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Abstract

In this survey we will describe the most important state-of-the art surface representations,
and we will investigate their usefulness as modeling tools in geologic applications. The
representations that we will analyze include wavelet based representations, hierarchical
splines, subdivision surfaces, mesh based methods, schemes based on signal processing
tools and classic representations used in geoscience. These representations will be evalu-
ated using the most important requirements that a modeling system in geoscience should
fulfill. We conclude the survey with the description of some interesting research topics to
improve on the representations currently available.

1 Introduction

The representation of complex surfaces has been one of the core fields of computer graph-
ics, and over the years many different approaches to this problem have been constructed.

The word representation should not be identified with the data structures that allow to ren-
der complex meshes very fast and very accurately, since this is just one of the require-
ments that a good representation must fulfill. Other requirements include being able to
compute intersection curves between surfaces, model the error, edit surfaces at different
levels of resolution, fitting surfaces through clouds of points, and many more. A complete
list of the most important requirements for a surface representation in geoscience applica-
tions can be found in Section 2.
None of the representations currently available is capable to meet all the surface require-
ments that an application might specify. Some of the requirements are not compatible:
constructing compact representations is often very important, but storing some redun-
dancy in the data usually allows to construct faster algorithm. As a consequence the cur-
rent representations concentrate on meeting a few important requirements.
In this survey we are going to analyze the state-of-the-art surface representations currently
available as well as the most influential classic representations. This analysis includes a
description of the theory that defines the representations, the operators used in the algo-
rithms, and an evaluation based on a set of requirements.

Figure 1.1 gives a taxonomy of the representations investigated in this survey. They can be
grouped into six categories:
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1. Wavelet based representations: Wavelets are very well understood from a mathematical
point of view, and they are defined in a rigorous framework.
This category includes standard first generation tensor product wavelets, second gener-
ation wavelets, the BLaC wavelets and wavelets over manifolds.

2. Hierarchical splines: The H-Spline representation is a pioneer work in hierarchical rep-
resentation of surfaces. This representation is based on the B-Spline basis function.

3. Subdivision surfaces: Subdivision operators generate smooth surfaces from polygonal
meshes, which by definition are piecewise linear. The first papers on subdivision are
more than twenty years old, but new papers are still improving the representation.

Figure 1.1 A taxonomy of representations analyzed in this survey

Subdivision surfaces
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4. Mesh based methods: All the representations that work on piecewise linear representa-
tion of surfaces, which are either triangular or polygonal meshes, are listed under this
category. Wavelets, H-Splines, subdivision schemes and also signal processing methods
are not mesh based methods since they represent surfaces using higher order functions.
Some of the better known algorithms such as progressive meshes and the classic vertex
removal algorithm belong to this category.

5. Signal processing schemes: This family of representations apply discrete operators
based on signal processing tools on meshes with arbitrary connectivity.
These representations construct fairing operators to smooth meshes, and they use clas-
sic mesh based approaches to store the meshes.

6. Classic representations used in geoscience: there are two main representations used in
geoscience. The DSI algorithm allows to create surfaces that satisfy a number of user-
specified constraints, such as positional and higher order constraints on the vertices of a
mesh. Since the most commonly used data format in geoscience is the regular grid,
quadtree structures are often used to construct efficient representations.

In Section 2 we will list the most important requirements that a representation must fulfill
to optimally represent geologic models. The different requirements will be described and
weighted depending on their importance. In Section 4 through Section 9 we will describe
the different representations and evaluate them using the requirements listed in Section 2.
In Section 10 we will give some conclusions and directions for future work.



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

4

2 Surface Representation Requirements

The development of complex surface representation schemes has been one of the core
fields of computer graphics and geometric modeling. The different representations cur-
rently available have succeeded in modeling certain properties of surfaces well, but none
of them was general enough to satisfy all the requirements that could be imposed on a rep-
resentation.

Since no representation is able to satisfy every modeling and visualization requirement,
we need to define a set of crucial surface requirements, and weight them with respect to
their importance. This step will allow us to evaluate all surface representations and to rank
them with respect to their usefulness in representing geologic models.

Table 1 summarizes the most useful requirements needed to represent geologic models:

TABLE 1. Requirements for the surface representations

The smaller the importance value associated with each requirement, the more important
the requirement is: requirements with an importance of one are mandatory, while require-
ments with an importance of four describe less crucial features.

In the remaining of this section the requirements listed in Table 1 will be described in
detail.

2.1  Modeling of Two-Manifold Surfaces With Boundaries

In order to properly describe what a two-manifold is, the concepts of macrotopology and
microtopology need to be defined.

• Macrotopology: describes the set of topologic properties that are independent of the
discrete representation of surfaces. The definition of a two-manifold and the genus of a
surface are two examples of macrotopology.

Requirements Importance

Modeling of two-manifold surfaces with boundaries 1

Computation of surface-surface intersections 1

Scalable representation 1

Modeling of non-manifold singularities, tears and cracks 2

Error modeling 2

Smoothness of the surface 3

Multiresolution editing 3

Surface fitting 3

Support of local high variation in the curvature of the surface 4

Scale independence 4

Changes of the surface over time 4
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• Microtopology: describes the set of topologic properties that depend on the discrete
representation of surfaces. The definition of a pseudo-manifold and the concept of a
simplex connectivity are two examples of microtopology.

Surfaces can be classified according to their complexity: the simplest surfaces are defined
as height field over regular grids, the most complex surfaces are non-manifolds surfaces.
One important question that has to be answered is what type of surfaces must be supported
by the representation.

In order to be able to build geologic models we have to be able to model at least two-man-
ifold surfaces with boundaries. A two-manifold can be interpreted intuitively as a surface
that does not intersect itself. A more rigorous definition is given in Definition 2; additional
information can be found in [63]:

Definition 1: A homeomorphism is defined as a continuous invertible map

whose inverse  is also continuous.

Definition 2: An n-dimensional manifold with boundary is a Hausdorff space such

that each point has an open neighborhood homeomorphic to or to

. A two-manifold with boundary is an n-

dimensional manifold with boundary with .

Two-manifold surfaces are powerful enough to model simple horizons and faults that are
usually represented with regular grids as well as more complex objects such as salt domes.
Furthermore a representation that supports two-manifold surfaces with boundaries is capa-
ble of storing most of the surfaces that are generated by the intersection of two surfaces.

Two-manifold surfaces are not capable to represent some of the most complex faults and
horizons, such as the examples shown in Figure 2.1:

Figure 2.1 Complex non-manifold geologic surfaces
a) Thrust duplex structure
b) Normal and inverse faults

f : K H→
f 1– : H K→

M

Rn

R+
n x1 … xn, ,( ) Rn∈ xn 0≥{ }=

n 2=

a) b)
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Figure 2.2 illustrates a real world example of a complex geologic surface, a folded shale.
The picture was taken in Brienz, Switzerland.

Figure 2.2 Folded shale (picture courtesy of H. Einstein and V. Ivanova)

If this type of non-manifold surfaces are present in a geologic model, it is possible to
decompose them in two-manifold surfaces, for example using the algorithm developed by
Gueziec et al. in [1].

2.2  Computation of Surface-Surface Intersections

A geologic model is built by first selecting a volume of interest and then inserting geologic
objects such as faults and horizons into the volume. This process is shown in Figure 2.3;
for a more accurate description of the problem of building geologic models refer to [70]
and [72].

Figure 2.3 Construction of a geologic model
a) Subdivide a region of interest with surfaces
b) Insert a subvolume into the result
c) Mark features such as layers, horizons, and salt bodies

a) b) c)
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Figure 2.4 illustrates how a geologic model is built using the Common Model Builder
(CMB), a modeling framework developed by Schlumberger. Additional information on
the CMB framework can be found in [58].

Figure 2.4 A model in CMB (pictures courtesy of Schlumberger)
a) Seismic data extracted from a geologic survey
b) A surface is fitted through the seismic data
c) The model after three surfaces have been introduced
d) The surfaces in the model bounds regions with different material properties

The information on these models is stored in a boundary representation. This means that a
3D volume is defined by its 2D boundaries, 2D surfaces are defined by their 1D bound-

a) b)

c) d)



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

8

aries and 1D curves are defined by their 0D boundaries. An example of a boundary repre-
sentation is described in Figure 2.5.

Figure 2.5 Boundary representation of a simple model
a) Labeled model
b) Boundary representation of the model

The information needed to keep a consistent boundary representation of geologic models
is computed via surface-surface intersection algorithms. These algorithms are used when a
fault or horizon is added in the model, or when one of the surfaces already in the model is
edited.

2.3  Scalable Representation

The complexity of geologic models varies greatly: some models are relatively simple and
are described with a few thousands primitives, other models are much more complex and
are described with millions of primitives.
A good surface representation must be able to handle surfaces of any complexity, i.e. it
should fulfill the following requirements:

• The time required to build a representation of a surface must have a low complexity,
equal or smaller than , where corresponds to the number of vertices in
the piecewise linear approximation of the surface.

• The storage requirements for a representation of a surface must also have a low com-
plexity, equal or smaller than , where corresponds to the number of trian-
gles in the piecewise linear approximation of the surface.

• Once the representation of the surface has been constructed and stored it must be possi-
ble to generate error-bounded approximations of the surface. The quality of the approx-
imations must depend on two factors:

1. It must be possible to interact with the model. Since it is currently not feasible to
interact with full resolution models, the representation has to return an approxima-
tion of the model that minimizes the error norm, but still allows interaction with
the model.

S

a

b

c

d

A B

D C

S

a b c d

A B C D

a) b)

O n nlog⋅( ) n

O n nlog⋅( ) n
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2. The representation must scale with the available hardware: the approximations on
less powerful workstations will be coarser than the representation on powerful
supercomputers.

The importance of scalable surface representations is growing steadily, since data acquisi-
tion systems are able to extract more and more information and build better and more
complex models.

2.4  Modeling of Non-Manifold Singularities, Tears and Cracks

A representation that can model two-manifolds is capable of modeling most of the sur-
faces commonly found in a geologic model. However other primitives exist that would be
useful to model:

• As we have seen in Section 2.1 a representation that can model two-manifold surfaces
is powerful enough to model most geologic models. There is one particular instance of
non-manifold surfaces that we would like to model: pseudo-manifold singularities,
which are defined in Definition 3 as well as in [63].

Definition 3: An n-dimensional pseudo-manifold is an n-dimensional finite, regular CW-
complex which satisfies the following three conditions:

1. Every face is a face of some n-cell

2. Every -dimensional cell is a face of exactly two n-cells

3. Given any two n-cells and there exist a sequence of n-cells

such that , and each pair has a

common -dimensional face.

