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Abstract
We present multiresolution B-spline surfaces of arbitrary
order defined over triangular domains. Unlike existing
methods, the basic idea of our approach is to construct the
triangular basis functions from their tensor product rela-
tives in the spirit of box splines by projecting them onto the
barycentric plane. The scheme works for splines of any
order where the fundamental building blocks of the sur-
face are hierarchies of triangular B-spline scaling func-
tions and wavelets spanning the complement spaces
between levels of different resolution. Although our bases
functions have been deduced from the corresponding 3D-
bases, our decomposition and reconstruction scheme
operates directly on the triangular mesh using hexagonal
filters. The resulting basis functions are used to approxi-
mate triangular surfaces and provide many useful proper-
ties, such as multiresolution editing, local level of detail,
continuity control, surface compression and much more.
The performance of our approach is illustrated by various
examples including parametric and nonparametric sur-
face editing and compression.

Keywords:Triangular B-spline wavelets, box splines, mul-
tiresolution editing, hierarchical surface representation,
surface compression, decomposition, reconstruction.

1   Introduction

Multiresolution surface representations have become
a fundamental paradigm in geometric modeling and com-
puter graphics, primarily because they enable one to
design and edit a surface at different levels of detail. In
addition, the multiresolution approach comes along with
many other useful properties such as local and global level
of detail, efficient surface compression, progressively
refinable reconstruction, error bounds, and mostly fast and
handy computational algorithms.

Many different approaches to multiresolution and
hierarchical surface representations can be found in litera-
ture. One of the pioneers (Forsey et al. [14]) constructed
hierarchies of B-spline bases, whose tensor product exten-
sions can be used for surface approximations at multiple
levels of detail. Others, such as Chui [7] or Quak [22],
designed sets of semi-orthogonal wavelets to span the
associated difference spaces and used them in the context
of curve and surface design (Finkelstein [13]), or to imple-
ment surface compression (Staadt [26]) and triangulation
[16]. Due to the limitations of tensor product construc-
tions, various researchers proposed multiresolution surface
representations over triangular domains. Here Lounsbery
[19] or Eck [12], for instance, proposed linear bi-orthogo-
nal wavelet bases to efficiently describe triangular meshes.
Others, such as Schroeder [23] or Nielson [21], introduced
different forms of bi-orthogonal or orthogonal Haar bases
on triangular spherical domains and employed them for
various tasks in modeling, rendering and visualization.
Nonseparable sampling schemes can also be found in the
signal processing literature (Simoncelli [25]). Unfortu-
nately, most of the existing explicit construction schemes
for triangular wavelets only work out for low degrees and
must find a balance between different fundamental mathe-
matical properties, such as vanishing moments or continu-
ity. Thus, for efficient surface modeling, higher order
smooth triangular B-spline wavelets are highly desirable.

Whereas the compact wavelet representation imposes
tight constraints on the design of the associated decompo-
sition and reconstruction operators, more general subdivi-
sion schemes, such as Dyn [11], Loop [18], or Doo [9],
turned out to be a promising alternative. Using them,
Schroeder [23], in combination with generalized subsam-
pling operators (Taubin [29]), allows one to build sophisti-
cated multiresolution mesh editors. In these cases,
however, the freedom taken for the operator design goes at
the cost of over-representations, and the basic building
blocks are no longer splines.

Since B-splines have been a fundamental concept in
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surface modeling and CAGD, the motivation for our
research was to point out a simple and efficient alternative
for the construction of multiresolution triangular B-spline
surfaces of arbitrary polynomial order. Unlike contempo-
rary approaches operating directly on the barycentric
domain (Seidel [24]), we recalled some fundamental work
on box splines from Boehm [2] and de Boor [3], [4]. Here,
the basic idea was to construct a B-spline basis function
over a triangular domain by projecting a 3D tensor product
spline onto the barycentric plane. The line integration
inherent to the projection operator raises the degree of the
resulting triangular B-spline. This powerful concept can
be extended to hierarchies of B-spline functions and wave-
lets. We will demonstrate that a multiresolution hierarchy
of triangular scaling functions and wavelets can be con-
structed effectively by projection of their 3D tensor prod-
uct relatives. The raise of degree and continuity of the
bases allows us to generate linear triangular spline wave-
lets using 3D Haar wavelets; consequently, we obtainC2

