhomogeneous broad-
ening as a measure of interface quality [Her91]. Optical techniques have been found to
complement data obtained by direct structural techniques like, e.g., transmission elec-



2 1. Introduction

tron microscopy (TEM) [Pef77] and X-ray diffraction [Fle80]. However, as an indirect
technique, the interpretation of QW exciton spectra obtained by spatially averaging
PL in terms of interface structure requires some degree of modeling. In most models,
the intrinsic short-range disorder on the atomic scale in GaAs/Al,Gaj_,As quantum
wells, resulting from composition fluctuations in the Al,Ga;_,As barriers, has been
considered to be irrelevant for exciton localization [WeiSll], or at least of secondary
importance [War92]. The study of Ogale et al. [Oga87] remained singular in that it
pointed out the primary importance of composition fluctuations in the Al,Ga;_,As
barriers for optical properties of GaAs/Al, Ga;_,As quantum wells.

Two developments do now enable a new approach to the study of exciton disorder-
localization in narrow quantum wells, and of the relation between the atomistic con-
figuration of the QW interfaces and optical spectra: On the experimental side, optical
techniques with high spatial resolution (< 1 pm) like microphotoluminescence (pPL)
have opened up new possibilities to investigate exciton disorder-localization in that they
allow to resolve the emission from individual exciton states localized by the fluctuating
band edges in a narrow quantum well (“natural quantum dots”) [Zre94., [Bru94l [Kop00].
High-spatial-resolution magnetoluminescence spectroscopy thereby gives access to dia-
magnetic shift and Zeeman splitting of single exciton states in the low-energy tail of
the uPL spectra [Hes94]. The central motivation to study the diamagnetic shift is that
it provides information about localization properties of individual quantum dot states
[Hal92, Wal98| Bay98]. The idea is that the diamagnetic shift distribution as a func-
tion of transition energy in the low-energy tail of uPL spectra should give experimental
access to the potential minimum statistics of the underlying QW interface disorder
potential, and thereby to its statistical properties like the lateral correlation length.

On the theoretical side, the theory of exciton disorder-localization, that has been de-
veloped in the envelope function framework, allows a detailed description of exciton
localization in narrow quantum wells. For sufficiently thin wells (QW width < exciton
Bohr radius), the model of a three-dimensional exciton moving between the corrugated
QW interfaces can be replaced by that of a quasi-two-dimensional exciton with lateral
Bohr radius ap. Its constituents, electron and hole, move in lateral disorder potentials,
representing the fluctuations of the local band edges [Zim97]. The concept of band
edge fluctuations replaces the concept of interface fluctuations, which is not applica-
ble offhand in GaAs/Al,Ga;_,As quantum wells, due to the lack of an unambiguous
definition of the heterointerface position on the atomic scale. In GaAs/Al,Ga;_,As
quantum wells, the local band edges are determined by the distribution of Al atoms in
a QW cross section weighted with the electron/hole envelope wave functions. E Local-
ization of excitons in the QW plane is determined by the combination of the Coulomb
interaction between electrons and holes and electron and hole confinement by fluctua-
tions of the local band edges (“interface disorder”). The disorder potentials for electron
and hole can, e.g., be characterized by their amplitude (standard deviation, “disorder
strength”) and correlation length. With respect to exciton localization, three length
scales of lateral disorder can be distinguished: (i) disorder on the atomic scale, (ii) dis-
order on the length scale of the exciton Bohr radius, and (iii) long-range disorder. The
theory of exciton localization gives detailed account of the effects of disorder on the full

1To be precise, the fluctuations of the local band edges relative to the bulk band edges are determined
in this way. The question of the influence of composition fluctuations in Al,Ga;_,As on the bulk band
edges remains.



two-particle motion of a Coulomb-correlated electron-hole pair, and on the diamagnetic
shift of single exciton states [Gro(5).

This thesis combines uPL and magneto-puPL experiments with the analysis of struc-
tural data obtained in a recent cross-sectional scanning tunneling microscopy (XSTM)
study to investigate exciton localization in narrow (001) GaAs/Al,Ga;_,As quantum
wells. The GaAs/Al,Ga;_,As quantum wells were grown by MBE without growth
interruption at the interfaces. They are therefore especially well suited for the study of
short-range disorder on the length scale between (i) and (ii). A special sample design
has been chosen that — in addition to the optical measurements — allows the inves-
tigation of the interfaces of the same quantum well sample on the atomic scale with
room-temperature XSTM.

After this introduction, chapters 2 and 3 describe the basic concepts of excitons and
exciton localization in narrow GaAs/Al,Ga;_,As QWs. The full three-dimensional
problem of the Coulomb-correlated motion of electron and hole between corrugated
quantum well barriers can be simplified in the case of narrow quantum wells with rela-
tively weak disorder: The significant difference in strength of the vertical confinement
(in growth direction) and lateral confinement (in the QW plane) allows a separation
of the three-dimensional exciton motion into vertical and lateral motion [Zim97]. This
reflects in the division into chapters 2 and 3: Chapter 2 describes excitons in quantum
wells with in-plane translational symmetry. The effects of a magnetic field in growth
direction on the lowest exciton state in the quantum well are described in detail, in-
cluding the effect of the magnetic field on the exciton wave function. Based on this
description of quantum well excitons, chapter 3 introduces the theory of exciton local-
ization in narrow QWs. First, the example of a GaAs/Al,Ga;_,As QW with nominally
perfectly flat interfaces and random, uncorrelated Al distribution in the barriers is de-
scribed. Subsequently, the results of three decades of research on interface disorder in
GaAs/Al,Ga;_,As quantum wells are reviewed. In the last section, the effect of a mag-
netic field in Faraday configuration on quantum dot exciton ground states is described
(diamagnetic shift), with a focus on the relation between diamagnetic shift and lateral
extension of the local confinement potential.

Chapter 4 describes the sample design that has been chosen to study the same QW
heterostructure with structural (XSTM) as well as with optical (#PL) methods.

Principles of scanning tunneling microscopy (STM) are outlined in chapter 5, and the
structural data of one of the GaAs/Aly3Gag7As QWs are analyzed. The structural
data obtained by XSTM give access to the atomic scale structure of the interfaces of a
4-nm GaAs/Aly3GagrAs QW: Constant current topographs show a 160 nm long QW
cross-section with atomic resolution and chemical sensitivity. In a study concomitant
to the main part of this thesis, optical spectra of the 4-nm QW have been simulated on
the basis of these structural data. This study was started by Claus Ropers [Rop03] and
pursued in close collaboration with the semiconductor theory group at the Humboldt-
Universitat Berlin.

Chapter 6 describes basics of uPL spectroscopy and the experimental setup used in this
study. Spatially averaged and spatially resolved PL spectra of the narrow quantum wells
are shown. In the low-energy tail of yPL spectra obtained at 500 nm spatial resolu-

2Contrary to the common belief that only doped quantum wells can be studied by STM [Jah96].
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tion, the spectrally narrow emission lines of localized exciton states are observed. The
fine structure of single exciton states has been studied by polarization-dependent spec-
troscopy to obtain additional insight into their localization properties. The simulation
of optical spectra on the basis of the XSTM data is described. Temperature-dependent
uPL spectra have been obtained to study relaxation effects and the Stokes shift. Based
on the insight that uPL spectra can be characterized by an effective carrier temperature
that is higher than the lattice temperature, experimental and simulated pPL spectra
of the 4-nm GaAs/Aly3Gag7As quantum well can be directly compared in the last
section.

Chapter 7 describes the results of magneto-uPL experiments on the narrow GaAs/
Alg3GagrAs QWs. In the magneto-uPL experiments, a magnetic field is applied in
growth direction (Faraday configuration), and the effect of the magnetic field on single
exciton states is studied. By increasing the magnetic field in steps as small as 50 mT
to a maximum field of 10 T, diamagnetic shift and Zeeman splitting of single exciton
states in the low-energy tail of the uPL spectra can be determined. The positive slope
observed in the diamagnetic shift distribution as a function of transition energy is
discussed in detail as the consequence of exciton localization by short-range correlated
interface disorder in the QW plane. Extending the comparison of structural and optical
properties of the 4-nm QW, the experimental diamagnetic shift distribution is compared
with a simulated distribution obtained on the basis of the XSTM data.

Chapter 8 presents the results of magneto-uPL experiments on the GaAs/AlAs double
quantum well sample. In a several um? large region showing signatures of strong dis-
order, transitions with negative diamagnetic coefficients are observed. Simultaneously
to QD states with negative diamagnetic coefficients, we observe complicated B-field
patterns at the low-energy end of the spectral emission region below the QW peak.
The question is discussed if these rare observations are related to the combination of
exciton localization by strong disorder and the shrinking of the exciton wave function
by the magnetic field. Theoretical investigations that have been stimulated by our ex-
perimental observation of negative diamagnetic coefficients have recently excluded this
possibility [Mul06]. At present, it is assumed that the complex shifts as well as the
negative diamagnetic coeflicients are related to charged exciton transitions in coupled
quantum dots.

Finally, chapter 9 summarizes the results of this work. The appendix contains material
related to the numerical simulations performed for this study.
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Chapter 2

Fundamentals: Excitons in narrow quantum
wells

This chapter aims at the description of the magnetic-field dependence of the lowest
exciton states in narrow GaAs/Al,Ga;_,As quantum wells with in-plane translational
symmetry. The composition fluctuations in the Al,Gaj_,As alloy are neglected here
by treating the alloy in the virtual crystal approximation [Nor31l], assuming a perfect
lattice and a compositionally averaged crystal potential.

Excitons in narrow quantum wells are commonly described in the envelope function ap-
proach [Bas88|. In this approach, wave functions of electronic states in nanostructures
are considered, for each material separately, as product of the electronic (Bloch) states
of the bulk material and envelope wave functions. In the envelope function approach,
the description of the properties of quantum well excitons is based on properties of the
bulk material (band structure), of the interface (band offsets), and on the geometry of
the quantum well (well width).

Thus, the first section of this chapter introduces bulk properties of GaAs, Al,Gaj_,As
(0 < x < 1) and AlAs. Then, the band offsets at GaAs/Al, Ga;_,As heterojunctions
and the in-plane band structure of GaAs/Al,Gaj_,As quantum wells are described.
This provides the basis for the description of single-particle (electron, hole) states in
GaAs/Al,Ga;_,As quantum wells in a “particle-in-a-box” model. The single-particle
wave functions in turn provide a basis for the description of exciton states in narrow
quantum wells. Based on the exciton wave function properties, the effects of a perpen-
dicular magnetic field on the lowest exciton state (“exciton ground state”) in a narrow
quantum well are described.

2.1 Band structure of bulk GaAs, Al,Ga;_,As, and AlAs

The binary ITI-V compound semiconductors Gallium arsenide (GaAs) and Aluminum
arsenide (AlAs) crystallize in the cubic zinc blende structure. The crystal lattice con-
sists of two face-centered cubic (fcc) sublattices occupated by group-III and group-V
atoms. The sublattices are translated by 1/4 of the space diagonal against each other.
Each atom is surrounded by four atoms of the other species in a tetrahedral config-
uration. The lattice constants of GaAs and AlAs differ by only about 0.1 % at room
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Figure 2.1: [Che70] Electronic band structure of GaAs, calculated by a pseudopotential
technique.

temperature. The ternary Al,Ga;_,As (0 < x < 1) alloy likewise crystallizes in the
zincblende structure with respect to the anion and cation sublattices. The group-III
sites in an Al,Ga;_,As crystal are occupied by Al or Ga atoms; a random, spatially un-
correlated distribution of Al atoms on the group-III lattice sites represents the simplest
case. However, the tendency to form an ordered state of Ga and Al atoms has been
observed in Al,Gaj_,As layers grown by metal-organic vapor phase epitaxy (MOVPE)
[Kua85, [Hei98l, [Hei99], as well as in MBE-grown Al,Ga;_,As layers [Kua85].

The band structure of GaAs, as calculated by a pseudopotential technique [Che76],
is shown in Fig. Bl Near points of high symmetry, the bands are denoted by the
corresponding point group symmetry, using the double group notation [Kos63]. The
top of the highest valence band (I's) is chosen as zero of energy. The fundamental
band gap at the center of the Brillouin zone (I') is Eg = 1.519 ¢V at T' = 0 K [Bas8S].
With respect to optical transitions, only the band structure in the direct vicinity of
the fundamental gap is of interest. The lowest conduction band (I's) is two-fold spin-
degenerate at the I' point (S = 1/2, S, = +1/2). Near I, the conduction band is
described by the isotropic dispersion relation

Euk) = 1

= 5 k%, m.=0.067Tmg, (2.1)

where mg is the free electron mass. The spin-orbit interaction removes the spin degen-
eracy away from k = 0 [Dreb5l; the resulting very small k-linear terms are neglected
here. Deviations from the parabolic dispersion due to interaction of the lowest conduc-
tion band with valence bands and higher conduction bands [Eke89] will be described
later in this chapter.
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Figure 2.2: Scheme of optical dipole transitions between conduction band edge and
heavy-hole/light-hole band edges in a bulk III-V semiconductor. Dashed arrows mark
dipole-forbidden transitions.

Without inclusion of the spin-orbit interaction, the valence band would be six-fold
degenerate at I' [Kanb7]. Spin-orbit interaction causes an energetic separation of the
I'7 valence band from the I's bands; the spin-orbit splitting between 'y and I's band
edges in GaAs is A = 0.341 eV [Bas88]. The I'7 valence band is denoted as split-off
band; it will not be considered further here. The two highest I's valence bands are
degenerate at I'. In the effective-mass approximation, they are characterized by their
different effective masses and denoted heavy-hole (hh) and light-hole (lh) band. Each
band is two-fold spin-degenerate at I'.

The symmetry properties of the zone-center wave functions are determined by the
zincblende structure and inherited from the symmetry of the corresponding atomic
orbitals. At I', the symmetry of the conduction band functions corresponds to the
symmetry of atomic s-orbitals, and the symmetry of valence band functions at I" cor-
responds to the symmetry of atomic p-orbitals [Kan57]. In this model, the zone-center
wave functions of the I's valence bands have the total angular momentum J = 3/2.
The corresponding magnetic quantum numbers of the zone-center wave functions take
the values J, = +3/2 (heavy-hole band, hh) and J, = +1/2 (light-hole band, 1h). The
dipole selection rules

AJ =1, AM = +1, (2.2)

where M is the magnetic quantum number, M = J,, describe the dipole-allowed optical
transitions. Figure shows allowed and forbidden direct optical transitions between
conduction band edge and heavy-hole (hh) and light-hole (lh) band edges. Solid ar-
rows mark dipole-allowed optical transitions, the dashed arrows mark dipole-forbidden
transitions. The oscillator strength of e-hh transitions is three times larger than that of
e-lh transitions due to the different Clebsch-Gordan coefficients of hh and 1h zone-center
states.

For a description of the dispersion relations of heavy- and light-hole bands, it is useful
to introduce the general form of a Hamiltonian for the four J = 3/2 states degenerate
at k = 0 which respects the symmetry of the problem [Lut56]. The general form of
a Hamiltonian which is quadratic in k, invariant under rotations, and which can be
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constructed with the two vectors k and J is [Hau04]

h? Y2y 1.2 2
H=— —Vk* —2v (k- . 2.
2mg (% + 2 ) 2 ( J) ( 3)

The real parameters 7;, 72 are called Luttinger parameters [Luf56]. Experimental
Luttinger parameters for GaAs are v; = 6.85, 72 = 2.1 [Chu95, [Hau04]. For k in [001]
direction, the Hamiltonian Eq. (Z3]) is already diagonal. Neglecting the negative sign,
the [001] dispersion relations for the two spin-degenerate J = 3/2 bands are

h2k?

2m0
2k2

2m0 ’

Enn(k) = (11— 272)

(2.4)
Ein(k) = (11 + 272)

Using the experimental Luttinger parameters, the heavy-hole and light-hole effective
[001] masses in GaAs are obtained as

mpp = 0.377Tmg, myp =0.09mg. (2.5)

Luttinger also considered a more general Hamiltonian for the four J = 3/2 states,
which is invariant only under the symmetry operations of the cubic symmetry group
[Luth6l Hau04]

2 3
Y1 3272 h
H=—hk"— — — —v2)0ii | KiilJii, 2.
2mo 2me ijzl [73 (’73 ’72) ]] jJ] ( 6)
where 5
K = 3kik;j — 0k, Jij = 5 (Jidj + T ) i g2 (2.7)

The dispersion relations due to Eq. ([Z8]) are no longer isotropic. By diagonalizing the
Luttinger Hamiltonian Eq. (8, direction-dependent effective masses can be calculated
[Hou&R]. For the heavy-hole band,

(71— 272) 7" [001]
mpup = Mo (y1 —2v3)~' in{ [111] direction. (2.8)
[ — (3 + 493) /%7 [110]

The experimental value of the Luttinger parameter v3 for GaAs is 3 = 2.9 [Chu95l
Hau04]. Neglecting the difference v3 — 72, Eq. ([Z8]) reduces to Eq. ([Z3), which is called
spherical approximation.

Band structure of Al,Ga;_,As and AlAs

With respect to the anion and cation sublattices, the crystal structure of Al,Ga;_,As
(0 < x < 1) and AlAs alloys is almost identical with that of GaAs. However, the ternary
Al,Gaj_;As alloy does not possess the translational symmetry of the binary alloy
crystal, since either Ga or Al atoms occupy the group-III lattice sites. Despite the lack
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of translational symmetry in substitutional alloys like Al,Gaj_,As, their description in
terms of single Bloch states has been used in many phenomenological models, e.g., by
adopting the virtual crystal approzimation [Nor3l]. The virtual crystal approximation
(VCA) assumes a perfect lattice and a compositionally averaged crystal potential, and
therefore completely neglects effects due to chemical and positional disorder. The VCA
treats the alloy as a pseudo-material, in which all anions are the same (As) as are all
cations (Al,Gaj_, pseudo-atoms). In the VCA, Al,Ga;_, As parameters are therefore
calculated by linear interpolation between GaAs and AlAs parameters,

PriGans(z) = 2 Pajas + (1 — ) Pgaas - (2.9)

Only in recent years, it has become possible to calculate the band edge states of substi-
tutional semiconductor alloys directly, using atomistic pseudopotentials and plane wave
basis functions in supercells large enough to capture localization effects due to compo-
sition fluctuations [Wan98]. A new way of analyzing the alloy electronic structure has
been proposed, based on a “majority representation” of the reciprocal space spectrum
of the alloy eigenstates. A strong majority representation of valence and conduction
band edge states with the single dominant point kygr = I was found for the random
Aly3Gag 7As alloy. The spectral weight at k = kyg was found to be ~ 90% of the total
spectral weight for the conduction band edge states and ~ 75% for the valence band
edge states [Wan98]. This implies that the band edge states in the random Al 3Gag 7As
alloy can be classified in the language of Bloch states of the constituents. Very recently,
a tight-binding supercell method, that incorporates randomness at an atomistic level,
has been used to calculate approximate band structures of random Al,Ga;_,As alloys
[Boy07].

The Al,Ga;_,As band structure is qualitatively similar to the GaAs band structure
for x < 0.45. The fundamental bandgap is at I'; two higher conduction band minima
are at the X and L points on the surface of the first Brillouin zone [Fig. Z3(a)]. For
x < 0.45, the fundamental bandgap of Al,Ga;_,As increases approximately linearly
with increasing Al content x. Table Bl gives an expression for the dependence of
the Al,Ga;_,As bandgap at I' on Al content . For an accurate description above
x > 0.45, a quadratic coefficient (“bowing parameter”) is necessary, indicating the

(@)  X-valley (b) a
$E X-valley
/\L_—Vﬁ"ey

I'-valley

?W 7 lh " ‘

/\sh /\sh

Figure 2.3:  (a) Qualitative band structure of GaAs and Al,Ga;_,As alloy (x < 0.45)
in the vicinity of T'. (b) Qualitative band structure of AlAs and Al,Gaj_,As alloy
(x> 0.45) in the vicinity of T'.
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failure of VCA to correctly describe the alloy bandgap. Figure EZ3(b) qualitatively
shows the band structure of AlAs and the ternary Al,Gaj_,As alloy for x > 0.45. The
fundamental band gap is indirect and corresponds to transitions between the valence
band at I" and the conduction band at X. The X conduction band minimum in AlAs
is below the I conduction band edge in AlAs, which is at higher energy than in GaAs.
The bandgaps are temperature-dependent; the values in Tab. X1l apply to T = 2 K
[Ont74).

The conduction band effective mass in AlAs is more than double the GaAs effective
mass, M. Alas = 0.15mg. The valence band masses are determined by the AlAs Lut-
tinger parameters v = 3.45, 75 = 0.68, 73 = 1.29 [And90]. Effective masses in
Al,Ga;_,As alloys are obtained by linear interpolation between GaAs and AlAs masses.
Effective electron and heavy-hole [001] masses in Al,Ga;_,As [Ada94] have been cal-
culated using the GaAs Luttinger parameters of Binggeli and Baldereschi [Bin91] and
averaged AlAs Luttinger parameters. Table EXJ] summarizes values for band gap and
[001] electron and heavy-hole masses in Al,Ga;_,As alloys (0 <z <1).

Eg/ eV e, [001] /mo "Mhh,[001] /mq
1.519 + 1.36 x + 0.22 x? | 0.067 + 0.083 x | 0.33 + 0.18 x

Table 2.1: Band gap (T = 2 K) and [001] effective electron and heavy-hole masses of
Al Gay_z As alloys (0 <z <1) [Ada9])].

Conduction band nonparabolicity

The interaction of the I's conduction band with higher conduction bands of symme-
try I'7 and T'g (see Fig. X)) causes a deviation of the conduction band dispersion in
GaAs from the parabolic dispersion relation Eq. (1) [RoelUS4]. The conduction band
dispersion up to fourth order in k is [Eke89)

E(k)

2k 4 272 27,2 27.2
= o + aok™ + Bo(kzky, + kyks + kZks) (2.10)
+ o [K2(K2K2 + K2K2 + K2K2) — 9k2k2k2) 2,

where k = |k|, m, is the effective electron mass, and the nonparabolicity parameters
ag, Bo, Yo are determined from numerically calculated band structures. The last term
describes the spin splitting due to the lack of inversion symmetry in GaAs. The values
for the nonparabolicity parameters ag, 8o, 7o are all negative. Using a 14-band k-p
model [Bra85], values for GaAs have been numerically determined: g = —2107 eV A4,
Bo = —2208 eV A4, Yo = —27.57 eV A? [MalR6, [Eke89]. The effects of nonparabolicity
become important in quantum wells, where the lowest confined state lies well above the
conduction band edge.



13

2.2 Quantum well band structure

2.2.1 GaAs/Al,Ga;_, As heterojunctions and heterostructures

The fabrication of semiconductor heterointerfaces with controlled profiles (doping,
chemical composition) on the nanometer scale was initiated by proposals for the realiza-
tion of artificial semiconductor heterostructures [Kro57al, [Kroh7bl [Esa7()] and the devel-
opment of molecular beam epitaxy (MBE) of III-V semiconductor materials [Cho70).
Two semiconductor materials grown on top of each other using heteroepitaxy form
a heterointerface. Electronic properties change more or less abruptly at the interface,
since band gaps and effective masses usually differ between the two materials. The band
offsets at a GaAs/Aly 3Gag 7 As heterojunction are shown in Fig.[Z4)a). The conduction
band edge in GaAs is at lower energy than the conduction band edge in Aly 3Gag.7As,
while the valence band edge in GaAs is at higher energy. Conduction and valence band
offsets cause reflection of electrons and holes at the heterojunction. In a double het-
erojunction where, e.g., a thin GaAs film is sandwiched between Aly3Gag 7As barriers
with larger bandgap, the quantum mechanical reflection of electrons at the nearby het-
erojunctions leads to discrete subbands of electron and hole states confined to the GaAs
layer. The so-called quantum size effect (quantum confinement) has been first observed
in low-temperature optical absorption spectra of an MBE-grown GaAs/Aly2GaggAs
multiple quantum well heterostructure with GaAs layer thickness down to 7 nm [Din74].

In a GaAs/Alp3Gag7As quantum well, electrons and holes are confined to the same
layer. This situation is denoted as type-I, i.e., a thin layer of GaAs between Aly 3Gag7As
forms a type-I quantum well. The total band gap offset AFE is distributed between
conduction and valence band by the offset ratio f./f,. For GaAs/Alg3Gag7As het-
erojunctions, photoluminescence experiments suggest the value f./f, = 0.65/0.35
[Dug85, Wolg6, [Kopd?).

The band offsets at a GaAs/AlAs heterojunction are shown in Fig. ZZ(b). Since AlAs
has an indirect bandgap with the conduction band minimum at the X-point, the band
edges at the X-point are shown in addition to the conduction band edges at I'. For elec-
trons at the X-point, the band offsets at the GaAs/AlAs heterojunction are contravari-
ant, i.e., the AlAs-GaAs conduction band offset at the X-point and the AlAs-GaAs
valence band offset at the I'-point are both negative. For I'-electrons, the AlAs-GaAs
band offsets are covariant. Therefore, depending on the growth sequence and on the
widths of GaAs and AlAs layers, a sequence of GaAs and AlAs layers results in a type-I
or a type-II heterostructure.

Since the GaAs conduction band minimum at I' lies below the X-minimum in AlAs,
the lowest confined I'-electron state in not too narrow GaAs/AlAs quantum wells lies
below the X-minimum in the AlAs barrier. In this case, the electron ground state of
the heterostructure is localized in the well. Type-II ground states occur when the I'
electron ground state (Eg ) in the well is pushed above the Eg( ground state in the AlAs
barrier. This happens in very narrow GaAs/AlAs wells (d < 3.5 nm) [Moo8§].

Electron and hole states in idealized quantum wells are often described in the envelope
function approximation (EFA) [Lutbd, [Bas88]. Using the EFA, the wave functions of
electrons and holes in a semiconductor heterostructure are described by products of
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Figure 2.4: Band alignment at (a) Alp3Gag7As/GaAs and (b) AlAs/GaAs heterojunc-
tions. In (a), the conduction and valence band edges at T' are shown (solid lines). In

(b), also the valence band edges at the X point are shown (dashed lines). Band gaps
and band offsets at T = 2 K are indicated.
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Bloch functions and envelope functions. While the Bloch functions reflect the atom-
istic structure of the semiconductor material, the envelope functions describe the spatial
confinement of the quasiparticles (electron, hole) in the heterostructure on a nm scale.
Due to the one-dimensional confinement in growth direction (z), the envelope functions
of electron and hole states in a quantum well depend on the z-coordinate only. The
QW envelope functions can therefore be calculated in a one-dimensional model, using
the material-dependent band offsets in bulk [Bas8§]. In the simplest case (assuming
constant masses throughout the heterostructure), this model is analogous to the quan-
tum mechanical model of a particle in a box. The energy of the lowest confined state
is denoted as confinement energy.

In-plane band structure of GaAs/Al,Ga;_, As quantum wells

Every confined level in the above-mentioned model corresponds to a subband, since
electrons and holes are allowed to move freely in the QW plane (z, y) according to
the in-plane band structure of the respective subband. Due to the breaking of the
crystal symmetry in quantum wells, the QW in-plane band structure differs from the
bulk crystal band structure normal to the (001) direction. The next two paragraphs
describe the in-plane band structure of conduction and valence bands in narrow (001)
GaAs/Al,Ga;_, As quantum wells. With some caution, an effective-mass description
of the in-plane band structure is possible. This requires the definition of in-plane and
perpendicular effective masses (m”7 m ) for electrons and holes, that depend on the
QW width.

Conduction band Using the bulk conduction band dispersion [Eq. (ZI0)], including
nonparabolicity effects in lowest order in k, and calculating confinement energies for a
quantum well with infinite barriers, energy-dependent effective electron masses can be
defined by [Eke89]

me,J_ — me (1 + a/€)7 m&” — me [1 + (20/ + ﬁ/]67 (211)

where m, is the bulk effective electron mass. The parameters o/, 3’ are related to the
nonparabolicity parameters «g, o in Eq. [I0), and € is the confinement energy of the
lowest subband. The nonparabolicity parameters o/, 3" are related to «, 3 by

2m
w2

2m

=Gz

Va, B=-(7%)8. (2.12)
For GaAs, o' = 0.64eV~'and ' = 0.7 eV~! [Eke89]. Results obtained by Ekenberg for
in-plane and perpendicular electron masses m, ||, M., 1 in narrow GaAs/Aly3Gag 7As
quantum wells are shown in Fig. The bulk effective electron mass in GaAs is
indicated by the dashed line. The enhancement of the in-plane effective mass m, |
over the bulk mass value is 2-3 times larger than the enhancement of the perpendicular

effective mass me | .

Valence band Denoting the in-plane wave vector with k|, the quantum well con-
finement lifts the degeneracy of heavy-hole and light-hole bands at kj = 0 [Chu95].
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Figure 2.5:  [Eke89] Well-width dependence of effective electron masses in (001)
GaAs/AlysGag7As quantum wells in units of the free electron mass mg. Values for
perpendicular (mL (L)) and parallel (mL(||)) electron masses are shown. The dashed
line indicates the bulk GaAs value (mL = 0.067 mg).
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Figure 2.6: [Sia(] Well-width dependence of the effective in-plane heavy-hole mass in
(001) GaAs/AlysGag7As quantum wells in units of the free electron mass my. Values
have been calculated: (i) using the diagonal Luttinger approzimation 1/my = Py, (v +
V) + Py(7% +8), where P, denotes the probability that the hole is in the well and
barrier material, respectively (dashed line); and (ii) taking as the hole mass the subband
curvature at the T' point that is known analytically [For9])].
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Calculated QW valence band structures (see e.g. [Chu95]) show that heavy-hole and
light-hole subband minima are split by several meV in narrow quantum wells. Within
the Luttinger effective-mass approximation [Eq. ()], a mass reversal of heavy and
light hole bands occurs in the (110) plane. Using an average of light- and heavy-hole
masses to determine the in-plane dispersion relations, a light mass is obtained in the
heavy-hole subband and a heavier mass in the light-hole subband [Din74]. In this model
the two subbands are considered decoupled for any k) value, and, therefore, the bands
cross at a certain value of k. However, the interaction between both bands at finite
k| gives rise to an anticrossing behaviour between the bands, leading to a flattening of
the in-plane dispersion relation of the heavy-hole subband [Maa84]. Figure shows
that the diagonal Luttinger approximation — where bulk masses for barrier and well
are weighted with the portions of the wave function in barrier and well — predicts a
too small in-plane heavy-hole effective mass (i) compared to the result that is obtained
when the quantum well subband curvature at k; = 0, which is analytically known
[Eor94], is taken as the heavy-hole mass (ii). The values shown in Figure have
been taken from [Sia(()]. The heavy-hole in-plane mass, that is determined from the
quantum well subband curvature, increases with decreasing QW width.

2.3 Electronic states in quantum wells

In the envelope function formalism (EFF), electronic states in a heterostructure con-
sisting of materials A and B are ezactly described by a product of an envelope function
u(r) and the cell periodic part of a zone-center Bloch function fr(r), separately for
each material region,

1/1X(7‘) = U’X(T) fI)‘((T) , reX, (2.13)

where X = A, B represents the material, the uX () are envelope functions, and the
zone-center states fi (r) are different in materials A and B. The derivation of the het-
erostructure effective-mass differential equations and boundary conditions have been
thoroughly reviewed by Burt [Bur92]. In the flat band approximation and for a sin-
gle band, one recovers Schrodinger-like equations of the form [Bar91l], separately for
electron and hole (a=e,h)

Hy(r)uq(r) = Equgq(r), (2.14)

where H,(r) represents an effective (electron, hole) Hamiltonian for the heterostructure,
and wuy(r) are envelope functions for electron and hole. The dependence of H, on the
position coordinate r covers the material dependence of band edges and effective masses.
Due to the complexity of the exact heterostructure effective-mass equations derived in
the envelope function formalism [Bur92], often approximate equations are used.

The simplest example is the one-dimensional particle-in-a-box model applied to elec-
trons or holes in a quantum well. In this model, electronic states are calculated from
effective Schrodinger equations

h? dPug(2)

2m, dz2

+ Va(2)ug(2) = Equa(z) (a=e,h), (2.15)

where the position-dependent material potentials V(z), V3 (2), corresponding to the
band offsets of conduction and valence band, are piecewise constant in barrier and
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Figure 2.7:  Electron and heavy-hole ground states in a 4-nm GaAs/Aly3Gag7As square
well. Confinement energies have been calculated in the EFA/VCA using a variable-mass
finite-difference method.
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Figure 2.8: Well-width dependence of the sum of electron and heavy-hole confinement
energies in a square GaAs/AlysGagrAs QW. Energies at integer monolayer widths
are marked by the open circles. Values have been calculated in the EFA/VCA using a
variable-mass finite-difference method.
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well. To distinguish such an approximate approach from the exact EFF, the term
envelope function approximation (EFA) is used. An accurate determination of energy
levels and single-particle wave functions in the EFA requires to include the different
effective masses in barrier and well. It is usually assumed that the so-called current-
conserving boundary conditions should be applied at an atomically abrupt interface
[Ben66]. A modified kinetic-energy operator with position-dependent mass can be
defined, resulting in the heterostructure differential equations

< — E%W% + Va(Z)>Ua(Z) =E, ua(z) (a =6, h) ’ (216)

where Ve (z), Vi(z) describe the material-dependent band offsets in the heterostructure.
Integrating this equation across an interface gives the boundary condition mug(z)
continuous, which is consistent with current conservation [Ben66, [Bur92]. A conse-
quence of applying this condition is that the derivatives of the envelope functions u,
become discontinuous because of the change in the effective mass, and a kink in the
envelope function results. Such a kink is not present in the exact wave function known
from the EFF [Bur94]. This raises questions about the validity of the (variable-mass)
particle-in-a-box model. A brief, general discussion of the validity and range of ap-
plicability of the EFA has been given by Burt [Bur94]. As general criterion for the
applicability of the variable-mass particle-in-a-box-model, it was stated that the en-
velope function should be slowly varying over the range of a lattice constant. More
precise statements about the validity of the EFA require a comparison with results of
atomistic model calculations [DiC03].

In a GaAs/Alp 3Gag7As quantum well, the confinement in growth direction can be ap-
proximately described by applying the virtual crystal approximation to the Alg 3Gag 7As
barriers. The effect of composition fluctuations in the barriers is thereby neglected. The
combination of envelope function approximation (EFA) and virtual crystal approxima-
tion (VCA) is used to calculate electron and hole ground state energies in a [001]
GaAs/Aly3Gag7As quantum well in a one-dimensional model. The band gap values
(T =2 K) from Table ZT] have been used here, the [001] masses from Table EZI] have
been taken as quantization masses, and the band offset ratio f./f; = 0.65/0.35 has
been assumed.

Figure 27 shows valence and conduction band edges of a 4-nm GaAs/Aly3Gag7As
quantum well in the VCA. Ground state energies and envelope (z) wave functions
ue(2), up(z) for electron and heavy-hole have been calculated by numerically solv-
ing the variable-mass Schrodinger equation Eq. (ZI6]) using a finite-difference method
(see Appendix A). In Fig. X7, probability densities |ue(2)|?, |up(2)|? of electron and
heavy-hole z wave functions are shown. The confinement energy of the hole ground
state is about one third of the confinement energy of the electron ground state. The
total (electron plus hole) confinement energy in the 4-nm GaAs/Aly3Gag7As QW is
~ 130 meV.