 The vertex  in Figure 2.6 is an example of a pseudo-manifold singularity:

Figure 2.6 Pseudo-manifold surface

The surface drawn in Figure 2.6 is not a two-manifold, since the vertex does not have

a neighborhood homeomorphic to either or , but it is a pseudo-manifold, since it

satisfies the conditions of Definition 3.
These vertices are obviously very important: the removal of from the mesh would not
only change the connectivity locally, but it would also change it globally, since the hole
in the surface would no longer exist.

n 1–( )

e e'

e0 … ek, , e0 e= ek e'= ei 1– ei,( )

n 1–( )

v

v

v

R2 R+
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• The second type of objects we would like to represent includes tears and cracks. These
objects could be represented easily if we could embed curves in the surfaces. Embed-
ded curves could also be used to represent intersections.

2.5  Error Modeling

Error modeling is an essential component of a surface representation that gives the user
feedback on the quality of the approximated model he is interacting with.

Real-time interaction with full-resolution geologic models is often not feasible, since the
models are too complex and they are represented with too many primitives; it is often nec-
essary to build simpler approximations that can be handled in real-time. Specific informa-
tion on the requirements of a scalable representation can be found in Section 2.3.

The simpler models do not contain all the information of the full-resolution models. The
differences between the approximations and the original models are introduced by:

• reducing the number of primitives, usually triangles, in the model

• approximating the location of the vertices in the model

The goal of an error modeling system is to give the user an insightful application-depen-
dent feedback on the quality of the approximations.
As an example, a geologist visualizing a model might be interested in an error norm that
describes the difference between the approximated and the original full-resolution model
from a visualization point of view. On the other hand during a flow simulation the error
norm could describe the differences between the volumes defined in the approximated
model and the volumes in the full resolution model.

2.6  Smoothness of the Surface

The mesh that describes a surface can be interpreted in two different ways:

• the mesh fully defines the surface. The surface is identified with the collection of poly-
gons and vertices that specifies the mesh.
Representations based on this assumption can usually model surfaces with any connec-
tivity, but they are not very well suited to model the error and to edit surfaces.

• the mesh is used as a constraint to build the surface representation, which is defined as
a piecewise defined smooth function.
Representations based on this assumption are usually restricted to simple connectivity,
such as quaternary subdivision meshes, but they are better suited to model the error and
to edit surfaces.

Since there is no unique surface that interpolates a given set of points, there is some free-
dom in the choice of the surface. We choose to construct smooth surfaces, with non-
smooth regions only where needed. Among other benefits, this choice allows to easily
define which component in the input data is noise.
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2.7   Multiresolution Editing

Editing is an integral component of a surface representation for geoscience. The most
important application of a multi-resolution editing tool is the ability to enforce geologic
constraints to models that were generated automatically using a surface fitting algorithm.
This is a crucial step in the construction of a geologic model, since fitting algorithms build
geometrically consistent models, but they cannot guarantee that geologic constraints are
met.

Multiresolution editing tools make the editing easier by allowing the user to edit surfaces
at different levels of resolution, which means that the support of the edit operations can be
made larger or smaller depending on the type of edit needed.
Furthermore multiresolution editing tools edit either smoothed polygonal meshes or
higher order functions, so that a surface generated by an edit operation is as smooth as the
surface before the edit, and an edit affects the correct frequency interval of a surface.

2.8  Surface Fitting

There are two principal types of data used to construct geologic models:

• Borehole data: the data is measured in a borehole. This type of data is precise and
dense in depth, but it is very sparse, since the distance between boreholes is large.

• Seismic data: the data is acquired by emitting sound waves into the ground and analyz-
ing their reflections. These datasets are much more dense, but less precise.

The borehole and seismic information is not directly available as a set of faults and hori-
zons that define the geologic model in the boundary representation; instead the informa-
tion is specified with sets of points or sets of curves. These points and curves must then be
connected together to form surfaces, and this is the goal of the surface fitting methods.

2.9  Support of Local High Variation in the Curvature of the Surface

As we have seen in Section 2.6 one of the surface requirements is to generate smooth sur-
faces using (piecewise) smooth functions. We have chosen to construct smooth surfaces,
since the resulting models will look more natural. While surfaces should be represented as
smooth objects, portions of the surfaces might not be smooth. These non-smooth regions
should be represented correctly by the surface representation.
Ridges and horizons cut by faults are two examples of non-smooth regions.

2.10  Scale Independence

Geologic data ranges from millimeters to kilometers: as already discussed in Section 2.8
the distance between boreholes is usually measured in kilometers, but the data that is col-
lected in a borehole has a resolution of a few millimeters. A surface representation must
therefore be independent of any scale and be able to represent very high resolution data as
well as coarse data.
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All the representations that are going to be analyzed in this survey fulfill this requirement,
and we will not discuss it further.

2.11  Changes of the Surface Over Time

The geologic models are built from the information generated from the acquisition sys-
tems. These models describe portions of the earth crust at a given point in time. This infor-
mation is then used to describe flows of gases and liquids, such as oil, gas and water. In
order to model this information it is necessary to extend a surface representation to four
dimensions: three dimensions describe the geometric position of the vertices, one dimen-
sion specifies the temporal position of the model.
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3 Introduction to the Surface Representations Schemes

In the following six sections we will introduce the most important state-of-the-art surface
representations available today. We will describe these representations and evaluate them
with respect to the requirements introduced in Section 2; more details on the representa-
tions can be found in the original papers.

Since there are so many representations currently available, it is not feasible to present
them all separately, therefore we grouped them into different categories. For each of these
categories the basic mathematical background will be described, as well as some of the
most interesting results. Due to the sheer number of papers and theories in this field we do
not claim completeness, unintentionally some representations may have been left out.

The representations that will be discussed in this survey can be categorized in many differ-
ent ways. For our purposes we decided to distinguish between representations that work
on:

• Higher order functions: the surfaces are not defined by the polygonal meshes, but by
piecewise defined higher order functions. The subdivision surface schemes are one well
know example: although the basic components of this representation are polygons, in
the limit these schemes generate provably smooth surfaces.

• Polygonal meshes: these algorithms work directly on the mesh and build data structures
to efficiently store, access and visualize meshes.

Note that the polygonal meshes can also be interpreted as linear approximations of
smooth surfaces.

The two approaches have been mutually exclusive up until recently: a representation either
worked on a polygonal mesh or it work on higher order functions. This is not true any-
more: it is important to notice that some of the most recent works are trying to unify these
two different approaches by using signal processing tools on meshes with arbitrary con-
nectivity.

C0
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4 Wavelet Based Representations

4.1  Tensor Product Wavelets

In this section we give an overview of the classical multiresolution analysis applied on

functions defined over in the context of wavelet transform. We first describe the basics
of multiresolution analysis, and then give some examples of basis functions that could be
used to represent surfaces in geoscience.

The theory presented in this section is meant to give an overview of the vast field of multi-
resolution analysis and wavelets. More details on multiresolution analysis, wavelets and
filter banks can be found in the original paper of Mallat [61], in the classic books of Chui
[10], Daubechies [16], Yves Meyer [64], Eric Stollnitz et al. [78] and [79], as well as in
[65], [80], [12], [4] and [60].
A surface representation framework based on first generation wavelet is described in [39].

The results presented in this section allow to construct a multiresolution representation of
surfaces defined as height fields over regular grids. As a consequence it is possible to
model most faults and horizons present in a geological model, since most of these surfaces
are currently represented using this regular grids.

4.1.1 Definitions

The classic wavelet theory analyzes the space of all measurable functions
defined in Eq. 4.1:

(EQ 4.1)

In a similar way Eq. 4.2 defines the space of all bi-infinite square-summable

sequences :

(EQ 4.2)

One integral component of a multiresolution analysis is the inner product between two

functions  defined as

(EQ 4.3)

Eq. 4.3 can be used to define the two-norm of a function :

Rn

L2 R( ) f x( )

f x( ) 2 x ∞<d

∞–

∞

∫

l2 R( )
ci i Z∈,{ }

ci
2 ∞<

i ∞–=

∞

∑

f x( ) g x( ) L2 R( )∈,

f x( ) g x( ),〈 〉 f x( ) g x( )⋅ xd

∞–

∞

∫=

f x( )
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(EQ 4.4)

Furthermore, the Kronecker function is defined as

(EQ 4.5)

A sequence of elements  in an Hilbert space  forms a Riesz basis of  if:

1. For any sequence of elements there exists constants

 such that

(EQ 4.6)

2. The vector space  is dense in .

For a definition of the Hilbert spaces see [71] and [76].

4.1.2 Multiresolution Analysis

We start our investigation by constructing a function  that can generate .

The first property of can be extracted directly from Eq. 4.1: the value any function

must either decay exponentially to zero towards or have a compact
support.

The most straightforward strategy that allows to cover is to consider its integral
shift:

(EQ 4.7)

The function must also be able to capture the information of any function

at different levels of detail, from small scale changes in the function to

large scale changes. This information can be captured by binary dilation of :

(EQ 4.8)

From Eq. 4.7 and Eq. 4.8 a new set of functions can be defined:

(EQ 4.9)

that are generated by the single mother function .

f x( ) 2 f f,〈 〉 1 2/=

δ j k,
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If the generating function is assumed to have unit length, meaning that

, then the new functions can also be scaled to have unit length by

defining:

(EQ 4.10)

If the set of functions  is an orthonormal basis of , which means that

(EQ 4.11)

and each function  can be written as

(EQ 4.12)

then the generating function  is called an orthonormal wavelet.

If the set of functions is a Riesz basis of then the generating

function is called an -function. Furthermore an -function is also an -

wavelet if there exists a function , a so-called dual wavelet, such that:

(EQ 4.13)

(EQ 4.14)

Next, we can define the space generated by the closure of the linear span of
:

(EQ 4.15)

From the definition of a space in Eq. 4.15 and the definition of the function the

space  can be described as a direct sum  of the spaces :

(EQ 4.16)

One last component needed for a multiresolution analysis is the definition of the space :

(EQ 4.17)
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Definition 4: Any -wavelet (or wavelet) generates a direct sum decomposition of

described in Eq. 4.16. Equivalently any wavelet builds a multireso-

lution approximation of  with the following properties:

1.

2.  and  is dense in

3. , for all  and all

4.  for all  and all

5. , for all

6. There exists a mother function that defines a set of scalar basis functions

 whose closure generates :

(EQ 4.18)

One final comment: the scalar and wavelet basis functions defined in this section satisfy
the two-scale relation, which is used to construct the basis functions at level using a lin-

ear combination of the basis functions at level :

(EQ 4.19)

(EQ 4.20)

4.1.3 Filter-Bank Representation of Signals

As discussed in the previous sections the wavelet theory is used to represent any function

in at different levels of resolution. This is accomplished by projecting

the function in the subspace , and by storing the difference in the orthogonal

subspace . This process can be repeated times, resulting in a multiresolution rep-

resentation of the function .