quartic spline surfaces over triangular domains by using
linear building blocks in 3D. However, a fundamental dif-
ference to immediate construction is that we create 7 types
of triangular wavelets (instead of 3). A two-scale relation-
ship in the barycentric plane determines the corresponding
decomposition and reconstruction operators. Interestingly,
the sparsity of the data allows one to perform the respec-
tive push and pull operation in linear time and generates a
hierarchy of control points for surface editing at different
levels of detail. In addition, oracles (Gross [15]) can help
to identify and to reject unimportant basis functions, thus
governing the compression rate. It should be noted that a
similar type of projection was used by Lippert [17] to
compute hierarchical splats for volume rendering. In this
case, however, the projection was computed via Fourier
transforms of the underlying splines and the resulting splat
functions were not considered the bases of a barycentric
wavelet transform.

The remainder of this paper is organized as follows:
Followed by a brief overview, section 2 addresses the
mathematical details underlying our approach including
projection, two-scale relationship and the resulting bary-
centric bases. Section 3 introduces efficient decomposition
and reconstruction algorithms. Section 4 discusses some
issues concerning implementation. Finally, section 5 illus-
trates the performance of our scheme for multiresolution
representation and editing of various types of triangular
surfaces.

2   Construction of Triangular B-Spline Bases

2.1   Overview

The basic concept of the construction scheme is
depicted in Fig. 1. Let(u,v,w)be the coordinates parame-
trizing a 2-dimensional triangular domain. We assume, in
the discrete setting, the functional values to be given at
each triangle vertex. In order to define a multiresolution
analysis (MRA), we recall the notion of barycentric coor-
dinates, which span the diagonal plane in a 3D Euclidean
space(x,y,z), and follow the relationship:

(1)

Many years ago, de Boor ([3], [4]) discovered that tri-
angular B-splines - so-called box splines - can be con-
structed from 3D tensor product relatives by projection
into the barycentric plane . The same idea can be car-
ried over to tensor product B-spline wavelets (Chui [6] or
[7]), which are by definition linear combinations of tensor
product B-spline bases. The fundamental problem is to
define an MRA for the discrete setting.

Conversely, we observe that the upper interpretation
allows one to map sets of functional values defined over
regular triangulations onto the nodes of an equally-spaced
3D tensor product grid.

In principle, this correspondence enables one to run
discrete tensor product algorithms in 3D thereby raising
the dimension of the problem by one. A fundamental pre-
requisite, however, is an appropriate scheme to project the
data values onto the nodal positions in 3D and vice versa.

This scheme of mapping barycentric to 3D data and
back is shown is in Fig. 3: Starting with initial values on a
triangular mesh we define a forward mapping
function

F: (2)

which computes 3D coefficientscm and perform a 3D-

Figure 1: Barycentric plane spanning a 2D subspace in
3D
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MRA algorithm.
Conformingly, the initial underlying barycentric func-

tion  is mapped into the 3D space by

F: (3)

Thus, we obtain coefficients with similar values along
the perpendiculars of the barycentric plane. Analyzing the
inverse functionF -1, it is obvious, that, on the condition

that these values are equal along the perpendiculars (with
arbitraryi):

F -1: (4)

It is easy to proof, that one step of the MRA algorithm
preserves this condition!

Generally, the complexity of discrete convolution
algorithms scales with the dimension of the data. How-
ever, as we will demonstrate, the decomposition and
reconstruction algorithms can be implemented immedi-
ately on the barycentric plane. Thus, it is possible to keep
the computational and storage costs in .

Using these correspondences along with the two-
scale-relationship, we can implement a barycentric MRA
operating directly on the triangular mesh instead of realiz-
ing the 3D-algorithm. Since tensor product wavelet con-
structions compute 7 independent wavelets, the
barycentric projection generates 7 different triangular
wavelet types, such as the ones of Fig. 6. A 4:1 subsam-
pling scheme provides an over-representation, which,
however, does not affect the performance of the approach,
since most wavelet coefficients will vanish.