In Fig. Z8 confinement energy values calculated in the EFA/VCA are shown down
to well widths dqw = 2 nm. The open circles mark integer multiples of a monolayer
(dyr, = 0.28 nm). The confinement energy monotonically increases with shrinking
well thickness. Roughly, the total confinement energy is 200 meV at a QW width
of 10 monolayers, 100 meV at 20 ML, and 50 meV at 30 ML. Often, the EFA/VCA
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approximation has been used down to well widths of a few nm. To date, only few cal-
culations of electron confinement energy in GaAs/Aly3Gag7As quantum wells beyond
the EFA/VCA approximation are available [Dar97, [DiC03]. The results, obtained from
empirical tight-binding calculations, indicate a deviation of confinement energies in
thin wells with d < 5 nm from the predictions in the EFA/VCA framework. However,
it seems difficult to assess the accuracy of the few available results obtained to date.
Throughout this work, confinement energies and envelope wave functions calculated in
the EFA/VCA framework are used.

2.4 Bulk and quantum well excitons

Wannier excitons in a bulk crystal

Optical properties of semiconductors in the vicinity of the band gap are determined
by the Coulomb interaction between electrons and holes. A single Coulomb-correlated
electron-hole pair constitutes a quasi-particle, the exciton, which can be seen as the
elementary optical excitation of an intrinsic semiconductor crystal. The quantum the-
ory for a single exciton has been originally formulated by Elliott [EII57], using several
approximations: A simple parabolic two-band model is used, the Hamiltonian for the
exciton is formulated in envelope function approximation, screening of the Coulomb in-
teraction is taken into account by the zero-frequency crystal dielectric constant e, and
the short-range exchange interaction is neglected. As a result, the eigenvalue equation
(“Wannier equation”) [EII57]

( h? 1 e
2 4meq €|r]

)elr) = E-p(r), (2.17)

where p is the effective reduced mass of the exciton and r = re — 7, is the electron-
hole relative coordinate, is a mathematical analogon of the Schrodinger equation for
the hydrogen atom. More accurate theories have been developed later, taking the
valence band structure in ITI-V semiconductors into account [Bal7(, Bal71]. In bulk
semiconductors, a thorough description of magnetooptical effects (diamagnetic shift) in
fact requires the complicated valence band structure. However, in quantum wells the
degeneracy of heavy- and light-hole bands at kj = 0 is lifted, and the exciton states
formed from the lowest electron and heavy-hole subbands are well described within a
two-band model, including only conduction band and the upmost hole band.

Figure ZX9 (“two-particle picture”) shows the exciton energy levels, where “0” represents
the crystal ground state. The lowest two parabolas show the energies of ground and
first excited exciton state as a function of the exciton center-of-mass wavevector K =
ke + kp. Using effective masses m., mp for electron and hole and introducing the
effective exciton total mass M = m. + my,, the total energy of the lowest exciton state
is By = Eqg — Ex +h?/(2M)K?, where Eg is the band gap energy and Ex the exciton
binding energy. The highest parabola indicates the continuum edge, separating higher
excited exciton states from unbound, but electron-hole pair states that exist in the grey
shaded area.

According to the Wannier equation [Eq. [ZI7)], the binding energy of the exciton
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Figure 2.9: Scheme of exciton energy levels (“two-particle picture”): K = ke+ky, is the
center-of-mass momentum of the exciton, E the total energy of the two-particle states
[Eq. (Z17)]. The lowest (n = 1,2) bound states are shown as well as the continuum
edge; continuum states are shown shaded grey. Resonant absorption of photons from the
crystal ground state (“07) and emission of photons upon exciton recombination occurs
at the intersection of exciton dispersion and photon dispersion (E = hcK).

ground state can be expressed by the hydrogen Rydberg Ry = e*u/ (327Th263),

i
Ex =— Ry. 2.18
x=- 3Ry (2.18)

Taking the inverse exciton reduced mass in bulk GaAs, 1/u, as the sum of inverse
effective electron mass m. = 0.067 mg and inverse density-of-states effective hole mass
mp = 0.5 my [Ada94], and using the zero-frequency dieelectric constant ¢ = 12.8
[Adadn, [Adagd],

Ex =49 meV (2.19)

is found for the exciton binding energy in bulk GaAs. Experimentally, a smaller value,
Ex ~ 4.2 meV, has been reported [Sel72]. More accurate calculations including the
complex valence band structure gave similar values [Bal71l, (Gon90]. The exciton ground
state is described by an exponential 1s wave function

1 _rl
-e ap (2.20)

Spls(r) = ’
\/ Wa%

where ap is the exciton Bohr radius. The exciton Bohr radius ap is related to the
hydrogen Bohr radius ag = 0.0529 nm by

ap = @eao. (2.21)
i

Using the same effective masses m., mj, and the same dieelectric constant € as in the
calculation of the exciton binding energy above, the value ap = 11.5 nm is found for
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the exciton Bohr radius in bulk GaAs.

Exciton envelope wave function In a perfectly periodic crystal, the exciton is con-
stituted by Bloch electron and hole states. The exciton wave function can be expressed
by single-particle wave functions in a product ansatz [Yu96l

O(re,rp) = Y Clhe k) vn, (re) Yr, (vh) (2.22)

k’eykh

where 9y, (T¢), Vg, (T1) are Bloch functions of electron and hole. To express the spatial
correlation of electron and hole, it is convenient to use fourier transforms of the Bloch
functions, the so-called Wannier functions [Wan37]

agr(r) =Y tu(r)e ' FE, (2.23)
k
which are labeled by lattice vectors R. The total exciton wave function
O(re,ri) = N2 > W(R., Rp)ar,(rc)ar, (rh), (2.24)
R, Ry,

where N is a normalization factor, is then fully characterized by the exciton envelope
wave function W(R,, Ry,), which describes relative and center-of-mass (c.m.) motion of
electron and hole.

Quantum well excitons

In a quantum well, translational symmetry in growth direction is broken by the QW
barriers. Single-particle (electron, hole) states in a QW are described in the envelope
function approximation by one-dimensional wave functions [Eq.[ZI0)]. In narrow quan-
tum wells, the corresponding single-particle confinement energy is significantly larger
than the exciton binding energy (compare Fig. ZZ§)). Consequently, it can be assumed
that the Coulomb interaction between electron and hole barely disturbs the quantized
vertical motion of electron and hole. The energy spacings between electron and hole
subbands are also large compared to exciton binding energy. Hence, only the lowest
electron and hole subbands contribute to the exciton ground state in the quantum well.
Therefore, the exciton ground state can be derived from the lowest single-particle elec-
tron and hole subbands in narrow quantum wells [Mil85, [And90]. Using the envelope
function formalism, the motion of electron and hole in z-direction can approximately
be factored out from the full exciton wave function of the exciton ground state, sepa-
rating 3d vectors into in-plane (pe, pn) and z components, and taking only the lowest
electron and hole subbands into account [Run02]. This separation ansatz leads to the
factorization of the full (six-coordinate) envelope wave function of the exciton ground
state a in the lowest-subband electron/hole z wave functions ue(z.), up(zp) and the
in-plane exciton wave function ¢ (p,, py),

Vo (Pes Phs 2zes 2n) = Ue(2e) un(2n) GalPes P1) - (2.25)
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Figure 2.10: Sketch of bulk and QW excitons. The bulk exciton has spherical symmetry;
i a narrow quantum well, the exciton wave function is squeezed in growth direction.

The exciton binding energy in a QW is larger than in bulk, and the lateral exciton
radius aQBd 1s smaller than the bulk Bohr radius a%d.
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Figure 2.11:  [And90)] Well-width dependence of the binding energy of the heavy-hole 1s

exciton in GaAs/Al, Gay_y As quantum wells (x = 0.3 and x = 1). Results of numerical
calculations by Andreani and Pasquarello.
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The two-particle eigenvalue equation for the (four-coordinate) in-plane exciton wave
function ¢ (p., pp)

H ¢a(pe: Pr) = Ea dalpe: Pp) (2.26)
with the Hamiltonian
H=—p?+ —— p2+ Vi ) (2.27)
- Qme Pe th Dby c\Pe — Pn) > .

where m., my, are in-plane effective masses of electron and hole, p,, p;, are the momenta,
and V,(p) is the modified Coulomb potential

Vilp) = g [z [z, EC ) (228)

471'660 /p2+|ze_zh|27

describes the Coulomb-correlated motion of electron and hole in the QW plane.

In a perfect quantum well with ideal, planar interfaces, the in-plane potential of the
QW has translational symmetry. In a GaAs/Al,Ga;_,As quantum well, translational
symmetry is broken by composition fluctuations in the Al,Gaj_,As barriers even for a
nominally perfect interface between GaAs and Al,Ga;_,As. Here, the virtual crystal
approximation is applied to the Al,Ga;_,As barriers. Translational symmetry in the
x-y plane is thereby artificially enforced, and relative and center-of-mass (c.m.) motion
of the exciton in the plane of the QW can be separated. The two-particle in-plane wave
function ¢(p,, p;,) factorizes into a product of c.m. wave function (R) and relative
wave function ¢(p), where the in-plane c.m. and relative coordinates R and p have been
introduced. The form of the in-plane exciton relative wave function ¢(p) is determined
by the modified in-plane Coulomb potential V.(p) [Eq. [Z28))]. The function V.(p)
shows a logarithmic divergency at short distances and the expected 1/p behaviour at
large p [Run02]. Compared to the 1/r singularity of the bare Coulomb potential, the
singularity at p = 0 of V,(p) is weak, and the relative wave function has no cusp, but
looks like a distorted Gaussian near p = 0. For increasing p, it rapidly changes to an
exponential decay. An exponential 1s wave function

2 _
P10 (p) = | | =g e IPez, (2.29)
Tay

where ap denotes the lateral Bohr radius, is a good overall approximation for the
in-plane exciton relative wave function in a narrow quantum well [Run02].

2.5 Quantum well excitons in a magnetic field

This section describes the effect of a perpendicular magnetic field on the 1s exciton
ground state in a narrow quantum well. The Hamiltonian for the in-plane exciton
motion in a perpendicular magnetic field is obtained from Eq. (Z21) by replacing the
kinetic momenta p,, p;, with canonical momenta p, = p, — eAe, p), = p; — €Ap.
Choosing a Coulomb gauge in relative coordinates [Gro05], the vector potentials A,
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Ap can be defined by
1
A, = —§B xXr,A,=—A., (2.30)
where writing vector components explicitly has been avoided by introducing the three-

dimensional vector r = (p,0), and p = p, — py, is the in-plane exciton relative coordi-
nate.

The Hamiltonian for the in-plane exciton motion in a perpendicular magnetic field can
be written [Gro05]

h? h?
H=——n,— XA
2p? B, 1 1 B '
+ 68M p2 + %(He—m—h) . ’LFL(’I’a X grad,,.)z + GM’LFL(T X gradR)Z s

where the in-plane c.m. vector R is considered as a three-dimensional vector to avoid
writing vector components explicitly in the vector-product-like expressions.

At vanishing magnetic field (B = 0), Eq. (Z31]) reduces to the Hamiltonian of a quasi-
two-dimensional exciton, Eq. (22Z17). In this case, c.m. and relative motion are decou-
pled, and the relative wave function of the ground state is described by an exponential
1s wave function [Eq. ZZ9)]. The lateral exciton c.m. motion in the QW plane is
described in detail in [Sia00]. Due to the lateral extension of the exciton in real space
(~ ap), the exciton averages over the subband dispersions in k-space on a length scale
~ 1/ap [Sia00]. The total exciton mass is therefore well described by a k-space average
over valence and conduction band dispersion, using the fourier transform of the exci-
ton 1s wave function. This leads to a further increased exciton in-plane total mass M
compared to the value obtained by simply taking the sum of the effective electron and
hole masses [Sia00].

In presence of a perpendicular magnetic field, three additional terms appear in the
exciton Hamiltonian: Due to the three B-dependent terms in Eq. ([Z31]), the magnetic
field couples to the radial part of the exciton relative motion (~ p?), the angular part
of the exciton relative motion (~ L, = —ih(r X grad,.),), and to the c.m. motion. The
third term also directly couples relative and c.m. motion.

An analytic solution of the full exciton Schrodinger equation at arbitrary magnetic
field, described by the the exciton Hamiltonian Eq. [Z31), is largely impossible. Only
the limiting cases of low and high magnetic field are accessible to analytic solutions.
Two energy scales are involved in the problem of an exciton in a magnetic field: exciton
binding energy and cyclotron energy. Equivalenty, the involved length scales can be
used: The lateral exciton Bohr radius ap of the quasi-two-dimensional exciton, and the
cyclotron radius or magnetic length [Joh49]

A= +/h/eB. (2.32)

As long as the cyclotron energy is much smaller than the exciton binding energy, or,
equivalenty, the cyclotron radius is larger than the exciton Bohr radius, A > ap, the
B-field represents a small perturbation of the Coulomb-correlated exciton ground state.
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Low-field limit Treating the B-field as a small perturbation of the Coulomb-correlated
exciton ground state Eq. (ZZ9) and denoting the change of the exciton energy of an
exciton state a by A, (B),

Eo(B) = Eo(B =0) + Ay (B), (2.33)

the effects of the three B-dependent terms in Eq. 31]) are evaluated separately in
lowest-order perturbation theory. The first B-dependent term in Eq. (31]) causes the
diamagnetic shift A(B) of a 1s exciton state [Hop6I]

62

—(p*)1s B*. (2.34)

The resulting shift of the ground state is positive and quadratic in B.

The lowest-order contribution of the second B-dependent term in Eq. (Z31)) is linear
in B; for states with nonzero angular momentum, it describes the Zeeman effect. For
the 1s exciton ground state,

b (__i)'<Lz>ls =0, (2.35)

2 “mp me

Azee(B) -

since (L )15 = 0. If the effective in-plane masses of electron and hole were equal, this
term would be generally equal to zero, independent of the angular momentum of the
exciton state.

Since the first-order contribution of the first term in Eq. (Z31]) is proportional to B2,
the second-order perturbation resulting from the second term has to be included, too.
It describes the effect of admixing of excited states (i) with higher angular momen-
tum to the ground state (s). For a 1s exciton ground state, the so-called van Vleck
paramagnetic term is equal to zero,

Aw(B) 322 |L |5 0, (2.36)

since L,|s) = 0.

The third term in Eq. (Z31]) is a cross-term which couples relative and c.m. motion in
the presence of a B-field. The c.m. motion of two-dimensional excitons in a magnetic
field has been recently studied in detail by Lozovik et al. [Loz02]. In absence of lateral
confinement, the coupling of the B-field to the c.m. motion leads to an increase of the
total exciton mass. This effects only becomes important for indirect excitons in coupled
quantum wells where charge separation occurs. For direct excitons, this effect is very
small [Loz02]. With respect to optical transitions, only excitons (almost) at rest are
relevant.

In conclusion, the effect of a perpendicular magnetic field on a quasi-two-dimensional
1s exciton is described in the low-field limit by the diamagnetic shift

Agia(B) = —(p*)1s B*, (2.37)
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which is positive and quadratic in B. The diamagnetic shift coefficient

62

= @<P2>1s (2.38)

V2

is proportional to the area of the exciton relative wave function, and depends on the
effective in-plane exciton reduced mass.

So far, the spin of electron and hole has been neglected. For excitons composed of an
electron (S, = 1/2) and a heavy hole (J;, = 1/2), the effective exciton spin J = S, + J,
is either J = 1 or J = 2. Since a 1s exciton state carries no angular momentum, the
effective exciton spin provides the angular momentum % of an emitted photon. There-
fore, only J = 1 excitons are optically active (“bright”); J = 2 exciton transitions are
dipole-forbidden (“dark”). An external magnetic field couples to the effective exciton
spin and causes Zeeman splitting of electron and hole levels in doublets with energy
separation AFE, = giupB and AE), = g;upB [[xc9h], where gF and g; are g-factors
for electron and hole, and pp = eh/2my = 57.9 ueV/T is the Bohr magneton. The
linear Zeeman splitting of the J = 1 exciton doublet is described by an exciton g-factor

gir = g5 + g, [Sne92.

Returning to the diamagnetic shift, with increasing magnetic field the “cyclotron con-
finement” of electron and hole causes an increasing deviation from the quadratic shift.
The transition from low-field to high-field case in two dimensions has first been de-
scribed by Akimoto and Hasegawa [Akif7], extending previous work of Elliott and
Loudon [EII60] and Hasegawa and Howard [Has61]. It was realized that in two dimen-
sions, a smooth transition from the Coulomb-correlated exciton motion at low fields
to a Landau-like behaviour at high field exists [Aki67]. The reason is that for a two-
dimensional exciton, a magnetic field normal to the x-y-plane causes complete confine-
ment, i.e., the magnetoexciton can be considered zero-dimensional. The Coulomb inter-
action is therefore completely quenched by (i) vertical confinement due to the quantum
well and (ii) lateral cyclotron confinement. In comparison, a three-dimensional hydro-
gen atom laterally confined by a magnetic field still extends into the third dimension. At
high fields, the spectrum of the three-dimensional magnetoexciton therefore resembles
that of a one-dimensional exciton. Wave functions of exciton s-states thereby acquire

(@) (b)

@, e

Figure 2.12: Sketch of the limiting cases of the two-dimensional magnetoexciton motion
in a perpendicular magnetic field. (a) Low-field limit: The magnetic field represents a
small perturbation of the Coulomb-correlated motion of electron and hole. (b) High-field
limit: The Coulomb interaction represents a small perturbation of the cyclotron motion
of electron and hole.
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cigar-like shapes [Gar77,[RoeWR84]. Due to the complete three-dimensional confinement
of a quasi-two-dimensional exciton, the magnetoexciton problem in two dimensions in
presence of a perpendicular magnetic field is simpler than the three-dimensional mag-
netoexciton problem.

High-field limit In the high-field limit, the magnetoexciton energy is dominated by
the linear B-dependence of the single-particle levels,

B(B) = B(0) + (n + ) huwi + (ny, + 3) hioy (2.39)
where w, j, = eB/mey, is the cyclotron frequency of electron and hole. Although n,
ny, do not exactly correspond to the quantum numbers of Landau levels due to the
presence of Coulomb interaction, a magnetic field can be defined for each exciton state
above which a Landau-like energy dependence of its energy is observed [Aki67]. In
the strict two-dimensional case, a small term x v/ B due to the B-dependence of the
magnetoexciton binding energy adds to the linear dependence in Eq. (Z39). Referring
to the high-field magnetoexciton levels in Eq. (Z39) as Landau levels for simplicity, the
B-dependence of the lowest Landau level is approximately given by

h
A(B) = Ao + i B. (2.40)

Transition field The magnetic field By where the transition from low field to high
field occurs can be defined by comparing exciton Bohr radius ap and cyclotron ra-
dius A = y/h/eB. More precisely, we define the transition field By by requiring that
cyclotron radius A and lateral exciton Bohr radius ap be equal. This results in the

definition
h

5 -
€ap

By = (2.41)
Taking as an example the exciton ground state in a 4-nm GaAs/Aly3Gag7As QW,
where ap = 8.2 nm [Gro06], magnetic length A and exciton Bohr radius ap coincide
at By ~ 10 T. This means that a magnetic field achievable with a superconducting
laboratory magnet causes a significant perturbation of the wave function of the 1s
exciton ground state in a narrow GaAs/Aly3Gag7As quantum well.

2.5.1 Diamagnetic coefficient

In this subsection, diamagnetic coeflicients of 1s exciton states are calculated for the
limiting cases of narrow GaAs/AlGaAs quantum wells and of bulk GaAs. Assuming
an exponential wave function for the 1s ground state in two dimensions [Eq. ([Z2Z9)],
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straightforward evaluation of the expectation value

(1D | p? |1l ) = /dm / dy (2* +y?) |12 (p(z, y))|?

T=—00 Y=—00

27 [e'¢) o0
2 _ 3
- /déb/PdP'PQ(P%?(P):?W'W /p?’dpe len = = af
»=0 p=0 Bp:O

shows that the effective exciton radius of a 2d exciton is

=\ = [ as. (243

where apg denotes the lateral Bohr radius of the two-dimensional exciton. Since the Bohr
radius of a 2d exciton is exactly half the Bohr radius of a three-dimensional exciton,
aQBd =1/2-a¥, and using that the bulk exciton radius in GaAs is a3Bd = 11.5 nm, we
find d*P = \/3/2a2P = 7.0 nm for the effective radius of the exciton ground state in
an ultranarrow GaAs quantum well with infinite barrier height. The Bohr radius of
excitons in real quantum wells is always larger due to the finite barrier height and,

consequently, the finite probability to find electron and hole in the barriers.

Using Eq. [Z37) and ZZ3), the diamagnetic coefficient of a quasi-two-dimensional
exciton is obtained as

3 e?
= EZGB’
where ap is the lateral Bohr radius. For a 4-nm GaAs/AlGaAs quantum well, v =
37 ueV/T? is found using the parameters m. = 0.078 mg, m;, = 0.23 mg, and ap =
8.2 nm.

72 (2.44)

In wide quantum wells with a thickness larger than the exciton diameter, the exciton
relative wave function will approach the bulk form

1 — a
PiY (p) = elel/es (2.45)

3
Tap

where ap denotes the 3d Bohr radius. In evaluating the integral, the symmetry of the
wave function can be exploited: Because the wave function Eq. (ZZ5]) has spherical
symmetry, the lateral effective exciton radius, (x? + y?), is equal to 2/3 (2% + % + 22).
The latter expectation value can be calculated by evaluating an integral where the
integrand has spherical symmetry,

(G0 2| iD= / dz / dy / dz (2 + %) 1632 (p(, 9, 2))P
r=—00 Y=—00 2=—00

(2.46)

T 2 oo
2 1 2 1 3
= —3 dO sin © /d¢/dpp4e_2p/a3:——3477-—a5]3:2a23.
3 may 3 may 4
0=0 ¢=0  p=0
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The effective exciton radius in three dimensions is therefore

dza =/ (p2) = V2as. (2.47)

For the bulk GaAs effective exciton radius, d*” = 16.2 nm is found. Using the
bulk GaAs effective electron mass m, = 0.067 mg and the density-of-states hole mass
my, = 0.5 my, the bulk exciton diamagnetic coefficient in GaAs is obtained as 3P ~

95 peV /T2

2.5.2 B-field dependence of the exciton radius

The diamagnetic shift of quasi-two-dimensional excitons shows a crossover to linear
shift above the transition field By [Eq. ZI])], related to the balance between the
Coulomb-correlated relative motion of electron and hole, and their cyclotron motion in
the magnetic field. We consider a simple analytical model which allows to derive the B-
field dependent shrinking of the exciton radius as a consequence of the lateral magnetic
confinement of electrons and holes. According to the existing theory, the exciton energy
dependence on magnetic field is analytically known only in the low-field and high-field
case separately. As an approximation, we consider the interpolation formula

A(B)=a (/> + B2 -b), (2.48)

describing the transition from the quadratic diamagnetic shift at low B-field to the
linear Landau shift at high B-field (Fig. EI3]). The parameters a and b are related
to the exciton radius and the in-plane exciton reduced mass: In the low-field limit

low :
field v 9 g
(B <B,/2) vo20
By s

Energy

A(B) = a(\/0 + B2 —b)

Magnetic field

Figure 2.13: Model for the diamagnetic shift of quasi-two-dimensional magnetoezcitons:
The solid curve [Eq. (248)] interpolates between quadratic shift in the low-field limit
and linear shift in the high-field limit. At the transition field By, the curvature of the
solid curve has decreased to half of its zero-field value 29 = a/b. For comparison, the
dotted curve shows a parabola with curvature a/b.
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(B —0),H
a a
Aw(B)=— B>~ —DB*+ ... 2.4
low( ) 2 ]p3 + ) ( 9)
i.e., the diamagnetic coefficient is related to the parameters a and b by
1 &*A(B
= lim L TAB)_ a (2.50)

B—0 2 dB?2 2b

In the high-field limit, we have Apign(B) = a- B. Using the equations [Z38)) and E40),
we find that the fit parameters a, b are related to effective exciton radius and exciton
in-plane reduced mass by

21

a (2.51)

Transition field To verify that the definition of the transition field, Eq. ZZII), is
compatible with this interpolation formula, the B-field By is determined where the
second derivative of A(B),

O’A(B) aB? a 9 59
PBL LB JpiBE (2.52)

has decreased to half of its zero-field value a/b. From a plot of Eq. (Z52), the result

h 3 h h

) 26 e (2:59)
is obtained. The relation between exciton Bohr radius and effective lateral exciton
exciton radius in the 2d limit, (p?) = 3/2a%, has been used here. The above result
for By, is in good agreement with the previous definition of the transition field By
[Eq. (Z21)]. Using Eq. [Z21), the transition field can be expressed by the parameter b
from the interpolation formula Eq. (Z48), yielding By = 3b/4.

Byjy = 1.53
e

B-field dependence of the exciton radius Increasing the B-field normal to the
quantum well plane does not only result in the diamagnetic shift in exciton transition
energy, but also leads to a B-field dependent shrinking of the exciton radius. This is
appreciated by comparing the full B-dependence of the XDS, approximately described
by the interpolation formula Eq. (248]), with the quadratic B-dependence in the low-
field limit, Eq. Z37). In this way, the nonparabolicity of the XDS [Eq. ([(ZZ8)] is
interpreted in terms of a B-dependence of the exciton radius. From the corresponding
equation

e a a
—(p(B))B? = — B>~ —DB*+... 2.54
the B-dependence of the exciton radius is obtained in lowest order
8, a a
B)Y) = = (= — == B?). 2.
(P(BY) = 2 (5~ <o B?) (255)

1 1
1Using the asymptotic expansion V1 +z =1+ 5%~ ng +... forz < 1.
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Considering that the parameters a, b are determined by Eq. (ZX]]), we obtain the B-field
dependence of the exciton radius

2/ 2\2
(p(BY)M2 = (p(0))/2 (1 - %BQ o). (2.56)
167
Expressing the effective exciton radius by the exciton Bohr radius ap = /2/3 ( p?)'/2,

we obtain the B-dependence of the Bohr radius

ap(B) = ap(0) (1— % 62};;‘}9 BQ+...>. (2.57)

Note that the B-field induced decrease of the exciton radius is a quadratic function in
the magnetic field B.

In lack of a complete theory of the quasi-two-dimensional magnetoexciton, the inter-
polation formula Eq. ([Z48]) provides a simple example that qualitatively demonstrates
that the nonparabolicity of the diamagnetic shift is directly related to a “renormal-
ization” of the exciton wave function by the magnetic field. Without more accurate
knowledge about the influence of the magnetic field on the exciton ground state, the
choice of Eq. (Z48) is to some extent arbitrary; other choices are possible, and the re-
sults for the exciton radius as a function of B-field depend on that choice. The result for
the transition field Eq. (53]) depends on the precise B-dependence of the diamagnetic
shift, too.

2.6 Summary

This chapter has introduced the description of single-particle and exciton states in
GaAs/Al,Gaj;_,As quantum wells with in-plane translational symmetry, treating the
Al,Gaj_,As alloy in the virtual crystal approximation (VCA). Single-particle states in
quantum wells with thickness down to a few nm are described using the envelope func-
tion approximation (EFA). Confinement energies and wave functions of single-particle
(electron, hole) ground states in quantum wells have been calculated in the EFA /VCA.
The confinement in growth direction in a GaAs/Al, Ga;_,As quantum well releases the
degeneracy of the valence band edge in GaAs, resulting in a splitting of several meV
between heavy-hole and light-hole subbands in narrow GaAs/Al,Ga;_,As QWs. The
in-plane band structure can be described using well-width dependent effective in-plane
electron and hole masses. Due to the released degeneracy of the valence band edge, the
exciton ground state in a narrow QW can be described in a two-band model, including
only the lowest conduction and heavy-hole subbands.

The envelope function description of the exciton ground state in narrow QWs has been
introduced, separating the full exciton wave function into a product of single-particle
z wave functions and the in-plane exciton wave function. Due to the confinement in
growth direction, the exciton binding energy is enhanced compared to bulk. In QWs
with translational symmetry, the in-plane exciton wave function is a product of relative
and center-of-mass (c.m.) wave function. The relative wave function of the ground
state can be described by a two-dimensional exponential 1s wave function with lateral
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Bohr radius apg.

The magnetic-field behaviour of a magnetoexciton in a quantum well is determined by
two energy scales, or, equivalently and more illustrative, two length scales: In terms of
energy, exciton binding energy and cyclotron energy, or, in terms of length scales, lateral
exciton Bohr radius and cyclotron radius. Only the limiting cases of low magnetic
field and high magnetic field, where the scales are strongly different, are analytically
accessible. In the low-field limit, the exciton energy increases quadratically with the
magnetic field. In first-order perturbation theory, the diamagnetic shift coefficient of
the ground state is proportional to the area of the exciton relative wave function.
It is smaller than in bulk and it depends on the QW width, due to the well-width
dependent exciton binding energy and due to the increased in-plane effective electron
mass in narrow QWs. In the high-field limit, the magnetoexciton energy is dominated
by the linear B-dependence of the single-particle levels. Therefore, a crossover from
quadratic shift to linear shift occurs for two two-dimensional excitons.

A simple model that smoothly interpolates between low-field and high-field limiting
cases has been introduced; this model does of course not replace a full theory of the
quasi-two-dimensional magnetoexciton. Rather, it provides a simple example showing
that the nonparabolicity of the diamagnetic shift of quasi-two-dimensional excitons in
narrow QWs is related to a reduction of the exciton radius with increasing magnetic
field. Possible consequences of the magnetic-field-dependent shrinking of the exciton
radius on disorder-localized exciton states will be considered in chapter 8.
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Chapter 3

Fundamentals: Exciton localization in narrow
quantum wells

This chapter aims at an understanding of the influence of disorder on different length
scales in the interfaces of narrow GaAs/Al, Ga;_,As quantum wells on exciton localiza-
tion. The first section describes the intrinsic atomistic structure of GaAs/Al, Gaj_,As
heterointerfaces. The theory of exciton disorder-localization in narrow quantum wells
is introduced in the second section. The concept of band edge fluctuations is demon-
strated at the example of a GaAs/Al, Ga;_,As quantum well with nominally perfectly
flat interfaces, where only the intrinsic composition fluctuations in the Al,Ga;_,As
barrier contribute to fluctuations of the local band edges (“interface disorder”). A sim-
plified version of the theory of exciton disorder-localization is described, considering
only localization of the exciton center-of-mass and neglecting the influence of disorder
on the exciton relative wave function. This theory can be seen as an intermediate step
on the way to a complete picture of exciton localization in disordered quantum wells.
The third section reviews models of exciton localization that have been introduced in
the recent decades to describe exciton localization in real quantum wells. Subsequently,
the idea to use magneto-uPL spectroscopy as a tool for the study of disorder in nar-
row quantum wells is outlined, and the effects of an external magnetic field in growth
direction on localized exciton states are described.

3.1 GaAs/Al,Ga; ,As heterointerfaces: Intrinsic disorder

Disorder due to composition fluctuations in the Aly 3Gag 7As alloy is intrinsic in GaAs/
Alg 3Gag.7As heterointerfaces. Figure shows a cross section of the cation sublattice of
a nominally perfect GaAs/Aly3Gag.7As quantum well with random distribution of Al
atoms in the Alp3Gag7As barriers is shown. Al atoms are indicated in black. The
lateral cation distance is 0.4 nm, the monolayer distance is 0.565 nm. E In every
monolayer, 30 % of the cations are Al atoms. Growth steps, segregation, and short
range ordering (SRO) in the alloy distribution, that contribute to interface disorder in
a real quantum well, are neglected at this point. In Fig. BIl(b), the same structure is
shown in the virtual crystal approximation (VCA), i.e., the random Aly 3Gag 7As alloy

'Only every second monolayer is shown. The surface structure of the GaAs {110} surfaces is
described in detail in chapter 5.
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Figure 3.1: (a) Simulated cross section of a GaAs/AlysGap7As QW (d =7 ML) with
uncorrelated distribution of Al atoms in the Aly3Gag7As layers. Al atom positions are
marked in black. (b) The same structure in the virtual crystal approximation (VCA).

is treated as a homogeneous crystal consisting of As atoms and Aly3Gag7 pseudo-
atoms. For comparison, the exciton diameter 2ap (ap = 8.2 nm) of the heavy-hole
exciton ground state in a nominally perfect 4-nm GaAs/Aly3Gag7As quantum well is
shown.

That the GaAs/Alp 3Gag.7As “interface” seems rough in the atomistic model [Fig. BIla)]
but perfectly flat in the heuristic model, where the Aly3Gag7As barrier is treated
as pseudocrystal [Fig. B(b)], demonstrates that the position of the interface be-
tween GaAs and the random Alg3Gagr7As alloy can not be unambiguously defined
on the atomic scale [Oga87]. Rather, there is a some lattice constants wide region
where it is impossible to decide if a Ga atom belongs to the GaAs layer or to the
Alg 3Gag.7As barrier. Therefore, the concept of “interface roughness” can not be ap-
plied to GaAs/Al,Ga;_,As heterointerfaces offthand.

The theory of exciton disorder-localization in narrow quantum wells, which has been
developed in the envelope function framework [Zim97], puts another concept in the
focus: The concept of band edge fluctuations. In the next section, the theory exci-
ton disorder-localization in narrow quantum wells is introduced, and the concept of
bandedge fluctuations is demonstrated at the example of a 4-nm GaAs/Aly3Gag.7As
quantum well with nominally perfectly flat barriers and random, uncorrelated distri-
bution of Al atoms in the barriers.

3.2 Exciton localization in GaAs/Al,Ga;_,As QWs: In-
trinsic disorder

The model of a three-dimensional exciton moving between the QW barriers can replaced
by that of a quasi-two-dimensional exciton in narrow quantum wells, as described in
chapter 2.4 (“Quantum well excitons”). This remains true in disordered quantum
wells without in-plane translational symmetry, provided that the disorder strength is
not too large [Zim97]. In presence of disorder, the quantum well exciton Hamiltonian
[Eq. 27)] has to be supplemented by in-plane disorder potentials Ve(p.), Vi (pp)
representing the fluctuation of the local band edges. The exciton in-plane motion in
disordered narrow QWs is described by the two-particle Schrédinger equation for the
(four-coordinate) in-plane exciton wave function ¢, (p., py)

H¢a(pea ph) = Ea ¢a(pea ph) ) (31)



40 3. Fundamentals: Exciton localization in narrow quantum wells

where the exciton Hamiltonian

R 15
H— _Q—mGApe - mAPh + Ve(pe) + Vi(pn) + Ve(pe — pr) (3.2)

includes Coulomb interaction and disorder potentials Ve(pe), Vi(pr) for electrons and
holes, representing the spatial variation of the local bandedges, and the modified
Coulomb interaction Vo (p) in the QW plane [Eq. [Z25)].

The determination of the local bandedges is now described at the example of a nominally
perfect 4-nm GaAs/Aly 3Gag 7 As quantum well with random, uncorrelated distribution
of Al atoms in the barriers. The steps leading from the alloy composition in the QW
interfaces are shown in Fig. (a) - (d). Figure BZ(a) shows the Al distribution in
a simulated cross-section of GaAs/Aly3Gag7As QW (bottom) as well as the average
Al concentration C(z) in the single monolayers (top). Single-particle wave functions
ue(2), up(z) calculated in square well profiles using the EFA/VCA approximation are
shown: The solid black and the dashed gray curve represent probability densities of
the electron (u2(z)) and the heavy hole (u?(z)). The penetration depth of the electron
wave function into the Aly3Gag7As barrier (treated in virtual crystal approximation)
is larger than the penetration depth of the heavy hole wave function.