The decomposition and reconstruction operations can be defined with four matrices , ,

, and  as follows:
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• The two analysis matrices and decompose a discrete signal into a coarser

discrete signal  and a difference signal :

(EQ 4.21)

(EQ 4.22)

• Two synthesis matrices and reconstruct the discrete signal from the

coarse signal  and the difference signal :

(EQ 4.23)

These two steps can be repeated on the input signal, thus generating a multiresolution rep-
resentation of the signal. The resulting algorithm, called filter bank algorithm, is illus-
trated in Figure 4.1 for a discrete input signal :

Figure 4.1 Filter bank algorithm
a) Decomposition step
b) Reconstruction step

After the decomposition step the input signal is represented by its projection

onto the space plus all the discrete details signals needed

to reconstruct the signal.

The matrices and used in the reconstruction step can be derived from the two-scale
relations expressed in Eq. 4.19 and Eq. 4.20, and the projection matrices used in the
decomposition step can be constructed using Eq. 4.24:
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(EQ 4.24)

Let denote the size of the signal . The size of the matrix which upsam-

ples the signal to the space has the size , the matrix

, which adds the details back to reconstruct has the size

.

The size of the matrix , which projects the signal to has the size

, and the matrix which is used to compute the detail signal

 has the size .

4.1.4 Orthogonality of Wavelets

In the literature many different scalar and wavelet basis functions have been constructed
that satisfy the conditions described in Section 4.1.2; some of the better known basis func-
tions will be described in Section 4.1.5. These bases can be classified according to their
degree of orthogonality:

• Orthogonal wavelets: full-orthogonality is the tightest constraint for a basis function,
which must satisfy

(EQ 4.25)

Eq. 4.25 implies that the inner product between a wavelet basis and a scaled and/or
translated wavelet basis must be equal to zero.

• Semi-orthogonal wavelets: semi-orthogonality is a more relaxed constraint, which
requires a basis function to satisfy

(EQ 4.26)

Eq. 4.26 implies that the inner product of two wavelet basis at different scales must be
equal to zero.

• Bi-orthogonal wavelets: if a wavelet basis does not satisfy the semi-orthogonality con-
dition, then it must satisfy the bi-orthogonality condition

(EQ 4.27)

Eq. 4.27 implies that the inner product between the primal wavelet basis and

the dual wavelet basis at different scales and/or for different translations must

be equal to zero.

The orthogonality conditions for the scalar basis functions follow directly from Eq. 4.25
through Eq. 4.27.
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4.1.5 Bases for Tensor Product Wavelets

The multiresolution analysis described in Section 4.1.2 did not specify which functions
, the so called scalar functions, and , the so called wavelet functions, are valid

generating functions. In this section we briefly examine some well known basis functions:

• B-Spline wavelets: are constructed from the B-Spline functions, and they represent one
of the better known family of wavelets. The scalar and wavelet functions are defined as:

(EQ 4.28)

(EQ 4.29)

(EQ 4.30)

where the  is the B-Spline function defined by:

(EQ 4.31)

(EQ 4.32)

and specifies the order of the B-Spline basis function. The set of parameters

define a partition of the unit interval where the B-Spline basis functions are

defined.

The most important properties of B-Spline wavelets are listed below:

1. They are symmetric for even  and antisymmetric for odd

2. They build a semi-orthogonal basis

3. They have  vanishing moments
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The scalar and wavelet basis functions generated by a cubic B-Spline are drawn in
Figure 4.2.

Figure 4.2 Cubic B-Splines wavelets
a) Scalar basis function
b) Wavelet basis function

The wavelet transform for discrete surfaces computed with the B-Spline basis functions
is implemented with matrix operations. The matrix-matrix and matrix-vector multipli-
cation operations needed to compute the wavelet transform are very expensive: they

have a complexity of , where is the number of points on the surface. In order
to compute the wavelet transform faster linear algebra approaches are necessary to
reduce the total complexity of these operations. Using these approaches the complexity
can be reduced to .

More information on the endpoint interpolating B-Spline basis functions can be found
in [68], [11], and [69].

• Battle-Lemarie wavelets: these basis functions were constructed independently by Bat-
tle in [2] and Lemarie in [52]. The Battle-Lemarie scalar and basis functions orthogo-
nalize the semi-orthogonal scalar and wavelet B-Spline basis functions.
This goal is achieved by use of a theorem that states that the family
is an orthonormal basis if and only if the following equation holds:

(EQ 4.33)
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where  is the fourier transformed of the basis function .

This theorem can be applied directly to define the Fourier transform of the new
scaling function as

(EQ 4.34)

where is the Fourier transform of the B-Spline basis defined in Eq. 4.31 and
Eq. 4.32.
The Fourier transform of the new wavelet function  is defined as

(EQ 4.35)

The formula for the scalar and wavelet basis functions can be defined as:

(EQ 4.36)

(EQ 4.37)

The coefficients for the scalar basis function Eq. 4.36 correspond to the Fourier

coefficients of Eq. 4.34, and the coefficients for the wavelet basis function in

Eq. 4.37 correspond to the Fourier coefficients of Eq. 4.35.
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Figure 4.3 illustrates the Battle-Lemarie scalar and wavelet basis function obtained
from the cubic B-Spline basis functions via the orthogonalization process:

Figure 4.3 Battle Lemarie wavelets generated from the cubic B-Spline function
a) Scalar basis function
b) Wavelet basis function

The orthogonalization process described in this section that allows to build the Battle-
Lemarie wavelets has the drawback of generating wavelets without a local support: the
scalar and wavelet basis functions shown in Figure 4.3 decay exponentially toward
zero, and their support is the whole real line. As a result the matrices , , , and
are dense, and the complexity of the decomposition and reconstruction steps of a filter
bank algorithm is therefore quadratic in the number of points in the surface.

A detailed description of the Battle-Lemarie wavelets can be found in the original
papers of Battle [2] and Lemarie [52], as well as in [10] and [16].

• Gabor wavelets: the Gabor wavelets have been primarily adopted in image processing
applications as an analysis tool. One important feature of Gabor wavelets is they mimic
the behavior of pairs of cells in the primary visual cortex well. The wavelet transform is
not computed with a tensor product ansatz using one-dimensional basis functions as in
the case of the other wavelet bases described in this section, but by convolution:

(EQ 4.38)

The scalar function is defined as a Gaussian curve

(EQ 4.39)
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whereas the wavelet function is modeled as a plane wave weighted by a Gaussian func-
tion:

(EQ 4.40)

Furthermore, the plane wave can be oriented, so that many different wavelet functions
are generated.

Note that the Gabor wavelets do not have vanishing moments.

Figure 4.4 illustrates an example of Gabor scalar and wavelet functions:

Figure 4.4 Gabor wavelets
a) Scalar basis function
b) Wavelet basis function

More information on Gabor wavelets and filters can be found in [38], [3] and [20].

• Daubechies wavelets: the Daubechies scalar and wavelet functions do not have a closed
form; the bases are implicitly computed, for example, by spectral factorization of a trig-
onometric polynomial. As an example, we show how to construct an orthonormal basis
with a compact support and maximum number of vanishing moments.

The first step consists in finding the non-vanishing coefficients  of

(EQ 4.41)

The function is used to define a two-scale relation-like formula for the scalar

basis function in Fourier space:
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(EQ 4.42)

The coefficients can be computed using the assumption that

(EQ 4.43)

where

(EQ 4.44)

In order to generate a set of orthonormal basis functions with minimal support and
maximal number of vanishing moments Eq. 4.45 must hold:

(EQ 4.45)

The coefficient  can then be computed by evaluating  and representing it as

(EQ 4.46)

and then using a Lemma of Riesz, which states that for each trigonometric polynomial
of the form Eq. 4.46 there exists a trigonometric polynomial of the form

(EQ 4.47)

such that .

Once the coefficients have been computed it is possible to compute the scalar and

wavelet bases using the two scale relation:

(EQ 4.48)

Finally, it is necessary to compute the value of at a finite number of positions, for
example at all integer positions, and then use the two scale relation formula to compute
the value of the function at any other position.
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Figure 4.5 shows some basis functions generated using this scheme:

Figure 4.5 Daubechies wavelets
a) Scalar basis function for N=2
b) Wavelet basis function for N=2
c) Scalar basis function for N=5
d) Wavelet basis function for N=5

The scheme we presented in this section constructs wavelet bases with a maximum
number of vanishing moments. The scheme generates a subset of the family of the
Daubechies wavelet functions. More information on this topic can be found in [16],
[15], [17], and [13].

4.1.6 How to Represent a Grid with First Generation Wavelets

In this section we show how to construct a multiresolution representation of a two dimen-
sional regular grid using the simple Haar basis function defined as:
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(EQ 4.49)

(EQ 4.50)

A wavelet representation for a multidimensional grid can be computed easily using the
tensor product approach: a one dimensional wavelet transform is applied at each dimen-
sion, one at a time.

Figure 4.6 shows the decomposition step of a two-dimensional image:

Figure 4.6 Wavelet decomposition of an image (magnitude of the wavelet details increased by 4)
a) Original input data
b) One dimensional wavelet transform in x
c) One dimensional wavelet transform in y; first level of decomposition
d) One dimensional wavelet transform in x
e) One dimensional wavelet transform in y; second level of decomposition

One level of decomposition of an input two dimensional grid (Figure 4.6-a) is achieved by
first computing a wavelet transform along one dimension (Figure 4.6-b), and then along
the other dimension (Figure 4.6-c).
Using the terminology developed in Section 4.1.3 the input grid can be thought as a dis-
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crete signal . The first wavelet transform decomposes one of the dimensions,

which results in two new signals:

(EQ 4.51)

(EQ 4.52)

In Figure 4.6-b is represented by the upper-left half of the surface, which retains

many of the features of the original surface, and is represented by the other half,

which is almost flat.
After applying the wavelet in the second dimension, the surface is divided into four sub-
patches:  is decomposed in

(EQ 4.53)

(EQ 4.54)

and  is decomposed in

(EQ 4.55)

(EQ 4.56)

The subpatch , which contains the coarser representation of the surface, is then

further decomposed in Figure 4.6 d-e.

4.2  Second Generation Wavelets

As we have seen in the previous section, classic tensor-product wavelets that span
are generated through binary dilation and dyadic translation. This type of basis functions

is more than adequate to represent functions defined over , but it is not gen-
eral and powerful enough to handle irregular settings, such as a function defined on a
sphere.