We implemented this scheme for a multiresolution
editor for triangular surfaces, whose conceptual compo-
nents are depicted in Fig. 2. The input data, initially
defined over a uniform triangular grid is decomposed
using the barycentric MRA. More precisely, individual
push and pull operators enable one to move up and down
the hierarchy and generate a hierarchical set of scaling
function control points for editing the surface at different

Figure 2: Conceptual components of a multiresolution editor for triangular B-splines.
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resolutions.
The approximation error and the compression gain are

governed by some global oracles which reject unimportant
coefficients from the hierarchy. The remainder of the paper
elaborates on the mathematical and implementation details
of the method.

2.2   Constructing Bases by Projection

As explained above, we deduce the barycentric multi-
resolution analysis from the 3D-MRA. To obtain a bary-
centric representation, we first have to recall some details
of the 3D-wavelet transform (WT). Here the coefficients

of the transform are computed by inner products
< , > of a functionf with the set of 3D tensor product bases

(for definition of tensor product wavelets
and scaling functions  see [20]), denoted by:

(5)

m: decomposition level.
i, j, k: indices.
The 3D function defined in equation (3) can be rep-

arametrized using the barycentric coordinates (u,v,w) and a
parametert running perpendicular to it. Furthermore, it
follows that f is constant along the lines perpendicular to
the barycentric plane, or

(6)
Substituting the integration variables

(7)

in equation (5) we obtain the following formulation
for the inner products

(8)

The special structure off allows us to separate the
upper integration as follows:

(9)

From here, the respective barycentric basis
 yields as follows:

(10)

It’s inner product with any L2 function defined over
the triangular coordinates (u,v,w) is computed conform-
ingly by

(11)

The same algebraic transforms can be applied in
reverse order using the inverse mapping functionF -1 to
get back from 3D into the barycentric world.

This approach can easily be applied to arbitrary wave-
lets. In Section 2.6 we will use B-spline wavelets of orders
1 and 2.

Note that the integration along the direction of projec-
tion raises the degree of the triangular B-spline bases. As a
consequence, we obtain C0 continuous surfaces for 1D-
Haar bases and C2 continuous surfaces in case of 1D linear
B-splines.

Note furthermore, that the upper equations define a
stable framework for barycentric decomposition and
reconstruction using the 3D setting and provides that the
underlying 3D functionf exhibits the special structure
explained above. In this case provides a basis for
the corresponding barycentric function .

2.3   Two-Scale-Relationship

The two-scale-relationship [20] links basis functions
of different resolution and is fundamental to the design of
decomposition and reconstruction algorithms. In order to
derive a two-scale-relationship for barycentric scaling
functions we start from their 3D relatives given by:

(12)

n, o, p: offset.
{ ai}: discrete filter sequence.
Exploiting the line integration property of (10) yields

(13)

with

To simplify notation a further index transform gives

(14)

l: index.
Due to the infinite range of the integration the integral

of the basis function according to point equals the
integral of the basis function through .

This allows one to replace the upper integral by a

cm i j k, , ,

ϕm i j k, , , ψm i j k, , ,
ϕm i j k, , ,

cm i j k, , , f x y z, ,( ) ϕ⋅ m i j k, , , x y z, ,( ) Vd
V
∫=

f u v w, ,( ) f u t v t w t+,+,+( )=

dV dxdydz dEbdt= =
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Eb
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∫
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barycentric basis in thereby establishing the
desired relation between two adjacent levels:

(15)

Wavelets can be constructed similarly from their 3D
counterparts, where 7 different prototypes are obtained for
each level.

2.4   Barycentric Filter Kernels

In order to design an optimized barycentric multireso-
lution algorithm we have to construct a direct WT over the
triangular mesh.

This implies the need for barycentric filters according
to the barycentric scaling functions and different wavelets
introduced above. We will show that, using the two-scale-
relationship, there is an easy and elegant way to compute
the corresponding filter coefficients.