Figures B2(b) and (c) show the difference of local and averaged Aluminum concentra-
tion C(z,z) — C(z) weighted with the probability densities u2(z) and u?(z). Multi-
plication with u2(2), u?(z) guarantees that the Aluminum distribution in the barriers
contributes to lateral disorder only in so far as electrons or holes actually reside there.
Integration over the weighted Al concentration difference in z direction gives a measure
for the local vertical confinement of electron and hole due to the Al concentration vary-
ing along the QW interfaces. Disorder potentials for electron and hole are obtained by
scaling to GaAs/Al 3Gag.7As band offsets (a=e,h):

Va(z) = A, / dzu?(2) [C(m,z) —-C(2)|, a=eh. (3.3)

The disorder potentials Ve (z.), Vi, (xp) resulting from alloy disorder in the 4-nm GaAs/
Aly3Gag7As QW are shown in Fig. BZA(d): The black line corresponds to the local
conduction band edge, the gray line to the local valence band edge. It is clearly observed
that a strong correlation exists between electron and hole disorder potential.

The potential value distributions of electron and hole disorder potentials are shown
in Fig. B3(a) and (b). The number of potential values has been binned over 5 meV
windows. That the distributions are not symmetric around zero (E = 0) is due to
the Al concentration of 0.3: Relative to the average Al concentration, the increase
in the local potential is larger when all atoms in a QW cross section are Al atoms
than when all atoms are Ga atoms. For comparison, Gaussian distributions p,(E) =
1/V2mo -exp (—E? /20?) with 0, = 33 meV and o}, = 8.5 meV are shown in Figs. B3(a)
and (b). The autocorrelation functions of electron and hole disorder potentials shows a
delta-like peak at zero, since there are no lateral correlations between Al atoms in the
barriers. The approximation of the potential value distributions by Gaussians as shown
in Fig. may seem rather crude, but the exact form of the potential value distribution
is not in the focus of our interest, since the example of the 4nm GaAs/ Aly3Gag.7As
QW with nominally perfect interfaces mainly serves for illustrative purposes. However,
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Figure 3.2: (a) Average Al concentration (top) and spatial positions of Al atoms (bot-
tom) in the barriers of a perfect 4-nm GaAs/AlysGag7As QW. (b) Difference between
“local bandedge” and bandedge profile averaged along the QW, weighted with electron
z-wave function. (c¢) The same for the heavy hole. (d) Bandedge fluctuations along the
QW (black: electron, gray: heavy hole).
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Figure 3.3: (a) Electron and (b) hole band edge fluctuations resulting from random alloy
disorder in the 4-nm GaAs/AlysGay7As QW [Fig. [ZA]. Zero of energy corresponds
to the band edges of a 4-nm GaAs/AlysGag7As QW where the barriers are treated in
virtual crystal approzimation. For comparison, Gaussians with o, = 33 meV (electron)
and o, = 8.5 meV (hole) are shown.

it should be noted that the ratio of potential strengths of the distributions in Fig.
differs from the band offset ratio f./f;, = 0.65/0.35. The ratio of the disorder strenghts
of electron and hole potential is rather o, : o5 = 3.5, i.e., significantly larger than the
band offset ratio. This is because electron z-wave function w.(z.) and heavy-hole wave
function wup(zp) have different penetration depth into the QW barriers. The smaller
penetration depth of the hole wave function causes the ratio of disorder strengths to
be significantly larger than the band offset ratio.

The local band edge fluctuations in the two-dimensional QW plane are described by two-
dimensional electron and hole disorder potentials Ve (p,), Vi(pp,). The exciton in-plane
motion is described by Eq. B]) with the exciton Hamiltonian Eq. (82)). The problem
of the three-dimensional exciton motion between corrugated barriers of a narrow QW,
involving the six spatial coordinates of electron and hole, has thereby been reduced
to a four-dimensional problem. Still, the full description of localized exciton states in
two-dimensional disorder is not simple, but involves the four-coordinate exciton wave
function.

For the case of weak disorder, E Zimmermann et al. [Zim97] have proposed an approx-
imate description, assuming that disorder mainly influences the exciton center-of-mass
(c.m.) motion, and that in-plane relative and c.m. motion can be separated. To de-
scribe in-plane relative and c.m. motion, we define the total exciton mass M = me+my,
the in-plane c.m. coordinate R = (mep, +mppy,)/M, the reduced mass pp = memy, /M,
and the in-plane relative coordinate p = p, — p;,. The two-particle WF ¢ is factorized
into a product of c.m. WF ¢ (R) and relative WF ¢(p). To describe the relative mo-
tion, a 1s wave function ¢15(p) x exp(—p/ap) is used which is rigid throughout the
structure. In this factorization approach, the exciton averages over underlying disorder
with its relative WF. This model results in the eigenvalue equation for the exciton

2disorder strength on the length scale of the exciton Bohr radius < exciton binding energy
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Figure 3.4: (a) Uncorrelated disorder potentials Ve(pe), Vi(pn) with disorder strengths
e =33 meV and op, =9 meV. (b) Potential value distributions for electron and hole.
(¢) Effective exciton center-of-mass potential Veg(R), assuming ap = 8.2 nm for the
lateral exciton Bohr radius. (d) Potential value distribution of Veg(R) with disorder
strength ocom = 1.7 meV.
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Figure 3.5: (a) Contour lines of a simulated effective disorder potential (160 x 160 nm?)
for the exciton c.m. For the lateral Bohr radius, ap = 8.2 nm is assumed. (b) Contour
plot of probability density of the c.m. wave function of the energetically lowest eigenstate

in (a).
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in-plane c.m. wave function ¢(R)

h2
- A _E = 4
( T Vea(R) >¢<R> 0, (3.9
where the effective exciton c.m. potential V,g(R) is determined by a convolution of
the underlying (atomic) disorder potential with 1s wave functions scaled differently for
electron and hole (taking into account the different localization properties of electrons
and holes),

_ 2 1 2 pa_R
ValB) = X [ @ sz b (P Vi), (3.5)

a=e,h

Averaging of the exciton over the underlying fluctuations of the local bandedges intro-
duces correlations on the length scale of the exciton Bohr radius, and reduces disor-
der strength of the effective potential for the exciton center-of-mass. This is demon-
strated in Fig. B4l at the example of laterally uncorrelated, Gaussian distriuted disorder
potential for electron and hole with disorder strengths o, = 33 meV (electron) and
op = 8.5 meV (hole). The reduction factor oeom/(0e + 01,) = 1.7/42 is approximately
equal to the ratio 0[110]/618 = 0.4/8.2, i.e., to the square root of the inverse ratio of
the numbers of independent potential values in the single-particle and the averaged
center-of-mass potential. This is interpreted as the 1/ V/'N law for the second moments
of uncorrelated random events [Run02].

In Figure BH(a), a contour-line plot of a simulated effective potential for the exciton
cm. (160 x 160 nm?) is shown. This disorder realization has been determined from
uncorrelated disorder potential with disorder strengths . = 33 meV, o5 = 9 meV,
by convolution with scaled 1s wave functions according to Eq. (BH). For the lateral
Bohr radius, the Bohr radius in a 4-nm GaAs/Aly3Gag7As QW, ap = 8.2 nm has
been assumed. Figure BH(b) shows a contour plot of the energetically lowest eigen-
state in the potential shown in (a), which has been determined by solving the single-
particle Schrodinger equation for the exciton c.m. for the potential (a). The energy
of the lowest eigenstate lies 1 meV below the center of the potential value distribution
[Fig. B4(d)]. The c.m. eigenstate corresponds to an exciton state at a transition en-
ergy shifted to lower energy by the amount of the exciton binding energy. The first few
eigenstates in the disorder potential shown in Fig. Bl a) have spatially well localized
center-of-mass wave functions. The wave functions of higher states are more extended
and show fractal-like structure [Run(02]. Calculation of the optical density (absorp-
tion spectrum) according to [Zim97] showed that uncorrelated alloy disorder in a 4-nm
GaAs/Aly3Gag7As QW causes an inhomogeneous broadening of the exciton spectrum
on the order of 1 meV.

3.3 Exciton localization in real GaAs/Al,Ga; ,As QWs

The model of the GaAs/Aly3Gag7As quantum well described in the previous section
represents a mathematical model that is unlikely to be realized in real MBE-grown
quantum well. The atomistic structure of the interfaces of a real quantum well is
influenced by several processes that have their origin in the dynamic situation far from
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Figure 3.6: Schematic picture of disorder in a binary/ternary heterointerfaces: Differ-
ent mechanisms contribute to the total interface disorder. After [Reu9d].

equilibrium during MBE growth: Atoms impinge on an existing growth front; they
migrate along the surface (surface diffusion) or dissolve in an already formed layer
(segregation). In binary/ternary heterointerfaces, alloy disorder contributes to the
total interface disorder. In alloys, atoms of one species may be built in preferentially
near atoms of the same species (clustering). All these processes influence the atomic
configuration of an MBE-grown heterointerface; they are summarized in Fig.

Characterization of the interface structure of buried semiconductor heterostructures
has proven a difficult task in the recent decades. While a variety of methods exists
that allow to investigate the real structure of surfaces from the atomic scale to macro-
scopic length scales, e.g., scanning tunneling and atomic force microscopy, scanning
electron microscopy, and optical microscopy, interfaces of buried semiconductor het-
erostructures are not accessible to all of these classical surface investigation methods.
Methods that give direct access to the interface structure on the atomic scale of buried
semiconductor heterostructures are transmission electron microscopy (TEM) [Pef77],
X-ray diffraction [Ele80] and cross-sectional scanning tunneling microscopy (XSTM)
[Sal93]. The assessment and microscopic characterization of interface disorder by these
methods has proven difficult, e.g, because of the required sample preparation and the
limited spatial window. Early on, indirect optical methods such as photoluminescence
(PL) and cathodoluminescence (CL) have been used to complement data obtained by
direct structural techniques. However, some degree of theoretical modeling is necessary
to extract information about structure from data obtained by optical techniques. In
the following paragraphs, models of exciton localization in GaAs/Al, Ga;_,As quantum
wells are described that were developed in the recent decades.
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At the beginning stood the recognition that in high-purity GaAs/Al, Gaj_,As quantum
wells free excitons dominate the luminescence spectra, é,and that spatial fluctuations
of the local bandgap in the QW plane lead to the localization of excitons [Wei8T]. The
inhomogeneous broadening of optical spectra of quantum well heterostructures has first
been interpreted as a result of exciton localization in regions of the quantum well where
the well thickness is increased by one or several monolayers (Fig. BZ). The intrinsic
short-range disorder in the GaAs/Al, Ga;_,As interface due to composition fluctuations
in the Al,Gay_,As barriers was suggested to be not relevant for exciton localization.
Consequently, the Al,Ga;_,As barriers were implicitly treated in the virtual crystal
approximation in models of the GaAs/Al, Ga;_, As interface, as shown in Fig. B The
existence of atomically flat islands in the QW interfaces with lateral extension larger
than the exciton Bohr radius (ap ~ 10 nm in GaAs) was postulated [Weil1]. It was
assumed that lateral variations of the QW width cause lateral variations of the total
confinement energy. In this picture, lateral confinement in a quantum well is caused
by a spatial variation of the well width, i.e., of vertical confinement. Weisbuch, Dingle,
Gossard and Wiegmann assumed that only ML islands larger than the exciton Bohr
radius lead to exciton localization [WeiST]. In Fig. B it is implicitly assumed that the
confinement energy resulting from lateral exciton localization in ML islands is negligible
compared to confinement in growth direction.

Subsequently, more detailed interface models were introduced, including, e.g., the effect
of island sizes L < apg, and it has been attempted to predict the PL lineshape from the
size distribution of ML islands in the QW interfaces using statistical arguments [Sin84].
Also effects of alloy disorder were included in a phenomonological model [Sin&5]: This
approach appreciated that the local interface position can not be unambiguously defined
on the atomic scale. Therefore, to proceed it was assumed that two different, well-

3In contrast to bulk samples, where the luminescence of impurity-bound excitons dominates.
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Figure 3.7:  Model of Weisbuch, Dingle, Gossard and Wiegmann [Wei81l]: Monolayer
fluctuations of the local QW width lead to lateral variations of the confinement energy
i growth direction.
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separated length scales of disorder were present. The ternary alloy barriers were in
first approximation treated in virtual crystal approximation, and alloy disorder was
included as a perturbation.

In the meantime, in-situ growth monitoring techniques like RHEED had lead to an im-
proved understanding of the dynamics of MBE growth. The damping of the RHEED
signal after starting growth, the occurrence of RHEED oscillations, and the recov-
ery of the RHEED signal after growth interruption were interpreted as evidence for
polynuclear growth, where the growth of a new monolayer started before one mono-
layer was completed [Nea83]. It was observed that growth interruption could be used
to achieve smaller inhomogeneous linewidths of quantum well samples [Nea83, [Gro82)
Sak&5, [Lew&5]. However, subsequently it was found that growth interruption can also
lead to larger linewidths [Bim&86]. Since then, basically two classes of quantum well
samples exist: Those grown with growth interruption, and those grown without growth
interruption.

Photoluminescence spectra of growth-interrupted GaAs/AlAs [Gol83] and GaAs/Al-
GaAs superlattices [Dev84] showed multiple peaks, that were attributed to exciton
recombination in well regions differing in height by integer multiples of a monolayer
(“ML splitting”). However, a detailed comparison of the results of direct structural
techniques with those of optical experiments showed that the existence of atomically
flat QW regions with lateral extension larger than the exciton Bohr radius was not
consistent with quantitative microscopic (structural) data [Our89] and also with the
results of optical experiments [War9(, War92]. Using a combination of different char-
acterization techniques, each sensitive to a limited spatial range of disorder, ample
evidence for different length scales of disorder — down to the atomic scale — con-
tributing to the roughness of GaAs/Al,Ga;_,As heterointerfaces has been collected
[Bim86), [Oga87, [Bim&7, [Onr&9, [Jus90, War90l [Gam90, [Gam9Tl [Kop91l, War92, [Zre94,
Wo005, Tah96l [Gam96l, [Gro97, [Fuj97, [Leo((]. The “atomically smooth island” model
was rejected as oversimplified; consequently, for a realistic description of QW interface
roughness, it was postulated that the complete roughness spectrum of the interface had
to be included [War92]. Figure schematically shows the roughness spectrum of a
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Figure 3.8: [War99] Schematic representation of the interface roughness spectrum of
a quantum well in Fourier space. The bimodal roughness distribution results from the
artificial reduction of roughness on the length scale of the exciton diameter by means
of growth interruption.
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growth-interrupted quantum well in Fourier space. The roughness amplitude at the
exciton diameter has been artificially reduced by growth optimization techniques like
growth interruption, and the power spectrum shows a bimodal distribution.

The use of the term “interface roughness” — which implies a definition of the local
interface position — in the context of GaAs/Al,Gaj_,As heterointerfaces requires a
remark. In the work of Singh et al. [Sin85], it was appreciated that only in presence
of two different, well-separated length scales of disorder, the fluctuations of the local
bandedges on the longer-range scale can be associated with fluctuations of the local
interface position on that length scale. This limitation has not been mentioned in later
work. If this limitation would have been kept in mind, it would probably have been
recognized that with respect to binary/ternary alloy interfaces, a rigorous definition of
a continuous “interface roughness spectrum” does not exist — at least not based on a
definition of the local interface position.

The study of Ogale et al. [Oga87] pointed out for the first time the primary importance
of composition fluctuations in the Al,Ga;_,As barriers for optical properties of GaAs/
Al,Gaj_;As quantum wells. However, it remained singular in this conclusion for many
years. In most studies, short-range disorder on the atomic scale in GaAs/Al,Gaj_,As
quantum wells, resulting from composition fluctuations in the Al,Ga;_,As barriers, has
been considered to be irrelevant for exciton localization [Wei81], or at least of secondary
importance [War92].

A possible reason for the predominance of a single model, i.e, that of “large islands with
nanoroughness superimposed”, is its simplicity. Actually, two fundamentally different
pictures explain localization of a quantum-mechanical particle by either short-range
disorder or long-range disorder: Localization by long-range disorder is explained in the
“particle-in-a-box” picture; for an extended particle like the exciton it has often been
assumed that the lateral extension of the box needs to be larger than the exciton di-
ameter to cause localization. In contrast, quantum-mechanical localization also occurs
if the correlation length of the underlying disorder potential is much smaller than the
characteristic length scale of the particle, since quantum mechanics allows the particle
wave function to penetrate into classically forbidden areas. This is demonstrated in
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Figure 3.9:  Single-particle (electron) disorder eigenstates in a Gaussian random po-
tential.
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Fig. B9, where the lowest disorder eigenstates in a random (uncorrelated) Gaussian-
distributed potential are shown. The figure demonstrates — on the single-particle level —
the fundamental difference between “quantum mechanical” and “classical” localization:
Due to the penetration of wave functions into classical forbidden areas, the lateral wave
function extension can be significantly larger than the correlation length of the disorder
potential, and only the lowest tail states are well localized. The two limiting cases of
quantum-mechanical disorder localization can be characterized by a different ratio of
disorder strength and kinetic energy (confinement energy) [Sav99]. The so-called classi-
cal limiting case is characterized by a long correlation length of the underlying disorder
potential and small confinement energies. In this case, the particle hardly penetrates
into the classically forbidden areas. On the other hand, the so-called extreme quantum
limit is characterized by a short correlation length and a strong penetration of the wave
function in classically prohibited areas [Run(2].

Localization by short-range disorder was demonstrated in Fig. on a single-particle
level. The somewhat more complicated case of exciton localization by short-range dis-
order has already been described in the previous section at the example of random,
uncorrelated alloy disorder in the plane of a GaAs/Al,Gaj_,As quantum well. In
the theory of exciton disorder-localization [Zim97], a reinterpretation of the “interface
roughness” models described above is possible. In contrast to the concept of well width
fluctuations, the concept of band edge fluctuations is well-defined in GaAs/Al, Gaj_, As
quantum wells. E The “roughness spectrum” shown in Fig. can therefore be reinter-
preted as the spectrum of the band edge fluctuations (note that conduction and valence
band edge are strongly correlated).

Figure B0 summarizes the description of localization of the exciton center-of-mass
in the approximate theory of exciton disorder-localization [Zim97|, which has been
described in the previous section. The case of a quantum well where the position of the

4Neglecting for the moment the question of the range of applicability of the virtual crystal approx-
imation to bulk Al,Gaj_zAs.

T \Ea_B/—"—\ao—/-—
V_(x.y)

Figure 3.10: Schematic view of an exciton between the corrugated interfaces of a narrow
quantum well. The single-particle envelope wave functions |ue(2)|?, |un(2)? describing
the localization in growth direction are shown on the right. In lateral direction, the
exciton averages over underlying disorder with its relative wave function. Minima in
the resulting effective potential Veg(x,y) for the exciton center-of-mass act as natural
quantum dots.
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interfaces can be defined on the atomic scale is shown; the barrier region is drawn in
gray. The exciton averages over fluctuations of the local band edges (not shown) on a
length scale below the exciton Bohr radius with its relative wave function (Figure BI0).
Local minima in the resulting effective disorder potential for the exciton center-of-mass,
Vest(x,y), act as natural quantum dots (QDs), also called quantum well dots (QWDs).
The influence of disorder on the exciton relative wave function is neglected in this
model.

3.4 Exciton diamagnetic shift as a probe of disorder

Spatially averaging luminescence techniques do not give direct access to the parameters
of the interface disorder in quantum wells, since the exciton averages over the underlying
band edge fluctuations. Due to the effects of motional narrowing and the relaxation
of excitons before recombination, the inhomogeneous broadening of spatially averaged
low-temperature PL spectra does not even give a measure of the disorder strength of
this averaged potential [Zim94, [Zim97]. Therefore, there is the need for an optical
technique that allows to characterize interface disorder in quantum wells more directly.

The idea to use magneto-uPL spectroscopy to study interface disorder in narrow quan-
tum wells is motivated by two experimental observations:

e Experimental techniques like near-field scanning optical spectroscopy or uPL have
demonstrated that at least for low temperatures the line shape of narrow quantum
well PL spectra is the envelope of many narrow lines due to disorder-localized ex-
citon states [Zre94l, Brn94]. In uPL spectra of narrow GaAs/Al, Gaj_,As QWs,
the spectrally narrow emission lines of localized exciton states have been ob-
served down to several standard deviations (o) below the center of the QW emis-
sion peak. The c.m. wave functions of the lowest tail states in a short-range
correlated disorder potential are well localized and can be described in analogy
to quantum dots, hence their designation as natural quantum dots or quantum
well dots (QWD). The diamagnetic shift has been found to vary between differ-
ent natural quantum dots, but no systematic behaviour has been observed yet
[Hes94, [Ste02].

e For cylinder-shaped Ing1GaggAs/GaAs quantum dots with varying dot diame-
ters, it has been observed that the diamagnetic coefficient of exciton ground states
in the QDs increases monotonously with increasing dot diameter [Bay98]. Conse-
quently, the exciton diamagnetic coefficient is a measure of the lateral extension
of the confinement potential, here of the QD diameter.

We describe the experimental results for diamagnetic coefficients of quantum dot exci-
ton ground states in cylinder-shaped Ing 1 Gag gAs/GaAs quantum dots with varying dot
diameters [Bay98]. The quantum dots were fabricated by electron-beam lithography
and wet chemical etching on a 5 nm Ing1GaggAs/GaAs quantum well. Experimental
results for diamagnetic coefficients are shown in Fig. Bl for dot diameters in the range
25-200 nm. The quasi-two-dimensional limit is ~ 70 ueV/T?. The lateral exciton Bohr
radius is on the order of 10 nm. For dot diameters of ~ 100 nm, i.e., about ten times
the exciton Bohr radius, a reduction of the diamagnetic coefficients is observed. For
the smallest dots with ~ 20 nm diameter, a reduction of the diamagnetic coefficient
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Figure 3.11:  [Bay9§] Ezciton diamagnetic coefficients of Inyg1 GaggAs/GaAs quantum
dots with circular symmetry and varying dot diameter. The solid line shows the result
of numerical calculations.

to ~ 20 ueV/T? is found. The fact that the diamagnetic coefficient is reduced below
the two-dimensional value even for quantum dot diameter on the order of ten exciton
Bohr radii shows that already relatively weak lateral confinement leads to a coupling
of relative and center-of-mass motion, resulting in a reduction of the exciton radius
compared to a laterally unconfined exciton.

One possibility to transfer this approach to the study of disorder in quantum wells is
as follows:

e In the case of these cylinder-shaped quantum dots, the experiment has estab-
lished an empirical link between quantum dot size and diamagnetic coefficients.
Numerical simulations have been used to calculate the diamagnetic coefficient as
a function of the quantum dot size.

e In attempt to transfer such an approach to the study of disorder in quantum
wells, statistical quantities have to be considered. The direct way would be to try
to establish, e.g., a relation between the correlation length of the band edge fluc-
tuations and the distribution of diamagnetic coefficients in magneto-uPL spectra.
The theory of exciton disorder-localization does in principle provide the machin-
ery that is necessary to establish such a relation theoretically. Experimentally,
disordered quantum wells with different correlation lengths have to be investi-
gated.

The aim of this thesis is slightly different: The aim is to first observe at all a system-
atic pattern in the diamagnetic shift distribution in magneto-uPL spectra of narrow
quantum wells, and to develop a qualitative understanding of the relation between the
underlying interface disorder and the diamagnetic shift distribution.
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For a qualitative understanding of the effects of a magnetic field on localized exciton
states, it is useful to introduce an intermediate level in the discussion of diamagnetic
coefficients of natural quantum dots, and to express the diamagnetic coefficient in terms
of the exciton wave function. Experimentally, the exciton wave function is not directly
accessible with pPL spectroscopy, but only the exciton diamagnetic shift. We do not
discuss here optical techniques like near-field optical spectroscopy, which could be used
to resolve the wave function of exciton states directly [Run05, [Run06].

The full description of localized exciton states in two-dimensional disorder is gnot
simple, but involves the four-coordinate exciton wave function ¢, [Eq. BI]. For a
qualitative discussion, a simplified language is therefore chosen throughout this work:
Although the presence of disorder prohibits the exact separation of the exciton motion
in relative and center-of-mass (c.m.) coordinates, it is assumed that an approximate
separation is possible locally. More precisely, the projections of the full two-particle
wave function ¢, of an exciton state « are considered [Gro05],

%wz/mwmm,

(3.6)

valR) = [ dpon(p. ).
Here, p denotes the two-dimensional vector of the exciton relative coordinate and R
the vector of the exciton c.m. coordinate. It is implied that c.m. and relative WF
are well-defined for each individual QD, i.e., non-overlapping natural QD states are
assumed. Relative and c.m. coordinates are therefore further used to describe localized
exciton states. The influence of a lateral confinement potential on the exciton wave
function can be included in a heuristic way: Considering that the exciton diamagnetic
coefficient is reduced due to lateral confinement also in quantum dots with a diameter
ten times the exciton Bohr radius (Fig. BI]), it can be assumed that exciton c.m. and
relative wave function are coupled, and that, due to this coupling, a localization of the
exciton c.m. results in a shrinking of the exciton relative wave function. Clearly, this
is a heuristic picture, since in principle the full four-coordinate exciton wave function
has to be considered.

The subsequent paragraphs describe the effects of lateral confinement on the diamag-
netic shift of the exciton ground state in the simpler case of quantum dots with circular
symmetry, where some analytical results exists.

3.5 Diamagnetic shift in artificial QDs

The effect of a perpendicular magnetic field on quasi-two-dimensional excitons has been
described in chapter 2. Two energy scales, or, equivalently and more illustrative, two
length scales determine the magnetic-field behaviour of a magnetoexciton in a quantum
well with in-plane translational symmetry: In terms of energy, exciton binding energy
and cyclotron energy, or, in terms of length scales, lateral exciton Bohr radius and
cyclotron radius. In presence of lateral confinement, a third energy (length) scale
comes into play. Taking as an example the simple case of lateral confinement with
circular symmetry, this length scale is defined by the lateral radius of the confinement
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Figure 3.12:  (a) The lowest quantum-mechanical eigenstates in a two-dimensional
parabolic confinement potential Ve(r), labeled by their quantum numbers n, l. Each or-
bital state is twofold spin-degenerate. (b) [Koulll] Magnetic field-dependence of single-
particle (electron) states in a two-dimensional parabolic potential (“Fock-Darwin spec-
trum”). The case hwe = 3 meV is shown.

potential (“dot radius”).

The next paragraph first treats the simpler, analytically accessible case of a single
particle (electron) in a two-dimensional parabolic confinement potential in presence of
a perpendicular magnetic field. In this case, only the two length scales of lateral dot
radius and cyclotron radius are involved.

Diamagnetic shift — Electron The discrete energy spectrum of a single electron
in a two-dimensional parabolic confinement potential V.(r.) = 1/2m.w?r? is deter-
mined by the eigenstates of the two-dimensional quantum-mechanical harmonic oscil-
lator E,; = (2n + || + 1)Aw,, where n = 0,1,2,... is the radial quantum number, and
[ = 0,£1,£2,... is the angular momentum quantum number. Each orbital state is
two-fold spin-degenerate (S, = £1/2). The magnetic-field dependence of the eigenen-
ergies E,,; can be calculated analytically [Foc28, [Dar30]. The resulting Fock-Darwin
spectrum

1 1
En(B) = (2n + |I] + Dh(w? + ~w?)V/? - 5 L hwe (3.7)

where hiw. = heB/m, is the cyclotron energy, is shown in Figure for a parabolic
potential with hw, = 3 meV. The magnetic field lifts the orbital degeneracies; this is
the normal Zeeman effect.

The magnetic field-dependent increase in the electron ground state energy is quadratic
in the low-field limit and changes to a linear, Landau-level-like behaviour at higher
fields. The diamagnetic coefficient of the electron ground state decreases monotonously
with increasing geometric confinement. This is understood by considering that the total
confinement energy is the geometric mean value of geometric confinement (~ we) and
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magnetic confinement (~ 1/2w,).

Diamagnetic shift — Exciton With a focus on the effect of lateral confinement
of the exciton ground state, Halonen et al. [Hal92] have numerically studied two-
dimensional excitons in parabolic minima Assuming lateral confinement potentials
for electron and hole Ve(re) = 1/2me w?r2, Vi(ry) = 1/2m. w?r?, wave functions and
magnetic shifts of heavy-hole exciton ground states were numerically studied, and GaAs
parameters for electron and hole masses were used. To describe the two-dimensional
(z,y) exciton motion in an external magnetic field B normal to the x — y plane, the
total Hamiltonian is written as a sum of c.m. part H.p,., relative part H,e, and a
coupling term Hy,

H=Hy + Hye + Hy . (3.8)

The following abbreviations are introduced: Total exciton mass M = m. + my, exciton
reduced mass p = memy /M, and v = (mp — me)/M. In-plane c.m. coordinate R =
(mere + mpry)/M and in-plane relative coordinate » = r. — rj, are used. The c.m.
part of the exciton Hamiltonian, H. , , is that of a harmonic oscillator,

hQ

H.p = —
em- oM

1
—Ap+ = M (M(mewg + mmu,%)) R?. (3.9)

The relative part Hye contains five terms: (i) kinetic energy of the relative motion, (ii)
the interaction between B-field and angular momentum of the relative motion, (iii) the
diamagnetic shift, (iv) a term related to confinement, and (v) Coulomb energy,

e?B? 1 e’ 1
e + M(mewg +mpwi) |7 — g (3.10)

h? he 1
Hog=—-——A, +Z YB-rxV,+ = ,u<
2u 2u

The third part of the exciton Hamiltonian contains a B-field dependent term related
to the coupling of relative and c.m. motion, and a confinement-related term,
ihe
Hy = QMPYB rx Ve +pw? —w)R-r. (3.11)

Figure BT3(a) shows the energies of excitons confined to parabolic minima with curva-
tures corresponding to (i) hwe = 5 meV, (ii) hwe = 15 meV, (iii) hw. = 25 meV as a
function of magnetic field B. The B-dependence of exciton energies is quadratic at low
B-fields; a transition to linear shifts occurs at By ~ 10 T. The diamagnetic coefficients
decrease with increasing lateral confinement, similar to the result for a single parti-
cle. As discussed in chapter 2 for laterally unconfined excitons, the nonparabolicity
of the diamagnetic shift is related to a reduction of the exciton radius with increasing
magnetic field.

Figure BET3(b) shows the B-dependence of the exciton Bohr radius (1/2/3 ( p?)) for the
three confined exciton states. The decrease in exciton radius is quadratic for low fields
and amounts to some percent at B = 10 T. To give the numbers, the exciton Bohr
radii at B = 0 T are (i) ap = 5.99 nm, (ii) ap = 5.28 nm, and (iii) ap = 4.77 nm.
At B =10 T, a reduction of the exciton radii by (i) 11 %, (ii) 6 %, and (iii) 3.6 % is
observed. From the interpolation formula Eq. ([ZZ8]) and the low-field and high-field
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Figure 3.13:  [Hal92] (a) Magnetic field-dependence of the exciton ground state in two-
dimensional QDs with parabolic confinement (i) hw. =5 meV, (ii) hw. = 15 meV, (iii)
hwe = 25 meV. (b) Exciton radius as a function of magnetic field for (i)-(iii). GaAs
parameters were used.

limiting cases, an expression for the decrease in exciton radius was determined that
depends only on the exciton radius [Eq. Z21]. The gray lines in Fig. BI3I(b) show the
B-dependence of the exciton radius according to Eq. 51 for the three exciton radii
(i) - (iii). Figure BI3I(b) shows that this expression predicts a too small decrease in
exciton radius for the laterally confined exciton states in the parabolic minima (gray
curves) as compared to the numerical results (black curves).

Theory of the exciton diamagnetic coefficient A rather general theory of the
diamagnetic coefficient of exciton ground states applicable in situations where the lat-
eral confinement potentials of electron and hole exhibit some sort of symmetry has been
developed by Walck and Reinecke [Wal9§]. It is found that the diamagnetic coefficient
results from the combination of electron- and hole-confinement and the electron-hole
Coulomb interaction. For an exciton in a lateral confinement potential with circular
symmetry, the relative influence of the lateral confinement of electron and hole and
electron-hole Coulomb interaction on the diamagnetic coefficient can be characterized
by the parameter
_ o2+ (oh) — (%)

275 (p2) + 275 (0})
where pe, pn are in-plane coordinates of electron and holes, p is the exciton relative
coordinate, m., mj are in-plane effective masses of electron and hole, and u is the
in-plane exciton reduced mass. In the special case of a lateral confinement potential
with circular symmetry, the expression for the diamagnetic coefficient becomes

0<A<1), (3.12)

2N, 5 €21 D N AN,
_aA AN R I A . 1
s gl ee) + g ot = e (3.13)

2 8 "m. my
In this particularly simple case, the significance of the scaling parameter A is evident:
Taking A = 0, 2 ~ (p?)+(p7) is a measure of lateral confinement of the electron and the
hole; this is the limiting case of strong confinement. For A = 1, o ~ (p?) is a measure of
in-plane electron-hole separation. This situation corresponds to the weak-confinement
limit [Wal98]. Of course, the result in the weak-confinement limit is identical with the
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result obtained for a two-dimensional exciton obtained in the previous chapter. For
completeness, we state that in the weak-confinement limit the diamagnetic coefficient

of the exciton ground state

62

8
is proportional to the area of the exciton relative wave function, and depends inversely
on the effective in-plane exciton reduced mass.

2= (% (3.14)

3.6 Summary

A certain amount of disorder is always present in the interfaces of narrow GaAs/
Al,Gaj_;As quantum wells. A conceptually clear description of the effects of interface
disorder in GaAs/Al,Gaj_,As quantum wells on exciton localization requires the con-
cept of band edge fluctuations. This concept has been introduced in this chapter along
with the theory of exciton disorder-localization. The strength of band edge fluctuations
due to the intrinsic composition fluctuations in GaAs/Al,Ga;_,As quantum wells has
been determined in a simple model. It demonstrates that an a-priori-classification of
alloy disorder as a “perturbation” with respect to exciton localization is not mean-
ingful. In the language of band edge fluctuations, the idea that the complete range
of spatial frequencies in the spectrum of interface disorder in narrow quantum wells
contributes to exciton localization can be precisely formulated. The two limiting cases
of exciton localization by either short-range disorder (“quantum-mechanical limiting
case”) or long-range disorder (“exciton-in-a-box”) have been discussed.

The effects of a perpendicular magnetic field on laterally confined exciton states de-
pend on three energy scales, or, equivalently, length scales: The lateral exciton Bohr
radius, the cyclotron radius, and the length scale of the lateral confinement potential.
The simpler case of an electron in a (circular symmetric) lateral confinement poten-
tial, where only two length scales are involved and that is analytically accessible, has
been introduced. In the framework of the theory of the exciton diamagnetic coefficient
[Wal98], the dependence of the diamagnetic coefficient on single-particle coordinates
and exciton relative coordinate in the limiting cases of strong and weak lateral con-
finement has been described, demonstrating the competing influence of single-particle
confinement and Coulomb interaction on the diamagnetic coefficient.

The idea has been outlined that optical techniques with high spatial resolution like
uPL spectroscopy open up a new possibility to study exciton localization in narrow
quantum wells: Magneto-uPL spectroscopy should give access to the diamagnetic shift
distribution of individual local exciton ground states in the low-energy tail of uPL
spectra. For a qualitative interpretation of the effect of lateral confinement on the
exciton wave function in natural quantum dots, the following qualitative picture has
been introduced: The lateral confinement in a natural quantum dot leads to a coupling
of c.m. and relative motion of the exciton, and the lateral confinement of the c.m. wave
function is accompanied by a simultaneous decrease in exciton radius.
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Chapter 4

Samples

The samples studied in this thesis were grown by molecular beam epitaxy (MBE) by
Dr. Stefan Malzer (Max-Planck Research Group, Institute for Optics, Information, and
Photonics, Universitdt Erlangen-Niirnberg).