In second generation wavelets, basis functions are generated using the lifting scheme,
which allows to construct a broader range of bases than the dilation and translation opera-
tors in the first generation wavelets: the construction starts with a choice of a simple wave-
let, which is lifted to a new and more complex wavelet that possesses a set of properties
useful to model specific types of signals. The lifting scheme allows to generate first gener-
ation wavelets, as well as new types of wavelets defined over more complicated domains,
such as spherical domains or quaternary subdivision meshes.
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In the first subsection we will introduce the basics of the new multiresolution analysis for
the second generation wavelet; next we will present the lifting theorem, and finally we will
give a simple examples of how the lifting process works.

More detail on second generation wavelets and their related theory can be found in [81],
[82], [83], [84], [33], [19], [73], and [85].

4.2.1 Multiresolution Analysis of Second Generation Wavelets

Second generation wavelets generalize the wavelet theory to more general settings than

. Ideally this new generation of wavelets should preserve some of the properties of
the first generation wavelets, such as:

1. The wavelets must form a Riesz basis of (see Section 4.1) as well as an uncondi-

tional basis for a space , so that a function  can be represented as

(EQ 4.57)

where is the set of wavelet basis functions and

 are the coefficients of the linear combination.

2. The wavelets are either orthogonal or the dual wavelets are known.

3. The wavelets and the dual wavelets are local both in space and frequency.

4. The wavelets fit into a multiresolution analysis framework.

In addition to this basic set of properties the second generation wavelets are expected to
fulfill the following properties as well:

1. It should be possible to define wavelets on more general settings than , like wavelets
on curves, surfaces and more generally on manifolds.

2. It would be desirable to define wavelets over irregularly sampled data, since the data
acquired in real life is often irregularly sampled.

Now that the goals of this new representation have been set, we will begin the investiga-
tion of the second generation wavelets by constructing a multiresolution analysis. The

multiresolution analysis is built on a space , where is the spa-

tial domain,  is a -algebra and  is a non-atomic measure on . Then:

Definition 5: A multiresolution analysis of is a sequence of subspaces

 such that

1.

L2 R( )

L2 R( )
F f x( ) F∈

f x( ) γ j m, ψ j m, x( )⋅
m ∞–=

∞

∑
j ∞–=

∞

∑=

ψ j m, x( ) j m Z∈,{ }

γ j m, x( ) j m Z∈,{ }

Rn

L2 L2 X Σ µ, ,( )= X Rn⊂
Σ σ µ Σ

M L2

M V j L2 j J Z⊂∈⊂{ }=

… V 1– V 0 V 1 …⊂ ⊂ ⊂ ⊂



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

30

2.  and  is dense in

3. has a Riesz basis defined by , where is

an index set

The lifting scheme does not lift orthogonal or semi-orthogonal bases (see Section 4.1.4) in
general, but only bi-orthogonal bases. Therefore it is necessary to define a dual multireso-

lution analysis . The spaces have a Riesz basis defined by

.

The construction of the scaling functions and their duals are computed

using the two-scale relation formula:

(EQ 4.58)

(EQ 4.59)

where and are the sets of coefficients of the

two linear combinations. A more detailed description of this construction can be found in
[81].

Definition 5 specified a multiresolution analysis for this new setting and defined the scalar
basis functions. Definition 6 describes the wavelet basis functions:

Definition 6: A set of functions , where is defined as

, is a set of wavelet functions if:
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 in  and .

2.  or

 form a Riesz basis for .

As already mentioned the lifting scheme will not lift orthogonal or semi-orthogonal bases
in general, but only bi-orthogonal bases. It is therefore necessary to define a complement
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space  and a complement set of wavelet basis functions .

The new space  is the complement of  in , and it is orthogonal to .

The primal and dual wavelet basis functions must also satisfy the two-scale relation
defined in Eq. 4.60

(EQ 4.60)

(EQ 4.61)

where and are the sets of coefficients of the

two linear combinations.

The orthogonality conditions that a wavelet basis function must meet are described in
Section 4.1.4.

4.2.2 The Lifting Scheme

As we mentioned in the introduction of this section, the core component of second gener-
ation wavelets is the lifting step. A lifting step can either lift the dual scalar function and
the primal wavelet function or the primal scalar function and the dual wavelet function.
These two lifts will be introduced in Theorem 1 and in Theorem 2. Figure 4.7 and
Figure 4.8 show how the lifting steps can be implemented into a fast wavelet transform.

Theorem 1 describes how to lift the dual scalar basis function and the primal wavelet basis
function:

Theorem 1: From an initial set of biorthogonal basis functions

a new set of biorthogonal basis func-

tions  can be constructed as:
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Theorem 1 can be easily implemented using a fast wavelet transform. Figure 4.7 shows
how to construct the decomposition and reconstruction steps of the filter bank algorithm
presented in Section 4.1.3 for an input signal .

Figure 4.7 Lifting of the primal wavelet basis functions

Theorem 2 describes how to lift the primal scalar basis function and the dual wavelet basis
function:

Theorem 2: From an initial set of biorthogonal basis functions

a new set of biorthogonal basis func-

tions  can be constructed as:

(EQ 4.66)

(EQ 4.67)

(EQ 4.68)

(EQ 4.69)

c j 1+ k, k K j( )∈{ }

Forward transform from level  to level :j 1+ j

k K j( ): c j k,∈∀ h̃ j k l, ,
old c j 1 l,+⋅

l K j 1+( )∈
∑=

m M j( ): d j k,∈∀ g̃ j m l, ,
old c j 1 l,+⋅

l K j 1+( )∈
∑=

k K j( ): c j k,∈∀ c j k, s j k m, , d j m,⋅
m M j( )∈
∑+=
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m M j( )∈
∑–=

φold x( ) φ̃old x( ) ψold x( ) ψ̃old x( ), , ,{ }
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l K j 1+( )∈
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Theorem 2 can also be implemented using the fast wavelet transform. The reconstruction
step of the filter banks algorithm are shown in Figure 4.8:

Figure 4.8 Lifting of the dual wavelet basis functions

From Figure 4.7 and Figure 4.8 we see immediately how simple the implementation of the
lifting scheme is: in the forward transform the detail values are modified with a linear

combination of the scalar values , and the scalar values are then modified with a lin-

ear combination of the detail values . These two operations can be inverted, and the

reconstruction process can be performed efficiently.

The operator allows to lift a set of basis functions to a new

set of functions that possess some new properties. For example, it is possible to choose
 so that the -th vanishing moment becomes zero.

4.2.3 How to Lift the Lazy Wavelet

In this section we show how to lift the lazy wavelet to a biorthogonal wavelet of Cohen-

Daubechies-Feauveau with and . More information on this set of basis
functions can be found in [14].

The lifting process is described by the following steps:

1. The lifting process is started by defining the lazy wavelet, the simple input wavelet
function:

(EQ 4.70)

Forward transform from level  to level :j 1+ j
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old c j 1 l,+ s j k m, , c j k,⋅
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∑–⋅
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∑=

Inverse transform from level  to level :j 1+ j

l K j 1+( ): c j 1+ l,∈∀ h j k l, ,
old c j k, g j m l, ,
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∑+⋅
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(EQ 4.71)

An input one-dimensional signal can now be decomposed using the lazy wavelet into a
set of scalar values and a set of detail values. Figure 4.9 shows a simple example:

Figure 4.9 One-dimensional input signal decomposed with the lazy wavelet
a) Original input signal
b) Scalar values
d) Detail values

2. The second step consists in finding a good prediction for the detail values using a

linear combination of the scalar values . As a simple prediction strategy the average

of the two scalar values  and  can be used:

(EQ 4.72)

The changes in the detail values  are illustrated in Figure 4.10:

Figure 4.10 Lifting applied to the dual wavelet basis function
a) Detail values before the lift
b) Detail values after the lift

This step corresponds to the lift of the dual wavelet basis defined in Theorem 2.

3. In the last step, the scalar values  are scaled to satisfy Eq. 4.73:

d 1– k, c0 2k 1+,=

c0 V 0∈

c 1– V∈ 1– d 1– W∈ 1–

a)

b) c)

d 1–

c 1–

c 1 k,– c 1 k 1+( ) mod n,–

d 1 k,–
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1
2
--- c 1 k,– c 1 k 1+( ) mod n,–+( )–=

d 1–

d 1–
new W 1–

new∈d 1– W∈ 1–

a) b)
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(EQ 4.73)

This is accomplished by setting

(EQ 4.74)

The changes in the scalar values  are illustrated in Figure 4.11:

Figure 4.11 Lifting applied to the primal wavelet basis function
a) Scalar values before the lift
b) Scalar values after the lift

This step corresponds to the lift of the primal wavelet basis defined in Theorem 1.

4.3  Multiresolution Analysis with Non-Nested Spaces

George-Pierre Bonneau introduced in [7] and [5] the concept of multiresolution analysis
over non-nested spaces, which are generated by the so-called BLaC-wavelets, a combina-
tion of the Haar function with the linear B-Spline function.
This concept was then used in [8] and [6] to construct a multiresolution analysis over
meshes with arbitrary connectivity.

4.3.1 BLaC Wavelets

The BLaC scalar function is defined as a blending of an Haar basis function and a linear
B-Spline basis function, and it is defined as a function which depends on one scalar
parameter :

(EQ 4.75)
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Figure 4.12 shows the BLaC scalar function for different values of :

Figure 4.12 The BLaC scalar function for different values of

This set of basis functions do not define a set of nested spaces, since the two scale relation
is not satisfied. However the two scale relation can still be used to approximate the func-
tion at a different scale:

(EQ 4.76)

where the value of  can be computed as the solution of

(EQ 4.77)

Eq. 4.77 has to be interpreted as a step that minimizes the non-orthogonality of .

Figure 4.13 shows the approximate functions generated by the two scale relation:

Figure 4.13 Function constructed with the two-scale relation for different values of
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Now that the scalar basis functions have been constructed, it is necessary to define and
build the wavelet basis functions. The wavelet functions must satisfy the two-scale rela-
tion, which means that the wavelet bases at level must be expressed as a linear combina-

tion of the scalar bases at level , as shown in Eq. 4.78:

(EQ 4.78)

Since the size of the support of the wavelet basis functions is bounded by the size of the
support of the linear spline wavelet basis function, it is possible to reduce this infinite sum
to a sum with six terms:

(EQ 4.79)

In order to construct a unique set of wavelet basis functions the following two constraints
are imposed on the wavelet functions:

(EQ 4.80)

(EQ 4.81)

These two constraints allow us to determine the value of the coefficients in Eq. 4.79

and thus evaluate the wavelet basis functions.

Some examples of wavelet basis functions for different values of are presented in
Figure 4.14:

Figure 4.14 BLaC wavelet basis functions for different values of
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One final remark: the standard filter bank algorithm (see Section 4.1.3) needs to be
extended in order to be used with the BLaC wavelets, since the spaces are not nested.