We define the filter kernels for the bary-
centric scaling function and the 7 wavelets as follows:

(16)

i, j, k: indices.
Utilizing these definitions, the two-scale-relationship

for the scaling function can be expressed by the following
equation:

(17)

The two-scale-relationship for the 7 different wavelets
(g = 1, ... , 7) yields conformingly.

(18)

g = 1 ,..., 7.
The resulting barycentric filter kernels are depicted

for linear barycentric wavelets in Section 2.6 (Fig. 8).
These filters enable us to construct a barycentric

wavelet transformation which operates directly on the tri-
angular mesh. The analysis and synthesis algorithms are
discussed in detail in Section 3.

2.5   Orthogonality

Although a rigorous mathematical analysis of the
orthogonality properties of the bases is omitted here for
brevity, it is necessary to briefly discuss this issue.

Using the inner product operator < , > it is easy to
prove that even in the case of 3D tensor product Haar
wavelets, orthogonality of both wavelets and scaling func-
tions gets lost. However, since we obtained the barycentric
basis from the 3D-MRA, it is necessary to analyze the
basis functions in 3D. We will show later, that although we
lost orthogonality in the barycentric setting, thesame
operators can be used for decomposition and reconstruc-
tion.

2.6   Examples

In our implementation we use cardinal B-spline wave-
lets [7], since they form a canonic extension of B-splines
which are fundamental in geometric modeling. It has to be
noted, however, that the construction scheme from above
is not restricted to a particular type of wavelet.

Especially Haar and linear spline bases have enor-
mous practical importance, because they enable one to
represent piecewise linear and quartic surfaces in the bary-
centric plane.

Linear Barycentric B-Spline Bases

Applying our scheme to Haar bases, with scaling

i j k, ,( )

ϕ̃m x y z, ,( )

a i l 2n–+( ) a j l 2o–+( ) a k l 2p–+( )⋅⋅
l

∑ 
 

ϕ̃m 1– i j k, , , x y z, ,( )⋅

i j k, ,
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∑

=

ã b̃
1
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7

, , ,
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l

∑=
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1
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l
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b̃
2
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Figure 4: 1D Haar scaling functions and wavelets.
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functions and wavelets as shown in Fig. 4, results in

piecewise linear C0-continuous functions. Fig. 6 depicts

the bases functions using an intensity plot. We observe
eight different types of bases, four of which are displayed
in Fig. 7. The filters for the linear barycentric B-Spline

bases are presented in Fig. 8, the corresponding 1D filter
coefficients are outlined in Appendix B.

Note, that following equation (16) the filters for
decomposition and reconstruction are identical, since the
1D filters are equal for analysis and synthesis. The non-
orthogonality of the barycentric filters in Fig. 8 and the
lack of (different) dual barycentric filters is not a contra-
diction, because they are only used to simplify the 3D-
MRA.

The linear dependency of the basis functions is ana-
lyzed in Appendix A.

Quartic barycentric B-spline bases

One of the many advantageous properties of B-splines
is the automatic continuity control. Therefore, the use of
linear tensor product B-spline bases implies C2 continuity
and an increase of the support. Fig. 5 illustrates the 1D
versions.

The corresponding barycentric children are presented
in Fig. 9. As a fundamental observation, we distinguish
again four different types of basis functions, as given in
Fig. 10. We omit the description of the barycentric quartic
filter kernels, however, one can calculate those kernels
straightforwardly using equation (16). In this case, dual
kernels must be computed as well.

Figure 5: 1D linear B-spline bases according to [7].

Figure 6: Linear barycentric B-spline bases (intensity
plot) (C0).
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Figure 7: 4 types of linear barycentric B-spline bases.

Figure 8: Linear barycentric filter kernels.
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3   Analysis / Synthesis Algorithms

In an earlier version of this algorithm [10] the con-
struction of the barycentric MRA was realized by a 3D
multiresolution analysis. The following algorithms repre-
sent a substantial improvement of the initial schemes,

since they exploit the barycentric definitions from above
and operate immediately on the triangular mesh. In
Appendix A we shortly describe the definition of the bary-
centric convolution using the 3D convolution.