The combined study of structural and optical properties of semiconductor heterostruc-
tures requires a sample design which is adapted to the requirements of the different
measurement techniques used. For scanning tunneling experiments, a sufficiently high
concentration of charge carriers in the QWs is necessary to provide the tunneling cur-
rent. On the other hand, photoluminescence efficiency is highest for intrinsic samples.
These at first sight contradicting requirements can be met, however, with a special
sample design, since structural and optical measurements are conducted at different
temperatures. The chosen sample design is shown in Figures 1 a), E2(a), and E3)a).
The arrangement of n-doped barriers in adequate distance from the intrinsic quan-
tum wells ensures (a) negligible charge concentration in the quantum wells at the low
temperatures of the uPL measurements (7' = 3 K), and (b) sufficient carrier concen-
tration in the QWs in the tunneling experiments performed at room temperature. The
QW heterostructures were grown by molecular beam epitaxy (MBE) on exactly (001)-
oriented (misorientation < 0.5°), n-doped (10*® ¢cm~3) GaAs substrates. In all three
samples, an n-doped 400 nm buffer layer was grown directly on the substrate, followed
by a 50 nm intrinsic GaAs layer. On top, three different quantum well sequences were
grown in samples QW1, QW3 and QWs3.

In case of sample QW7, the quantum well barriers consist of 15 nm thick intrinsic
Alg 3Gag 7 As layers. Intrinsic GaAs QWs with 4, 6, 8, 10, and 20 nm nominal thick-
ness were grown by turning off the Al flux for well-defined, increasing time intervals
[Fig. EI(b)]. On top of the quantum well sequence, another 50 nm intrinsic GaAs
layer was grown, followed by a 100-nm n-doped GaAs layer and a 200-nm intrinsic
Aly3Gag 7As layer. A 50 nm n-GaAs capping covers the QW sample [Fig. EET(b)].

Figures and show the structure of samples QW5 and QWj3. The surrounding
of the QW sequence is identical in both samples: Like in sample QW1, an n-doped
400 nm buffer layer was grown directly on the substrate, followed by a 50 nm intrinsic
GaAs layer. On top of the QW sequence, another 50 nm intrinsic GaAs layer is grown,
followed by a 100 nm n-doped GaAs capping layer.

In sample QWs, the quantum well barriers are formed by 20 nm thick layers of intrinsic
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Figure 4.1: (a) Structure of the GaAs/AlysGay7As quantum well sample QWi, and
(b) zoom into the QW sequence.
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Figure 4.2: (a) Structure of the GaAs/AlysGay7As quantum well sample QWa, and
(b) zoom into the QW sequence.
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Figure 4.3: (a) Structure of the GaAs/AlAs quantum well sample QWs, and (b) zoom
into the QW sequence.
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Alg3Gag7As, and a sequence of intrinsic GaAs QWs with nominal widths of 2, 4, 6,
and 8 nm has been grown [Fig. EEA(b)].

The QW sequence in sample QW3 consists of alternating intrinsic GaAs and AlAs layers
that were grown by alternately opening the Al shutter and simultaneously closing the
Ga shutter, and vice versa. The QW sequence consists of a 20-nm AlAs barrier, two
4-nm GaAs wells separated by a 2-nm AlAs tunneling barrier, a second 20-nm AlAs
barrier, an 8-nm GaAs well, and a third 20-nm AlAs barrier.

The carrier concentration in the intrinsic QWs resulting from the thermally activated
diffusion of carriers from the n-doped (10'® cm™2) barriers has been simulated us-
ing the heterostructure modeling program HETMOD [. The one-dimensional coupled
Schrédinger-Poisson equations in the nominal heterostructure profiles were solved nu-
merically for room temperature (7' = 295 K) and for 7" = 3 K, using nominal dimen-
sions, composition, and doping level of the QW samples samples QW1 and QWs.

Figure 4 shows the 7' = 3 K band edges at I' of the GaAs/Aly3Gag 7As sample QW
and the simulated charge densities at T'=3 K and T = 295 K. At low temperatures
(T' = 3 K), the carrier concentration decreases from the doping level of the n-doped
barriers (< 10'® ¢cm™3) to ~ 3 - 10! cm™3 outside the QW sequence. The carrier
concentration in the wells is negligible (< 108 cm~3). At room temperature, the carrier
concentration outside the wells increases to ~ 3 - 106 cm™3, and the concentration in
the wells ranges from ~ 1-10'6 cm™2 in the 4-nm well to ~ 1-10'6 cm™3 in the 20-nm
well. Similar results are obtained for the GaAs/AlAs sample QW3, shown in Fig.

1Software package written by Alan C. Warren of the Thomas J. Watson Research Center, Yorktown
Heights, NY
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Figure 4.4: Simulated electron concentration profile in the GaAs/Aly3 Gay7As quantum
well sample QW7 at room temperature (dashed line) and T = 3 K (solid black line). The
HETMOD program has been used to solve the one-dimensional Schrédinger-Poisson
equation. Valence and conduction band edges of the heterostructure (T = 3 K) are
indicated as gray lines (right axis).
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Figure 4.5:  Simulated electron concentration profile in the GaAs/AlAs quantum well
sample QWs at room temperature (dashed line) and T = 3 K (solid black line). The
HETMOD program has been used to solve the one-dimensional Schrédinger-Poisson
equation. Valence and conduction band edges of the heterostructure (T = 3 K) are
indicated as gray lines (right axis).
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Chapter 5

Scanning tunneling microscopy

The sample design of the QW heterostructures allows the investigation of the real space
structure of the quantum well interfaces with scanning tunneling microscopy (STM).
The first section of this chapter introduces basics of STM. The experimental steps
required for cross-sectional STM (XSTM) on the quantum well samples are described in
the second section. The third section describes the structure of the GaAs (110) surface.
In the last section, STM topographies of the 4-nm GaAs/Aljy 3Gag.7As quantum well in
cross-sectional geometry are shown. Using an envelope function approach, the interface
disorder along the QW cross section in the (110) cleavage plane is analyzed.

5.1 Basic principles

Scanning tunneling microscopy enables the study of the surface electronic structure of a
wide variety of materials, including semiconductors, with atomic resolution. The main
experimental limitation on the sample type is the requirement of conducting surfaces
and electrical contact to this surface. The scanning tunneling microscope shares its
basic principles with several other local probe techniques: A sharp probe (“tip”) is
positioned close to a surface until probe and surface begin to interact locally. The
local interaction (I), that depends on the tip-sample distance, is measured, and used
to control the tip-sample distance using a feedback loop.

The STM measures the quantum-mechanical electron tunneling current between a sam-
ple surface and a metal tip. Tip and sample are placed in close proximity (~ 0.5—1 nm)
and a bias voltage U is applied between them. Due to the overlap between electronic
orbitals of tip and sample atoms, a tunneling current flows through the potential barrier
of the vacuum gap. To obtain the experimental data shown in this chapter, a tungsten
tip with ~ 10 nm radius was used. A bias voltage |U| = 2 V was applied, and the
tunneling current was ~ 100 pA. To image the surface electronic structure, the tip is
scanned over the sample, while the tunneling current is held constant (constant-current
mode). The map of the tip height (constant current topography) shows an isosurface
of the electronic density of the surface. The resulting image reflects the morphology
of the sample surface with features of pure electronic origin superimposed. Since the
electronic density of states at the sample surface depends on the atom species, mapping
of surfaces with chemical element sensitivity is possible with STM.
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One basic feature of the STM, the strong sensitivity of the tunneling current on the
tip-sample distance, is already evident from the simple model of a one-dimensional
tunneling barrier. Considering electrons tunneling through the vacuum barrier from
the tip into the sample, the barrier height is defined by the work function of the metal
tip ®; and the electron affinity of the sample ®,. Defining the effective barrier height
® = (O, + D4)/2 for a trapezoidal tunneling barrier, the dependence of the tunneling
current on barrier width can be expressed by [Hof(3]

I(z) oc e FV222 (5.1)

where k is a constant and z is the barrier width, i.e., the tip-sample distance. The
exponential dependence of the tunneling current on the vacuum barrier width explains
the extreme height sensitivity of the STM.

In contrast to the rather simple principle of STM, a complete theoretical description
requires a significant amount of theoretical machinery, depending on the degree of
accuracy that is to be achieved. A relatively simple model describing elastic tunneling
processes, which is widely used for the interpretation of STM experiments, has been
developed by Tersoff and Hamann [Ter83l [Ter85]. This model neglects many of the
factors that actually influence the tunneling current. It makes use of a modification
of the perturbation approach of Bardeen [Bar6l], which was originally conceived to
describe the tunneling current in one dimension observed in experiments on macroscopic
tunneling junctions. The Bardeen approach assumed that the tunneling current can be
expressed in terms of the undisturbed eigenfunctions of two isolated subsystems.

The Tersoff-Hamann model assumes that the tunneling process in an STM experiment
can be described by the wave function overlap between a single s-orbital at the apex
of the tip and the sample wave functions. The bias voltage U is assumed to be small
(U] ~ 10 mV) [Ter85]. Then, the Fermi levels of sample and tip are approximately
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Figure 5.1:  [Qua03] A one-dimensional model of the tunneling junction at finite bias
voltages Up applied at the sample. The barrier is defined by the electron affinity of the
semiconductor surface (®s) and the work function of the metal tip (D).
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equal (Ep; = Eps = Ep). As a further simplification, it is assumed that experiments
are conducted at low temperature, where Fermi functions can be approximated by step
functions. In the Tersoff-Hamann model, the tunneling current is proportional to the
bias voltage U and to the local density of states (LDOS) ps(7, EF) of the sample surface
at the position of the tip r and at the Fermi energy Ep,

IOCUPS(TaEF)a ps(raEF) :Z‘wu(r)‘25(Eu_EF)7 (5'2)

where the local density of states of the sample is defined as the sum over the sample
wave functions at a given energy. The assumption of small bias voltage allows to neglect
the energy dependence of tip and sample wave functions. In tunneling experiments on
semiconductors, bias voltages on the order of 1 V are applied, i.e., the low-voltage
assumption is violated. Hamers et al. [HamOI] have therefore extended the Tersoff-
Hamann model to the case of finite bias voltage. Following Hamers et al., the tunneling
current can be written

eU
I / ps(r,E) pi(r, E — eU)|T(E)|dE (5.3)
0
where p;(r, E) and p.(r, E') denote the LDOS of states of sample and tip with ps(r, E)
and p;(r, E), and the energy-dependent transmission probability T'(F) has been intro-

duced. The transmission probability T'(F) can be approximated using the Wentzel-
Kramers-Brillouin (WKB) method by

2zv2m [ O+ P,  eU
h SR ’

~ _E
2

T(E,eU) = exp ( (5.4)

where z is the distance from sample to tip, and ®, and ®; are the work functions of
sample and tip. The tunneling current now arises from a range of states within eU of the
Fermi level. This situation is visualized in Fig. B.Jl, showing a one-dimensional sketch
of the tunneling junction of sample, vacuum barrier, and tip. The electronic density
of states of sample and tip are indicated (ps, p;) and the occupied electron states (at
T = 0 K) are shown shaded grey. @, is the electron affinity of the semiconductor surface,
and ®; is the work function of the metal tip. A negative bias voltage U is applied at
the sample. Due to the difference between Fermi levels Er s in the sample and Er; in
the tip, an electron tunneling current I flows from the occupied sample states in the
energy range between the Fermi levels of tip Er; and sample Er, = Ef, + eU into
the unoccupied tip states in the tip. The different lengths of the arrows indicate the
energy-dependence of the transmission probability T'(E).

5.2 Cross-sectional scanning tunneling microscopy

Having described basics of STM, this section describes experimental requirements and
methods that enable the application of STM to the study of the atomic structure
of semiconductor surfaces. Semiconductor surfaces in general have high adsorption
coefficients due to their free dangling bonds at the surface. Therefore, all STM work on
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Figure 5.2: [Hei98] The “beetle”-STM based on the design by Besocke [Bes87]. The top
plate can be lifted off with a manipulator for tip and sample exchange. Lateral coarse
positioning is done via slip-stick movements of the scan piezos. Tip transporters and
sample holders are inserted into the dovetail sample support in the center.
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Figure 5.3: Sketch of the approach and positioning procedure for XSTM. (1) The tip
is approached vertically to the sample surface. (2) The tip is positioned laterally at the
heterostructures. Adapted from [Heid8).
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semiconductor surfaces requires ultra high vacuum (UHV) systems with base pressure
around 1-107!° mbar. The design of the UHV vacuum chamber and of the STM used
for the measurements shown here has been described in detail in [Hei98]. Figure
shows the design of the STM head used for the XSTM measurements; it is based on the
“beetle”-type design developed by Besocke [Bes87]. The most important advantage of
this type of microscope is the fact that it does not need any mechanical feedthroughs for
the coarse vertical approach and the lateral positioning of the tip. The “beetle”’-type
STM is made up of two parts that can be moved with respect to each other: The base,
which includes the sample and the scan piezos (outer piezo tubes), and the top plate,
which contains the z piezo and the tip. By rotating the top plate with respect to the
base, the distance between tip and sample can be changed macroscopically. Moving
the top plate laterally results in a coarse lateral positioning of the tip with respect to
the sample, which is necessary to locate the tip at the heterostructures.

The uncleaved sample is shown in the sample holder inserted in the STM base in
Figure The most important requirement for successful XSTM work in terms of
sample preparation is the need to obtain perfectly flat surfaces in the cleavage process
in the vacuum chamber. A sample of typical dimensions of 2 mm x 10 mm is cut from
the wafer and is then chemo-mechanically thinned and polished to a typical thickness
of about 100 gm. Then a notch is prescribed on the front surface [the (001) growth
surface| at a height of 3 mm. The last ex-situ step in sample preparation is the mounting
of the sample in a small UHV compatible vice.

The cleavage process is conducted under UHV conditions. After introducing the sam-
ples into the UHV system, the actual cleavage surface is prepared by applying a force to
the upper part of the sample. This process breaks the sample at the height of the notch
and results in a cleavage surface. As mentioned above, the heterostructures are located
at one edge of this cleavage surface toward the [001] growth direction. Figure shows
the two approach mechanisms needed for XSTM of the QW heterostructures. First,
the tip has to be approached to the sample vertically. Second, it has to positioned
laterally over the heterostructures. Moving the tip laterally to the heterostructures
as indicated in Figure is done with a slip-stick motion. In the setup used, optical
access to the UHV chamber with a high-quality optical microscope helps in the coarse
lateral approach of the tip to the position of the heterostructures.

5.3 Atomic structure of the GaAs (110) surface

In the XSTM experiment on the GaAs/Aly3Gag 7As heterostructure, a cleaved (110)
surface with low step-density was obtained. This section describes the atomic structure
of the GaAs (110) surface. The GaAs {110} surfaces form the set of natural cleavage
surface of the GaAs crystal. Every GaAs {110} surface contains the same number of
Ga and As atoms in the top layer. The surface atoms form so-called zigzag chains,
consisting of rows of Ga bonded to two surface As atoms, and As atoms bonded to two
Ga surface atoms. The surface unit cell is rectangular with the surface lattice constants
5.65 A along [001] and 4.0 A along [110] and [110] [Ada94]. A ball-and-stick model of
the GaAs (110) surface is shown in Fig. B4t atoms in the surface layer are drawn larger
as atoms in the first subsurface layer.
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Figure 5.4: [Hez98] Top view on a ball and stick model of the GaAs (110) surface with
Ga (filled circles), As (open circles), bonds (gray lines). Large atoms: surface layer,
small atoms: first subsurface layer.

Every surface atom of the GaAs (110) surface has one broken bond, called the dangling
bond, which points out of the surface into the vacuum. The top layer As atoms are
moved out of the surface, and the Ga atoms are moved into the bulk [Smi85, [Fee87].
This structural relaxation goes along with the electronic relaxation, transferring charge
from the dangling bonds at the Ga atoms into the dangling bonds at the As atoms.
The dangling bonds at the As atoms are therefore filled states, whereas those at the Ga
atoms are empty states [Lub70, [Ter85]. The empty dangling bond surface states of the
Ga atoms are located above the energy of the bulk conduction band onset, whereas the
the filled dangling bond states of the As atoms are below the valence band onset. The
dangling bond states dominate the STM image because they have a larger local density
of states close to the surface than the evanescent bulk states [Hei98]. Comparison with
Fig. BIlshows that at positive sample voltage, the empty dangling bonds corresponding
to the Ga atoms are imaged. At negative sample voltage, the As atoms are imaged
[Ter85 [Fee85l [Feel7), [Ehed6)].

On a cleavage surface of the Al,Ga;_,As alloy, every group-III site is occupied either by
a Ga or an Al atom. In empty-state XSTM images on highly p-doped Al,Ga;_,As with
Al concentration z = 0.35, the composition fluctuations in the Al,Gaj_,As surface were
observed directly [Sal93]. While in empty-state images the dangling bonds of the group-
IIT atoms are directly imaged, it has been observed that individual Al atoms induce
a local contrast on their surface As neighbours that allows their identification also in
filled-state XSTM images of n-doped Al,Ga;_,As. In filled-state XSTM images on
Alg.15Gag g5 As, this Al-induced contrast has been used to identify individual and pairs
of surface-layer Al atoms on the atomic scale [Hei98, [Hei99]. At the Al concentration
of x = 0.15, it was possible to use the concept of an Aly15GaggsAs layer as a GaAs
matrix with point defects introduced by individual Al atoms or pairs of Al atoms. At
higher Al concentration, it becomes difficult to identify individual Al atoms. Second
layer Al atoms were not seen due to the relatively high Al concentration of z = 0.15.
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5.4 XSTM topographies of the GaAs/Al)3Gaj;As het-

erostructure

On the GaAs/Alp3Gag7As quantum wells in sample QW;, room-
temperature STM has been performed in cross-sectional geometry.
The XSTM measurements were performed on an atomically smooth
(110) surface, which had been prepared by in-situ cleavage of the sam-
ple in a UHV chamber with a base pressure of less than 5-10~!! mbar.
The XSTM tips were etched from polycrystalline tungsten. After
transfer into UHV, the tips were annealed at 1200 K, sputtered with
4 kV Ar ions and characterized by field emission. Cross-sectional
constant-current topographs of all five QWs in sample QW; were
taken with atomic resolution over lateral lengths of typically 200 nm.
The XSTM experiments have been performed by Lars Winking and
Thilo Reusch (4. Physikalisches Institut, Universitat Gottingen).

Figure shows a constant-current topography of the 4-nm
GaAs/Aly3Gag7As quantum well. The STM topography on the
cleaved (110) surface of the sample was taken at a bias voltage
Up = —2 V and a tunneling current I = 100 pA. The crystallo-
graphic axes are indicated. The coordinate in [110] direction is de-
noted as z-coordinate, the coordinate in growth direction ([001]) as
z-coordinate; the topographic height in the cleavage plane is denoted
as h(z,z). Several constant-current topographies from overlapping
areas of 20 x 20 nm? each were obtained along the 4-nm QW under
practically identical conditions and coalesced into a single, 160 nm
long topography. [ The linear grayscale image clearly shows a clear
contrast between well and barrier regions. The contrast in Fig. B0l is
due to a difference in the average topographic height (h(z,z)), be-
tween well and barrier regions: The average topographic height in the
barrier region is lower than in the well region. The topograpic height
is related to the electronic structure at the surface; since the constant-
current tunneling measurements were made at negative bias voltages,
only the cation (group-V) sublattice is visible [Sal93]. Also note that,
as a consequence of the arrangement of the atoms at the GaAs surface
(Fig. BE4)), only every second monolayer is imaged. Nonetheless, the
topographic variation on an atomic scale demonstrates the sensitivity
to the Aluminum distribution.

Figure B0(a) zooms into a section of the XSTM topography of the
4-nm GaAs/Aly3Gag7As quantum well. The bright stripes along
the [110] direction that are clearly visible in the well region reflect
the surface corrugation of the GaAs (110) surface. Figure BBi(b)
shows the topographic height profile of the 4-nm QW averaged over
a length of 160 nm in [110] direction. The averaged height profile
demonstrates (i) that the contrast between well and barrier observed
in Figure B0l(a) is due to a difference in the average height (h(z, 2)),

!At # = 74 nm, an adsorbat atom masks the right interface region of the QW.
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between the well and the barrier regions of about 25 pm, and (ii) that a modulation
with an amplitude of ~ 10 pm and a period of 0.565 nm is superimposed in z-direction,
resulting from the morphology of the GaAs surface.

To proceed, the atomic corrugation in z-direction is fourier-filtered from the averaged
height profile (h(x, z)),. The resulting corrugation-filtered height profile h(z) is shown
as red line in Fig.b6l(a). The same procedure is also applied to the complete topography
h(z, z); the result is shown in Fig. B.0l(c).

Finally, it is presumed that the average height difference of 25 pm between well and
barrier not only reflects the global difference in the average Aluminum concentration,
but that it can also serve as a local gauge for the Aluminum distribution in the barriers
and at the interfaces. This assumption provides the basis to convert the corrugation-
filtered topography into a map of the local band gap.

First, however, the corrugation-filtered, x-averaged height profile h(z) [red line in Fig-
ure BG|(b)] is fitted with an exponentially smoothed (“Woods-Saxon”) profile

o . 1 1
h*(2) = ho + Ah (He(z_Zl)/wl + +e(z—zr)/w,~>’ (5.5)

where hg is the averaged topographic height in the barriers and Ah = 25 pm is the
average height difference between well and barrier. Here, z; and z, denote the inflection
points of the left and right interface transition regions, and w;, w, denote the widths
of the transition regions. Both transition regions are about 1 nm wide.

Then, a linear scaling to the local band gap is applied to the smoothed height profile
h*(2)
Eg(z) = EG,GaAs +b- (h*(z) — ho) (5.6)

with b = —19.8 mV /pm. The negative scaling factor b reflects the lower topographic
height in the barrier; it is determined by the 436 meV bandgap difference between the
GaAs well and the Alg3Gag7As barrier. For the GaAs band gap, the T' = 4 K value
Eg = 1.519 eV is taken. Distributing the total band gap difference Eg(z) — Eg,Gaas
between barrier and well according to the band offset ratio f./fn, = 0.65/0.35 results
in band offset profiles for conduction and valence band.

The same linear scaling is applied to the complete corrugation-filtered topography in
Fig. Bf(c), thereby converting it into a map of the local bandgap. Averaging along
the x-direction results in the bandgap profile shown as black line in Fig. B6ld). The
exponentially smoothed bandgap profile is also shown as red line in Fig. EBl(d).

The determination of the local band edges now proceeds largely as described in chap-
ter 3 (Fig. B2). To obtain envelope wave functions of the lowest electron and hole
subbands in the 4-nm QW, the exponentially smoothed x-averaged valence and con-
duction band offset profiles are used here. The finite-difference method that has been
used for numerically solving the single-particle Schrédinger equation in these band off-
set profiles is described in Appendix A. Figure E6(c) shows the calculated probability
densities uc(2)2, up(2)? of the envelope wave functions of electron (black) and heavy
hole (white).

The same scaling parameters b and hg as in Eq. (E8]) can be used to scale the topography
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Figure 5.6: (a) Constant-current topography of the 4-nm GaAs/AlysGag7As quan-
tum well; (b) topography averaged along the [110] direction; (c) corrugation-filtered
topography; (d) average profile of the local band gap. Envelope wave functions of elec-
tron (black) and heavy hole (white) have been calculated in symmetric, exponentially
smoothed band offset profiles (red) distributed among conduction and valence band ac-

cording to the band offset ratio f./fr, = 0.65/0.35.
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h(z,z) to band offsets of valence and conduction bands,
E(;(m, Z) = EG,GaAs +b- (h(x, Z) — ho) . (5.7)

Analogous to the proceeding in chapter 3, disorder potentials V(x), Vi (x) for elec-
tron and hole along the [110] direction are determined by weighting the difference be-
tween local bandgap E¢(z, z) and the bandgap profile averaged in z-direction, Eg(z) =
(Eg(x,2))z, with the envelope wave functions wu.(z)?, up(2)? and integration in z-
direction. The resulting one-dimensional disorder potentials for electron and hole along
the quantum well cross-section,

Va(x):/dzug(z) [EG(:C,Z)—E(Z) , a=eh, (5.8)

are shown in Fig. (.8(a). The potential values are approximately Gaussian distributed
[Fig. B8(b)]. Therefore, V.(x) and Vj(z) can be characterized by their standard devi-
ations o (potential strength) and by their spatial autocorrelations

Co(A) = / Va(A)(x) Vo(x — A)dz, a=e,h. (5.9)

In turn, if a normalized correlation function W (r) ([ dr W (r) = 1) is given, a correlated
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Figure 5.7:  (a) Disorder potential for electron (black) and heavy-hole (gray) along the
cross section of the 4-nm GaAs/Aly3Gag7As QW. (b) Potential value distribution of
the in-plane electron and hole disorder potentials.
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potential is obtained by convolution with an uncorrelated (“white noise”) disorder
potential U (r),

Vir)= /dr/ W(r—r)U(r). (5.10)

The disorder strengths determined from the potential value distributions shown in

Fig. E8(b) are 0, = 20.5 meV and o, = 7.7 meV.

The information on the correlations in the growth direction (z) is qualitatively con-
tained in the values o., op,. This can be seen as follows: The value of ¢ is completely
insensitive to lateral (x) correlations as it only represents the standard deviation of the
potential. If there are, however, correlations of the local bandgap in the growth direc-
tion, this will result in increased fluctuations of the weighted z-average in Eq. (&),
compared with a completely uncorrelated Aluminum distribution. This can be easily
demonstrated by, e.g., starting from the model of a random, uncorrelated Al distribu-
tion in the AlGaAs barriers as shown in Fig. BZ(a). Correlations in z-direction can
be introduced, e.g., by inserting double layers by hand, where the same lateral lattice
positions are occupied by Al atoms in neighbouring layers. Determination of the band
edge fluctuations according to the procedure demonstrated in Fig. readily shows
that the presence of z-correlations leads to increased disorder strength.

The effect of z-correlations in the Al distribution represented by the XSTM topography
in Fig. can be quantified by comparing the determined o-value with that obtained
after an intentional removal of all z-correlations from the XSTM image. This can be
done in the following way: First, the XSTM data have to be binned on an atomic grid
in x-direction (row distance 0.4 nm). Then, z-correlations are removed by randomly
shifting the individual atomic rows in the barriers along the x-direction with respect
to each other [Rop07]. For this situation, one obtains a standard deviation about 30 %
smaller than the original one. Therefore, it is asserted that z-correlations contribute
significantly to the inhomogeneous broadening of the optical spectra. In fact, certain
z-correlations are already discernible by close inspection of the topography in Fig. B0,
where weak stripe-like contrasts in the z-direction are visible, especially in the right
barrier regions.

The correlations in x-direction are contained in the autocorrelation functions of elec-
tron and hole disorder potentials. The autocorrelations of V.(x) and Vj(z) do not
differ significantly; therefore, only the correlation function of V¢ (z) is shown in Fig. B8
Figure B.8(a) shows the normalized autocorrelation function (black line) on an 80 nm
length scale; the grid step in x-direction of the XSTM data is 0.06 nm. For comparison,
an uncorrelated disorder potential has been simulated on a 0.4 nm grid, correspond-
ing to the lattice constant in x-direction; its autocorrelation is shown as blue line
in Fig. b8(a). The central autocorrelation peak of this uncorrelated potential on an
atomic grid is narrower than that of the autocorrelation of the band edge fluctuations
determined from the XSTM data.

Figure BE8(b) zooms into the central autocorrelation peak. The width of the central
peaks is 0.8 nm for the experimental band edge fluctuations and 0.4 nm for the uncor-
related potential on the atomic grid. The increased width of the central autocorrelation
peak of the band edge fluctuations demonstrates that correlations between Al atoms in
x-direction are present in the 4-nm QW.
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Figure 5.8: (a) The autocorrelation of the band edge fluctuations in the cross section of
the 4-nm GaAs/Aly.sGag7As QW is shown (black). For comparison, the autocorrelation
of an uncorrelated disorder potential on an atomic grid is shown in blue. (b) Zoom into
the central autocorrelation peak. The full width of the central peak is 0.8 nm; the width
of the blue peak is 0.4 nm. (c) Beyond the central peak, the autocorrelation decays to
zero on a 10 nm length scale.

The attempt to precisely determine the correlation length from the width of the cen-
tral correlation peak holds some ambiguity, since the very definition of the correlation
length will in turn depend of the type of correlations that are considered. Assuming
a “square box” model for the correlations, the FHWM of the central correlation peak
would translate to a correlation length of 0.8 nm. On the other hand, if exponential
correlations, described by a correlation function

W(r)=c-e /¢, (5.11)

are assumed, a correlation length £ ~ 0.4 nm is found to correspond to the width of
the central correlation peak. The shortest relevant length scale in the decay of the
autocorrelation function, and consequently of lateral correlations between Al atoms in
the cross section of the 4-nm QW, is therefore given by 1 — 2 lattice constants.

The shoulders of the central correlation peak indicate that also a small amount of
correlations on larger length scales is present in the 4-nm QW. A second relevant length
scale beyond the 0.8 nm wide central peak is indicated in Fig. B8(c): The subsequent
decay of the autocorrelation function up to about 10 nm is illustrated by a straight-line
fit to the autocorrelation C'(z) in the range x = 1..10 nm (red lines). The decay on a
10 nm length scale represented by the straight red lines in Fig. B:8(c) corresponds to
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a second correlation length of 5 — 10 nm, the exact value depending on the choice of
square-box or exponential correlations. For comparison, the lateral exciton Bohr radius
in a nominally perfect 4-nm GaAs/Aly3Gag7As quantum well is ap = 8.2 nm.

5.5 Conclusions

STM on a (110) cleavage surface of sample QW7 has given access to the atomic scale
structure of a cross section of the 4-nm GaAs/Aly 3Gag 7As QW over a length of 160 nm.
The constant-current topography of the QW cross section displays a clear topographic
height contrast between well and barrier. Using a linear scaling to the bandgaps of
well and barrier material, a map of the local bandgap in the imaged QW cross section
has been obtained. Using an envelope function approach, it was possible to determine
the fluctuations of the local band edges along the cross section of the 4-nm QW. The
potential values of the corresponding disorder potentials are to a good approximation
Gaussian distributed. The autocorrelation functions of the in-plane disorder poten-
tials were determined, and two length scales were identified: A short length scale of 1-2
lattice constants, and a longer length scale of 5—10 nm. This result is interpreted as ev-
idence that the Al atoms in the Aly3Gag.7As barriers show the tendency of short-range
ordering on neighbouring lattice sites along the [110] direction, and that modulations
of the Al concentration occur on a length scale of 5 — 10 nm. That also correlations
between Al atoms in z-direction are present can already be seen by direct inspection
of the STM images, where strings of Al atoms along the growth direction are visible
especially in the right barrier region. These results agree well with previous work on
MOVPE-grown Aly.15Gag.gsAs, where short-range correlations between Al atoms of 2-
3 lattice constants and modulations of the local Al concentration on a length scale of
5 nm were observed[Hei99]. In contrast, a study of MBE-grown dilute Al,Gaj;_,As
with £ = 0.05 had concluded that Al atoms are incorporated completely randomly
[Smig6].
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Chapter 6

Micro-photoluminescence spectroscopy

This work uses scanning microphotoluminescence (uPL) spectroscopy as a technique
that enables “single-dot” spectroscopy of natural quantum dots formed by local bandgap
fluctuations in single quantum wells [Mar94, [Zre94, [Bru94, [Hes94l, [Zre01]. Basics of
micro-photoluminescence (uPL) spectroscopy and the experimental setup used for this
study are described in the first and second section of this chapter. In the third section,
macro-PL and micro-PL spectra of the studied QW samples are shown, and the results
of various pPL experiments that have been performed to study localization properties of
single natural quantum dots are described. The fourth section describes the simulation
of optical spectra of the 4-nm GaAs/Aly3Gag7As QW on the basis of the structural
XSTM data. In the fifth section, relaxation effects and the Stokes shift are studied via
temperature-dependent uPL spectroscopy on the 4-nm QW in sample QW;. Finally,
experimental and simulated puPL spectra of the 4-nm QW are directly compared in the
sixth section.

6.1 Basic principles

Photoluminescence spectroscopy is based on nonresonant optical excitation of a sample
with a well-defined photon energy FE > Ejy, where Fjy is the upper limit of the range of
transition energies of the electronic states that one intends to study. In a simple picture
(Figure B1]), nonresonant optical excitation creates a nonequilibrium distribution of
charge carriers in a semiconductor with direct bandgap. If the sample is excited by
a short laser pulse, the injected energy is rapidly redistributed via different channels:
Electron-electron scattering redistributes energy in the electron and hole ensembles
on a ps time scale, and carrier and excitonic cooling by emission of acoustic phonons
leads to relaxation of the initially nonthermal carrier distribution [UIb73]. At low
temperature and low excitation density, an exciton population builds up, and low-
momentum excitons recombine after their lifetime on the order of ~ 1 ns. Under
continuous-wave (cw) excitation, steady-state spectra evolve. The spectral intensity of
the emission signal depends both on the absorption in the sample and on the relaxation
of the excited charge-carrier distribution before recombination.

Photoluminescence spectra of bulk semiconductors are usually complex and show re-
combination radiation from free electron-hole pairs as well as from impurity-bound



79

Figure 6.1: [Kir98] Schematic picture of the PL
process: (a) Excitation of electron-hole plasma en-
ergetically high in the bands; (b) carrier relaz-
ation towards low momentum states and buildup
of Coulomb-correlated electron-hole pair population;
(¢) PL resulting from the recombination of low mo-
mentum excitons.

electron-hole pairs. At low excitation densities and low temperatures, recombination
radiation from free and impurity-bound exciton states is observed. The strength of
excitonic features in PL spectra is determined by the size of the exciton binding en-
ergy; larger exciton binding energy generally increases the oscillator strength of exciton
transitions. Therefore, the increased exciton binding energy in low-dimensional semi-
conductor heterostructures leads to a predominance of the excitonic features in their
PL spectra [WeiST1l [Din&2].

Disordered systems like, e.g., narrow quantum wells with interface disorder are charac-
terized by a position-dependent local bandgap. Fluctuations of the local bandgap lead
to exciton localization; for weak disorder, an approximate description using an effec-
tive potential for the exciton center-of-mass is possible with minima of this effective
potential acting as natural quantum dots [Zim97]. Spatially averaged optical spectra
show inhomogeneous broadening, since the excitation focus is in most cases much larger
than the extension of individual exciton states in this disorder potential. The effect
of carrier relaxation before recombination, due to the different timescales of relaxation
(~ ps) and recombination (~ ns), is manifest in disorder PL spectra in terms of a
temperature-dependent redshift relative to the absorption [Bas84l [Heg84], the so-called
Stokes shift.

Optical techniques with high spectral and spatial resolution (< 1 pm) such as mi-
crophotoluminescence (uPL) or near-field optical microscopy have enabled the study
of single-dot properties of individual localized exciton states in single quantum wells
[Zre94) Brn94l [Hes94]. In pPL experiments, an optical microscopy setup is used in com-
bination with photoluminescence spectroscopy. The sample area that contributes to the
luminescence signal is typically reduced by about two orders of magnitude compared
to conventional PL with ~ 10 um focus diameter. In optical near-field experiments,
even higher spatial resolution (down to several 10 nm) is obtained at the price of small
intensities and the unclear influence of the near-field tip on the optical spectra [Mat03].