A single step of the filter bank algorithm is shown in Figure 4.15:

Figure 4.15 Filter bank algorithm for non-nested spaces

The input signal is projected onto the space generated by , the scalar basis

function that is generated by the two scale relation, using the analysis operator . The

result is then projected onto the space generated by , the correct BLaC basis

function for the resolution , using the projection operator .

4.3.2 Multiresolution Analysis on Irregular Meshes

The idea of using non-nested spaces to represent functions can be generalized to meshes
with arbitrary connectivity.

The construction of wavelets over arbitrary connectivity is complicated, since the scalar
and wavelet basis functions not only depend on the geometric information, as in the case
of tensor product wavelets and second generation wavelets, but also on the connectivity of
the mesh. The idea of Bonneau is to avoid the construction of any basis function explicitly:
instead he builds directly the analysis and synthesis matrices that are used in the filter-
bank algorithm. In this way it is possible to construct compact pseudo-wavelets that are
easy to implement, but are not as rigorous as standard wavelets.

The multiresolution analysis that Bonneau constructed has the following properties:

• The pseudo-wavelets can be used on meshes with arbitrary connectivity, but the macro-
topology of the mesh is restricted: the mesh must be either parametrized over a plane
defined as an height field or over a sphere. This is a mandatory requirement, since the
algorithm needs a parametrization to build the analysis and synthesis matrices.

• The pseudo-wavelets do not encode the geometric information of the vertices that
define the mesh; instead they code one scalar value per triangle. The topologic and geo-
metric information has to be stored using conventional mesh-based algorithms.

• The construction of the multiresolution representation for meshes is based on a stan-
dard mesh decimation algorithm (see Section 7). In the original paper Bonneau used
the vertex removal algorithm constructed by William Schroeder (see Section 7.1).

We saw in Section 4.1.3 that in order to construct a filter bank algorithm two analysis
matrices  and  and and two synthesis matrices  and  must be constructed.
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In order to better describe the constructions of these matrices it is worthwhile to visualize
the vertex removal operation which maps a mesh at level  to the mesh at level :

Figure 4.16 The vertex removal operation
a) Region of the mesh at level n
b) Same region of the mesh at level n-1 after the vertex removal operation

The matrix is built using a simple strategy: the value of one triangle at a level is

computed as the weighted average of the values of the triangles at level . The weights are
computed as the area of the intersection of two triangles in parameter space:

(EQ 4.82)

where is the projection of the -th triangle in the mesh at level in parameter

space, and is the projection of the -th triangle in the mesh at level in parameter

space.

This means that the value of is different from zero only if the -th triangle in the

coarse mesh intersects the -th triangle in the fine mesh. The matrix has a size of

.

The only requirement imposed on the matrix is to store enough information to be able

to reconstruct . This leaves a lot of freedom in the choice of . An additional require-

ment imposed by Bonneau is that must be orthogonal to the matrix . This can be
accomplished very easily by setting

(EQ 4.83)

where is the identity matrix of size , and is an unknown

matrix of size . The value of the sub-matrix is computed as the solu-

tion of
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(EQ 4.84)

which corresponds to linear systems of equations with unknowns each.

The rows of the matrix can also be orthogonalized using a Gram-Schmidt orthogonal-

ization. The resulting matrix  has a size of .

Finally, the synthesis matrices  and  are computed using Eq. 4.85:

(EQ 4.85)

4.4  Wavelets Over Manifolds

There is little literature on wavelets over manifolds. The main problem with this type of
wavelets is that the bases depend on the connectivity of the underlying mesh, and it is still
not clear how to construct proper wavelets in this setting. Wavelets also need a global
parametrization, and the construction of parametrizations over meshes with arbitrary
topology is still an open research topic.

Nonetheless there are some papers on the subject:

• One of the most interesting papers on this subject was written by Wolfang Dahmen in
[87]. The paper is still very theoretical and does not give to much insight on how to
build wavelets over manifolds.

• A very successful approach has been constructed by Lounsbery, who builds wavelets
over subdivision surfaces. This strategy called Subdivision Wavelet Transform (SWT)
has been developed by Lounsbery in [57], [23], [56], and it will be described in detail in
Section 5.2. This representation, described in detail in Section 5.2, has been expanded
by Eck et al. in [31] and by Guskov et al. in [46] to handle meshes with arbitrary con-
nectivity.

• Andreas Dreger is working on the construction of B-Spline wavelets over quaternary
subdivision meshes. Information on his work can be found in [27].

4.5  Evaluation

In this subsection we will evaluate the wavelet based representations described in
Section 4 using the criteria specified in Section 2.

• Modeling of two-manifolds with boundaries: wavelet based representations are defined
in a rigorous mathematical framework. One of the consequences of this rigor is they
cannot model surfaces defined in irregular settings.
The three representations described in this section have different capabilities:
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• Tensor-product wavelet by definition can only be used to model height fields
defined over regular grids. Furthermore the size of the grid is usually restricted to a
power of two plus a constant.

The basic wavelet representation could be generalized to handle more complex
surfaces, such as:

1. grids with irregular boundaries: surfaces defined over regular grids with irreg-
ular boundaries can be encoded using wavelets. This can be accomplished by
filling the missing values around the irregular boundary, until the boundary
becomes regular.
The choice of the missing values should minimize the detail values in the
wavelet representation and therefore it depends on the scalar and wavelet basis
functions.

2. structured grids: store a value per grid point instead of one single
height value. Structured grids allow to model slightly more complex surfaces,
such as salt domes.
Structured grids can be modeled using the wavelet representation by comput-
ing three wavelet decompositions for the , , and values. A change of the
coordinate system via a principal component analysis (PCA) would probably
result in a better representation.

3. Two-manifold surfaces: there is no elegant solution to the problem of repre-
senting two-manifold surfaces with arbitrary connectivity with first generation
wavelets.
Two-manifold surfaces could be represented with tensor product wavelets by
fitting B-Spline patches through the vertices that define the surface, and then
compute a wavelet representation for each of the patches. However it is not
clear how to keep cross-boundary continuity across neighboring patches.
For more information on how to fit B-Spline patches to unstructured clouds of
points or to polygonal surfaces see for example [32] and [49].

• Second generation wavelets are more general than standard tensor product wave-
lets as it is theoretically possible to construct basis functions for more general set-

tings than .
The bases that have been constructed until now usually handle simple grids with
uniform or non-uniform sampling in and as well as two-manifold triangular
meshes with subdivision connectivity.

• The pseudo-wavelets constructed by Bonneau, as we have seen in Section 4.3.2,
are capable of modeling surfaces defined as height fields with arbitrary connectiv-
ity. His work could be extended to two-manifolds, using any of the local or global
parametrization algorithms for 3D meshes, such as the hinge map used in [46] or
the global parametrizations constructed in [51] and in [30].

The most important drawback of this approach is that the multiresolution represen-
tation does not encode the geometric and topological information of a mesh, but
merely a scalar value per triangle. The geometric and topologic information is
stored using a classic mesh representation. In the original paper Bonneau used the

x y z, ,( )

x y z

L2 R( )

u v
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vertex removal scheme of W. Schroeder presented in [74].
Furthermore Bonneau never constructs the wavelet basis explicitly; instead he sim-
ply constructs the analysis and synthesis matrices that are then used in the filter
bank algorithm. Consequently the properties of the basis functions are unknown.

• Computation of surface-surface intersections: the wavelet representation of a mesh
does not contain the information required to compute an intersection. This means that
the information must be either stored in a different structure or be computed when
needed. There are two main techniques that can be used to compute intersections:

• Bounding boxes: a hierarchical bounding box data structure is usually built as a
tree, each node containing the size of the cube that bounds a portion of the surface.
Leaf nodes in the tree contain cubes which bound small patches of the surface, for
example a couple of triangles, the root node contains a cube that bounds the whole
surface. This data structure allows to find triangles interested in an intersection in

in average, a much faster alternative than a brute force test, which has

a complexity of .
This hierarchical structure cannot be integrated in the wavelet representation, but
must be kept separately. Furthermore the information stored in this structure is not
retrieved from the wavelet representation, but from the piecewise linear representa-
tion on the surface.

• Algebraic methods: if the surface is represented using higher order functions it is
possible to use complex methods to construct robust surface-surface intersection
algorithms. One well known example is represented by the family of the algebraic
methods. This family of algorithms can be applied to some of the representation
generated by the tensor product and second generation wavelets.
In [62] and in [50] S. Krishnan and D. Manocha presented an algorithm to com-
pute the intersection of Bezier patches. This algorithm could be generalized to han-
dle the surfaces stored in a wavelet representation that uses B-Spline basis
functions. A survey on this technique can be found in [41].

• Scalable representation: the wavelet based representations presented in this section are
all scalable, since they build a compact multi-resolution representation of a surface
using a coarsification operator represented by the analysis matrices  and .

• The wavelet representation is compact: the wavelet based multiresolution repre-
sentation of a surface has the same storage requirements than the surface itself,
which means that the representation of a surface of size also has a size of

.

• For first generation wavelets if the basis functions are orthogonal, the most impor-
tant information can be extracted easily from the wavelet representation, since
there is a direct correlation between the importance of a detail value and its

absolute value.

The basis functions generated using the lifting step in the second generation wave-
lets are in general only bi-orthogonal. As a consequence it is much more difficult
to find the optimal subset of detail values that can be removed to obtain an best

O n nlog⋅( )
O n2( )

A B

n n×
n n×
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approximation of the surface. It is nonetheless possible to remove details with
small absolute value and obtain good approximations.

The basis functions used by Bonneau in his pseudo-wavelets are not known, so it is
not clear how to find the optimal set of detail values that must be removed to obtain
the best approximation of the surface. However it is possible to leave out details
with small absolute value an obtain good approximations.

• The algorithms used to build the wavelet representation have a very low complex-
ity: it is possible to construct tensor product wavelets based on endpoint interpolat-
ing cubic B-Spline in time and storage requirements. As shown in
Section 4.2 the decomposition and reconstruction of second generation wavelets
can be computed in linear time using the fast wavelet transform. The pseudo-wave-
lets presented in Section 4.3 can also be constructed in linear time.

• Modeling of non-manifold singularities, tears and cracks: first and second generation
wavelets are not capable to model non-manifold surfaces, since they cannot be repre-
sented in terms of the regular spaces these frameworks work on, such as grids or quater-
nary subdivision surfaces. Tears and cracks can be embedded as piecewise linear curves
in the piecewise linear polygonal mesh.