3.1   Barycentric Convolution and Sampling

As already explained earlier, the analysis and synthe-
sis algorithms for the barycentric approach are constructed
using the 1D filter sequences {ai} and {bi}.

Fig. 12 illustrates that the barycentric MRA, like the
conventional MRA, consists of two operations, namely
convolution (with possibly different analysis and synthesis
filters) andsampling (sub-/upsampling).

In order to calculate the coefficients of a particular
level of detail we apply barycentric convolution using
sums over barycentric coordinates (Appendix A).

The sampling scheme is illustrated in Fig. 11. We
reduce the resolution of the triangular mesh by a factor of
2 in all directions, where, in fact, the 3. direction is redun-
dant. Thus we obtain a subsampling rate of 1:4, which
implies, that - due to the number of basis functions - the
data is over-represented. The data organization of the non-

critically sampled pyramid is shown in Fig. 15.

The consequences for the overall computational per-
formance of the barycentric algorithms can be summa-
rized as follows:

• Sparsity:The barycentric convolution required to imple-
ment the decomposition and reconstruction is sparse;
therefore, it requires only linear time O(n) with respect
to the data.

Figure 9: Quartic barycentric B-spline bases (intensity
plot) (C2).

Figure 10: 4 different types of quartic barycentric B-
spline bases.
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ϕψϕ ϕψψ

ψϕψ
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Figure 11: Subsampling of the triangular mesh.

1. Subsampling step

2. Subsampling step



ETH Zurich, CS Technical Report #327, Institute of Scientific Computing, July 13, 1999 9

• Directness:The computational scheme operates imme-
diately on the barycentric plane; thus, rather than storing
and maintaining a 3D array (if we perform a 3D MRA),
it is sufficient to implement appropriate triangular 2D
data structures.

3.2   Decomposition

The corresponding decomposition algorithm can be

outlined in pseudo-code as follows:

Initial data:
1- or 3-dimensional array of function values:
c0[u, v, w], (u+v+w=0)
scaling and wavelet filter kernels for the decomposition:
a[i, j, k], bl[i, j, k],  (i+j+k=0, l=1,...,7)

push()
{
for  m ← 0 to  N-1   // MRA-level m
{

// convolution using filters a and b
// with subsampling
for  (u,v,w) ← (umin, vmin, wmin) to  (umax, vmax, wmax),

u+v+w=0
{

cm+1[u/2,v/2,w/2]  = Convolution(a[i,j,k], cm[u+i,v+j,w+k])
d1

m+1[u/2,v/2, w/2] = Convolution(b1[i,j,k], cm[u+i,v+j,w+k])
d2

m+1[u/2,v/2, w/2] = Convolution(b2[i,j,k], cm[u+i,v+j,w+k])
d3

m+1[u/2,v/2, w/2] = Convolution(b3[i,j,k], cm[u+i,v+j,w+k])
d4

m+1[u/2,v/2, w/2] = Convolution(b4[i,j,k], cm[u+i,v+j,w+k])
d5

m+1[u/2,v/2, w/2] = Convolution(b5[i,j,k], cm[u+i,v+j,w+k])
d6

m+1[u/2,v/2, w/2] = Convolution(b6[i,j,k], cm[u+i,v+j,w+k])
d7

m+1[u/2,v/2, w/2] = Convolution(b7[i,j,k], cm[u+i,v+j,w+k])
}

}
This algorithm reflects an analysis pipeline with a

maximum iteration depth ofN-1 (Fig. 13).