In our uPL experiment, a Schwarzschild-Cassegrain mirror objective is used in a con-
focal microscopy setup. The technique of confocal illumination and detection has been
originally invented to increase contrast in microscope images [Min88]. Figure E2)(a)
shows a sketch of a confocal setup. A beam splitter is used to couple a laser beam
into the optical path. The beam is focused on a small sample volume by a microscope
objective, and the light emitted from the sample is imaged by the same objective. The
pinhole in the image plane blocks light from different sample volumes; this explains
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Figure 6.2: (a) Schematic of a confocal setup. The same objective is used for focussing
light on a small sample volume and for detection of the light emitted from this volume.
The enhanced lateral resolution for confocal illumination and detection is demonstrated
in (b) and (c) for a point emitter in the focal plane: The point spread function of the
objective (psf), the excitation profile in the focal plane (E), and the detection profile in
the image plane (D) are shown in (b) for the case of broad excitation, in (c) for the
case of confocal illumination and detection.

the enhanced contrast in confocal microscope images. Since only a small volume of the
sample is illuminated at a time, an image of the sample has to be reconstructed by
scanning the laser spot over the sample.

Figure E2(b) and (c) illustrate the enhanced spatial resolution compared to a far-field
setup using the concept of the point spread function. Due to diffraction at the lens
or objective aperture, a point source is not imaged to a point in the image plane, but
— for a circular aperture — a circular diffraction pattern is observed. The normalized
intensity of this diffraction pattern is called the point spread function. We assume
that an objective with refraction index n and numerical aperture NA = n sin () is
used, where 0 is the half angle of the cone of light converging to an illuminated spot or
diverging from one. It is convenient to define the scaled variables (also called optical
units) [Web96]

p=2m/N-NAr, (=2n/(n\)NA?z, (6.1)

where r is the radial coordinate in the image plane, and z is the coordinate along the
optical axis. Using the scaled radius p, the radial intensity of the diffraction pattern
in the image plane, I(p), is expressed by the projection of the three-dimensional point
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spread function in the image plane, which we denote as psf here,

I(p)/1o = psf(p) . (6.2)

The expression for the complete psf for a circular aperture was derived in [Rich9], but
it is very complicated. In the most common approximation for paraxial optics, i.e.,
small numerical aperture NA, an Airy function is obtained,

2
pet(p) = 2170 (63)

The pPL measurements of this work were made in a confocal setup using a Schwarzschild-
Cassegrain mirror objective with numerical aperture NA = 0.75. The approximation of
small numerical aperture is therefore, as generally in the context of microscopy, not very

lucky. However, the qualitative form of the full psf is not very different from Eq. (E3]).

The main difference is that dark fringes never quite go to zero and that the width of the

central peak is slightly larger than the approximation predicts [Web96]. On the other

hand, for the mirror objective used here, this value has to be slightly corrected since

the aperture is effectively ring-shaped due to the obstruction by the central mirror.

Comparison of the diffraction patterns of a ring-shaped and a circular aperture shows

that the central maximum is slightly narrower for a ring-shaped aperture.

Often, the Rayleigh criterion is used as a measure of the spatial resolution of a con-
ventional microscopy setup. Since the first radial node of the Airy function J2(p)/p?
is at pg = 3.83, the distance of two neighbouring, incoherent point emitters that can
be resolved in the image plane according to the Rayleigh criterion is Ar = 0.61 A/NA.
The full width (FWHM) Ap of the central peak of the Airy function is slightly smaller
than the radial distance from the center of the Airy peak to the first radial node. From
Ap = 3.23, the resolution limit Arpg = 0.51 A/NA is obtained.

The difference in resolution of a far-field microscopy setup with broad illumination
and of a confocal setup with focused illumination and detection is demonstrated in
Fig. E2(b) and (c) in terms of the width of the detected intensity profile of a point
emitter in the sample. In (b), the case is shown that the point emitter in the sam-
ple is illuminated by a broad excitation focus. The intensity profile detected in the
image plane is the product of the excitation profile with the point spread function of

mirror faces

Figure 6.3: Sectional drawing of the Schwarzschild-Cassegrain mirror objective. Two
optically contacted Quartz bodies define the mirror faces. The sample is mounted di-
rectly on the back face plate of the objective.
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the objective, i.e., the shape is identical with the objective psf in the case of broad
illumination. In (c), the case of confocal illumination and detection is shown. In the
confocal case, the detected emission profile D is the square of the point spread function
of the objective, D = psf2. The FWHM of the central maximum of D is approximately
reduced by a factor ~ /2 compared to the width of the objective point spread function.

6.2 Experimental setup

The geometry of the Schwarzschild-Cassegrain mirror objective used in our experimen-
tal setup is shown in Fig. B3l The objective consists of two optically contacted Quartz
bodies that define the radii of the mirror faces. The mirror objective has the advantage
of minimizing chromatic aberrations. The sample is mounted directly on the back face
plate of the objective. The position of the optical focus on the sample can be controlled
to an accuracy of ~ 100 pm by manual translation stages.

A schematic of the experimental setup is shown in Fig. Optical cw excitation is
provided either by a SpectraPhysics 2080 Art-laser (514.5 nm), by an Ar+-pumped
Coherent 599 dye laser (emission wavelength dependent on dye used, tuneable by Lyot
filter), or by a HeNe laser (A = 632.8 nm). The slightly divergent beam emerging
from the pinhole P is coupled into the optical path using a beam splitter. Two broad-
band anti-reflection coated Quartz plates (x,y) with 50 mm diameter that can each be
rotated about orthogonal axes by stepper motors allow to translate the beam laterally.
The excitation focus on the sample is thereby translated on a pm scale. The mirror
objective images light emitted from the sample onto the crossed 80 pum entrance slits
of the spectrometer at a distance of 80 cm and with a magnification of 150.

In the configuration shown in Fig. 4] the scanning mechanism is placed between the
mirror objective and the beam splitter. In this configuration, rotation of the Quartz

laser
flow cryostat T=3..300 K
magnet cryostat B=0..12 T i
N spectrometer CCD
k ) i | PC
y X

Schwarzschild-Cassegrain objective

Figure 6.4: Confocal setup for micro-magneto-photoluminescence spectroscopy. The
scanning mechanism allows to scan the laser spot over a sample region of ~ 40 x
40 pm?.
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plates causes a simultaneous translation of excitation and detection focus. The ac-
cessible sample area is ~ 40 x 40 um? large. The spectrometer is a double-grating
Czerny-Turner monochromator with focal length f = 60 cm. Using a single grating, a
spectral resolution of 140 peV has been obtained; using two gratings in series, lines sep-
arated by 80 peV could be resolved. The spectrally resolved emission signal is detected
by a liquid-nitrogen-cooled charge-coupled device (CCD) camera with a back-coated Si
chip.

For the spectroscopic measurements, the objective is placed in the flow cryostat inset
of a superconducting magnet. The Helium flow cryostat allows to reach temperatures
in the range T' = 2.9 — 300 K with controlled heating. The horizontal superconducting
magnet allows to apply magnetic fields of B =0 — 12 T parallel to the optical axis.

As a prerequisite for the experiments performed during this thesis, a versatile data
acquisition program was developed using the object-oriented programming language
C++ [Str00] and the QT graphical user interface library [QT]. The program runs
on a personal computer (PC) with double-processor mainboard and Linux operating
system (Kernel 2.4.20). The CCD controller is read out via a separate DOS computer.
A program running in server mode on the second computer uses the DOS driver of
the CCD controller to obtain single spectra from the liquid nitrogen-cooled CCD and
passes them to the data acquisition program running on the Linux computer. The PC-
to-PC communication is realized via an internal ISA I/O card connection. A second
72-bit I/O card in the Linux computer is used to control (i) the optical focus position
on the sample, i.e., the stepper motors rotating the Quartz glass plates in the optical
setup; (ii) the excitation intensity, i.e., rotating a circular variable-density gray filter
(Coherent) with neutral density varying linearly as a function of rotation angle; (iii) the
central wavelength of the spectral window; and (iv) the rotation angle of a half-wave
plate in combination with a linear polarizer. The serial interface (RS232) of the Linux
computer is used to control (i) the superconducting magnet controller (Oxford PS120-
10), and (ii) the flow cryostat temperature controller /heater (Oxford ITC-4). The data
acquisition program has two basic data acquisition modi for (i) manual control of the
setup and the acquisition of single spectra (“single spectrum mode”), and (ii) for the
acquisition of maps of spectra (“scan mode”). In scan mode operation, two parameters
of the setup can be varied independently, e.g.,

the spatial coordinates of the excitation and detection focus (x,y) for acquisition
of spatially resolved uPL maps,

the excitation intensity,

the magnetic field along the optical axis,

the polarization state of the laser and of the detected emission, etc.

Combination of the listed and other parameters allows the efficient realization of various
experiments.
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6.3 PL and pPL spectra of the QW samples

Macro-photoluminescence spectra Low-temperature overview spectra of the QW
samples QW1, QW2 and QW3 with “broad” excitation focus (d ~ 10 um) are shown
in Figs. BA and For the measurements, the samples were placed in a Hey
bath cryostat (T = 2 K), and a conventional PL setup was used. Optical continuous-
wave (cw) excitation was provided by a HeNe laser at 1.95 eV with a total power of
~ 0.1 mW. The emission was detected using a 60 cm Czerny-Turner spectrometer and
a liquid-nitrogen cooled CCD camera.

The macro-PL spectra show the inhomogeneously broadened emission bands of the QW
heterostructures. Due to the quantum confinement, the peak energies of the quantum
wells are all well above the GaAs bandgap (£, = 1.519 eV at T' = 2 K). The peak at
1.515 eV corresponds to the recombination of free excitons in the 50-nm GaAs layers
surrounding the QW growth sequence in all three samples. The exciton binding energy
of the effectively unconfined excitons in these layers is approximately the bulk binding
energy of ~ 4 meV. In Figures and 67, emission bands below 1.5 eV indicate the
recombination of donor- and acceptor-bound excitons.

Figure 63 shows an overview macro-PL spectrum of sample QW;. The sample contains
five GaAs/Aly 3Gag7As QWs with 4, 6, 8, 10 and 20 nm nominal thickness. Comparison
of the peak energies with confinement energies for the nominal square-well structures
(see Fig. L) shows that the emission peaks correspond to exciton recombination in
the lowest electron-heavy hole QW subbands (Eg-HHp). The emission from light-hole
excitons is generally negligible in quantum wells due to several reasons, including the
smaller transition matrix elements of electron-light hole transitions [Run02]. Monolayer
splitting of the QW spectra is not observed for the narrow quantum wells. The inhomo-
geneous broadening of the emission peaks is roughly Gaussian for all wells. Table
gives the nominal widths, experimental peak energies and inhomogeneous broadening
(FWHM) of the quantum wells in sample QW;. The semilogarithmic representation
shows that almost all quantum well PL spectra have an exponential high-energy tail
over at least one order of magnitude in PL intensity.

| d@om) | 4 | 6 [ 8 | 10 | 20 |
E (eV) [1.6431.591 | 1.564 | 1.549 | 1.524
AE meV) | 45 | 22 [ 15 [ 11 [ 08

Table 6.1: Nominal widths, experimental peak energies and inhomogeneous broadening
(FWHM) of the quantum wells in sample QWj.

Figure shows an overview macro-PL spectrum of the GaAs/Aljy 3Gag7As QW sam-
ple QW,. Table lists the nominal widths, experimental peak energies and inhomo-
geneous broadening (FWHM) of the quantum wells in sample QWs.

Figure shows an overview macro-PL spectrum of the GaAs/AlAs DQW sample.
The emission peak of the 8-nm GaAs/AlAs quantum well is observed at 1.576 eV, the
emission peak of the 4-nm GaAs/AlAs double quantum well at 1.69 eV. Calculations of
single-particle energies in a one-dimensional double square well model yield a splitting of
symmetric and antisymmetric single-particle states in the DQW structure of ~ 1 meV,
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Figure 6.5:  Overview macro-PL spectrum of the GaAs/Aly3Gag7As sample QWj.
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Figure 6.6: Overview macro-PL spectrum of the GaAs/Aly3Gag7As sample QWs.
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Figure 6.7:  Overview macro-PL spectrum of the GaAs/AlAs sample QWs.
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which is significantly smaller than the inhomogeneous broadening of 5.5 meV.

| d@m) | 2 | 4 [ 6 | 8 |
E (eV) 1.752 ] 1.643 | 1.591 | 1.564
AE (meV) | 74 4.6 22 | 1.15

Table 6.2: Nominal widths, experimental peak energies and inhomogeneous broadening
(FWHM) of the quantum wells in sample QWs.

Micro-photoluminescence spectra A 12 x 12pum? pPL map of sample QW3 is
shown in Fig. [E8|(a). The spatially resolved luminescence map was obtained by simul-
taneous displacement of excitation and detection focus. The sample temperature was
T = 3 K, and optical excitation was at 1.95 eV with excitation intensity I ~ 1 yW. The
emission has been spectrally integrated over a 5 meV wide spectral window below the
DQW peak at 1.69 eV. Several localized emission centers are observed. Figure E8(b)
and (c) show sections through the yPL map along the lines A and B that are shown in
red in Figure E8(a). The halfwidth of the emission center located in the crossing point
of lines A and B is ~ 500 nm.

Assuming a diameter of the optical focus d ~ 600 nm (FWHM of the objective point
spread function), a lateral resolution in the confocal configuration of ~ 450 nm is
predicted. The experimental value of ~ 500 nm obtained at a detection wavelength

A

550 nm

PL intensity (a.u.)

0 2 4 6 8 10 12
X (um)

y (um)

B 500 nm

0 2 4 6 8 10 12
X (Hm)

PL intensity (a.u.)

0 2 4 6 8 10 12
y (um)

Figure 6.8: uPL map of the 4-nm GaAs/AlAs double quantum well, and sections along
lines A and B.
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Figure 6.9: pPL spectrum of the 2-nm GaAs/Aly3Gag7As QW in sample QWs.
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Figure 6.10: (a) Ezcitation power-dependence of uwPL spectra of the 2-nm QW in the
GaAs/AlysGag7As QW sample QWs. (b) Power dependence (double-logarithmic plot)
of two single exciton transitions in the uPL low-energy tail.

A = 750 nm obtained here is slightly larger. The obtained resolution depends on the
perfection of the optical focus that is reached and therefore slightly varies between
different measurement series. U. Kops and P. Blome determined the spatial resolution
obtained with the Schwarzschild-Cassegrain mirror objective in a confocal setup using
a laterally structured GalnP QW sample with 160 nm quantum dots on a 1 um lattice
[Bur97, BIo99]. In a 10 nm wide partially ordered GalnP quantum well, an array of
circular QD regions of disordered GalnP with smaller bandgap than the surrounding
partially ordered GalnP had been produced. At a detection wavelength A ~ 640 nm,
they obtained a FWHM of the QD luminescence of ~ 450 nm. Considering the different
wavelengths, this value compares quite well with the resolution determined here.

Figure shows a uPL spectrum of the 2-nm QW in sample QWs, taken at a sample
temperature of 7' = 3 K. The sample was optically excited by a HeNe laser at 1.95 eV
with a total power of I ~ 1uW. The spectrum consists of spectrally narrow lines
on top of a broad background with with approximately Gaussian shape. The inset
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shows a Gaussian with 7.4 meV FWHM adjusted to the yPL spectrum. The uPL
lineshape deviates from a Gaussian both on low- and high-energy side. Below the
emission peak at 1.752 eV, the rare occurrence of localized exciton transitions with
rather large oscillator strength leads to the characteristic low-energy tail with well-
separated, spectrally narrow lines. The spectral linewidth of these transitions is limited
due the instrumental resolution of ~ 150 ueV in our experiment. In the literature,
linewidths of natural QD transitions down to several peV have been observed in uPL
experiments [Zre05]. Above the emission peak, the spectrum displays a rather smooth
high-energy tail due to a rather large density of states with relatively small oscillator
strength.

In Figure Ed0(a), uPL spectra of the 2-nm QW are shown at varying excitation inten-
sity. The excitation power was varied in the range I = 0.1...10 W using a circular
variable neutral density filter. The lineshape does not vary significantly in this power
range. The emission center and the inhomogeneous broadening are largely constant,
except at very low power levels of 0.1 yW when the collected emission intensity reaches
the noise level of the CCD. Significant sample heating due to optical excitation can be
excluded by checking against the effect of the raising sample temperature by controlled
heating. It was observed that the luminescence intensity of the transitions deep in the
low-energy tail was very sensitive to a rise in temperature; most lines showed significant
intensity loss already at a temperature rise of a few Kelvin. Figure [EI0(b) shows the
excitation power-dependence of two transitions in the low-energy tail of the 2-nm QW
spectrum. Approximately the same power dependence is found for different tail states.
The dash-dotted line shows the power dependence at the center of the QW emission
peak. Saturation of the emission was observed at excitation power significantly above
10 uW. In what follows, almost all spectra were taken at an excitation power of ~ 1 uW.

Low-temperature uPL spectra of the GaAs/Aly 3Gag7As QWs with 4, 6, 8 and 10 nm
nominal width in sample QW are shown in Fig. Optical excitation of the sample

30

25

20

10 nm
15

8nm .(

—/ 6nm 4nm

1 1 | 1

1.54 1.56 1.58 1.6 1.62 1.64
Energy (eV)

PL intensity (a.u.)

Figure 6.11: uPL spectrum of 4 QWs in the GaAs/Aly3Gag7As QW sample QWj.
The gray bars indicate the transition energies in ideal GaAs/AlysGag7As QWs that
are integral multiples of a monolayer (1 ML = 0.28 nm) wide.



89

163 1635 164 1645 1.65

PL intensity (a.u.)

1.62 1.625 1.63 1.635 1.64 1.645 1.65

Energy (eV)

Figure 6.12: uPL spectrum of the 4-nm GaAs/AlysGay7As QW in sample QW;.

was provided by a dye laser at £ = 1.9 eV, the total excitation power was I ~ 1 uW.
The overall shape of the inhomogeneously broadened electron-heavy hole QW emission
bands is approximately Gaussian. On the low-energy side of the spectra, some spec-
trally narrow features can be detected, while the high-energy side is rather smooth. The
gray bars in Fig. indicate the transition energies in ideal GaAs/Aly 3Gag7As QWs
that are integral multiples of a monolayer (1 ML = 0.28 nm) wide; the numbers at the
gray bars give the number of monolayers. The positions of the bars have been obtained
as the sum of (i) GaAs bandgap at T' = 3 K, (ii) single-particle confinement energies
as shown in Fig. 28 and (iii) exciton binding energies from Fig. EZT1l The nominal
widths of the samples are not exactly integral multiples of a monolayer; the most ad-
jacent integral number of MLs has been chosen for the comparison (indicated by the
arrows). The increasing difference with shrinking QW width, 3 meV for the 4-nm QW,
can at this point be readily attributed to the Stokes shift between inhomogeneously
broadened QW absorption and emission.

Figure zooms into a uPL spectrum of the 4-nm QW in sample QW;. The inset
shows a Gaussian with 4.5 meV FWHM adjusted to the puPL spectrum. Below the
center of the emission peak at 1.643 eV, several bright lines of localized exciton tran-
sitions are observed. The high-energy tail is rather smooth. In the inset, a Gaussian
with 4.5 meV FWHM is adjusted to the uPL spectrum.

Micro-PL spectra of the 4-nm QW obtained on a 10 pum long line scan are shown in
Fig. EI3(a). The spatial variation of the tail states below the emission peak is clearly
observed. The position of the QW peak as well as the inhomogeneous broadening is
largely constant. Figure EI3|(b) shows a plot of five spectra from Fig. EI3)(a).

Unambiguous evidence that the tail states lines below the QW emission peak originate
from localized exciton states comes from the observation of their fine structure. The fine
structure splitting of localized exciton states into linearly polarized components has first
been observed by Gammon et al. [Gam96] in a 2.8-nm GaAs/Aly3Gag7As QW grown
with growth interruption at the interfaces. Using polarization-sensitive uPL excitation
spectroscopy, they observed a splitting of ground and excited state transitions in two
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Figure 6.13: (a) puPL spectra of the 4-nm GaAs/Aly3Gag7As QW; 10 um line scan.
(b) Four of the wPL spectra shown in (a).

orthogonal linearly polarized fine structure components; the fine structure splitting
was found to be on the order of 20 — 50 ueV. Today, it is understood that this splitting
arises from the long-range part of the electron-hole exchange interaction [[vc95] in
asymmetric quantum dots [Bay02]. In quantum dots with circular symmetry, no fine
structure splitting of the optically active exciton transitions (J, = +1) is expected. In
turn, a fine structure splitting in the optically active exciton transitions is evidence for
exciton localization in an asymmetric confinement potential, caused by fluctuations of
the QW interfaces.

Differential polarisation spectroscopy has been here used to study the fine structure
splitting. Figure shows a uPL spectrum of the 4-nm QW in sample QW;. Two
transitions (“A”, “B”) with relatively large, but spectrally still unresolved fine-structure
splitting are marked. By placing a A\/2 wave plate and a linear polarizer between mir-
ror objective and beam splitter and varying the rotation angle of the half wave plate,
the polarization state of the laser and of the detected emission is varied simultane-
ously. In the following experiments, the two gratings of the double monochromator
were used in additive mode for enhanced spectral resolution. Figure BEIH(a) shows
the intensity variation of the copolarized emission in the low-energy tail of the 4-nm
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Figure 6.14: uPL spectrum of the 4-nm GaAs/Aly3Gag7As QW. The arrows mark
two exciton transitions with relatively large fine-structure splitting (“A”, “B”).
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Figure 6.15: (a) Polarization angle scan of transition “A” in the low-energy tail of
the wPL spectrum in Fig. [6.14) The arrow marks an exciton transition with 75 peV
fine structure splitting at 1.6385 e¢V. The fine structure components are linearly polar-
ized under 45° relative to the (110) directions. (b) wPL spectra at orthogonal linear
polarization.
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Figure 6.16: (a) Polarization angle scan of transition “B” in the low-energy tail of
the wPL spectrum in Fig. [0.17) The arrow marks an exciton transition with 55 peV
fine structure splitting at 1.641 eV. The fine structure components are linearly polarized
along [110] and [110]. (b) pPL spectra at orthogonal linear polarization along [110] and
[110].
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GaAs/Aly3Gag7As QW in sample QW; under variation of the angle of the linearly
polarized excitation and detection, measured relative to the [110] crystal axis. Zero
angle ¢ = 0 corresponds to polarization along [110], and ¢ = /2 corresponds to polar-
ization along [110]. The A\/2 wave plate was rotated by 2, therefore the polarization
angle spans the range from 0 to 47. The maximum of the two spectrally unresolved
fine-structure components at F ~ 1.639 eV in Fig. [EI5(a) oscillates between two en-
ergy values separated by AFE =~ 75 ueV with the period 7 in the polarization angle.
The fine-structure components, shown in Fig. EI5|(b), are polarized under 45° relative
to the (110) directions. Figure BI6l(a) shows another fine-structure split transition
with fine structure components linearly polarized along the (110) directions. The fine
structure splitting AFE ~ 55 ueV, shown in Fig BTI6I(b). Further fine-structure split
doublets polarized along varying directions have been observed. Evaluation of 10 fine
structure-split exciton states with rather large splitting AFE > 40 ueV showed no clear
preferential direction of the linear polarization (Fig. EI4).

In QW samples grown with growth interruption at the interfaces, as in the sample
of Gammon et al., a preferential orientation of the linearly polarized fine structure
components along the (110) directions has been observed [Gam96]. This effect has
been explained to result from an alignment of growth islands, i.e., regions where the
film thickness is increased by one monolayer compared to the nominal film thickness,
along the [110] direction. The elongated shape of the center-of-mass wave function
of exciton states localized in islands elongated along [110] is responsible for the fine
structure splitting into the two linearly polarized components along (110) directions
[Mai93], Nic98, [Mai00]. While in zincblende crystals the [110] and [110] directions are
crystallographically equivalent, the growth takes place on reconstructed surfaces leading
to a possible growth anisotropy in the quantum well plane. If the growth is interrupted
at the QW interfaces, large anisotropic islands can form with diameters larger than the
exciton Bohr diameter (= 20 nm).

Since the samples studied in this thesis have been grown without growth interruption
at the QW interfaces, the formation of large anisotropic islands aligned along the [110]
direction is not expected. Also, the formation of islands in the interfaces is not evident in
the XSTM-images, where we primarily find very short-range correlations. In addition,
the formation of monolayer islands does not appear in the form of a monolayer splitting
in the PL spectra. Therefore, we conclude that our observations indicate the lack of
large, anisotropic growth islands in the QW interfaces of our sample.

6.4 Simulated optical spectra

In a concomitant study, uPL spectra of the 4-nm GaAs/Aly3Gag7As quantum well in
sample QW1 have been simulated on the basis of the structural data from the cross-
sectional STM experiment (described in chapter 5). This study was commenced by
Claus Ropers [Rop03] and has been pursued together with the semiconductor theory
group at the Humboldt-Universitdt Berlin (Michal Grochol, Dr. Frank Grosse, Prof.
Dr. Roland Zimmermann).

From the topographic data of the 4-nm GaAs/Aly3Gag7As QW, one-dimensional dis-
order potentials in the cleavage plane have been determined, which contain the infor-
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mation on the strength and the correlations of the lateral disorder along the quantum
well cross-section. The potential extracted from a 160 nm long cross-section of the 4-
nm QW has been analyzed. In the single-sublevel approximation, the effective in-plane
bandgap fluctuations along the x-direction have been expressed as

W(x) = Z fa /dz |um(z)|2 (Eg(:c,z) — <Eg(a:,z)>x) , (6.4)

a=e,h

where f./f;, = 0.65/0.35 is the band offset ratio, and the u,(z) are the single-particle
wave functions in the one-dimensional potential derived from the x-averaged confine-
ment potential E¢(z) = (Eg(z,2))z). The lateral bandgap fluctuations W (z) cause
lateral electron and hole localization in this QW, resulting in the inhomogeneous broad-
ening of the optical spectra.

As a surface-sensitive method, the STM experiment gives no information about the
disorder properties of the quantum well in the direction perpendicular to the plane of
the STM image, which are also relevant for the inhomogeneous broadening of excitonic
transitions. We presume at this stage that the correlations in the y-direction do not
differ from those in the x-direction. In particular, the two-dimensional autocorrelation
of the in-plane disorder potential is assumed to be isotropic in the x-y plane. This allows
to generate two-dimensional in-plane potentials, which contain the disorder properties
found in the XSTM measurement. The following paragraphs describe the proceeding
in [Rop07].

First, the potential W (x) is binned on the atomic grid in the x-direction (atomic row
distance 0.4 nm), leading to a row vector W (x;) with j € {1,2,...,400}. Figure E17(a)
shows the bandgap fluctuations binned on the atomic grid along the 160 nm cross-
section of the 4-nm QW. A histogram of the potential values is shown in Fig. EI7(b); the
potential values are approximately Gaussian distributed. The statistical information
of the potential is fully contained in the autocorrelation

N
C(.%']) = % IZ; W(mj + xl)W(wl) . (6.5)

In a next step, two-dimensional in-plane disorder potentials can be obtained by a con-
volution between a suitable averaging function A(r) and random fluctuations U(r)
[Zim7),

Wi(rj) =Y Alr;—r)U(r), (6.6)
l

where r; is a two-dimensional vector on a square grid in the x-y-plane. The averaging
function A(r;) is directly related to the one-dimensional correlation function C(x;),
which in terms of their Fourier components can be expressed as

3 1 _
Ci=7z Z Azl (6.7)

In the past, different models for the averaging function A and the resulting types of

!Using the standard definitions for the Fourier coefficients, C’j(i) = 3, C(zx)exp(—i2nLE) and
Ajk = me A(Tm, yn)exp(—i 2WW) and Ajk.
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Figure 6.17:  [Rop07] (a) One-dimensional effective disorder potential W (zx) (bandgap
fluctuations) along the XSTM topography of the 4 nm GaAs/Aly 3Gag.7As QW. (b)
The potential value distribution on the atomic grid is roughly Gaussian with 33 meV
standard deviation. (c) The power spectrum of the spatial fluctuations of W (black line)
with a fit for exponential correlations (red line).

correlations have been proposed [Run02]. The best results have been obtained for an
exponential ansatz of the form

Alry) = Sl = 3 e, (6.8)
J

where ¢ is the potential variance and . the correlation length. These fitting parame-
ters were determined by a least-squares fit of the one-dimensional correlation functions
generated using Eq. (7)) to the experimentally determined correlation Eq. (E3). A
fit in k-space [see Fig. E1M(c)] yielded o = 33.4 meV and . = 0.39 nm. B The value
of I. on the order of the lattice constant indicates that in the investigated structure,
mostly short-ranged correlations over a few lattice constants are present in the Alu-
minum distribution along the x-direction. The potential generated via Eq. (E8) is then
distributed between the electron and the hole as W, (z,y) = foW (x,y).

Subsequently, the four-dimensional Schrodinger equation with these potentials has been
solved for the in-plane exciton motion. This is detailed in the following two sections.
The in-plane Hamiltonian for excitons in a disordered quantum well in effective-mass
approximation, neglecting the small spin-orbit coupling, reads [Gro05):

h? h?

H = _Q—WATE — 2—WATh + We(’re) + Wh(’l"h) — VC(’I") y (69)

2Due to the binning procedure, the z-correlations in the Al distribution on the simulated atomic grid
are slightly increased compared to the original image, hence the larger disorder strength. On the other
hand, correlations in x-direction beyond ~ 1 nm are reduced: The central peak of the autocorrelation
(Fig. B remains unchanged, but the width of the shoulders is reduced.
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where 7, = (x4,y,) are in-plane coordinates, and all effective masses are in-plane
masses. The material parameters used in the calculations are listed in TableE3 W,(7.)
and Wp,(ry) denote the disorder potentials for electron and hole, and Vi (r) is the
effective in-plane Coulomb potential [Eq. (Z28])].

GaAs Aly 3Gag 7As | Table 6.3:  Electron and hole effective
me. | 0.070 [EkeR9] | 0.084 [Ada0d] | masses, bulk bandgaps at T = 4 K

)

mp 0.36 [Ada%4] 0.39 [Ada94] and static dielectric constant used in the
Eg (eV) | 1.519 [Adad4] | 2.0128 [Schof] | calculation.

Me || 0.078 [EkeSQJ
mp,| 0.233 [Siaﬂﬂ]
€S 12.5 [Ada,94J

The two-particle (exciton) Schrédinger equation with the Hamiltonian Eq. (G9)
H(re,rp)¥a(re,mn) = EaVa(re,Th) (6.10)

has been solved numerically and eigenstates and eigenvalues F, of localized exciton
states are obtained. The calculated energies and wave functions are ingredients for the
subsequent calculation of oscillator strengths M,,, absorption spectrum D(w) (optical
density), and photoluminescence spectrum P(w).

For dipole-allowed transitions, the exciton oscillator strength is related to the proba-
bility of finding electron and hole at the same position [Zim97],

M, x / drV,(r,r) = /dzue(z) up(2) - p15(0) - /dR¢a(R). (6.11)

Optical density and PL spectrum are calculated by summing over the eigenstates «
[Run02)

D(w) =Y [Mo*76(hw — €a)

(6.12)
Pw) = |Myf* Naywd(hw — €a)

where N, is the occupation of the state a. The calculations were performed for 100
realizations of two-dimensional disorder potentials with an area 100 x 100 pm? each,
yielding a total simulation area of 1 ym?. Spectra were obtained by convolution of the
optical density with a Lorentz curve with 200 peV width. Subsequently, the spectra
were added with a spatial weight corresponding to the experimental focus, which was
approximated by an Airy function with a FWHM of 600 nm.

6.5 Relaxation and Stokes shift

In order to obtain calculated PL spectra for a useful comparison between experiment
and computation, the occupation number N, of the individual states should be known.
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Figure 6.18: (a) pPL spectrum of the 4-nm GaAs/Aly3Gag7As QW at T, =5 K. (b)
Temperature-dependent uPL spectra in the temperature range Ty, = 3 — 50 K.

A proper calculation of all N, by solving the kinetic equations is technically very
demanding in this case; this approach is not pursued here.

The effects of the temperature-dependent relaxation on pPL spectra have therefore
been studied experimentally. By controlled heating of the sample in the flow cryostat,
puPL spectra of the 4 nm GaAs/Aly 3Gag 7As QW have been measured at varying lattice
temperatures. Temperature-dependent uPL spectra of the 4-nm QW in the temper-
ature range 7' = 3 — 50 K are shown in Fig. The sample was optically excited
by an ArT-pumped dye laser at 1.9 eV. The total excitation power (~ 1 W) was held
constant during the measurements. The bandgap renormalization with increasing tem-
perature is directly observed in the monotonous red-shift of single exciton transitions
in the temperature-dependent uPL spectra. A phenomenological description of the
decrease of the bandgap with increasing lattice temperature is provided by the Varshni
formula [Var67]

T2
T+06’
where T is the lattice temperature and Eg(T') is the temperature-dependent bandgap.
Using bulk GaAs parameters v = 0.58 meV /K, © = 300 K, Eg(0) = 1.522 eV [Pan69],
the increase in lattice temperature has been determined directly from the temperature-
dependent uPL spectra.

Eq(T) = Ec(0) =~ (6.13)

The direct observation of the bandgap shift for single exciton states allows to remove
the shift from the temperature-dependent spectra. In Figure BI%(a), bandgap shift-
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Figure 6.19: (a) Temperature-dependent PL spectra of the 4-nm GaAs/AlysGag7As
QW; for better comparison of the lineshape, the total area under the spectra has been
normalized. The lattice temperature Ty, is indicated. (b) Stokes shift of the center of
QW emission relative to the position at Ty, = 3 K. (c¢) Temperature dependence of the
emission of a few exciton states in the low-energy tail. Some states show increasing
absolute emission intensity in the temperature range 3 — 50 K.

corrected spectra of the 4-nm QW are shown as a function of lattice temperature.
Figure EI8 showed that the total luminescence intensity decreases strongly above T, ~
20 K; for easier comparison of the QW emission lineshape, the total area under the
spectra in Fig. EI%a) has been normalized.

Three effects are prominent in the puPL spectra in Fig. EI%(a): The temperature-
dependent change in the intensity of single exciton lines in the low-energy tail, the shift
of the maximum of the QW emission, and the decreasing slope of the high-energy tail.
While the shift of the maximum and the decreasing slope of the high-energy tail indicate
a thermalized exciton distribution, the temperature-dependence of several single exciton
lines below ~ 1.642 eV is quite obviously not compatible with the simple picture of a
thermal population of potential minima. Figure EI9(b) shows the relative change in
luminescence intensity of some localized exciton states as a function of temperature.
While the intensity of most lines decreases with increasing temperature, some lines [the
position of the most prominent line at 1.6407 eV is marked by an arrow in Fig. G.1%a)]
exhibit increasing emission intensity in the temperature range 3 — 5 K. At still higher
temperature, intensity decreases again. The prominent line at 1.6407 eV gains intensity
from 3 K to 5 K, then its intensity decreases and reaches its 3 K-value at ~ 10 K. This
effect is indicative of thermal activation of carriers from nearby minima into a larger
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minimum, and of incomplete thermalization of the exciton population in the low-energy
tail of the exciton spectra.