The pseudo-wavelets constructed by Bonneau are based on an underlying surface repre-
sentation. In his paper Bonneau used the Schroeder’s algorithm to simplify the mesh.
Since this simplification algorithm can handle non-manifolds (see Section 7.1 for more
details) it is plausible to extend the pseudo-wavelets over non-manifolds. The main
issue that needs to be solved is to find a good parametrization to compute Eq. 4.82.

• Error modeling: the wavelet theory is especially powerful at modeling the error of a
surface; some theoretic results can be used to construct error models that evaluate the
error introduced by an adaptive representation of surfaces.

The error associated with bases generated in the classic tensor product setting is well
understood, and good error estimates can be built, particularly if the basis functions are
orthogonal.

The error associated with bases constructed with the lifting scheme must be constructed
explicitly. If the basis can be constructed using standard first generation techniques,
then the error is well understood, otherwise a suitable error model must be constructed.

The error associated with the pseudo-wavelets is not well understood since, as already
mentioned, the basis functions are never constructed explicitly: instead the algorithm
builds the analysis and synthesis matrix from the 3D mesh. As a consequence this rep-
resentation has not been studied using tools from approximation theory.

One point that should be investigated further is how the error should be defined: the
norm used to compute the error during a flow simulation is probably different from the
norm used to compute the error during an interactive visualization of a surface. It would
be of great interest to develop norms that could capture these different types of error.

• Smoothness of the surface: if the surface is being represented with either first or second
generation wavelets the smoothness of the surface depends on the choice of the basis
functions. If the surface is encoded using the Haar basis function described in

O n( )
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Section 4.1.6, then the surface is defined as piecewise constant; using a cubic B-Spline

basis function will result in a smooth  surface.

An analysis of the pseudo-wavelets generated by Bonneau suggests that the representa-
tion is not smooth, and that the surface is represented as piecewise constant. The lack of
explicit basis functions proves to be a problem that makes a good understanding of the
representation difficult.

• Multiresolution editing: edit operations at different levels of resolution can be applied
on surfaces represented using first and second wavelet framework, because:

• surfaces are represented as (piecewise defined) functions. This means that an edit
operation changes the shape of a function and not the position of a single vertex in
the mesh, and this allows to compute natural changes.

• in the multiresolution setting, the scalar values that define the surface at level

and the detail values that are used to reconstruct the scalar values are

orthogonal. This means that an edit at the level need not be propagated to the

levels , but only to the levels .

The representation proposed by Bonneau generates a multiresolution analysis, and the
information needed to transform a coarse mesh at level to a finer mesh at level
is coded with differences and not with absolute values. This means that a multiresolu-
tion editing tool could be built easily. On the other hand the lack of explicit basis func-
tions makes it difficult to understand how the surface would change with an edit
operation, since the basis functions have a direct impact on the edits.

• Surface fitting: for first and second generation wavelets the fitting process heavily
depends on the basis functions chosen for the representation. Some basis functions are
well understood, and it is possible to construct fitting schemes very easily; other basis
functions can result in more elaborate schemes.
Example: fitting a height field defined over a regular grid through a cloud of points
using a cubic B-Spline basis function is a straightforward operation: Forsey [34] uses a
similar strategy to fit an H-Spline surface.

Fitting is currently not supported by the pseudo-wavelets, since the representation does
not work on either the topological or geometric information. The fitting process would
probably need to be a pre-processing step, and it would not automatically generate the
multiresolution representation described in this section.

• Support of local high variation in the curvature of the surface: the representation gener-
ated using first or second generation techniques can model high variation in the curva-
ture only if the basis functions chosen are not smooth. If a surface is represented using
smooth basis functions, for example by using uniform cubic B-Spline basis functions,
then it is not possible to model discontinuities in the curvature; if a surface is repre-
sented using linear or constant basis functions, then high variation can be modeled eas-
ily, since no continuity in the curvature is neither required nor guaranteed.

The representation of Bonneau based on the pseudo-wavelets supports high variation in
the curvature well, since the underlying surface representation based on Schoeder’s
algorithm can support this feature. High variation can be maintained by not removing
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the features in the mesh that generates the high curvature. A more detailed description
of the algorithm developed by W. Schroeder can be found in Section 7.1.

• Changes of the surface over time: in the classic tensor product setting time can be mod-
eled elegantly by adding one more dimension to the wavelet representation and making
use of the tensor product ansatz.

Bases generated using the lifting step can model time as easily as first generation wave-
lets only if they are defined using tensor product. If the basis functions are more com-
plicated, the ability of modeling time depends on the basis and on the domain this basis
is working on. In the worst scenario it might be necessary to keep different copies of the
representation for every point in time .

The complexity of topological changes of the surface over time determines how easily
the pseudo wavelet representation can handle time:

1. If the changes of the surface do not alter its topology but only the scalar values
associated with each triangle, then these changes can be modeled very easily by
storing a function per triangle, which depend on the time , instead of a sin-
gle scalar value.

2. If the changes affect the connectivity, but the macrotopology of the mesh does not
change, it is possible to compute a remeshing of the surfaces at each point in time

in order to generate new surfaces with the same connectivity. Once all the sur-

faces have the same connectivity approach 1. can be used to represent changes
over time.

3. If the topological type of the mesh changes, the only solution is to keep different
representations of the surfaces at each point in time .

ti

f t( ) t

ti

ti
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5 Subdivision Surfaces

5.1  Classic Subdivision Schemes

An alternative to wavelet representations are subdivision schemes. Wavelets use sets of
basis functions to decompose a signal and create a multiresolution representation; subdivi-
sion surfaces do not work explicitly with basis functions, but they use fixed schemes to
refine surfaces. The limit surface generated by an infinite number of refinement operations
using a subdivision rule on an input mesh is provably smooth.

A subdivision scheme can be described with:

• a topological component: every scheme changes the microtopology of surfaces by add-
ing and/or removing vertices and by changing their connectivity. Subdivision schemes
can further be categorized as

•primal: primal schemes subdivide each face of the input mesh in a number of sub-
faces. An example of a primal scheme is the quaternary subdivision scheme, where a
triangle face is subdivided into four faces. To accomplish this three new vertices are
introduced on the edges that define the original triangle.

•dual: dual schemes not only introduce new vertices in the mesh, but they also
remove old vertices and change the connectivity of the input mesh. This implies that
a new face can span more than one face of the original mesh.

• a geometric component: the change in the position of the vertices can be interpreted as
a low-pass filtering of the mesh, and as a result the surface is smoothed. Subdivisions
can be categorized as

• interpolating: the position of the vertices of the original mesh does not change, the
position of the new vertices can be decided freely.

•non-interpolating: the position of the old and the new vertices can be changed as
needed.

Subdivision schemes are not a new surface representation: the first papers on this topic
were published in 1978, but new papers on the subject are still being published, since sub-
division is a very powerful operator particularly useful in animation. During this long
period many different schemes have been proposed, the most important ones being:

• Doo-Sabin (1978): a non-interpolating dual scheme [26] and [25].

• Catmull-Clark (1978): a non-interpolating primal scheme [9].

• Loop (1987): a non-interpolating primal scheme [55].

• Butterfly (1990): an interpolating primal scheme [29].

In the next subsections we are going to describe these four schemes:

• We will present the Doo-Sabin scheme in depth: we will show how the scheme is con-
structed in a regular setting, and how to extend it to meshes with irregular topology.
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Then we will show how to generalize it to non-uniform subdivision in order to better
model non-smooth regions of the surface.

• The remaining schemes will not be treated in full detail: for each scheme we will only
give the topological changes introduced by a refinement step as well as the masks used
to compute the new vertex positions.

For additional information on the scheme that will be introduced in this section refer to the
original papers.

5.1.1 Doo-Sabin Scheme

The scheme developed by Donald Doo and Malcom Sabin is based on a bi-quadratic uni-
form B-Spline refinement: the limit surface of this subdivision scheme is a bi-quadratic B-

Spline patch; it generates a surface, which is a continuous surface everywhere
except at a finite number of points, called extraordinary points.

In the following we will present the classic Doo-Sabin scheme for the one dimensional
case, for the two-dimensional case over a regular grid, and for the two-dimensional case
for surfaces with arbitrary connectivity. More detailed information on this standard
scheme can be found in [26] and in [25].

Once the basic subdivision scheme has been defined we will present an extension that gen-
erates in the limit non-uniform recursive quadratic B-Spline surfaces. This new scheme
has been constructed by T. Sederberg et al. in [75].

5.1.1.1  One dimensional uniform subdivision

The one dimensional scheme is the easiest scheme to construct, since the connectivity of
the curve is trivial. The tensor product ansatz will allow us to generalize the results
obtained in this section to the regular two-dimensional setting.

The input of the algorithm is a piecewise linear curve. The vertices that specify the

curve are considered as the control points of the quadratic B-Spline surface defined as

(EQ 5.1)

where is a quadratic B-Spline that can be constructed using Eq. 4.31 and Eq. 4.32,

and is the parameter value. One important property of the Doo-Sabin subdivision is that
it works with uniform quadratic B-Splines, which means that

(EQ 5.2)
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is a constant. In Section 5.1.1.4 through Section 5.1.1.6 this method will be generalized to
a non-uniform quadratic B-Spline, where the size of the intervals in the parameter space
will vary.

The curve generated by Eq. 5.1 can be evaluated in three different ways:

1. The value of in Eq. 5.1 can be evaluated directly by computing the values of the

B-Spline bases .

2. The value of can also be computed using the de Boor algorithm, which uses linear
interpolation to evaluate Eq. 5.1:

(EQ 5.3)

where

(EQ 5.4)

, and .

3. The third possible strategy used to compute consists in inserting new knots at the
midpoint of each knot interval, as shown in Figure 5.1.

Figure 5.1 Knot insertion for the uniform quadratic B-Spline
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After an infinite number of knot insertion operations at midpoint of the knot intervals
the set of control points  will converge to the curve .

The position of the new control points is computed via the knot insertion algorithm

and is based on the de Boor algorithm:

(EQ 5.5)

(EQ 5.6)

where the weights of and have been computed assuming that the knots have a uni-

form distance.

The knot insertion operation described by Eq. 5.6 and Eq. 5.6 is presented in
Figure 5.2.

Figure 5.2 Computation of the new control points for the uniform quadratic B-Spline

5.1.1.2  Two dimensional uniform subdivision over regular grids

The first extension to the one dimensional subdivision is a two dimensional scheme that
makes use of the tensor-product ansatz. Topologically, the mesh of control points is a
quadrilateral.