3.3   Reconstruction

In analogy to the decomposition, the subsequent
pseudo-code gives the reconstruction algorithm:

Initial data:
Scaling coefficients (level N)
cN[u,v,w], (u+v+w=0)
Wavelet coefficients (level 1,...,N)
dl

m[u,v,w], (u+v+w=0, m=1,...,N; l=1,..7)

Figure 12: Analysis and synthesis pipeline of the barycentric MRA.
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Scaling and wavelet filter kernels for the reconstruction (semi-
orthogonal):
p[i,j,k], ql[i,j,k], (i+j+k=0, l=1,...,7)

pull()
{
for  m ← N-1 to  0 Step  -1 // MRA-level m
{

// convolution using filters p and ql

// including upsampling
for  (u,v,w) ← (umin, vmin, wmin) to  (umax, vmax, wmax),
{

u+v+w=0
cm[u,v,w] = Convolution(p[i,j,k],  cm+1[2u+i,2v+j,2w+k])

+ Convolution(q1[i,j,k], d1
m+1[2u+i,2v+j,2w+k])

+ Convolution(q2[i,j,k], d2
m+1[2u+i,2v+j,2w+k])

+ Convolution(q3[i,j,k], d3
m+1[2u+i,2v+j,2w+k])

+ Convolution(q4[i,j,k], d4
m+1[2u+i,2v+j,2w+k])

+ Convolution(q5[i,j,k], d5
m+1[2u+i,2v+j,2w+k])

+ Convolution(q6[i,j,k], d6
m+1[2u+i,2v+j,2w+k])

+ Convolution(q7[i,j,k], d7
m+1[2u+i,2v+j,2w+k])

}
}

The corresponding synthesis pipeline is depicted in
Fig. 14.

Note, that the MRA scheme allows one to edit or
reject individual coefficients in the hierarchy without any
restrictions.

3.4   Compression and Complexity

One major advantage of the wavelets is their compres-
sion performance resulting from the vanishing moments.
However, the rejection of unimportant coefficients is a
non-trivial, discrete, global optimization problem in semi-
orthogonal settings [15], although experiments have
shown that magnitude based rejection often performs well.

Storage expense and computational complexity are
mainly influenced by the number of basis functions.
Unlike the direct 2D-MRA [23] which employs 4 basis
functions, the barycentric non-critically sampled setting
used in our approach produces 7 coefficients at each level
of resolution. This implies an over-representation of the
data which can be organized in a modified pyramidal
setup, such as the one presented in Fig. 15.

As the maximum decomposition level increases, the
storage expense converges to 2 1/3 of the initial data.

This over-representation requires to investigate possi-
ble linear dependencies between individual types of basis
functions. An analysis yields a linear dependency for the
basis functions for Haar-based constructions. In addition,
it is possible to represent all 7 wavelet types using an infi-
nite sequence of 3 derived wavelets and the scaling func-
tion (see Appendix A).

4   Implementation

The presented multiresolution analysis approach for
triangular data was used to implement a multiresolution
surface editor. Our prototype system comprises the follow-
ing functionalities:
• Modification of triangular surfaces at several levels of

detail (multiresolution editing).

• Piecewise linear and piecewise quartic basis functions.

• Pushing and pulling along the hierarchies.

• Editing of hightfields and parametric surfaces.

The scaling function coefficients generated at differ-
ent levels in the hierarchy form the control points and
enable editing of the shape at different resolutions. The
smoothness of the surface and of the editing operation
depends on the polynomial degree of the bases. This is
illustrated in Fig. 16, where we lifted one scaling function
coefficient for linear and quartic representations.

Figure 14: Synthesis pipeline
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Figure 15: Pyramidal data structure used for the barycen-
tric MRA.

Figure 16: Editing of an individual coefficient at decom-
position levelm=3 using baryc. linear bases
(a) and quartic bases (b).
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The surface region affected by an individual scaling
function conforms to its spatial support and scales accord-
ing to (15) exponentially with the decomposition level.
Here the power of the multiresolution editing concept
allows the user to push/pull along the hierarchies in order
to realize modifications from a rough, global scale to fine
grain details.

5   Results

This section illustrates the usefulness and perfor-
mance of the approach in the context of surface design and
editing. Therefore, we implemented both linear and quar-
tic barycentric basis functions. In the first series of images,

Figure 17: Compression performance of the method on a
digital terrain data set: MRA with maximum
decomposition level 3, using linear bases.