The overall shape of the spectrum, however, clearly shows the effects of carrier ther-
malization: (i) The blue-shift of the center-of-mass of the emission spectrum, (ii) the
increase of the inhomogeneous linewidth, and (iii) the slower decrease in the high-energy
tail with increasing lattice temperature. The high-energy tail is well described by an
exponential decay over more than an order of magnitude in the experimental yPL spec-
tra. From the logarithmic slope of the high-energy tail, an effective carrier temperature
Tee can be determined that is higher than the lattice temperature Ty, [Col89]. The
difference Tog — 17, decreases with increasing lattice temperature; above 17, = 50 K,
Teg and Ty, are practically equal. From the high-energy tail of the experimental uPL
spectrum of the 4-nm QW at T = 4 K, we obtain an effective carrier temperature
Teg = 20 £ 1 K. This value is in good agreement with previous findings. Figure
shows the effective carrier temperatures determined under similar excitation conditions
and at a sample temperature T = 4 K for the 2-nm QW in sample QW5 and the 4, 6,
8 and 10 nm thick QWs in sample QW;. The gray line indicates experimental results
of Colvard et al. for GaAs/Aly3Gag7As QWs of varying thickness [Col89)] obtained at
Tr, = 2 K; the difference in lattice temperature between both experiments (2 K) has
been added for easier comparison. Rather good agreement of the values is observed.

6.6 Comparison of simulated and experimental yPL spec-
tra

The position in the STM measurements on the 4-nm QW described in chapter 5 was
determined using an optical microscope while the experiment was performed. The
distance to the sample edge was determined, and in the subsequent optical experiments,
the same sample position was placed in the optical focus by manual translation stages.
The accuracy with which the optical focus and the position of the XSTM measurements
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coincided was better than 200 pm. In a scanning macro-PL setup, it was checked
that neither the emission energy nor the inhomogeneous linewidth varied over such a
distance. A pPL spectrum of the 4-nm QW taken in the vicinity of the position of
the STM measurements, recorded at a temperature of 4 K, is shown in Fig. E21l(a).
The spectrum shows inhomogeneous broadening with individual bright peaks on the
low-energy side due to strongly localized excitons. On the high-energy side, the more
continuous spectrum consists of many closely spaced peaks.

A numerically computed absorption spectrum (D(w)) for an area corresponding to the
experimental focus is shown as black line in Figure B2ZT(b). Multiplying the calcu-
lated absorption spectrum with a Maxwell-Boltzmann factor results in a simulated PL

spectrum
P(w) = C e mw/keTert D(y) (6.14)

where Teg = 20 K is assumed. The simulated PL spectrum is shown as gray curve in
Fig. BE2TI(b). A Stokes shift with respect to the absorption of ~ 3.5 meV is observed.
In Figure EZ1](c), the experimental and the predicted uPL curves are shown together.
The qualitative and quantitative agreement of both curves of both curves is excellent.
Due to the randomization procedure that is involved in the generation of the in-plane
disorder potentials, the individual peak positions and peak heights are not significant.
Instead, the overall spectral structure and the size of the inhomogeneous broadening
should be characteristic for the disorder potential studied. These features are clearly
reproduced by the calculations. Certain qualitative deviations are discernible at the low
energy tail of the luminescence, where the predicted luminescence strength of individual
states in the calculations tends to exceed those found in the experiments. This is
clearly a result of the deviation from an exactly thermal occupation of those tail states
in the experiment. Finally, in Fig. B2I(d), an experimental puPL spectrum at an
elevated temperature of 50 K (black) is compared with the calculated PL spectrum for
Tog = 50 K. Again, good agreement of both curves is found, which indicates that the
carriers are well equilibrated among themselves and with the lattice at this temperature.
The temperature dependent change in transition energy due to bandgap reduction
was taken into account in the calculations of the spectra at the higher temperature.
A bandgap difference of 2.5 meV between the lattice temperatures T, = 4 K and
T, = 50 K was precisely determined in the experiment from the shift of individual
localized states when the temperature was continuously raised. It should be noted
that the absolute energy of all theoretical curves was blue-shifted by 4 meV in order
to achieve the agreement shown above. As the absolute transition energy is a very
sensitive function of the material parameters as well as the average QW thickness,
possible strain contributions, image charge effects on the binding energy etc., a more
accurate prediction of the absolute energy cannot be expected, given the precision of
all known input quantities to the calculation.

In light of the limited number of simple assumptions made in the calculations, the rather
accurate prediction of the inhomogeneous broadening and the temperature-dependent
lineshapes of the ensemble of excitonic states is striking.
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Figure 6.21: [Rop07] Comparison between measured pPL spectra and spectra calculated
from the XSTM data. (a) Ezperimental uPL spectrum measured at T = 4 K. (b)
Calculated absorption spectrum (black) and predicted luminescence (gray), assuming
an effective carrier temperature of 20 K, which is a realistic value for a 4-nm QW at
4 K lattice temperature. (c) For easier comparison, experimental uPL (4 K, black) and
calculated PL (20 K, gray) plotted in the same graph. (d) Ezperimental pPL spectrum
measured at T = 50 K (black) and calculated PL (gray) for a thermal carrier population
at 50 K.
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6.7 Conclusions

The spectrally narrow emission lines of disorder-localized exciton states have been re-
solved in the low-energy tail of uPL spectra of the narrow GaAs/Aly 3Gag 7As quantum
wells. The fine-structure splitting of low-energy tail states has been investigated via
polarization-dependent spectroscopy, and no clear preferential direction of the linearly
polarized fine-structure components has been found. This is in contrast to growth-
interrupted samples, where a preferential orientation along the [110] direction has been
reported [Gam96], caused by exciton localization in large anisotropic islands aligned
along the [110] direction. Our observation therefore indicates that such large anisotropic
islands aligned along the [110] direction are not responsible for exciton localization in
the investigated non-growth interrupted quantum well. Rather, it indicates exciton
localization by short-range correlated disorder.

The simulation of optical spectra on the basis of the structural data from the XSTM
experiment on the 4-nm QW has been described. T'wo-dimensional disorder potentials
were simulated, representing the band edge fluctuations in the QW plane. Isotropic
exponential correlations in the QW plane were assumed with a correlation length of
0.4 nm, corresponding to the shortest correlation length observed in the XSTM ex-
periments. Justification for the assumption of isotropic correlations comes from the
observation that fine-structure components of localized exciton states show no clear
preferential direction.

Temperature-dependent pPL experiments have been performed on the 4-nm QW to
study relaxation effects and the Stokes shift. Based on the insight that puPL spectra
can be characterized by an effective carrier temperature that is higher than the lattice
temperature, experimental and simulated pPL spectra of the 4-nm GaAs/Aly 3Gag.7As
quantum well could be directly compared. Very good agreement is observed between
inhomogeneous broadening and temperature-dependent lineshapes of experimental and
simulated pPL spectra. This results is further evidence that mainly short-range cor-
related disorder on a length scale of a few lattice constants is responsible for exciton
localization in the 4-nm GaAs/Alp3Gag7As quantum well.
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Chapter 7

Diamagnetic shift distribution in single
GaAs/Aly3Gag7As QWs

In this chapter, the application of magneto-uPL spectroscopy to the study of disorder
in narrow GaAs/Aly3Gag7As single QWs is described. First, the concept of disorder
characterization via the diamagnetic shift is outlined. Magneto-uPL spectra of 2-nm
and 4-nm QWs are shown and diamagnetic shift coefficients and effective exciton g-
factors of single exciton states in the low-energy tail of the spectra are determined.
Then, the observed correlation between diamagnetic coefficients and transition energy
is discussed in detail. Finally, the experimental results for the 4-nm QW are compared
with theoretical calculations of diamagnetic shift coefficients based on the XSTM data
of the 4-nm QW, thereby extending the comparison of optical and structural properties
of this QW.

7.1 Concept

Exciton diamagnetic shift has been experimentally studied for low-dimensional quan-
tum structures (QW, QWR, QD) [Tar84, [Rog86), Som9d, [Bay98], and for disorder-
localized excitons in narrow QWs [Hes94., Ste02, Ste03, Phi03]. For disorder-localized
excitons in narrow QWs, a variation of the XDS between different exciton eigenstates
has been observed [Hes94]. This variation is explained by the fact that disorder influ-
ences both exciton c.m. and relative WF, and relative and c.m. motion are coupled.
Although the wave functions of disorder-localized exciton states will generally exhibit
no perfect circular symmetry, we assume 1s relative wave functions for simplicity. Any
attempt to go beyond this assumption would make the following considerations less
transparent. Therefore, we assume that the effects of lateral exciton confinement can
be described by a localization of the exciton center-of-mass and a reduction of the exci-
ton radius. A magnetic field B normal to the QW plane increases the transition energy
of a given exciton state «,

Eo(B) = Eo(B = 0) + Ao(B). (7.1)

In the regime of relatively weak lateral confinement, which is assumed to be realized in
natural quantum dots, the diamagnetic shift A, of a 1s exciton state « is a measure of
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the electron-hole separation [Wal9§)]
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where (p2)1/? is the effective lateral exciton radius. The expression for the XDS is
more complicated in presence of disorder [Gro05]. Within the scope of the discussion
of our experimental results, it is however reasonable to use Eq. ([ZZ), and to express
the diamagnetic shift A, by the diamagnetic coefficent
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Confinement influences both the effective exciton radius p, and the exciton reduced
mass g [Sch05)]: Stronger confinement decreases the exciton radius and increases the
exciton reduced mass u. Both factors decrease the diamagnetic coefficient. Therefore,
a reduction of the XDS is consistently interpreted as a confinement effect. Quantitative
interpretation of XDS values requires consideration of the dependence of the in-plane
electron mass and, consequently, the in-plane exciton reduced mass, on QW width.

The dependence of the exciton diamagnetic shift in quantum dots on the lateral confine-
ment potential suggests the following concept for disorder characterization via magneto-
uPL spectroscopy: “Single-dot” magneto-uPL spectroscopy gives access to diamagnetic
shift and Zeeman splitting of individual QD states in an external magnetic field. Since
the exciton diamagnetic shift (XDS) of natural QD states in a magnetic field normal to
the QW plane is sensitive to the lateral extension of the exciton relative wave function,
and thereby to lateral confinement, study of the XDS gives access to the shapes of po-
tential minima: While the exciton transition energy is sensitive to the total confinement
volume, the XDS is a measure of the lateral extension of the confinement potential;
combination of both should provide information about the shape of a potential min-
imum. The statistics of potential minimum shapes should provide information about
the correlation length of the lateral interface disorder potential.

7.2 Experimental results

Low-temperature (T' = 3 K) uPL spectra of the 4nm QW in sample QW; and of
the 2-nm QW in sample QWs> were obtained during linearly polarized optical exci-
tation with ~ 10 W/cm? at 514 nm. A magnetic field up to 10 T was applied in
growth direction (Faraday configuration). Figure [[Tl(a) shows uPL spectra of the 2-
nm GaAs/Aly3Gag7As QW at B =0T and B = 10 T. Single exciton states as low as
20 meV below the center of the QW emission peak are observed.

Figure [LT(b) shows color-coded pPL spectra of the 2 nm QW for magnetic fields
between B = 0 T and B = 10 T. Zeeman splitting of the localized exciton states is
resolved above B = 1 T. The Zeeman components of the lowest-energy exciton states
are clearly identified in Fig. [Tl and Fig. [[2 Higher-lying lines are less well separated,
and for several closely spaced states at the QW emission peak it is impossible to trace
the Zeeman components over the complete B-field range. However, for several emission
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Figure 7.1: (a) uPL spectra of the 2 nm GaAs/Aly3Gay7As QW at B=0 T (black)
and B=10 T (gray). (b) Color-coded magneto-puPL spectrum (B=0..10 T) of the 2-nm
GaAs/AlysGag7As QW. The magnetic field was increased in steps of 50 mT.
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Figure 7.2: (a) Inset: uPL spectra of the 4-nm GaAs/Aly3Gay7As QW at B=0 T and
B=9.5 T; emission lines of two localized exciton states at B=0 T (black) and B=9.5 T
(gray). (b) Color-coded magneto-uPL spectrum (B=0..9.5 T) showing Zeeman splitting
and diamagnetic shift of two of the lowest-energy localized exciton states in the 4-nm

QW.
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Figure 7.3:  Section of Figure [T7(b): The dotted lines mark Zeeman components of
two higher-energy emission lines below the 2 nm QW emission peak.

lines unambiguous identification is possible. As an example, Fig. shows two higher-
lying emission lines below the QW emission peak of the 2-nm QW.

Experimentally, the diamagnetic shift of localized exciton levels is determined from the
B-field dependent optical spectra by taking the mean value of the Zeeman components.
The magnetic length scale given by A = y/h/eB determines the crossover from low-
field to high-field regime. As long as A < ap or, equivalently, if the cyclotron energy
heB/p is much smaller than the exciton binding energy Ep, the B-dependence of the
exciton energy is dominated by the diamagnetic shift. The Bohr radius of the lowest
exciton state in a nominally perfect 4 nm GaAs/Aly3Gag7As QW is ap ~ 8.2 nm, and
therefore

ANB=8T)~ap. (7.4)

Consequently, the diamagnetic coefficient is determined by a quadratic fit of the mean
value of the Zeeman components up to B = 4 T. At higher fields, the cyclotron-
confinement of electron and hole causes a deviation from the quadratic shift. In the
high-field limit, the cyclotron energy hAw. dominates over the exciton Coulomb en-
ergy Fp, and a Landau-like linear increase of energy with magnetic field is predicted
[Aki67]. The B-dependence of the exciton diamagnetic shift for any magnetic field is
therefore well described by an interpolation formula

A(B) =a- (Vb2 + B%—b). (7.5)

The diamagnetic coefficient
= lim 1d2A(B)
2= 2 dB?

(7.6)
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Figure 7.4: Diamagnetic coefficients of exciton states in 2-nm (gray squares) and 4-nm
(black circles) GaAs/AlysGag7As QWs as a function of transition energy. The bottom
energy axis applies to the 4-nm QW; values for the 2-nm QW have been shifted by -110
meV. Zero of the top energy axis is the center of a simulated QW absorption spectrum,
i.e., QW emission peak energy plus Stokes shift (2-nm QW: 7meV, 4-nm QW: 4 meV).
Diamagnetic coefficients at the QW emission peaks are shown as solid symbols.

is obtained from the fit as v2 = a/2b. Parameters a and b are determined by fitting
the mean value of the Zeeman components up to B = 10 T. This fit procedure leads to
nearly identical results for the diamagnetic coefficient o as the quadratic fit up to 4 T.

Figure [[4 shows diamagnetic coefficients of localized exciton states in the 2-nm and 4-
nm GaAs/Aly3Gag7As QWs as a function of transition energy. The top energy axis is
the common energy axis for both QWs; zero energy is chosen as the center of a simulated
QW absorption spectrum. Carrier relaxation in the inhomogeneously broadened QW
exciton band is responsible for a temperature-dependent Stokes shift that varies with
disorder strength [Gur94]. Therefore, the peak energy of the QW luminescence is not a
well suited reference energy. To overcome this problem, the top energy axis of Fig. [[4]
has been renormalized by the Stokes shift. Stokes shifts of 7 meV (2-nm QW) and
4 meV (4-nm QW) have been assumed.

The determination of diamagnetic coefficients from p-magnetoluminescence spectra has
been described above. The diamagnetic coefficients at the emission peaks of both QWs
are shown as solid symbols. The emission peak of the 4-nm QW shifts with v =
22 1eV /T2, while for the emission peak of the 2-nm QW, a diamagnetic coefficient 7o =
15 ueV /T2 is observed. The lowest-energy exciton states are observed ~ 20 meV below
the QW emission peaks. The lowest exciton states in the 4-nm QW have diamagnetic
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Figure 7.5: Ezxciton g-factor of localized exciton states in 2-nm and 4-nm

GaAs/AlysGag7As QWs as a function of emission energy. The same top energy azis
as in Fig. is used, and the same exciton states are shown. Mean values of the
exciton g-factors are indicated by the dotted lines.

coefficients of ~ 10 ueV/T?, less than 1/2 the magnitude of the XDS at the QW emission
peak. For the 2-nm QW, the diamagnetic coefficients of the lowest exciton states are
reduced to ~ 8 ueV/T?2. The diamagnetic coefficients show a systematic increase with
transition energy. The slope of the trend line the for 2-nm QW is smaller than that for
the 4-nm QW.

The Zeeman splitting is also influenced by confinement. Experimentally determined
exciton g-factors for the same exciton states as in Fig. [[4] are shown in Fig. [0 sepa-
rately for 4-nm QW and 2-nm QW. The mean values in the 4nm QW (ge, = —1.4) and
in the 2-nm QW (ge, = —1.65) are indicated by the dotted lines. While the g-factors of
single exciton states in the 4-nm QW show relatively large scatter, the exciton g-factor
distribution observed in the 2-nm QW is rather narrow.

7.3 Discussion

This section discusses the experimental results the for diamagnetic shift of localized
excitons in the narrow GaAs/Aly3Gag7As QWs, and the interpretation of the observed
correlation between XDS and localization energy in terms of the QW interface structure.

Confinement-dependent reduction of diamagnetic coefficients has been observed for
excitons in quantum structures, i.e., QW, QWR and QD [Tar84), Som95, [Bay9§|. The
confinement increases the overlap between electron and hole WFs, leading to a larger
exciton binding energy, and in turn to a smaller exciton Bohr radius. Consequently,
the diamagnetic coeflicient is a measure of confinement in these simple cases of nearly
ideal 1d, 2d or 3d confinement. The effect of QW confinement is apparent in Fig. [k
The average diamagnetic coeflicient is larger for the 4-nm QW than for the 2-nm QW.
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Figure 7.6: (a) Histogram of a Gaussian disorder potential V (r) with variance o2, (b)
inverse curvature of potential minima of the uncorrelated potential V(1) as a function of
potential values. ag denotes the lattice constant, and # the number of potential values.

Exciton localization by random fluctuations of the local bandedges in narrow QWs has
been studied in recent theoretical work, taking the full Coulomb-correlated two-particle
motion into account [Gro05]. Energies and wave functions of exciton tail states were
calculated with and without B-field normal to the QW plane, and diamagnetic shifts
were determined from simulated optical spectra. A correlation between XDS and lateral
wave function extension was observed, showing that the most strongly localized exciton
states have the smallest diamagnetic coefficients. This means that the XDS is a measure
of lateral confinement also in the case of disorder-localized excitons. Note that we will
use the interpretation of the diamagnetic coefficient valid in the weak confinement limit
throughout our qualitative discussion. It is assumed that lateral confinement in natural
quantum dots generally can be described in this limiting case.

In our experiments on 2-nm and 4-nm GaAs/Aly3Gag7As QWs, diamagnetic coeffi-
cients on the order of 10—20 ueV/T? have been observed for all localized exciton states
(Fig. [C4l), showing that all observed exciton states are 1s states. An XDS more than
one order of magnitude larger than for 1s excitons would be expected for 2s excitons
because of their much larger lateral radius. Equation (Z3]) and 2s wave functions for
two-dimensional excitons [Hau04] were used for this rough estimate. At the low excita-
tion densities used in our experiments, biexcitons are not observed. We also have not
found exceptionally small XDS on the order of 1 ueV/T?, as reported by Phillips et al.
for particular exciton states in a narrow GaAs/Aly3GagrAs QW [Ste03, [Phi03].

The positive slope in the XDS distribution as a function of transition energy (Fig. [4)
shows that the lowest exciton tail states have the smallest diamagnetic coefficients, cor-
responding to small relative wave functions [Gro05]. Consequently, the lowest exciton
states are laterally strongly confined states. This result requires detailed dicussion.

To explain the positive slope in Fig. [C4 we consider the simple model of a one-
dimensional uncorrelated, Gaussian distributed disorder potential V (r) with variance
o2 (“white noise”). Figure[ZHl(a) shows a histogram of the potential values of V(r), and
Fig. [CBI(b) the inverse curvature of potential minima as a function of potential values.
The inverse curvature is determined numerically from the discrete second derivate of
V(r) at the potential minima. The inverse curvature is a rough measure of lateral
extension of potential minima. The result (Fig. [LB(b)) shows a general property of
random Gaussian disorder: The inverse curvature of potential minima increases with
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increasing potential values, which means deep potential minima are spatially narrow.
This is plausible because the probability of finding several nearly equal potential values
FE on L neighbouring sites decreases with larger potential fluctuation £. The stated
result can also be obtained in the framework of optimum fluctuation theory or with
methods of statistical topography [Lif88, [Run02].

We consider the simple model of a one-dimensional uncorrelated, Gaussian distributed
disorder potential V (r) with variance o2 (“white noise”). Figure [Z6(a) shows a his-
togram of the potential values of V(r), and Fig. [[BI(b) the inverse curvature of po-
tential minima as a function of potential values. The inverse curvature is determined
numerically from the discrete second derivate of V(r) at the potential minima. The
inverse curvature is a rough measure of lateral extension of potential minima. The
result (Fig. [LB(b)) shows a general property of random Gaussian disorder: The inverse
curvature of potential minima increases with increasing potential values, which means
deep potential minima are spatially narrow. This is plausible because the probability of
finding several nearly equal potential values E on L neighbouring sites decreases with
larger potential fluctuation E. The stated result can also be obtained in the framework
of optimum fluctuation theory or with methods of statistical topography [Lif88, [Run02].

To relate this feature of a random Gaussian-distributed disorder potential to exciton
localization by this potential, it is necessary to take the averaging of the exciton over
underlying disorder into account. We assume that the two-dimensional uncorrelated
Gaussian potential V' (r) describes the spatial variation of the local bandedges in the
QW plane. The averaging with the exciton relative wave function leads to a reduction
of disorder strength, and introduces correlations on the length scale of the exciton Bohr
radius. Potential minima of the underlying disorder potential are smeared out. Taking
the inverse curvature of potential minima as a measure for their lateral extension, we
state that minima in the resulting effective potential Veg(R) for the exciton center-
of-mass extend over several minima of V(r), denoting with R the c.m. coordinate of
the exciton. Excitons are localized at positions where the underlying potential V' (r) is
strongly reduced at several neighbouring sites, i.e., where several deep minima of the
uncorrelated disorder potential occur in close vicinity. Width and depth of minima in
Vet(R) are therefore determined by the probability of finding several deep minima in
V(r) at nearby sites. If V(r) is uncorrelated or exhibits only short-range correlations
below the length scale of the exciton Bohr radius, this probability decreases with in-
creasing depth and number of potential minima involved. It is therefore plausible that
deep minima of Veg(R) tend to be spatially narrow.

It is important to note that the exciton radius is itself confinement-dependent: Stronger
lateral confinement leads to a reduced Bohr radius. Therefore, minima of the underlying
disorder potential are not just averaged out with the same relative wave function, rather
the deep, narrow minima are averaged with the smallest WFs. Because averaging with
a smaller relative wave function is less effective, the inverse curvature of deep minima
increases less than that of higher minima.

Figure [[7] schematically shows several minima in the effective potential Vog(R) for the
exciton center-of-mass resulting from underlying short-range disorder, as well as tran-
sition energies and c.m. wave functions of local exciton ground states. Exciton states
are schematically assigned to transitions in the low-energy tail of the puPL spectrum of
a disordered QW. The total localization energy of an exciton state is inversely related
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to its localization volume. Short-scale well width fluctuations present near the white
noise limit eventually lead to a strong local reduction of vertical confinement energy,
resulting in deep, rare minima in Veg(R). Our result that the lowest exciton states
have the smallest diamagnetic coefficients (Fig. [[4]) means that exciton states in deep
minima have small wave functions. This is schematically depicted in Fig. [ The re-
duction in vertical confinement energy prevails over the increase in lateral confinement
energy.

The dependence of the minimum curvature on potential minimum values in effective
potentials resulting from underlying short-range correlated disorder is shown in Fig. [.8l
For the simple model of a one-dimensional, uncorrelated, Gaussian-distributed disorder
potential on a 1 um long grid with 0.4 nm grid step, smoothed effective potentials have
been determined by convolution of the disorder potential with squared 1s wave functions
with Bohr radii ag = 1...5 nm. For each value of the Bohr radius, the curvature of
potential minima in the resulting effective potential has been determined as a function
of potential minimum values. The obtained distribution for all 5 values of the Bohr
radius has been plotted in Fig. (small black dots), and a straight line has been fitted
to the distribution that shows relatively large scatter. The inhomogeneous distribution
of potential minima shows that deep minima are likely to be narrow, i.e., to have high
curvature; a clear increase in average potential minimum curvature is observed with
increasing potential minimum depth. The same procedure has also been performed for
four correlated potentials. The dashed curve (“exp. corr.”) shows a straight-line fit to
the minimum curvature distribution resulting from a potential that has been simulated

MPL spectrum

|
Energy

Figure 7.7: Schematic representation of the physical situation of exciton localization by
short-range correlated disorder (inset). Effective potential Veg(R) and wave functions
for the exciton center-of-mass in three potential minima (A, B, C) are depicted. Ezx-
citon states are schematically assigned to transitions in the low-energy tail of the pPL
spectrum of a disordered QW. The experimentally observed correlation between XDS
and transition energy (Fig. [TF)) shows that deep-lying exciton states have small wave
functions, as demonstrated in the inset.
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from an uncorrelated potential by convolution with the experimentally determined
correlation function [Fig. BE8(c), Eq. (&I0)]. The remaining three lines in Fig. [[8 show
minimum curvature distributions of exponentially correlated potentials with correlation
lengths £ = 1 nm (dark gray), ¢ = 3 nm (gray), and £ = 5 nm (light gray). The
correlated potentials have been obtained from an uncorrelated potential by convolution
with an exponential function according to Eq. (EI1]). The width of the inhomogeneous
distributions is significantly reduced by the convolution, and the slope in the minimum
curvature distributions is further reduced.

This simple model is of course far from an accurate quantitative description of exciton
localization in correlated disorder potentials. First of all, a one-dimensional model is
considered where averaging is considerably less effective than in two dimensions. In one
dimension, the reduction in strength of a potential by averaging with a 1s wave function
with Bohr radius ap is proportional to /ag, whereas in two dimensions the reduction
is proportional to ap, because averaging is done over a two-dimensional area instead
of a straight line (“v/N law”). Second, if a variation of the Bohr radius is allowed, the
radius would in principle have to be determined for each potential minimum separately.
To keep the model manageable, we have just prescribed different values of the Bohr
radius and determined effective potentials by a global convolution procedure. The
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Figure 7.8: A simple model demonstrates the dependence of the potential minimum
distribution on the correlation length of the underlying potential: Minimum curvature
distributions of simulated Gaussian-distributed 1d potentials with exponential correla-
tions (correlation length £) show that the deepest minima have the largest curvature.
The slope in the distribution of potential minima increases with decreasing correlation
length of the underlying potential. Details are described in the text.
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different potential minimum values and minimum curvatures resulting from the same
minimum in the underlying disorder potential upon averaging with different radii have
been plotted together in Fig. L8 Very small values of the Bohr radius down to 1 nm
had to be allowed to obtain a clearly visible trend. Finally, straight lines have been
fitted to the obtained minimum curvature distributions. Considering the numerous
simplifications in this model, it would certainly be exaggerated to try to determine
the dependence of minimum curvature values on potential depth more accurately. No
claim is made that the average curvature values should actually linearly increase with
increasing effective potential minimum depth.

In view of the simplicity of this model, it is interesting to note the slope of the dashed
curve, representing an underlying potential with correlations determined from the
XSTM experiment. While the solid black curve corresponds to an uncorrelated po-
tential with 0.4 nm “square-box correlations” due to the choice of the grid step, the
dark-gray curve represents a potential with exponential correlations of 1 nm correlation
length. In Fig. [8, a value for the correlation length of the experimentally determined
potential can be determined from comparison with the slope of the lines representing
the simulated correlated potentials. The slope of the line representing experimental
correlations is larger than that for the uncorrelated potential, but smaller than that
for the exponentially correlated potential with correlation length 1 nm. This compares
well with the fact that the experimentally determined correlation length lies between
0.4 nm and 0.8 nm (see Chapter 5). In summary, this “minimal” model demonstrates
that the correlation length of the underlying disorder is encoded in the distribution of
potential minimum curvature as a function of potential minimum values (“minimum
curvature distribution”).

As yet another argument that exciton wave function statistics provides information
about the correlation length of the interface disorder, we consider a different scenario of
exciton localization, where negative slope is expected for the relation between XDS and
localization energy. We focus on localization of excitons by ML islands in the interfaces
of a QW. This type of disorder has been found for GaAs/Aly 3Gag7As QWs grown with
growth interruption [Gro97]. For islands with diameters on the order of the exciton
Bohr radius, the diamagnetic shift of a localized exciton state will be proportional to
the area of the island, while the lateral confinement energy is inversely proportional to
that area. The vertical confinement energy is independent of the lateral extension of an
island. Therefore, there is a different relation between lateral extension of fluctuations
and transition energy of localized exciton states than in the previously studied case
of short-range disorder: The lowest exciton states will show the largest diamagnetic
shift. As a result, negative slope in the XDS distribution of localized exciton states as a
function of transition energy (Fig. [[4]) would be expected, if only ML fluctuations were
present in the QW interfaces [Bar(3]. The positive slope observed in our experiment
therefore excludes this situation. Also note that we observe no ML splitting in the QW
luminescence spectra. The energy difference corresponding to a ML fluctuation in the
2-nm QW is ~ 20 meV.

Recent theoretical work supports our explanation of the positive slope in Fig. [4

LA one-dimensional square well model has been used to calculate single-particle ground state energies
for a perfect QW. For the GaAs/Alp3Gao.7As band offset, the values A, + A, = 436 meV and
Ae: Ap =65 : 35 were used (Adachi 1994).
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as a result of exciton localization by short-range correlated disorder [Gro05]. In the
theoretical study, a positive correlation between XDS and transition energy of exciton
states localized by a random Gaussian potential was observed. The lowest exciton
states had diamagnetic coefficients of ~ 10 ueV/T?. The XDS showed an increase by
a factor of 3 over the range of the localized exciton tail of ~ 20 meV, in reasonable
agreement with our experimental result. The positive correlation between XDS and
transition energy enables the experimental study of exciton wave function statistics.
For random disorder it was shown that the XDS is determined by the local potential
only. Consequently, study of exciton wave function statistics allows the discrimination
between several underlying disorder configurations.

We therefore relate the experimentally observed increase of the XDS as a function of
emission energy to the interface structure of our samples. The qualitative agreement
between our experimental result (Fig. [[]) and theoretical XDS calculations for exciton
localization by random Gaussian disorder [Gro(5], that both show increase of the XDS
as a function of transition energy, reveals that lateral confinement of the exciton states
in our samples is caused by short-range interface disorder. Indeed, large-scale (160
nm) cross-sectional STM topography of the 4-nm GaAs/Aly3Gag7As QW obtained in
a recent study shows mainly short-range correlations on the atomic scale [Rop07].

Finally, we compare our experimental diamagnetic coefficients with theoretical results.
For laterally free excitons in a 4-nm GaAs/Aly3Gag7As QW (corresponding to F =0
in Fig. [4]), theoretical calculations obtained a diamagnetic coefficient vo = 44 eV /T?,
assuming bulk values for the electron in-plane mass [Gro05l Wal98]. However, our ex-
perimental diamagnetic coefficient of ~ 22 ueV/T? observed for the emission peak of
the 4-nm QW is consistent with previous experimental studies: In all magnetolumines-
cence experiments of ~ 5 nm wide GaAs/Alg3GagrAs QWs, values of ~ 25 peV /T2
have been found [Tar84, [Rog86, Som95]. Previous studies attributed discrepancies
between experimental and theoretical values for QW diamagnetic coefficients to exci-
ton localization [Oss&7], or to confinement-related enhancement of the exciton in-plane
reduced mass [Nas89]. Since we observe the strongest reduction of the XDS for the
lowest-energy exciton states several meV below the QW emission peak, exciton local-
ization is unlikely to explain the entire difference between our experimental XDS value
at the QW emission peak and theoretical values for laterally free excitons. Rather,
we attribute the discrepancy to the fact that the theoretical studies did not take the
enhancement of the in-plane electron mass in narrow QWs into account.

Newest calculations show that including the mass enhancement improves the agree-
ment between our experiment and theory. In Fig. [[U, the measured diamagnetic shift
coefficient 7 ., is plotted for several individual localized states as a function of state
energy F, (squares), together with the shift coefficient of the inhomogeneously broad-
ened PL line (y2,40t = 22peV/ T2, full circle). Very accurate shift coefficients could only
be obtained for states well separated from the broadened PL line and by averaging
over the Zeeman doublet, which poses a limit on the statistics. The large number of
small dots corresponds to the calculated shift coefficients for the states in the disorder
potentials simulated from the disorder parameters determined from the XSTM data.
Both the absolute magnitude of the shift coefficients as well as the small increase of
the coefficients with increasing state energy is reproduced by the calculations [Rop07].

As well diamagnetic shift coefficients 7, as effective exciton g-factors g., have been
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Figure 7.9:  [Rop07] Diamagnetic coefficients of single exciton states in the 4-nm
GaAs/AlysGag7As QW (open squares show experimental values) and shift coefficient
of the broadened PL line (full circle). Results of numerical two-particle simulations
including disorder and the full Coulomb-correlated electron-hole motion, based on dis-
order parameters determined from the XSTM experiment on the 4-nm QW, are shown
as dots. The dotted line at 37 pueV/T% shows the no-disorder case in a 4-nm QW with
perfect interfaces.

determined for all localized exciton states in the measurements described above. The
exciton g-factors of the same states as shown in Fig. [[4] are displayed in Fig. [0,
separately for 4-nm and 2-nm QW. The size of the exciton g-factors is comparable to
values for natural quantum dot states reported by other authors [Boc97, Ste02]. The
dependence of the exciton g-factor on quantum well width is mainly due to a drastic
increase of the hole g-factor with decreasing QW width caused by valence-band mixing
[Sne9?]. With decreasing QW width, the modulus of the exciton g-factor increases
(Fig. [CH), consistent with previous results for the exciton g-factor in quantum wells
[Sne92]. The confinement dependence of the effective exciton g-factor is dominated by
the confinement dependence of the effective hole g-factor, g5, which is caused by valence
band-mixing. The effective electron g-factor becomes positive in narrow QW, but it is
overpowered by the much stronger decrease of the negative hole g-factor [Sne92]. The
influence of lateral confinement on the exciton g-factor has been studied by Kotlyar
et al., who considered a contribution to the g-factor that depends on the in-plane
momentum of the exciton state [Kot(O1]. The results showed that the modulus of the g-
factor of strongly localized QD excitons increases with decreasing lateral QD extension,
in agreement with experimental results for QDs. The stronger lateral confinement of the
low-energy exciton states deduced from the diamagnetic coefficients in our experiment
would be consistent with a decrease of the exciton g-factor modulus with uncreasing
emission energy (Fig. [[H). However, no such tendency is observed in the data shown
here.
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7.4 Further findings

In magneto-uPL experiments on wider GaAs/Aly3Gag7As quantum wells, features
have been observed that were not found in the 2-nm and 4-nm QWs. Figure
shows pPL spectra of the 6-nm GaAs/Aly3Gag7As QW in sample QW5 in the range
from B = 0 T to B = 10 T in steps of 2 T. At zero field, the spectrum shows a
single peak and inhomogeneous broadening is ~ 1.5 meV. With increasing field, the
PL maximum shifts with ~ 25ueV/T2. About 2.5 meV below the PL maximum, a
second, broader peak appears. As a guide to the eye, the diamagnetic shift at the PL
maximum (25 eV /T?) and 2.5 meV below the maximum (15 ueV/T?) are shown. The
gray bars mark transition energies at integer multiples of a monolayer.

Figure [[TT(a) shows the magneto-uPL spectrum of the 8-nm GaAs/Aly3Gag7As QW
in sample QW,. The magnetic field was increased from B = 0 T to B = 10 T in
steps of 50 mT, the emission in the energy range 1.555 — 1.568 eV is shown. Far below
the QW peak (a), transitions with linear Zeeman splitting and very large diamagnetic
shift are observed that show linear shift at low B-field of B ~ 4 T. Since the observed
shift coefficient 5 ~ 120 peV/T? is larger than of a 1s exciton in bulk GaAs, these
transitions are attributed to 2s excitons. The corresponding 1s exciton transitions are
not observed. — At position (b), a transition is observed that shows eightfold splitting
and the same parabolic diamagnetic shift for all eight lines.