As we have seen in Section 5.1.1.1 a subdivision scheme computes the value of

(EQ 5.7)
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by doubling the number of control points in the control matrix. The evaluation of Eq. 5.7
in two dimensions is very similar: Eq. 5.6 and Eq. 5.6 are first applied in the direction,

then in the  direction. This approach is called separable construction:

Figure 5.3 Knot insertion in two dimensions for the uniform Doo-Sabin subdivision
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The results presented in Figure 5.3 can be re-written in a form similar to the well-known
Doo-Sabin subdivision rule, as shown in Figure 5.4:

Figure 5.4 Uniform quadratic subdivision for regular grids

5.1.1.3  Two dimensional uniform subdivision for meshes with arbitrary topology

The Doo-Sabin subdivision can also be applied to meshes of control points that have arbi-
trary connectivity. The limit surface in this case is also a bi-quadratic B-Spline surface, but

a finite number of extraordinary points on this surface will not be continuous. These
extraordinary points correspond to the centers of all the non-quadrilateral faces generated
after one subdivision step.

Meshes with arbitrary connectivity do not possess a natural global parametrization, so it is
not possible to apply the de Boor algorithm in this setting to compute the position of the
new vertices.
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Although the connectivity of an input mesh is not restricted, a slightly modified version of
the subdivision rule presented in Figure 5.4 can be used. The resulting scheme is shown in
Figure 5.5.

Figure 5.5 Uniform quadratic subdivision for meshes with arbitrary connectivity

Figure 5.6 shows an example of a Doo-Sabin subdivision applied on a simple two-mani-
fold surface with no boundaries:

Figure 5.6 Example of the Doo-Sabin subdivision
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5.1.1.4  One dimensional non-uniform subdivision

We now consider an extension of the classic Doo-Sabin scheme based on non-uniform
quadratic B-splines. The basic algorithm is the same as the algorithm used in
Section 5.1.1.1, but the resulting equations for the new control points and will

differ from Eq. 5.6 and Eq. 5.6 in that they will consider the non-uniform knot distances

(EQ 5.8)

The refinement step is computed via knot insertion at midpoint of each knot interval, in the
same way it is computed for the uniform Doo-Sabin scheme. The refinement continues
until the control polygon converges to the limit surface. A single knot insertion step for the
non-uniform Doo-Sabin subdivision is given in Figure 5.7:

Figure 5.7 Knot insertion for the non-uniform quadratic B-Spline
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The de Boor algorithm presented in Eq. 5.3 and Eq. 5.4 can also be used for the non-uni-
form case; Figure 5.8 shows how it is used to compute the position of the new control
points:

Figure 5.8 Computation of the new control points for the non-uniform quadratic B-Spline
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knot intervals at uniform distances, the equations computed in Figure 5.8 reduce to Eq. 5.5
and Eq. 5.6 that were derived in Section 5.1.1.1.
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This is accomplished by first inserting new knots at the midpoints of the knot intervals of
the knot vector and then inserting new knots at the midpoints of the knot intervals of the

knot vector , as shown in Figure 5.9.

Figure 5.9 Knot insertion in two dimensions for the non-uniform Doo-Sabin subdivision
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Also for the non-uniform subdivision it is possible to rewrite the results presented in
Figure 5.9 in a form similar to the classic Doo-Sabin subdivision rule. This is done in
Figure 5.10.

Figure 5.10 Non-uniform Doo-Sabin subdivision for regular grids
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between two vertices  and  will be called .

The refinement operator for the non-uniform quadratic subdivision for two-manifolds sur-
faces is shown in Figure 5.11.

Figure 5.11 Non-uniform Doo-Sabin subdivision for meshes with arbitrary connectivity
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5.1.2 Catmull-Clark Scheme

The scheme constructed by Ed Catmull and Jim Clark is a generalization of the bi-cubic
uniform B-Spline surfaces; the details on this subdivision can be found in the original
paper [9]. This subdivision scheme can also be generalized to construct non-uniform bi-
cubic B-Spline surfaces, as shown in [75] by Sederberg.

The Catmull-Clark scheme generates limit surfaces that are : locally the surfaces are
uniform bi-cubic B-Splines at every point except at a finite number of extraordinary
points. The extraordinary points correspond to the vertices with a valence larger than four
after one subdivision step. The scheme can be classified as primal and non-interpolating.

The scheme is described by two components:

• Topological changes: this scheme inserts new vertices at each edge and at each face of
the input mesh. These new vertices and the vertices of the original input mesh are then
connected together, splitting the original faces into subfaces, as shown in Figure 5.12.

Figure 5.12 Topological component of the Catmull-Clark refinement scheme
a) surface before the refinement step
b) surface after the refinement step

Since the vertices present in the mesh before the refinement step are not removed dur-
ing the refinement this scheme is primal.

It is interesting to see that after one iteration all the faces of the mesh are quadrilaterals.

• Geometric changes: In order to describe the geometric position of the vertices after a
subdivision step three masks are used: the first mask describes the position of the new
face vertices , the second describes the position of the new edge vertices and the

third describes the new position  of the old vertices .
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The three masks are presented in Figure 5.13.

Figure 5.13 Geometric component of the Catmull-Clark refinement scheme
a) The face mask is used to compute the position of the new face vertices
b) The edge mask is used to compute the position of the new edge vertices
c) The vertex mask is used to compute the new position of the old vertices

Applying the Catmull-Clark subdivision to the surface presented in Figure 5.6 results in
the meshes shown in Figure 5.14:

Figure 5.14 Example of the Catmull-Clark subdivision
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5.1.3 Loop Scheme

The Loop scheme is based on the subdivision of quartic uniform box splines and it is
applied on triangular meshes. A detailed description of box splines can be found in the
book of de Boor et al. [21], and the Loop scheme is analyzed in detail in the thesis of C.
Loop [55].

The Loop subdivision generates in the limit a surface: a tangent plane continuous sur-
face everywhere except at a finite number of extraordinary points. The extraordinary
points in a limit surface generated by the Loop scheme correspond to the vertices with a
valence different from six in the original input mesh. This subdivision can be classified as
a non-interpolating primal scheme.

There are two components that have to be described to fully characterize this scheme:

• Topological changes: in a refinement step of this scheme subdivides the triangles
present in the mesh using the quaternary subdivision rule, as shown in Figure 5.15.

Figure 5.15 Topologic component of the Loop scheme
a) Mesh before the refinement
b) Mesh after the refinement

• Geometric changes: the position of the vertices after a subdivision step can be
described using two masks: the first mask, shown on the left side of Figure 5.16,

describes the new position of the old vertices , and the second mask, shown on
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the right side of Figure 5.16, describes the position of the new vertices introduced by
the quaternary subdivision rule at the midpoint of every edge .

Figure 5.16 Geometric component of the Loop scheme
a) The vertex mask
b) The edge mask

In Figure 5.17 the Loop scheme is applied to a simple mesh. The mesh used in this exam-
ple is the triangulated surfaces used both in Figure 5.6 and in Figure 5.14.

Figure 5.17 Example of the Loop subdivision
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5.1.4 Butterfly Scheme

The butterfly scheme has been presented by Dyn, Gregory and Levin in [29] and then
refined in [28]; it is an interpolating primal scheme.

This scheme works over regular quaternary subdivision triangular meshes; the resulting

limit surface is tangent plane continuous (  continuous).

This scheme is completely characterized by two components:

• Topological changes: the butterfly subdivision uses the same rule to refine the microto-
pology of the input mesh as the Loop scheme. A refinement is computed with the qua-
ternary subdivision rule, as shown in Figure 5.18.

Figure 5.18 Topological component of the Butterfly scheme
a) Mesh before the refinement
b) Mesh after the refinement

• Geometric changes: The position of the vertices after a subdivision step can be com-
puted using two masks: the first mask maps the old vertices to the new position

, and the second mask describes the geometric position new vertices intro-

duced by the quaternary subdivision scheme. The two masks are shown in Figure 5.19.

Figure 5.19 Geometric component of the Butterfly scheme
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It is important to understand that this mask converges to a surface only if the input
mesh is a quaternary subdivision triangular mesh. Extensions to the Butterfly scheme,
such as the scheme presented in [89], allow to use the interpolatory scheme on irregular
meshes.

Since this scheme works only on regular meshes it is able to generate limit surfaces
that are smooth everywhere and do not contain any extraordinary points.

Figure 5.20 illustrates some of the meshes generated with this scheme. The input surface
used in this example is the same surface used in Figure 5.17. Note that the input mesh does
not have quaternary subdivision connectivity.

Figure 5.20 Example of the Butterfly subdivision

In Figure 5.20 artifacts can be observed that strongly degrade the quality of the surface.
More advanced interpolating subdivisions have removed these artifacts.
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5.2  Subdivision Wavelet Transform

The Subdivision Wavelet Transform (SWT) is a technique that makes use of the theory of
multiresolution analysis and of the subdivision rules to construct a multiresolution surface
representation for surfaces of arbitrary topological type that have subdivision connectivity.

This section introduces the theory behind the SWT. A multiresolution analysis using sub-
division surfaces can be constructed using the following steps:

• Construction of refinable scalar basis function

• Construction of nested linear spaces

• Construction of an inner product

• Construction of the wavelet function

• Construction of a filter bank algorithm

In the next subsections each of these steps will be described. More details on this represen-
tation can be found in [57] and [56]. Eck et al. presented in [30] a re-meshing strategy that
allows one to represent any mesh with the subdivision wavelet transform scheme, thus
overcoming the limitation imposed by the subdivision connectivity.

The multiresolution analysis depends on the subdivision scheme used and on the connec-
tivity of the input mesh. In the theory described below we will restrict our attention to tri-
angular meshes and use the quaternary subdivision scheme for refinement. The results
obtained with these assumptions can be generalized to any subdivision scheme.

5.2.1 Definitions

In order to construct the refinable basis functions that are needed for the multiresolution
analysis based on subdivision surfaces, some definitions are helpful:

•  stores the topological component of the mesh at the coarsest level .

 stores the geometric position of the vertices defined in .

• and store the mesh and the vertices generated from the coarse mesh using

the subdivision rule  times.

• Next, a parametrization that maps any point to a point on the limit sur-
face is required to construct the basis functions. The parametrization is constructed in
three steps:

1.

2. , where , and defines the

barycentric coordinates of the point  in the triangle .

3.
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These three steps are illustrated in Figure 5.21:

Figure 5.21 Parametrization of x

a) Position on the input mesh

b) Position on the mesh  obtained after  refinement steps
c) Position on the limit surface generated by the subdivision scheme

5.2.2 Construction of the Scalar Basis Function

With the definitions introduced in Section 5.2.1 it is possible to define a refinable basis

function, which maps any point  to the limit surface.

Lemma 1: For all  and  there exist a vector of functions  such that

(EQ 5.10)

Proof 1: Equation 5.10 can be re-written as

(EQ 5.11)

where the vector  is defined as

(EQ 5.12)

and , , and are the barycentric coordinates of the point as described
in Section 5.2.1.