(a) 231% coefficients, 0.0% error

(b) 36.0% coefficients, 4.1% error

(c) 24.5% coefficients, 7.2% error

(d) 13.0% coefficients, 14.7% error

(e) 6.2% coefficients, 30.1% error

Figure 18: Compression performance of the method on a
digital terrain data set: MRA with maximum
decomposition level 3, using quartic bases.

(a) 231% coefficients, 0.0% error

(b) 36.0% coefficients, 2.2% error

(c) 24.5% coefficients, 4.0% error

(d) 13.0% coefficients, 9.4% error

(e) 6.2% coefficients, 22.6% error
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displayed in Fig. 17 and Fig. 18, we reconstructed a digital
terrain model using different ratios of basis functions.
Although a full reconstruction requires almost 231% of
the original data, the oracle easily computes a 1:3 com-
pression without notable degradation of surface quality, as
presented in Fig. 17 b and Fig. 18 b. As expected, most of
the computed coefficients do not contribute much to the
overall surface quality and, hence, can be zeroed out. The
corresponding L2 errors are presented in terms of percent-
age of error energy. We contrasted linear and quartic,
respectively. The difference in smoothness between the C0

and C2 continuous surfaces strikes in particular for high
compression rates, such as in Fig. 17 e and Fig. 18 e. For
the right-hand side sequence of images, we added satellite
images to enhance visual quality.

Multiresolution surface editing is depicted in Fig. 19
where a parametric range data set of a human face is
edited at different levels of detail. The left-hand images

show the corresponding control meshes of the surface,
where Fig. 19 a, c represent the mesh at levelm=1. Push-
ing further down the hierarchies as in Fig. 19 e, g enables
one to edit the mesh atm=2. Again, the linear C0 surfaces
are contrasted against quartic C2 representations. The dif-
ference in the smoothness of the surface is particularly
striking when comparing Fig. 19 f and h. We observe that
an editing operation at levelm=1 affects the surface only
locally in a small neighborhood of the control vertex.
Since the local support of the barycentric spline bases
increases dyadically at each level, the same operation per-
formed at levelm=2 affects a larger part of the surface.
The push and pull operations explained in the previous
sections allow one to switch between individual levels and
to edit and design the surface at different scales. Higher
levels allow interactions which have a global impact on the
surface, whereas, lower levels are localized and allow to
shape out on small surface details.

6   Conclusion and Future Work

We presented a novel approach for the construction of
multiresolution B-spline surfaces over triangular domains.
Rather than trying to compute the spline bases immedi-
ately we generated them through projection of 3D tensor

product basis functions onto the barycentric plane. This
powerful concept, which had already been used years ago
to design box splines, provides an elegant way to generate
triangular B-spline scaling functions and wavelets of arbi-
trary polynomial order. We have implemented this
approach for linear and quartic bases in a multiresolution
mesh editor and illustrated its usefulness and performance

Figure 19: Editing Silvia’s face at different resolutions: level 1 ((a)-(d)) and level 2 ((e)-(h)) using Haar bases (a),(b),(e),(f)
and linear bases (c),(d),(g),(h).

(a) (b) (c) (d)

(e) (f) (g) (h)
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by various examples. It is our belief that multiresolution
editing is an extremely powerful notion which may be
used in future generations of CAD and modeling systems.

Future work must include proofs on some of the fun-
damental mathematical properties of the bases, such as
stability and frame bounds. In addition, focus will be given
to a reduction of the over-representation and to boundary
problems. Furthermore, some research will be conducted
to construct globally C2 continuous representations of sur-
faces of arbitrary topological type.
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A   PROOFS

Linear dependency and over-representation

As proved by many signal processing applications,
such as image or video encoding, over-representation is
not necessarily a disadvantage. In order to further investi-
gate the inherent over-representation of our scheme, we
have to examine possible linear dependencies of individual
basis functions. In this context, we followed two different
strategies:
• The straightforward linear dependency of the 8 basis

functions in one point of the grid at a particular level of
detail, which might lead to a more compact representa-
tion of coefficients by direct linear combinations of oth-
ers.

• A more general representation of individual types of
basis functions (e.g one type of wavelets) using all other
basis functions in the barycentric plane at the same level
of detail.