These findings are not discussed in detail in the framework of our study of the dia-
magnetic shift properties of disorder-localized exciton ground states. Yet they may
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Figure 7.10: pPL spectra of the 6-nm GaAs/Aly3Gayg7As QW in sample QWs. The
magnetic field has been increased from B=0 T to B=10 T.
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Figure 7.11: (a) Magneto-uPL spectrum of the 8-nm GaAs/Aly.3 Gag7As QW in sample
QWsy. (b) Localized 2s exciton transition with linear Zeeman splitting. The diamagnetic
coefficient v = 120 ueV/T? is larger than the XDS of a bulk GaAs 1s exciton. The
transition from quadratic to linear shift (“exciton-magnetoexciton transition”) occurs

at B =~ 4 T. (c) Eight-fold splitting of a transition; the diamagnetic shift has been
removed.

serve to demonstrate the potential of magneto-uPL spectroscopy with respect to the
investigation of disorder in single quantum wells.

7.5 Conclusions

In the low-energy tail of magneto-uPL spectra of the narrow GaAs/Aly 3Gag7As QWs,
positive slope has been observed in the diamagnetic shift distribution as a function of
transition energy. A detailed qualitative discussion of this result has been given, based
on the qualitative picture of the influence of lateral confinement on the exciton wave
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function in natural quantum dots that had been introduced in chapter 3, and assuming
a simple relation between exciton radius and diamagnetic shift.

It was demonstrated in a one-dimensional model that the correlation length of the
underlying disorder potential determines the potential minimum distribution, i.e., the
distribution of the lateral extension of potential minima as a function of potential
values. It has been made plausible that the potential minimum statistics determines
the exciton wave function statistics, i.e., the distribution of exciton radii as a function of
transition energy. This suggests that the correlation length of the underlying disorder
potential determines the slope in the diamagnetic shift distribution. Thus, the concepts
and models that have been introduced allow a qualitative understanding of the slope
in the diamagnetic shift distribution in the low-energy tail of magneto-uPL spectra.

Due to the complexity of the problem of exciton disorder-localization, the introduced
models do, however, not allow a quantitative prediction of the slope in the diamagnetic
shift distribution. For example, one-dimensional models are not suitable for quantita-
tive predictions of diamagnetic coefficients because of the different effect of averaging
of the exciton over underlying disorder in one and two dimensions. Furthermore, the
assumption of the simple relation between diamagnetic shift coefficient and exciton
radius [Eq. [[3)] is not exactly valid in presence of disorder [Gro(5]. This fact will be
discussed in the next chapter. — As a consequence, numerical two-particle calculations
in the framework of the theory of exciton disorder-localization provide the only way of
an accurate prediction of the diamagnetic shift distribution.

A quantitative comparison of experimental diamagnetic coefficients with theoretical val-
ues showed that the effect of in-plane electron mass enhancement in narrow QWs signif-
icantly affects the diamagnetic coefficients of exciton states. The in-plane electron mass
enhancement in narrow QWs had not been taken into account in previous theoretical
studies. Including the enhanced in-plane electron mass, and extending the comparison
of simulated and experimental yPL spectra of the 4-nm GaAs/Aly3Gag7As QW, two-
particle calculations on the basis of XSTM data have shown good agreement between
theoretical and experimental shift coefficients. The size of diamagnetic coefficients and
the slope in the shift distribution are well reproduced by theoretical calculations based
on in-plane disorder with isotropic exponential correlations with 0.4 nm correlation
length and the disorder strength determined from the XSTM data. This result is fur-
ther evidence that mainly short-range correlated disorder on a length scale of a few
lattice constants is responsible for exciton localization in the 4-nm GaAs/Aly3Gag 7 As
quantum well.
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Chapter 8

Negative diamagnetic shift in a GaAs/AlAs
DQW

In the previous chapter, a simple model of the exciton diamagnetic shift neglecting
disorder was used for the interpretation of XDS coefficients of natural quantum dots
in GaAs/Alp 3Gag 7As single quantum wells. In this model, the XDS is always positive
and proportional to the area of the exciton relative wave function. The situation is
more difficult in the presence of disorder. In the framework of the theory of exciton
disorder-localization, a negative contribution to the XDS of disorder-localized excitons
has been observed recently, and the question was posed if also negative diamagnetic
coefficients could occur for exciton ground states [Gro05].

This chapter presents magneto-uPL measurements on a GaAs/AlAs double quantum
well consisting of two 4-nm GaAs wells separated by a 2-nm AlAs barrier (sample QW3).
In a region of the 4-nm GaAs/AlAs DQW sample showing signatures of strong disorder,
some low-energy transitions with negative diamagnetic coefficients have been observed.
The data represent the first clear-cut evidence of negative diamagnetic coefficients of
localized excitonic transitions in a semiconductor heterostructure. Simultaneously to
the negative shift, complicated B-field patterns are observed at the low-energy end of
the spectral emission region below the DQW peak. To the best of our knowledge,
similar line patterns in magneto-uPL spectra have not been reported.

In the first section, the experimental results are described. The second section discusses
the origin of the observed negative diamagnetic coefficients and the complex magnetic-
field patterns. Recent theoretical investigations, stimulated by our experimental ob-
servation of negative diamagnetic coefficients, arrived at the result that negative shift
does not occur for exciton ground states under rather general circumstances [Mul06].
Nevertheless, we discuss a simple model that suggested that the combination of disor-
der and the influence of the magnetic field on the exciton wave function could account
for the negative shift. Subsequently, the question is discussed if the observed negative
diamagnetic coefficients and the complex magnetic-field patterns are related to charged
exciton transitions.
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Figure 8.1:  Spatially integrated luminescence of the studied region of the GaAs/AlAs
DQW from an area of 4 x 15 um? (T =3 K, I ~ 1uW). The inset zooms into the low-
energy tail of the luminescence spectrum. The lowest transitions are found ~ 70 meV
below the DQW emission peak.

8.1 Experimental results

The spatially integrated emission of the DQW heterostructure from a 4 x 15 um? large
region is shown in Fig. The sample temperature was T = 3 K. The sample was
optically excited by a cw argon laser (514 nm, linearly polarized) with a total power
of ~ 1 uW. The luminescence is attributed to E} — HHy transitions [Moo88]. Below
the DQW emission peak, many spectrally narrow emission lines are observed, that are
tentatively attributed to localized exciton transitions. The occurrence of many low-
energy emission lines down to 70 meV below the center of the DQW emission peak
at 1.69 eV is interpreted as a signature of strong interface disorder in the studied DQW
region.

To estimate the strength of the involved interface fluctuations, single-particle confine-
ment energies have been calculated for symmetric double square well structures with
varying widths of the wells and the central barrier. For GaAs/AlAs band offset and
offset ratio, the values A = 1.58 eV and f./f;, = 0.65/0.35 have been used [Ada94].
Figure B2 gives a quick overview of the influence of variation of well and central barrier
width on the transition energy. For simplicity, well and barrier widths have been varied
independently, and a variation of the exciton binding energy has been neglected. The
isoenergy lines in the plane of well width and central barrier width are shown. Since
the energy of localized transitions is still increased by lateral confinement energy, tran-
sitions as low as 1.63 eV require a combination of local increase in well width by several
monolayers and a strong reduction, or even local perforation, of the central barrier.

Before the results of the magneto-uPL experiments are shown and discussed, some
words to the electronic structure of the double well heterostructure are necessary. Fig-
ure B3 shows the band edges in a symmetric 4-nm GaAs/AlAs DQW with 2-nm central
AlAs barrier. The conduction band edge at the center of the Brillouin zone (I") is shown
as solid line. Since AlAs has an indirect band gap, also the conduction band edge at
the X-point of the Brillouin zone is shown as a dashed line. In addition, the energy of
the lowest electron state in the GaAs wells is indicated by the dash-dotted lines.
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Figure 8.2: Ground state exciton transition energy in a symmetric GaAs/AlAs dou-
ble square well with central AlAs barrier. Lines of constant energy are shown under
variation of well width and central barrier width.

While the conduction band offsets at I" cause exciton localization in the GaAs wells,
the conduction band offsets at X lead to localized electron states in the central AlAs
barrier. Figure shows that the width of the GaAs wells is large enough to prevent
the formation of a type-II ground state: The lowest electron state in the GaAs wells

lies below the conduction band minimum at X in the AlAs barrier (E(i(A1 As)- Type-1I

ground states occur for GaAs wells narrower than 3.5 nm; then the Eg ground state in
the wells is pushed above the Eg ground state in the AlAs barrier [MooSS].
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Figure 8.3: Band edges in a GaAs/AlAs double quantum well heterostructure. Solid
lines represent conduction and wvalence band edges of the bulk material at I'; dashed
lines represent the conduction band edge at the X-point. A band offset ratio f./fr, =
0.65/0.35 is assumed. Confinement energies of the lowest ' electron state and the lowest
hole state are shown dash-dotted.
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Figure 8.4:  Well asymmetry dependence of the ground state z wave functions in a
GaAs/AlAs double quantum well. The solid lines show electron (e) and heavy-hole (h)
ground state wave functions in a symmetric DQW. The effect of a displacement of the
central barrier by 0.1, 1, and 10 % of the well width is shown: The wave function
amplitude in the narrower well is strongly suppressed.

In a symmetric type-I DQW, where two quantum wells are separated by a narrow
tunneling barrier, the single-particle ground state has the same symmetry as the het-
erostructure. In the symmetric ground state, the probability for the electron to be in
either one of the wells is identical, and the ground state wave function has a local min-
imum in the central barrier. In a perfectly symmetric DQW, the single-particle ground
state z wave functions are either symmetric or antisymmetric. In the symmetric ground
state, the probability for the electron to be in either one of the wells is identical, and
the ground state wave function has a local minimum in the central barrier (Fig. B4).
The first excited state is antisymmetric and its wave function has a node in the center
of the tunneling barrier. Asymmetry of the wells leads to a mixing of symmetric and
antisymmetric states; even a slight asymmetry has drastic effects on the ground state
wave functions [Gal89]. As shown in Fig. B4, already a displacement of the central
barrier by 1 % of the well width strongly suppresses the wave function amplitude in
the narrower well.

In a real heterostructure, deviations from the ideal structure always introduce slight
asymmetry. Therefore, interface fluctuations in the DQW cause a prevalence of lo-
calized excciton states in the locally wider well. We therefore suggest that local well
width fluctuations, in combination with the relatively weak coupling between the wells,
preferrably lead to the formation of quantum well dot (QWD) exciton states in one
of the wells. Therefore, within the scope of the discussion of our experimental results
the simple picture of an exciton localized in a two-dimensional disorder potential will
be tentatively used in the following paragraphs. Specifically, it is — again tentatively —
assumed that a B-field normal to the QW planes does not change the z-symmetry of a
local exciton ground state. We will therefore relate the diamagnetic shift of localized
exciton states in the DQW to the structure of the local lateral disorder potential for
the moment.

Magneto-uPL experiments

Two magneto-uPL spectra from the strong-disorder region, taken at positions separated
by a few pm, are shown in Fig The spectra were taken at T'= 3 K and under low
excitation conditions (I ~ 1uW). The B-field was increased in steps of 50 mT from
B =0T to B =10T. In the region of the DQW emission peak at £ = 1.69 eV, the
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positive quadratic diamagnetic shift of all transitions is cleary observed. At the DQW
peak, exciton states have diamagnetic coefficients of ~ 17 ueV/T?2. In the energy region
down to 70 meV below the DQW emission peak, spectrally narrow emission lines of
localized exciton states are observed. Below ~ 1.64 eV, deviations from the positive
quadratic B-field shift are found. Figure BH(b) shows that also negative value occur in
the distribution of diamagnetic coeflicients.

The diamagnetic shift coefficients of ~ 17 ueV/T? at the DQW emission peak are
significantly smaller than, e.g., in a 4-nm GaAs/Aly3Gag7As quantum well, where
shift coefficients y2 ~ 25 ueV/T? have been found [Tar84, [Rog86], Som95, [Exrd06]. This
is consistent with the fact that the exciton binding energy in a GaAs/AlAs QW is
larger than in a GaAs/Aly3Gag7As QW of the same width, which is caused by the
combination of conduction band nonparabolicity and the dieelectric mismatch between
GaAs and AlAs [And90]. For a perfect 4-nm GaAs/AlAs QW, Andreani et al. obtained
an exciton binding energy Ej = 17 meV. From the conduction band nonparabolicity in
GaAs, an effective in-plane electron mass m. = 0.9 my was determined. Here, this value
for the effective in-plane electron mass and the in-plane heavy-hole mass m = 0.23 mg
are to used to calculate the exciton Bohr radius corresponding to the shift coefficient
2 = 17 ueV/T? from the relation yp = %%QZB. As a result, the lateral Bohr radius
ap ~ 6 nm is found.

For most emission lines below the DQW peak, the Zeeman split components can be
followed over the complete B-field range B = 0 — 10 T. Small linear Zeeman splitting
is observed, corresponding to an exciton g-factor |ge,| ~ 1 [Sne92]. The average of the
observed exciton g-factors is smaller than in the 4-nm GaAs/Aly3Gag7As QW, where
the average value |ge,| = 1.4 has been found.
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Figure 8.5: (a) Spatially integrated luminescence of the studied region of the GaAs/AlAs
DQW from an area of 4 x 15 uym?. The inset zooms into the low-energy tail of the
luminescence spectrum. The lowest exciton states are found ~ 70 meV below DQW
emission peak. (b) Diamagnetic coefficients of localized exciton states as a function of
transition energy. Between 50 and 65 meV below the DQW peak, negative diamagnetic
coefficients are observed.
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Figure 8.6: Magneto-uPL spectra of the 4-nm GaAs/AlAs DQW at two different spatial

positions some pm apart. Energy is specified relative to the DQW emission peak at
1.69 eV. The magnetic field was increased in steps of 50 mT.
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Figure 8.7:  Magneto-uPL spectra in the low-energy tail of the emission spectrum
showing exciton states with negative diamagnetic coefficients. The emission lines with
negative shift are fitted by A(B)x = 72 - B> + g B using the fit parameters: (a)
Y2 = _15,U/GV/T27 |gea:| = 5.5, (b) Y2 = _3,U/GV/T2) |gez| =5, (C) Y2 = _25N6V/TQ;
|gex| =6.5.
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Figure 8.8:  Magneto-uPL spectrum of the low-energy end of the spectral emission
region below the DQW peak. Complicated shifts, line crossings and anticrossings, and
emerging lines as a function of increasing magnetic field.

At energies above ~ 1.64 eV, all transitions show simple, linear Zeeman splitting and
positive, quadratic diamagnetic shift. Below ~ 1.64 eV, also different behaviour is ob-
served. Figure shows emission lines with negative XDS coefficients and clearly re-
solved linear Zeeman splitting in the energy range between 1.62 eV and 1.64 eV at three
different spatial positions. The magnetic field-dependence of the Zeeman components
can be followed in the B-field range up to ~ 5 T. In Fig. BT, the Zeeman components
of the three transitions with negative shift coefficients are marked by white dots. The
exciton doublets are well fitted by A(B)+ = 7o - B?+ g B, using the fit parameters (a)
Yo = —15ueV/T2, |gez| = 5.5, (b) 72 = =3 ueV/T?, |gez| = 5, (¢) 72 = —25 ueV,/T?,
|gez| = 6.5. The precision of the diamagnetic coefficients is 1 peV/T?, the g-factors
have been determined with an accuracy of +0.2. Figure also shows an emission line
with positive shift coefficient 79 = 5peV/T? and exciton g-factor |ge,| = 1.4 about
2 meV below the transition with negative diamagnetic coefficient.

Figure shows the B-field dependence of some emission lines at the very low-energy
end of the spectral emission region below the DQW emission peak. We observe com-
plicated shifts, crossings and anticrossings, and both emerging and vanishing lines. At
B ~ 5.5 T, an anticrossing between two lines at F ~ 1.6287 ¢V is visible in Fig. B& at
E ~1.628 ¢V and B = 7 T, a crossing is observed. A line visible at F ~ 1.629 eV at
low magnetic field is no longer observed at B > 4 T; at £ ~ 1.6295 eV and B =~ 6 T,
another line becomes visible that is not observed at lower field strength.

In total four transitions with negative diamagnetic coefficients have been observed at
spatial positions separated by some um. All lines with negative coefficients are very
weak, especially the energetically lowest transition at 1.6254 eV, which is not shown in
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Figure 8.9: Magneto-uPL spectra at four different spatial positions. Zeeman compo-
nents of the transitions with negative diamagnetic coefficients are marked by white dots;
the mean value of the Zeeman components is marked by a dash-dotted line. In (a), (b)
and (d), pairs of transitions with approzimately equal negative and positive diamag-
netic coefficients and large Zeeman splitting are observed. Zeeman components of the
corresponding transitions with positive curvature are marked by white dots, too.
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Fig. The intensity of these transitions is close to the noise level of the CCD.

All four negative-curvature lines are shown in Fig. together with additional lines
that appear in close vicinity to the negative-shift transitions at slightly higher energy. In
what follows, the transitions with negative curvature in Fig. B0 (a)-(d) will be referred
to by “A?’ to (LD”.

The lowest-energy negative-curvature transition in Fig. BO(a) (line “A1”) is especially
weak. Close inspection of the magnetoluminescence data allows to follow the Zeeman
components in Fig. B9(a) up to about B = 4.5 T. The Zeeman splitting is extremely
large with an effective exciton g-factor modulus |ge,| = 7.5 £ 0.2. The diamagnetic
shift of the mean value of the Zeeman doublet is to a good approximation parabolic
with a shift coefficient 5 = —25 41 peV/T2. At close inspection of the magneto-uPL
spectrum, an additional weak transition (“A2”) is observed at 1.6265 eV (B =0 T)
with almost the same extremely large g-factor (|ges| = 7.7 £0.2) as transition “Al1”
and diamagnetic coefficient 7o = +27 + 1 peV/T2. Some meV above “Al”, a pair
of stronger lines is observed: The line at ~ 1.626 eV shifts with v, ~ 7 ueV/T? and
displays small Zeeman splitting (|ge,| = 0.7 £0.1). A possible Zeeman splitting of the
emission line at ~ 1.627 eV can not be resolved; the corresponding exciton g-factor is
on the order of or smaller than |ge;| = 0.1.

Figure B9(b) shows the second-lowest transition with negative curvature at ~ 1.629 eV
(“B1”). With increasing B-field, it shifts to lower energy with diamagnetic coefficient
42 = —15+ 1 peV/T2. The linear Zeeman splitting is described by |gez| = 5.5 £ 0.2.
In a ~ 4 meV wide spectral region above “B1”, several lines with strongly differing
shift- and splitting-patterns are observed. The transition at ~ 1.63 eV displays zero
magnetic shift and small, nonlinear splitting with increasing magnetic field. This line
has slightly larger full halfwidth (200 peV) than the other strong lines in Fig. BO(b).
Line “B2” shifts to higher energy with v = +20 4 1 ueV/T2. Like in transition “B1”,
the Zeeman splitting is described by an exciton g-factor |ge,| = 5.5 £ 0.2. At zero
magnetic field, the line “B2” is surrounded by two lines with small positive shift and
unresolved Zeeman splitting. The lower line shifts with v, = 3 4+ 1 ueV/T?2, the higher
line with 7o = 8 & 1 ueV/T2. At about 1 meV higher energy, another line with shift
coefficient 7, = 8+1 peV/T? and unresolved Zeeman splitting (|ge;| < 0.2) is observed.

In contrast to the patterns in Fig. E9(a) and (b), no strong lines are observed in the
direct vicinity of the negative-curvature line “C” in Fig. R(c). The shift coefficient
of this line is 72 = —3 + 1 peV/T?, the Zeeman splitting is described by |ge.| =
54 0.2. About one meV below this line, two weak lines are observed. The splitting
pattern resembles that of a “dark exciton” transition with large fine-structure splitting;
however, the splitting observed here is extremely large (AE = 0.6 meV). The mean
value of these two weak lines displays the same diamagnetic shift as line “C”, v9 = —3+
1 ueV/T2. The magnetic-field behavior of the transition at 1.633 eV, about 1.5 meV
above “C”, can not be determined, because only one of two Zeeman components can
be followed with sufficient precision.

Finally, Figure B9(d) shows line “D1” with negative diamagnetic coefficient vy, = —25+
1 ueV/T? and exciton g-factor modulus |ge,| = 6.540.2. About 2 meV below line “D1”,
a transition with small positive shift coefficient 75 = 5+ 1 ueV/T? and small Zeeman
splitting (|gexz| = 1.4 £ 0.1) is observed. Above “D1”, a pattern consisting of one line



134 8. Negative diamagnetic shift in a GaAs/AlAs DQW

(@)
—~ X
= L
S Yy
g Al
5 f
=
3 - e
o TS -
77100 peV | 110 peV ) ‘ ' ‘
1.625 1.626 1.627 1.628 1.629
(b) 4 Energy (eV)

1625 4 1626 + 1.627 1.628 1.629
'

Magnetic field (T)
w

1.627 1.628 1.629
Energy (eV)

Figure 8.10: (a) Linearly polarized emission of the transitions shown in Fig. Bd(a),
and (b) polarization angle scan, (c) magnetic-field dependence of the same transitions.
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with large shift and large Zeeman splitting (72 = 25 + 1 ueV/T2, |gez| = 6.5+ 0.2)
and two lines with unresolved Zeeman splitting and smaller shift is observed, somewhat
similar to the patterns that are found in Fig. R(a) and (b).

Additional information about transitions “A1” and “A2” has been obtained from dif-
ferential polarization spectroscopy by varying the linear polarization state of excita-
tion and detection simultaneously. Figure BI0(a) shows a polarization-angle scan of
the zero-field spectrum in Fig. B(a). The fine-structure splitting of transitions “A1”
(AE = 100 £+ 10 ueV) and “A2” (AE = 110 + 10 ueV) is clearly observed in the os-
cillation of the sum of the non-resolved fine-structure components with period 7 in
the polarization angle. The fine-structure components are polarized along [110] and
[110] directions of the crystal and, strikingly, the polarization of lower and higher fine-
structure components is reversed in both transitions. This is rather clear evidence that
the transitions “A1” and “A2”, which display almost equal modulus of their diamag-
netic coefficients (“A17: vo = —25 4+ 1 peV/T2?, “A27: ~y = +27 + 1 peV/T?), are
closely related.

Fig. shows the zero-field spectrum from Fig. BH(b), and the excitation-power
dependence of the strong lines. The intensity of the three strong lines in Fig. RIIa)
increases approximately at the same rate as the QW emission peak and saturates at
rather low excitation power (~ 1 pW). The intensity of the lines “B1” and “B2” is
very low and not shown in Fig. E9(b). Line “B3” shifts to lower energy with increasing
excitation power; this indicates that it involves (at least) two spectrally non-resolved
components. For comparison with the uPL spectrum in Fig. BTIa), the corresponding
magneto-uPL spectra are shown in Fig. RTI(b) and (c).

8.2 Discussion

In the following paragraphs, possible explanations for the observation of negative dia-
magnetic coeflicients and complex line patterns are discussed. First, a simplified model
of disorder-localized exciton ground states in deep, narrow minima in presence of a
magnetic field is described that suggested that negative diamagnetic coefficients could
occur for exciton ground states in presence of strong disorder.

Exciton center-of-mass shift

The question if negative diamagnetic shift occurs for exciton ground states in presence
of strong disorder was raised recently [Gro05]. The idea that this might happen is
based on the following reasoning: The magnetic field influences the exciton relative
wave function. With increasing magnetic field, the exciton radius decreases; this effect
has been discussed in chapter 2 in this work. Since, in presence of disorder, exciton
relative and center-of-mass motion are coupled, the magnetic field also acts on the
c.m. wave function. The following section introduces a simplified model to discuss
the question if this could lead to negative diamagnetic shift for exciton states in deep,
narrow minima.

The idea is that, loosely speaking, in certain disorder configurations the total volume
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Figure 8.12: (a) Exciton relative wave function at
B =0 and B > 0. (b) Shape of a potential mini-
mum in Veg(R) at B =0 and B > 0. The shift of
the exciton c.m. ground state to lower energy with
increasing B-field is indicated.

of the confined exciton might increase while the magnetic field leads to a shrinking of
the lateral exciton radius, due to the possibility to extend further in vertical direction
in deep, narrow effective minima that become even deeper due to the less effective
averaging with a smaller lateral wave function.

The negative contribution to the diamagnetic shift of exciton ground states described
above has been discovered in a recent theoretical study [Gro05]. The basic idea is
schematically shown in Fig. KI3|(a) and (b) in the envelope function picture. Short-
range correlated disorder in the QW interfaces [the underlying single-particle disorder
potential is not shown in Fig. RI3(b)] is assumed to lead to the localization of an
exciton state in the effective potential Vig(R), resulting from averaging of the exciton
over underlying disorder with its Bohr radius ap. The solid line in Fig. BT3l(a) shows
the radial part of the exciton relative wave function for zero magnetic field. The dash-
dotted line indicates the relative wave function at B > 0; the Bohr radius is reduced
due to the magnetic field. Figure RI3|(b) shows the shape of a potential minimum in
the effective potential for the exciton center-of-mass, resulting from the averaging of the
exciton over underlying disorder with its zero-field Bohr radius ag. The eigenenergy
of the local exciton ground state in Veg(R) is shown as a solid horizontal line. At
B > 0, the averaging of the exciton with the reduced Bohr radius is less effective.
For disorder configurations with correlation lengths below the exciton Bohr radius,
the shape of the effective potential minimum will therefore change with increasing
magnetic field: In Fig. BI3I(b) the case is shown that the minimum becomes steeper
and deeper. Correspondingly, the eigenenergy of the exciton c.m. ground state will
change; in Fig. BI3(b) it decreases with increasing magnetic field. The (negative)
difference between the eigenenergies of the exciton c.m. states at B > 0 and B = 0 is
the center-of-mass shift.

For an accurate determination of exciton energies and magnetic shifts in a given disor-
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der potential, two-particle calculations are necessary [Gro05]. Since such two-particle
calculations are far beyond the possibilities of our study, we determine an estimate of
the center-of-mass shift in a simple model. Values for the reduction of the Bohr radius
of laterally confined excitons in two-dimensional parabolic minima from Halonen et
al. [Hal92] are used as a clue; the results of these numerical calculations have been
described in chapter 3.

According to Eq. B48, the low-field B-dependence of the exciton Bohr radius can be
expressed as

(p(B*)'? = (p(0)*)'/ (1 -

B2

1633+"')’ (8.1)
where By = hi/(e(p?)) is the characteristic field describing the transition from low-field
to high-field (exciton/magnetoexciton) regime defined in Eq. ([ZZI]). Next, the effect
of B-dependent averaging on the depth of potential minima in V.g(R) is evaluated.
The averaging of the exciton with its relative wave function reduces the strength of
the local band edge fluctuations, and consequently the depth of potential minima in
Veg(R). Assuming isotropic correlations with correlation length £ for the underlying
disorder potentials V.(pe), Vi(pn), the ratio of the numbers of independent potential
values in the single-particle and the averaged c.m. potential is ~ (ag/€)? in two
dimensions. Therefore, on average the depth of potential minima is reduced by the
factor ag/¢ (“1/v/N law”). Denoting with E the values of potential minima in the
underlying disorder potential, we obtain for the B-dependence of potential minimum

values F’ in Veg(R) (see also Fig. B3

| Bl - _clE]

E'(B) = “ap(1—1/(16B2)-B%) ~  ap

+ Ye.m. B2 (8.2)

Here, ¢ > 0is a factor that depends on the effective shape of the potential minimum, and
we have defined the (negative) c.m. diamagnetic coefficient . ,.. Since the transition
energy of the local exciton ground state is obtained by adding confinement energy F.
and exciton binding energy FEx, the B-dependence of these energy terms contributes
to the B-dependence of the exciton transition energy. However, the influence of the
magnetic field on the exciton binding energy, that occurs concomitantly to the shrinking
of the exciton radius, is a higher-order effect, just like in the no-disorder case. The
confinement energy FE. significantly contributes to the exciton transition energy in
deep, narrow minima. However, our subsequent simulations of disorder-localized c.m.
exciton states showed that including the confinement energy does not qualitatively
affect the B-dependence expressed in Eq. (B2). Therefore, it is suggested that the total
diamagnetic coefficient 75 of a disorder-localized exciton state is approximately the sum
of the positive coefficient ¢ (“relative shift”) and the negative c.m. coefficient e .
(“c.m. shift”),

Y2 = Yrel + Yem. - (83)

For a numerical estimate of the c.m. shift, a simple model is introduced, since a
numerical treatment of the full Coulomb-correlated exciton motion in lateral disorder
is beyond the scope of this study. For the underlying disorder, several realizations
of two-dimensional, uncorrelated, Gaussian-distributed disorder potentials are taken
(grid size 160 x 160 nm?, grid step = lattice constant ajrg) = 0.4 nm). Effective
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c.m. potentials are obtained by convolution with scaled 1s wave functions, according
to [Zim97]. For the Bohr radius of the exciton states in deep minima, ag = 4.5 nm is
taken. This value corresponds to a relative shift of o =~ 10 ueV /T2, using m. = 0.09 mg
and my = 0.23 mg for the in-plane electron and heavy-hole mass. The shift coefficient
y2 =~ 10 ueV/T? conforms with the largest shifts observed in the low-energy tail of
the QW spectrum [Fig. BH(b)]. We choose the strength of the underlying disorder
large enough so that the lowest exciton ground states in Vig(R) occur between 70
and 50 meV below the mean value of the disorder potential. We study the effect of a
reduction of ap by a few percent. Figure BI3c) shows calculated c.m. coefficients,
assuming a reduction of the exciton radius by 5% at B = 10 T. The size of the c.m.
shift depends on the potential minimum shape; the steepest minima have the largest
negative c.m. shifts. At energies around —50 meV, the largest negative c.m. coefficients
are Ye.m. ~ —35 ueV/T2.

Contrary to this estimate suggesting that the observed negative diamagnetic coefficients
might be explained by the center-of-mass shift of exciton ground states in deep, narrow
potential minima, a theoretical results has been obtained very recently that excludes
negative shift for exciton ground states under rather general conditions. Stimulated by
our observation of negative diamagnetic shift coefficients, Muljarov and Zimmermann
have established the following

Theorem [Mul06]: The diamagnetic shift A, (B) = E4(B) — E4(0) of a
(local) exciton ground state « in arbitrary three-dimensional confinement
potential is always positive, A,(B) > 0.

The discrepancy between the above estimate and the stated theoretical result is ex-
plained by the fact that the influence of the magnetic field on the exciton wave function
is not limited to the reduction of the exciton radius. In an external magnetic field, the
exciton wave function acquires a phase, which is related to the beginning cyclotron
motion of electron and hole. Actually, this effect has to be included in a calculation
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of the exciton energy shift already at arbitrary low magnetic field. What is more, the
factorization in center-of-mass and relative wave function leads to wrong results in pres-
ence of strong disorder in this situation. Only the full two-particle exciton Hamiltonian
including disorder and magnetic field [Gro05] gives reliable results. A corresponding
positive (second-order) contribution to the exciton energy results that prevents the
diamagnetic shift of exciton ground states from becoming negative in rather general
disorder. For details of the result of Muljarov and Zimmermann, the reader is referred
to their intended publication [Mul06].

The conclusion remains that the center-of-mass shift leads to a negative contribution
to the diamagnetic shift of exciton ground states in presence of disorder, but that
negative diamagnetic shift does not occur. However, it can lead to exciton transitions
with very small diamagnetic shift. Such a transition has been observed in a recent
experiment [Phi03]; the extremely small diamagnetic shift coefficient o = 0.6 peV /T2
observed in this experiment can probably be attributed to the influence of the negative
center-of-mass shift.

The diamagnetic shift of excited exciton states is not necessarily positive [Mul06]. How-
ever, if excited state transitions were involved, then also corresponding ground state
transitions with significantly larger oscillator strength should be observed at lower en-
ergy. At least for transition “A1”, this can be excluded: Figure B7(a) shows that no
transitions are observed at least in a several meV wide region below “A1”.

Another hypothetic explanation for the appearance of pairs of transitions with neg-
ative and positive shift (Fig. BO) is immediately excluded by the result of Muljarov
and Zimmermann: The possibility that the magnetic-field dependent splitting between
these pairs is caused by a magnetic-field dependent tunnel coupling between neutral
exciton states in the two GaAs wells separated by a narrow AlAs barrier can be ex-
cluded, because the above result is valid for exciton ground states in an arbitrary
three-dimensional confinement potential.

On the other hand, the complicated shifts, level anticrossings and crossings shown in
Fig. are in fact likely explained by the complicated interactions between (possibly
charged) exciton states in coupled natural quantum dots, most probably separated by
a thin AlAs barrier. Optical spectra of coupled quantum dots have been measured in
recent years [Sch97, [Bay0T), [Kre(5, [Orf05]. Recently, optical spectra of an asymmetric
pair of coupled InAs quantum dots have been measured. The states of both QDs could
be tuned into resonance by application of an external electric field [Sti06]. The observed
rich patterns of level anticrossings and crossings in electric-field-dependent spectra were
interpreted as evidence for a superposition of charge and spin configurations of the two
dots. A distinct X-pattern, where anticrossings and crossings are observed at slightly
differing detuning, was explained by the Coulomb energy shift between two charged
exciton states in the coupled dots. This result will be discussed in a bit more detail in
the next section in the context of charged exciton transitions.

Exciton complexes and charged exciton transitions

In presence of residual impurities (donors, acceptors) in an intrinsic crystal or in pres-
ence of a background charge density, excitons form different types of bound complexes.
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Before exciton transitions in three-particle complexes of an electron or hole bound to
an exciton are treated, the possibility that the observed line patterns described above
are related to transitions of excitons bound to residual impurities is briefly considered.

There are many arguments against the observation of impurity-bound exciton tran-
sitions in our experiments. First, even more and more closely spaced spectral com-
ponents are expected for the principal transition region of impurity-bound excitons
[Tho62, [Kar94], making impurity analysis difficult. Therefore, in practically all stud-
ies concerned with impurity analysis, the spectral region corresponding to transitions
which leave the donors in one of the excited hydrogenic states (n > 1) has been used,
where the PL intensity is much weaker than in the principal region, but the separations
between PL peaks of different donors are much larger. The relatively well separated
lines in Fig. do therefore not exactly comply with spectral patterns expected for
the principal region of impurity-related transitions. Another, possibly much stronger
argument is related to the fact that it could be expected that single impurities would be
observed in a narrow quantum well; the differing impurity positions in the well would
make the occurrence of different transition energies for the same type of impurity-
related exciton transitions plausible. In this context, it is interesting that almost all
impurity-related luminescence measurements to date have probed a large collection of
emitters. The fine structure luminescence of excitons bound to single impurities in
GaAs has been reported only recently [Era(4]. Polarization-angle-dependent PL mea-~
surements showed that the polarization anisotropy of the impurity-related transitions
reached unity, as expected for a single emitter [Era04]. Previously, the averaging over
a large number of emitters had concealed this effect.

Such a polarization anisotropy is not observed here, as demonstrated in Fig.
Rather, the polarization-angle-dependent spectra in Fig. show fine structure split-
ting of the transitions “A1” and “A2”, and the characteristic oscillation of the in-
tensity maximum of the two spectrally unresolved fine structure components reveals
polarization of the fine-structure components along [110] and [110] directions. This
exchange-induced fine structure has been interpreted as unambiguous evidence for ex-
citon localization in anisotropic confinement potentials [Gam96]. It is concluded that
impurity-related transitions constitute no plausible explanation at least for transitions

“A1” and “A2”.

Next, three-particle complexes of an electron or hole bound to an exciton are considered.
The existence of three-particle complexes of an electron or hole bound to an exciton in a
semiconductor in presence of a small background electron density has been predicted by
Lampert [Lam58]. The negatively charged trion, X, consisting of two conduction band
electrons bound to a valence-band hole, is the analogon of H™, while X, consisting of
two holes bound to an electron, is the analogon of H; Experimentally, trion transitions
have been first observed in quantum wells [Khe93| [Fin95, [Shi9%, [Fin96b], where the
trion binding energy is enhanced by approximately an order of magnitude relative to
bulk [Tho90]. The trion binding energy is defined as the difference between exciton
energy and trion energy, Bx- = Ex — Ex-.

It has been pointed out that mixed type-I/type-II GaAs/AlAs double quantum wells
are an especially interesting system for the study of trions [Bar(5]: In an asymmetric
GaAs/AlAs structure, where two GaAs wells with different widths are separated by a
narrow AlAs barrier. The staggered arrangement of the confined electronic states Er in
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Figure 8.14: Schematic diagram of the con- AlAs  GaAs AlAs GaAs AlAs
duction and valence band edges of an asym- —

metric GaAs/AlAs DQW showing the lowest 4
confined X and ' electron states and hole
states. The dominant excitation mechanism
and the limiting electron and hole relaxation hw
mechanisms are indicated by arrows. After

[Daw03). slow hole tunneling

_ o

the narrower well, Ex in the barrier, and Er in the wider well gives rise to an efficient
transfer of photoexcited electrons from the narrow to the wide well. As a result, the
electrons which are photoexcited in the narrow QW accumulate in the wide well, while
the photoexcited holes remain trapped in the narrow well [Bar05]. Even in a well wider
than 3.5 nm as in our case, where the minimum of the lowest electron subband is below
the energy of the X-electron in the AlAs barrier, a situation may be realized locally
that enables efficient electron transfer from one to the other well: Lateral confinement
of an electron may locally increase the electron energy above Eifl 40 €nabling efficient
transfer of electrons from one well into the other locally. The situation resembles that of
two coupled quantum dots with different confinement energies, where an intermediate
level in the barrier allows effective tunneling from one to the other dot. This effect will
lead to a locally increased electron density in one of the wells near this “charge-transfer
channel”. Due to this process, the formation of negative trion states is favored in the
locally wider well.

T _._

fast electron scattering

Figures BI8(a) and (b) schematically show negatively charged trion states in the non-
interacting particle approximation. The lowest electron and hole sublevels are indi-
cated. In a negative trion, a heavy hole with total angular momentum J = 3/2 and
angular momentum projection J, = £3/2 binds to two electrons with spin S = 1/2,
S, = 1/2. In the lowest trion states, both electrons populate the lowest electron sub-
level. Figure BI0|(a) represents the trion singlet state; of course, the wave function
in the singlet state is actually the difference of two spin configurations with reversed
spins. Due to the antiparallel electron spins, the total spin of the negative trion singlet
is given by the effective hole spin S = 3/2, S, = +£3/2. The two configurations in
Fig. BI0(b) represent the trion singlet state, where the spins of the two electron are
aligned in parallel; the third spin configuration is not shown. The total spin of the trion
triplet state is S = 5/2, and S, takes the half-integer values +1/2, +3/2 and £5/2.
Figure BTH(c) shows the term scheme of electron (e), singlet trion (T;) and triplet trion
(T}) states and the allowed dipole transitions. Dark states exist in the triplet channel
(S, = £5/2). The transition energy of the triplet states is higher than of the singlet
due to the exchange interaction.

The magnetooptical spectra of trions are not yet well-known and more complex than
neutral exciton spectra because of the more elaborate Coulomb interactions. A negative
diamagnetic shift of the recombination line of the quantum well trion singlet in a weak
magnetic field and the existence of cyclotron replica due to the transfer of a quantum
of cyclotron energy in the process of electron-hole recombination has been observed
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Figure 8.15:  FEzamples of spin configurations of negatively charged exciton states in
the independent-particle picture: (a) negative trion singlet, (b) negative trion triplet.
The dashed ellipsis indicates the possible recombination of an electron-hole pair, leaving
final states behind. (c) Term scheme of electron (e~ ), singlet trion (Ts) and triplet
trion (T;).

[Shi9fl, [Govd7]. The negative shift at low fields (at fields above a few tesla, the shift
becomes positive) was explained by a magnetic-field-induced enhancement of the trion
binding energy, due to the relatively large spatial extent of the trion at zero field and
the significant effect of the magnetic cyclotron confinement. The cyclotron replica
are related to shakeup processes, where after recombination of electron and hole the
remaining electron is ejected into some high-energy state. At finite magnetic field, this
energy state is a Landau level. The process gives rise to a fan of discrete lines, each
associated with a Landau level as the final state of the electron, that move away from
the main transition line to lower energy. In principle, in quantum dots the electron
levels exhibit a quadratic dependence on the B-field at least at low field instead of the
linear dependence of the laterally unconfined Landau levels. Therefore, in principle
observation of negative diamagnetic coefficients could be expected.

Complete quantum confinement of trions has been observed by Tischler et al. [Tis02].
Schulhauser et al. studied magnetooptical spectra of trions in QDs in the strong and
intermediate confinement regime [Sch(2]. For the small QDs with strong confinement,
a small reduction of the trion diamagnetic shift compared to the exciton diamagnetic
shift was observed. For the QDs with intermediate confinement, a significantly stronger
reduction, but still positive diamagnetic shift, was observed. Based on this observation
of a paramagnetic contribution to the diamagnetic shift of charged excitons in quantum
dots due to a confinement dependence of the few-body Coulomb interactions, it was
suggested that in the weak confinement regime, the exciton diamagnetic shift should
strongly depend on surplus charge. The possibility of negative diamagnetic shift coef-
ficients for trion states in a weak lateral confinement potential was suggested [Sch02].
However, to the best of our knowledge this effect has not been reported to date.

A very interesting effect that possibly provides an explanation for the complex B-field
patterns found in our data (Fig. BF), has been observed recently in an experiment on a
coupled quantum dot structure in an electric field [Sfi06]. A pair of vertically coupled
InAs quantum dots in an asymmetric layer structure was studied (Fig. BI6). Fig-
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ure BI6I(A) shows a section through the band edge diagram of the asymmetric coupled
layer structure. The applied external electric field (F') could be used to tune the lowest
electron and hole states in the InAs quantum dots relative to each other. The observed
rich patterns of level anticrossings and crossings in electric-field-dependent spectra were
interpreted as evidence for a superposition of charge and spin configurations of the two
dots. Figure BI6(B) zooms into the band diagrams of the asymmetric coupled QD
structure at different bias voltages.

When the direct and indirect transition energies of an asymmetric coupled QD approach
each other, either the electron or hole levels in the two dots become resonant, the wave
functions become delocalized over both dots, and the transitions show anticrossing
behavior (Fig. BI6). Away from these anticrossings the wave functions retain their
single dot character [Sfi06]. It was observed that introduction of a single charge into
the coupled QD dramatically enriched the spectrum. Depending on the detuning level,
an intricate crossing pattern with several anticrossings at slightly different detuning was
found (Fig. BID). The dominant feature was explained to arise from a strong indirect
transition that anticrosses two direct transitions. Finally, the Coulomb energy shift
between two charged exciton states was identified as the essential origin of the X-shape
in the PL spectra (Fig. BIT).

We suggest that a similar effect — only with magnetic-field induced detuning due to
the magnetic shift instead of the electric-field induced detuning due to the Stark shift
— is responsible for the crossing and anticrossing behavior observed in Fig. The
negative diamagnetic coefficients observed in Fig. might also be related to charged
exciton transitions in coupled quantum dots, possibly at a different detuning level.
The detailed clarification of their origin is, however, definitely beyond the scope of
this study. It remains as a task for future magnetooptical studies of coupled quantum
dot structures, possibly also with attention to disorder effects, that have just been
commenced.

8.3 Conclusions

The first clear-cut observation of excitonic transitions with negative diamagnetic co-
efficients in a semiconductor heterostructure has been presented. The observation of
the negative diamagnetic coefficients simultaneously with signatures of strong disorder
in the GaAs/AlAs DQW raised the question if the negative curvature may be a pure
disorder effect — or, more precisely, if it may be explained by the negative contribution
to the exciton diamagnetic shift in presence of disorder. This so-called center-of-mass
shift has been discovered in a recent theoretical study [Gro05]. Theoretical investi-
gations that were stimulated by our experimental observation of negative curvature
have very recently excluded this possibility [Mul06]. At present, it is assumed that
the negative diamagnetic coefficients as well as simultaneously observed complex shifts
— including crossings and anticrossings — are related to charged exciton transitions in
coupled quantum dots.
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Figure 8.16: [Stlfl] (a) Band edge diagram of the device layer structure. The two
dots are labeled bottom (B) and top (T). (b) Schematic of the coupled QD region at
flat-band condition and at the electric where where hole resonance occurs. The direct
(solid arrow) and indirect (dashed arrow) transitions are indicated. (c) Diagram of the
X0 initial state (black lins) and final state (erd line) for dot B. The direct and indirect

recombinations are indicated.
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Fig. 3. (A) Schematic, without
tunneling or spin, of the CQD
charged exciton states (black
lines) and hole states (red lines)
and (B) the resulting transition
energies indicated with blue
arrows in (A). The energy shift
'™ between the two charged
exciton states is indicated. (C)
Calculated energies including
tunneling and spin, and (D)
the transition energies resulting
Electric Field (a.u.) from a fit to the experimental

spectrum plotted in (E) for sam-

ple (hy/dih;) = (4/4/2.5). With the introduction of tunneling and spin effects, we can see the two
anticrossings events (A, A,~+) which, along with I, give rise to the signature X-shape pattern.
The parameters used to fit the data in (E) were I'"™) = 1.27 meV and t = 1/2(A,) = 0.23 meV. In (E),

we note the two additional PL lines arising from the uncharged exciton (%gX") and the doubly
positively charged exciton (§2x+2). a.u., arbitrary units. N
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Figure 8.17: [Sti)fl] Reproduced from Stinaff et al., Science 311, 636 (2006).
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Chapter 9

Summary

The structural and optical properties of GaAs/Al,Ga;_,As quantum wells have been
investigated in this thesis by a combination of optical (uPL) and magnetooptical
(magneto-uPL) methods with the analysis of structural (XSTM) data. Central results
of the research presented in this thesis are summarized in the following.

Short-range disorder on the atomic scale in GaAs/Al, Gaj_, As quantum wells, result-
ing from composition fluctuations in the Al,Ga;_,As barriers, has often been thought
to be irrelevant for exciton localization [WeiST], or at least of secondary importance
[War92). This work demonstrates that short-range correlations in the Al distribution in
the Alg 3Gag.7As barriers are fundamental to the inhomogeneous broadening of optical
spectra of narrow GaAs/Aly3Gag7As quantum wells grown without growth interrup-
tion.

Several findings support this conclusion:

1. XSTM on a (110) cleavage surface on the 4-nm GaAs/Aly3Gag7As QW in sample
QW1 demonstrated that Al atoms in the Aly3Gag7As barriers show the tendency of
short-range ordering on neighbouring lattice sites along the [110] direction, and that
modulations of the Al concentration occur on a length scale of 5 — 10 nm. Direct
inspection of the XSTM images shows that also correlations between Al atoms in [001]
direction are present.

2. The linearly polarized fine-structure components of low-energy tail states in yPL
spectra of the 4-nm GaAs/Aly3Gag7As quantum well showed no clear preferential
polarization direction with respect to the crystal axes. This is in contrast to growth-
interrupted samples, where a preferential orientation along the [110] direction has been
reported [Gam96], caused by exciton localization in large anisotropic islands aligned
along the [110] direction. Our observation therefore indicates that such large anisotropic
islands aligned along the [110] direction are not responsible for exciton localization in
the investigated non-growth interrupted quantum well. Rather, it indicates exciton
localization by short-range correlated disorder.

3. Optical spectra of the 4-nm GaAs/Aly3GagrAs QW were simulated on the basis
of the XSTM data. Assuming in-plane disorder with isotropic exponential correlations
with 0.4 nm correlation length, and assuming the disorder strength determined from
the XSTM data, very good agreement is observed between inhomogeneous broadening
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and temperature-dependent lineshapes of experimental and simulated uPL spectra.

4. In the low-energy tail of magneto-uPL spectra of the narrow GaAs/Aly3Gag7As
QWs, positive slope has been observed in the diamagnetic shift distribution as a func-
tion of transition energy. The positive slope is the consequence of exciton localization
by short-range correlated interface disorder. Two-particle calculations on the basis of
XSTM data have shown good agreement between theoretical and experimental shift
coefficients. Including that the enhanced in-plane electron mass in the narrow QW sig-
nificantly influences the exciton diamagnetic shift, the size of diamagnetic coefficients
and the slope in the shift distribution were well reproduced by theoretical calculations
based on in-plane disorder with isotropic exponential correlations with 0.4 nm correla-
tion length, and assuming the disorder strength determined from the XSTM data.

The significance of magneto-uPL spectroscopy lies in the fact that it gives access to
the in-plane band edge fluctuations in buried semiconductor quantum wells on a nm
scale. This is achieved using a far-field optical technique, by employing the exciton as
an extended particle as a probe of lateral confinement. Concerning the interpretation
of the magneto-uPL experiments, a detailed qualitative picture of the relation between
the underlying interface disorder and the diamagnetic shift distribution in the low-
energy tail of magneto-uPL spectra has been developed. The limits of this approach
have also been discussed: Due to the complexity of the problem of exciton disorder-
localization, the introduced simple models do not allow a quantitative prediction of
the slope in the diamagnetic shift distribution. Numerical two-particle calculations in
the framework of the theory of exciton disorder-localization provide the only way of
an accurate prediction of the diamagnetic shift distribution. Experimentally, the study
of the diamagnetic shift distribution in the low-energy tail of magneto-uPL spectra is
limited by the averaging over the Zeeman doublet and the limited number of exciton
tail states for which both Zeeman components can be realiably resolved over a sufficient
range of the magnetic field.

The influence of a variation of the correlation length or of an additional length scale,
e.g., the presence of longer-range correlations, on the diamagnetic shift distribution
has to be further investigated. Experimentally, it could be interesting to study the
diamagnetic shift distribution in monolayer-split samples. Here, a region between the
ML peaks should show negative slope, if the commonly accepted picture of well width
fluctuations in growth-interrupted samples should be correct. Also the observation of
a transition of magnetic-field dependent spectra from a single-peak to a double-peak
structure, which has not been discussed in detail here because of the focus on single-dot
experimentss, could be of interest in this respect.

Concerning the theory of the exciton diamagnetic shift in general, the first clear-cut
observation of transitions with negative diamagnetic coefficients in optical spectra of a
semiconductor heterostructure has been presented. This observation raised the question
if negative curvature (as a function of magnetic field) can occur for disorder-localized
exciton ground states. Theoretical investigations that were stimulated by our experi-
mental observation of negative curvature have recently excluded this possibility [Mul06].
In addition to transitions with negative curvature, transitions exhibiting complex shifts
including crossings and anticrossings have been observed. At present, it is assumed that
as well the complex shifts as the negative diamagnetic coefficients are related to charged
exciton transitions in coupled quantum dots.
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Appendix A

Numerical algorithms

This chapter describes the numerical methods that have been used in this thesis to
solve several problems related to electron and hole confinement in ideal and nonideal
quantum structures.

A.1 Single-particle Schrodinger equation in 1D

Numerical methods to solve the time-independent Schrodinger equation for a single
particle with mass m in a one-dimensional square well potential abound. Energies of
eigenstates in a square well with finite barriers are conveniently calculated using shoot-
ing method or transfer matrix method (described in detail in [Har99]). Here, we use a
finite-difference method to approximate the Schrodinger equation for a single particle
with mass m by a finite-difference equation. Writing the set of linear finite-difference
equations in matrix form, powerful matrix diagonalization methods can be applied to
determine eigenvalues and eigenfunctions of the problem. The finite-difference approach
has the advantage to be easily extensible to include the mass mismatch between well
and barrier. The extension to two dimensions is also straightforward.

This paragraph describes a finite-difference method to solve the time-independent
Schrodinger equation for a single particle with mass m in a potential V(x) on a fi-
nite interval, = € [0,a], a > 0,

K d?

- 5 (@) + V(@)u(x) = Bulz). (A1)

The choice of periodic boundary conditions is convenient to avoid artefacts due to hard
boundary conditions (infinite potential). Therefore, we assume u(z + a) = u(z) in the
following.

Finite-difference methods rely on replacing differential quotients by difference quotients
[Pre02]. The wave function u(x) is discretized on the n-component grid (vector) z =
(0,a/(n —1),...,a), i.e., the map

u(z) — (u;);, where u; = u(x;), 1 € {1,...,n} (A.2)
is used. The second derivative % is replaced by a difference quotient according to the
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rule )
d u(z) — Uip1 — 2u; + Ui
dx? o2 ’

(A.3)

where dx := a/(n—1). Consequently, the discretized version of the Schrédinger equation
(Eq. [A)) consists of the set of n linear equations for the u;
hZ

— % (ui+1 + Uj—1 — 2ui)/5m2 + Viu; = Fu;. (A4)

The matrix representation of this set of linear equations reads
Hu=Fu, H=T+YV, (A.5)
where the nxn matrices 1" and V have been defined by

-2 1 1 %1
1 -2 1 Va
1

1 1 -2 Vi
(A.6)
The potential matrix V' is diagonal with the values V; = V(z;), i € {1,...,n}. The
kinetic energy matrix 7" has the three terms corresponding to the discretized second
derivative centered around the diagonal. The ones in the lower left and upper right
corner of the kinetic energy matrix 7' correspond to the choice of periodic boundary

conditions. The application of matrix diagonalization methods to Eq. ([(AI3]) is now
straightforward.

Figure [A] shows electron ground state wave functions in a 4-nm square well with
abrupt interfaces (solid line) and with exponentially smoothed interfaces (dashed line),
calculated using the finite-difference method described above. The band offset A, =
292 meV of GaAs/Aly 3Gag7As QW has been used, and the effective mass m=0.067 m
has been assumed constant througout the structure. The shape of the wave functions
is nearly identical; the lowest eigenstate in the well with smoothed profile is shifted
upwards by ~ 5 meV compared to the lowest eigenstate in the square well. There is a
simple explanation for this upward shift: The effective width of the well in the energy
range up to the ground state energy is smaller than of the square well.

Extension to variable quantization mass

In the Schrodinger equation Eq. (A, the same value for the mass parameter m has
been assumed in well and barrier material. Since in a not too shallow quantum well,
the largest portion of the electron (hole) wave function is localized in the well, the
effective electron (hole) mass of the well material is usually chosen for this mass pa-
rameter. However, for accurate calculations the effective mass mismatch between well
and barrier material has to be included. This can be done by solving the Schrédinger
equation piecewise in regions of constant effective mass. The piecewise solutions are
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Figure A.1: Electron ground state wave functions (|uc(2)|?) in a 4-nm

GaAs/AlysGay7As QW, assuming square potential (solid line) and exponentially
smoothed profile (dashed line). The constant effective mass me=0.067 my has been
used.

then connected by appropriate boundary conditions. Usually the condition is used that
electron transport through a heterojunction requires continuity of the wave function
u(z) and of the electron current 1/m*«'(z) [Ben66].

A more convenient approach retains a single Schrodinger equation for the whole het-
erostructure while including the mass mismatch: This approach is based on replacing
the kinetic energy operator in Eq. [Al) by a variable-mass term. The appropriate

Hermitean) operator that accounts for varyin effective mass in a heterostructure is
1Y g
[HHTQ. 9 J

r=--° - 2 (A.7)

Straightforward application of the chain rule shows that the variable-mass differential
operator T' is a sum of two terms, T' = T} + T5. Explicitly doing the differentiation,

% <L%u(x)> _ 1 u//(x) _ m/(xlu/(x)’ (A8)

m(z) m(z) m(z)
it is found that the first term is the curvature term «”(z) multiplied with the inverse

mass, 1/m(x). Obviously, the discretized version of this term is

1
E (ui+1 + Uj—1 — 211,2‘) /(51‘2 R (A9)

(2

and the corresponding operator 77 is the matrix product of the diagonal inverse mass
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Figure A.2: Electron ground state wave functions (|uc(2)|?) in a 4-nm

GaAs/Aly3Gag 7 As square well, calculated using constant mass (me ., =0.067 myg, solid
line) and variable masses (Me .y =0.067 mgy, mep=0.091 mg) in well and barrier.

matrix with the discretized curvature matrix:

1
ma 1 -2 1 1
s 1 -2

Ti=— —/6x? : : I . (A.10)

R |
1 1 1 =2

mn

It is easy to see that the discretized version of the second term is given by

1
W(m“_l — mi)(uH_l — ul)/5m2 . (A.ll)

)

Defining the mass gradient vector by m, = m;y; — m;, the corresponding matrix is
written

m}
2
mlyﬁ -1 1 1
=3 -1 1
h? my
R:—EJMQ . - I . (A12)
|
/ 1 1 -1
my,
m,

The complete matrix equation is now written

Hu=FEu, H=T\+T+V, (A.13)
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where the position-dependent mass enters both kinetic-energy terms T [Eq. (ATI0)]

and Ty [Eq. (AT2)].

Figure shows electron ground state wave functions in a 4-nm square well calcu-
lated using the constant-mass (solid line) and variable-mass (dashed line) Schrédinger
equation. The band offset A, = 292 meV of GaAs/Aly3GagrAs QW has been used.
For the effective electron mass, m,,=0.067 my has been assumed in the GaAs well
and m,,=0.091 my in the Aly3Gag 7As barrier. Including the mass mismatch leads to
an eigenenergy of the lowest electron eigenstate more then 10 meV lower than in the
constant-mass model. The wave function is practically unaffected.

A.2 Single-particle Schrodinger equation in 2D

The constant-mass finite-difference method that has been applied to the solution of the
single-particle Schrodinger equation in one dimension (described in the first paragraph)
can be easily extended to two dimensions. The eigenvalue problem defined by the
stationary, two-dimensional Schrédinger equation on the rectangular area I = [0, a] X
0,6] 3 (2, ),

2 2 2
_ <a‘3‘— n 6‘?‘7) u(e,y) + Vi yule,y) = Bul,y),  (Add)

2m

can be written in matrix form by discretizing u(z,y) on a quadratic lattice (x;,y;)ij,
i,j € {1,...,n}, i.e., using the map

uw(z,y) — (uij)ij , where wu;; = u(x;, y;), 4,7 € {1,...,n}. (A.15)

. . . 2 2 .
The discretized version of the curvature (% + 273) is

Uitdyj £ Uim1g = 2 | Uit F Wigen = 2

- 5 , (A.16)

where 0z = a/(n — 1), 0y = a/(n — 1). By putting dz = dy, i.e., assuming the same
grid point distance in x- and y-direction, we obtain

Uil + Uim1j + Uij—1 + Ui — du
dz? '

(A.17)

The resulting system of n? coupled linear equations for the u;; is conveniently written
in matrix form by concatenating the columns of (u;;);; in an n?
vector, i.e., defining the map

-component column

Uiy = Vign(j—1)» 4J € {1,...,n}. (A.18)
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Defining the n x n matrices

-4 1 1 1

A= s =1, = ’ , (A.19)

the n? x n? Hamiltonian matrix H can be written as a sum of a block matrix composed
of n x n sub-blocks, and of a diagonal potential matrix:

A T I Uy
I A . Us
h? oL )
H_—% o + _ (A.20)
T .
I I A U

n

As before, the eigenvalue problem can be written as matrix equation
Hu = Eu, (A.21)

where H now is a tridiagonal n? x n? matrix with “fringes”. The choice of periodic
boundary conditions reflects in the identities in the upper right and lower left cor-
ners in the matrix A, and in the identity matrices in the corners of the first term in
Eq. (A20). Leaving out these elements in the matrix corners would result in hard
boundary conditions.

Eigenvalues and eigenvectors of the sparse n? xn? matrix H are conveniently determined

using a block Lanczos method [Und75]. For the actual numerical calculations, a Lanczos
method from the ARPACK package, which is included in MATLAB, has been used. This
method determines the k lowest eigenvalues and eigenvectors of the sparse matrix H
by diagonalization in a k-dimensional subspace.
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Appendix B

Simulation source code

This section documents the MATLAB [Maf(5] code that has been used in this thesis to
solve 1D and 2D single-particle Schrodinger equation numerically using finite-difference
methods.

B.1 Single-particle Schrodinger equation in 1D

The MATLAB routine wf .m listed below uses the finite-difference method described in
the last chapter to solve the single-particle Schrodinger equation in an arbitrary one-
dimensional real potential V' (z) defined by the vector z, assuming periodic boundary
conditions. It calculates energies and wave functions of the lowest j eigenstates in
this potential. The following parameters have to be specified (units are specified in
brackets):

e z: z-axis (nm)

e potential: potential V(z) (eV),

e mass: mass vector m(z) (position-dependent effective mass),
e j: number of eigenstates

The routine yields as output the vector of eigenenergies E of the j lowest eigenstates,
and the matrix Psi of the normalized eigenfunctions. The second index of Psi is the
state index, i.e., Psi(:,1) is the wave function of the lowest eigenstate.

function [EmeV,Psi] = wf(z,potential,mass,j)

% physical constants and units [SI]
hbar=1.0546e -34

eV=1.602e —19;

meV=1e-3*eV;

m0=9.1094e —31,

nm=1e-9;

% number of grid points
n=length(z);
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%% global definition of spatial grid
z _size=size(z);

if (z_size(l) ==1) % vectors are internally handled as row vectors
z=2"; % and transposed if specified otherwise

end

global dz

dz=(z(2) —z(1)) *nm;

% building blocks of Laplace matrix (tridiagonal with fring es)

a=ones(n,1);

b=spdiags([a —2xa a], —1:1,n,n);

mass=mass* mo;

msize=size(mass);

if ( m.size(1) == 1)
mass=mass";

end

minv=1./mass;
d_dz=spdiags({ —a a],0:1,n,n);
d_dz(n,1)=1; % periodic boundary conditions

% kinetic energy including position —dependent mass
=—hbar"2/2/dz"2 * d.dz * minv * d._dz;

% potential energy

potential=potential *eV;

p-size=size(potential);

if ( p-size(l) ==1)
potential=potential’;

end

V=spdiags([potential],0,n,n);

% Hamiltonian
H=T+V;

% matrix diagonalization

% the matrix Psi contains the eigenfunctions
% the vector E the contains eigenenergies
[Psi,E]=eigs(H,j, 'sm' );
EmeV=diag(E)/meV

Psi=reshape(Psi,[j n]);

% normalization of wave functions

nr=size(Psi);

nr(2)=[I;

for i=1:nr
Psi(:,i)=Psi(:,i)./norm(Psi(:,i));

end

The following routine wf_qw.m calculates the lowest electron and hole eigenstates in a
GaAs/Al,Gaj_,As single quantum well in the envelope function approximation, using
the virtual crystal approximation for the Al,Gaj_,As barriers. It requires the following
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input parameters:

e p: particle type (e = electron, h = heavy hole)

e xx: Aluminum concentration in the barrier

well: quantum well width (nm)

barr: barrier width (nm)

e j: number of eigenstates

function [EmeV,Psi] = wf _gw(p,xx,well,barr,j)

% physical constants and units [SI]
hbar=1.0546e -34

eV=1.602e —19;

meV=1e-3xeV,

m0=9.1094e —31,

nm=1e-9;

global dz
dz=0.02 *nm;

% definition of the heterostructure
% width of barriers and wells in nm
layers=[barr well barr];
N=length(layers);

structure=ones(1,round(nm/dz *layers(1)));

% alternating barriers and wells
for n=2:N
if  rem(n,2)==1
structure=[structure ones(1,round(nm/dz
elseif rem(n,2)==0
structure=[structure zeros(1,round(hm/dz
end
end

% number of grid points
n=length(structure);

% position —dependent alloy concentration
alloy=xx =*structure;

% band edges

cb _offset=(1.36 +alloy+0.22 =+ alloy."2) +*0.65 *eV,
vb _offset=(1.36 +alloy+0.22  *alloy."2) *0.35 *eV;

% position —dependent mass
m.e=(0.067+alloy = *0.083) *mO0;
m.h=(0.33+alloy  *0.18) *mO0;

% electron (e) or heavy —hole (h)
switch p
case 'e'
potential=cb _offset;

*layers(n)))l;

*layers(n)))l;
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mass=m.e;
case 'h'
potential=vb _offset;
mass=m_.h;
end
% building blocks of Laplace matrix (tridiagonal with fring es)
a=ones(n,1);

b=spdiags([a —2+xa a], -—1:1,n,n);

msize=size(mass);

if ( m.size(1) == 1)
mass=mass’;

end

minv=1./mass;
d_dz=spdiags(( —a a], 0:1,n,n);
d_dz(n,1)=1; % periodic boundary conditions

% Kkinetic energy including position —dependent mass
=—hbar"2/2/dz"2 * d.dz * minv * d.dz;

% potential matrix (diagonal)

p-size=size(potential);

if ( p-size(l) ==1)
potential=potential’;

end

V=spdiags([potential], 0,n,n);

% Hamilton matrix
H=T+V;

% matrix diagonalization

% the matrix Psi contains the eigenfunctions
% the vector E the contains eigenenergies
[Psi,E]=eigs(H,j, 'sm' );
EmeV=diag(E)/meV

Psi=reshape(Psi,[j n]);

% normalization of wave functions

nr=size(Psi);

nr(2)=[I;

for i=1:nr
Psi(:,i)=Psi(:,i)./norm(Psi(:,i));

end

The routine wf_qw.m uses the following material parameters of the GaAs/Al, Gaj_, As
system: The Al,Ga;_,As/GaAs band offset A(z) = 1.45z ¢V [Ont74], and the band

offset ratio fo/f, = 0.65/0.35 WoIR6l, [Kop92]. Effective electron and heavy-

hole [001] masses in the Al,Gaj_,As alloy are obtained by linear interpolation between
GaAs and AlAs masses [Ada94]:

me/mo = 0.067 4+ 0.083x, mypp/mo = 0.33 + 0.18z (B.1)
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B.2 Single-particle Schrodinger equation in 2D

The routine listed in this paragraph

e creates uncorrelated, Gaussian-distributed 2d disorder potentials V. (z,y), Vi, (z,y)
on a 160 x 160 nm? square grid with 0.4 nm grid step; the standard deviation
(disorder strength) of the electron potential is 0. = 33 meV, and the disorder

strength of the hole potential o5 =9 meV;

e calculates an effective potential Vog(z,y) for the exciton center-of-mass, assuming
a fixed Bohr radius ag = 8 nm, by convolution with scaled 1s wave functions

according to Eq. (BH),

e and calculates eigenvalues and eigenfunctions of the lowest k (default: k& = 100)
center-of-mass eigenstates by solving the single-particle Schrodinger equation

[Eq. B4 in the effective potential Vog(z,y).

The ratio of disorder strengths o, /oy, is chosen larger than the band offset ratio f./fy =
2/1, because disorder resulting from alloy fluctuations in a GaAs/AlGaAs quantum well
is considered: As shown in chapter 3, in a GaAs/AlGaAs quantum well the penetration
depth of the electron wave function into the AlGaAs barrier is larger than that of the
hole wave function. Consequently, the effect of alloy fluctuations is larger for the

electron than for the hole.

%% physical constants (SI)
eV=1.6021773e -19;
meV=1e-3*eV;
m0=9.109390e —31;
nm=1e-9;

%% number of grid points
N=100;

%% Gaussian—distributed disorder realization, sigma = standard deviat
sigma=33 *meV,
pot2d=randn(2 *N+1,2 * N+1) * sigma;

%% electron and hole potentials
pot2d _e = pot2d;
pot2d _h = pot2d/2;

%% scaled 1s wave functions for electron and hole
%% with different decay constants

% coordinate system with 0.4 nm grid step
scale=( —N:N) *0.4 *nm;
[X,y]=meshgrid(scale,scale);

%% exciton Bohr radius and effective in —plane masses
%% for 4 nm GaAs/AlGaAs quantum well (x=0.3)

aB=8*nm;

m.e=0.078 *moO;

m.h=0.23 *mO;

ion



164

B. Simulation source code

M=me+m_h;
beta _.e=M/m_h;
beta _h=M/m_e;

phi2d _e=exp( —beta _e*sqrt(x."2+y."2)/aB);

phi2d _e=phi2d _e/sqrt(sum(sum(phi2d -e.”2)));
phi2d _h=exp( —beta _h*sqrt(x."2+y."2)/aB);
phi2d _h=phi2d _h/sgrt(sum(sum(phi2d -h.”2)));

% wave function squares
phi2d _e=phi2d _e."2;
phi2d _h=phi2d _h."2;

%% convolution of electron and hole potentials with 1s wave f

pot _com=conv2(pot2d _e,phi2d _e) + conv2(pot2d
pot _.com=pot .com(N+1:3 »N,N+1:3 *N);
pot=pot _com;

potmin=min(min(pot))
pot=pot+abs(potmin);

—meV,;

%% total Hamiltonian matrix

m0=9.109390e —31;
m=(0.078+0.23) *mO;

hbar=1.054573e —34;
eps0=8.8542e -12;

dx=0.4 *nm;
dy=0.4 *nm;

% number of grid points
n=2*N;

% Laplace matrix (tridiagonal with "fringes")
a ones(n,1);

b = spdiags([a/dy"2 a/dy"2
u=

oI

for t=1:n -1
u=blkdiagsp(u,b);
end

o=ones(n"2,1);

o=[o o];
per=ones(n,1);

u = spdiags(o/dx2,[ —n nj,u);
per=ones(n“2,1);
per=[per per];

u = spdiags(per/dx"2,[ —n*(n —=1) n *(n —1)]u);
% Kkinetic energy

u=—ux hbar"2/2/m;

% potential energy

—2xax (1/dx"2+1/dy"2) a/dy"2 aldy™2], [

unctions

_h,phi2d _h);

—n+1, —1:1,n -1] ,n,n);
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potential=reshape(pot,[n"2 1]);
dia = spdiags([potential], 0,n"2,n"2);

% total energy
hamilton=u+dia;

% save this disorder realization and clear variables to save memory
save disorder _realization potmin pot hamilton n meV
clear

%% matrix diagonalization

load disorder _realization

j=100;

% MATLAB routine “‘eigs" with parameter ““'sm" = smallest m agnitude
% used to determine the lowest | eigenstates

[Psi,D]=eigs(hamilton,j, 'sm' );

Psi=reshape(Psi,[n n j]);
EmeV=(diag(D) —abs(potmin))/meV;

% order of eigenstates: first eigenstate = ground state
psiSize=size(Psi);
Phi=zeros(psiSize);
for =1
Phi(:,:,i)=Psi(:,:,j+1 —i);
end
Psi=Phi;

%% row vector of eigenenergies (in meV)
EmeV=flipud(EmeV);

%% image wave function of eigenstate j:
%% imagesc(abs(Psi(:,:,))))
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Figure B.1:  The disorder potentials shown in (a)-(c) have been obtained from un-
correlated, Gaussian-distributed disorder potentials Ve(x,y), Vi(z,y) (0e = 33 meV,
on, =9 meV) on a 160 x 160 nm? square grid (0.4 nm grid step) by convolution with
1s wave functions with different Bohr radii according to Eq. (Z3): (a) ap = 0.1 nm,
(b) ap =1 nm, (c) ap =8 nm.
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