Direct linear dependency of the 8 basis functions

To investigate the linear dependency of the 8 different
kinds of barycentric basis functions we start from the two-
scale relationship:

with

The barycentric wavelets are linear combinations of
shifted versions of one prototype function weighted with
coefficients of type

(19)

whereg stands for the filter kernels {a} and {b}.
We rewrite the relations in a vector form, where the

individual coefficients form the entries of the correspond-
ing vector:

From here we analyze a possible linear dependency
by computing the nullspace of the basis MatrixBL with:

(20)

For Haar basesBL is given by:

(21)

Its nullspace can be computed straightforwardly to
(22)

Obviously, the barycentric wavelets constructed from
the Haar basis are linear dependent.

A similar analysis for the quartic wavelets yields
(23)

that is no direct linear dependency.

General linear dependency of the basis functions

The computations from above are not fully sufficient
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to determine all possible linear dependencies of basis
functions. In order to estimate the dimension of linear
dependency, all translations of the wavelets and the scaling
functions of the same decomposition level must be consid-
ered.

It is possible to prove, that there is no finite represen-
tation of the wavelets, except for linear barycentric wave-
let, presented above. For the sake of brevity we omit the
full proof. As an example, we take the linear barycentric
basis functions to construct an infinite basis of 4 functions,
that represent the whole space. This case illustrates the
fundamental ideas of the full proof.

Recalling the barycentric filter kernels, as described in
equation (16), we deduce a set of new filters as shown in
Fig. 20.

Note that these kernels are orthogonal.

Using the definitions

(24)

the remaining filter coefficients can be determined as
follows:

(25)

The above equations express the linear dependencies
of the filter kernels of the linear barycentric basis func-
tions. From here, the linear dependencies of the associated
basis functions follows immediately. We expect this obser-
vation to be a promising way to handle (remove) the over-
representation and we will focus on this topic in our future
work.

Barycentric convolution operator

In order to use the barycentric filters and the barycen-
tric MRA, we have to establish the correspondences
between the 3D- and barycentric convolution operator:

(26)
The convolution operator in 3D is calculated by con-

volution in all 3 directions of the 3D grid. A simple trans-
formation using the sum over the barycentric plane and
building the convolution along the perpendiculars yields
the convolution operator on triangular meshes. Here it is
important to remember the equality of

(27)

which is obvious since we build the 3D coefficients
using the mapping operatorF as described in (2) and (4).

The convolution of the wavelet coefficients is calcu-
lated in the same way.

B   EXAMPLES

Haar basis (1D)

The operators for Haar wavelets are trivial and given
by

(28)

wherea denotes the low pass filter (scaling function)
andb denotes the band pass filter (wavelet). Orthogonality
forces the inverse operators to equal the transpose.

Linear basis (1D)

Linear B-splines, as proposed by [6] are semi-orthog-
onal. Hence, we have different filters for analysis and syn-
thesis with the sequences

(29)

(30)

and
(31)

Figure 20: Barycentric linear filter basis.
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a
1
2
--- 1

2
---, b, 1

2
--- 1

2
---–,= =

a a10 a9 a8 a7 a6 … a1 a0 a1 … a10, , , , , , , , , ,[ ]=

b b9 b8 b7 … b1 b0 b1 … b9, , , , , , , ,[ ]=

p p2 p1 p2, ,[ ] q; q3 q2 q1 q2 q3, , , ,[ ]= =
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with given constants

a1 = 0.6830127
a2 = 0.3169873
a3 = -0.1160254
a4 = -0.0849365
a5 = 0.0310889
a6 = 0.0227587
a7 = -0.0083302
a8 = -0.0060982

p1 1=

p2
1
2
---=

q1
10
12
------=

q2
6
12
------–=

q3
1
12
------=

b1 = 0.8660254
b2 = -0.3169873
b3 = -0.2320508
b4 = 0.0849365
b5 = 0.0621778
b6 = -0.0227587
b7 = -0.0166605
b8 = 0.0044642

a9 = 0.0022321
a10 = 0.0016340

b9 = -0.0016340