The vertex vector  can be written as

(EQ 5.13)

where is the geometry of the input coarse mesh at level , and is a

matrix that maps to . The matrices model the geometric compo-

nent of the -th step of the subdivision.
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The definitions introduced by Eq. 5.12 and Eq. 5.13 allow us to define the

function :

(EQ 5.14)

This lemma can be used to prove the theorem:

Theorem 3: For any local and uniform convergent continuous subdivision and for any

 a vector of scaling functions  exists such that:

(EQ 5.15)

Proof 2: From the definition of  given in Section 5.2.1 and Lemma 1 it follows

(EQ 5.16)

From which the scalar basis function  is extracted

(EQ 5.17)

A direct consequence of Lemma 1 and Theorem 3 is stated in

Theorem 4: The scalar functions in  are refinable

Proof 3: The proof follows directly from Eq. 5.17 and Eq. 5.14:

(EQ 5.18)

5.2.3 Construction of the Nested Linear Spaces

The linear space  associated with a mesh  is generated by the span of :

(EQ 5.19)

This definition is equivalent to the definition of a linear space in classic wavelet theory,
but its interpretation is more complex: Eq. 5.19 can be interpreted as the space of all the

limit surfaces that can be generated by the subdivision rule that uses the coarse mesh
as input.

The space can be constructed either by computing the limit surfaces generated by

the space of the geometric vectors or equivalently by computing the span of

over the space of the geometric vectors .
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From the definitions of the linear spaces given in Eq. 5.19 and Theorem 4 it follows that
these linear spaces are nested:

(EQ 5.20)

5.2.4 Definition of the Inner Product

The inner product of functions in is another essential component of a multireso-

lution analysis. For the SWT the inner product between two functions is
defined as:

(EQ 5.21)

For simplicity is set to the area of a triangulation homeomorphic to consisting of
equilateral triangles with edges of length one.

Since the scalar basis function is only defined in the limit, the limit surfaces gener-
ated by a subdivision scheme do not have a closed form. Therefore it seems impossible to
compute the exact solution of Eq. 5.21, and that the solution can only be approximated
using numerical integration algorithms. This is not the case: most subdivisions only use
local subdivision rules for the refinement, and in these cases it is possible to compute the
inner product exactly.

There is no unique strategy to evaluate the inner product Eq. 5.21, since the computations
depend on the subdivision rules, but Lounsbery outlines a general strategy:

1. The first step consists in re-writing Eq. 5.21.

Since the two functions  both belong to  they can be expressed as

(EQ 5.22)

where both  and  are vertex vectors. Eq. 5.21 can now be rewritten as

(EQ 5.23)

where , and  is the -th element of the vector .

2. Once the matrix has been computed it is possible to compute the matrix by
making use of Eq. 5.18:

(EQ 5.24)

Eq. 5.24 implies that once the matrix for the finest level of the input surface has

been computed, then all the other matrices can be computed with two matrix-
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matrix multiplications, which can be computed efficiently, since the matrix is
sparse.

3. Finally, the entries of the matrix at the finest level have to be computed. There is
no fixed rule to compute these entries, but using the locality of the subdivisions it is
possible to construct a system of equations whose solution corresponds to the entries of

: for example is zero if the support of the -th scalar basis function

does not intersect the support of the -th scalar basis function.

5.2.5 Construction of the Wavelet Basis Function

In order to define the wavelet basis functions some notation must be introduced: the scal-
ing functions for any primal subdivision rule can be written as

(EQ 5.25)

where consists of all scaling functions associated with the old vertices of , and

consists of all scaling functions associated with the new vertices introduced by the

refinement from  to . In a similar way it is possible to write the matrix  as

(EQ 5.26)

where is the submatrix that maps the old vertices of to their new position, and
is the submatrix that define the position of the new vertices introduced by the subdivision.

The wavelet basis function is built indirectly by first constructing a basis for :

(EQ 5.27)

where is the basis for , and is defined in Eq. 5.25. One of the

obvious requirements for this basis to exist is that the matrix  has to be invertible.

is not admissible yet as a wavelet basis, since in general it is not orthogonal to

, but can be written as

(EQ 5.28)

The unknown  in Eq. 5.28 can be obtained by solving

(EQ 5.29)

Eq. 5.29 is obtained from Eq. 5.28 using the definition Eq. 5.18, and observing that

and  are orthogonal.
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The solution of Eq. 5.29 is then used to compute the value of :

(EQ 5.30)

5.2.6 Filter Bank Algorithm

The final step of this multiresolution analysis is the construction of a filter bank algorithm
that decomposes an input mesh into a set of scalar and wavelet values. It has already been
discussed in Section 4.1.3 that four matrices are needed to build a filter bank algorithm:

1. Two analysis matrices  and  used in the decomposition step.

2. Two synthesis matrices  and  used in the reconstruction step.

The synthesis and analysis equations are given in Eq. 5.31:

(EQ 5.31)

The synthesis filters are then constructed using Eq. 5.18, Eq. 5.25, Eq. 5.30, and Eq. 5.31:

(EQ 5.32)

where  and  have been defined in Eq. 5.26.

The two analysis matrices are obtained from the inverse of the synthesis filters computed
in Eq. 5.32:

(EQ 5.33)

5.2.7 Problems of the Subdivision Wavelet Transform Representation

The theory presented in this section briefly describes the multiresolution analysis for the
Subdivision Wavelet Transform; most of the proofs are constructive and it is possible to
build the SWT for a specific subdivision scheme.
What was not discussed is the complexity of the operations needed to compute the SWT.
Most of the details can be found on the two papers of Lounsbery; we will just mention the
two most important problems that increase the complexity of the representation:

1. The evaluation of in Eq. 5.29 requires the inversion of the matrix . Although this

matrix is sparse its inverse is not, and therefore the evaluation of has a complexity

of .
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2. The synthesis filters are sparse if the subdivision rule has a compact local support, but
their inverse, the analysis filters, do not have a compact support in general. This implies

that the decomposition step has a total complexity .

These problems have been investigated by Lounsbery, who proposes some possible solu-
tions. The complexity of the SWT can be reduced by using “almost” orthogonal wavelets.

5.2.8 An Example of the SWT Representation

In this section we will show a simple example of the subdivision wavelet transform repre-
sentation using the most simple subdivision rule, which is defined as:

• The topology is refined using the quaternary subdivision rule

• The position of the old vertices is interpolated, and the position of the new vertices is
set at midpoint of the old edges.

Figure 5.22 shows a SWT refinement step: the input mesh is first transformed into the

mesh using the subdivision operator ( in Eq. 5.31), and then the detail

values are added back to the surface (  in Eq. 5.31).

Figure 5.22 The subdivision wavelet transform
a) surface at level 0
b) surface at level 1 after subdivision
c) surface at level 1 reconstructed completely

5.3  Evaluation

In this section the basic subdivision schemes presented in Section 5.1 as well as the subdi-
vision wavelet transform presented in Section 5.2 will be evaluated using the criteria spec-
ified in Section 2.

• Modeling of two-manifolds with boundaries: the representations based on subdivision
that are described in this section are capable of generating two-manifold surfaces; the
macrotopology of the mesh is not restricted, but the meshes that are generated have
subdivision connectivity.

The basic subdivision schemes do not introduce any new feature in the mesh, they only
refine the mesh and smooth the vertices, until in the limit a smooth surface is generated.
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When constructing the coarse mesh that will be fed to the subdivision algorithm it is
therefore crucial to include all the features that need to be present in the surface.
The subdivision wavelet transform extends the basic scheme to a multiresolution repre-
sentation, where the limitation described above does not apply. The SWT algorithm
starts from a full resolution mesh that has subdivision connectivity, and using coarsifi-
cation algorithms it builds the representation. Since the algorithm works with the full
resolution surface all the features will be present and can be modeled.

The subdivision rules described in this section have one serious limitation: they are
only defined in the interior of the meshes, and they define no rule to refine the bound-
aries of the meshes. Some papers address this problem and try to construct viable solu-
tion to smooth the boundaries of a surface, see for example the work of A. Levin and D.
Zorin in [53], [54] and [88].

• Computation of surface-surface intersections: As discussed in Section 4.5 there are two
different approaches to the computation of surface-surface intersections:

1. A hierarchical bounding box data structure can be stored to speed up the computa-
tion of the intersection. The data structure is separated from the data structure of
the representation, and it is only used to resolve intersections.

2. It can be argued that algebraic methods could be applied on subdivision surfaces
easily, since the limit surface of the Doo-Sabin and Catmul-Clark subdivisions
generate in the limit bi-quadratic or bi-cubic B-Spline surfaces everywhere except
at a finite number of extraordinary points. The problem with this representation is
that in general meshes with arbitrary connectivity do not have a global parametri-
zation. Furthermore the implicitization of the spline function in this setting is very
complex, if at all possible. It can be concluded that algebraic methods are not a
viable solution at the moment for subdivision surfaces.

• Scalable representation: The subdivision operators of the schemes defined in
Section 5.1 are by definition a refinement operator. Applying a subdivision step to a
mesh will increase the number of vertices in the mesh. The basic subdivision is there-
fore not a scalable representation of surfaces.

The SWT representation constructs a multiresolution analysis based on the operators
defined in Section 5.1. The resulting framework is therefore scalable. The properties of
the SWT are outlined below:

• The subdivision wavelet transform allows to construct multiresolution representa-
tions of meshes that possess subdivision connectivity. The representation is com-
pact: the geometric information can be stored without overhead, and the topologic
information need only be stored for the coarse level mesh. The topology of the
finer levels of the mesh do not need to be stored explicitly, since it is based on the
regular subdivision operator, such as quaternary subdivision.

• A full resolution mesh can be approximated by starting from the coarse representa-
tion of the mesh and by adding as many of the detail values as needed to achieve a
certain quality. Furthermore if orthogonal wavelets are constructed, it is possible to
build best approximations to the full resolution mesh simply by leaving out the
details with smallest absolute value.

k
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• It has been discussed in Section 5.2.7 that the construction of the representation

might have a high complexity of . This happens because the coarsification
operator can have a global support on the mesh. It is however possible to construct
wavelets that are only “almost” orthogonal much faster.
The reconstruction algorithm is much faster and has a linear complexity.

• Modeling of non-manifold singularities, tears and cracks: both basic subdivision
schemes and the SWT cannot model non-manifolds, since the subdivision operators are
only defined over manifold surfaces. In order to model non-manifold surfaces correctly
it would be necessary to construct special operators.
It is very difficult to embed curves in the limit surface, but it would be easy to embed
curves in the surface obtained after subdivision steps, since the resulting mesh would
still be piecewise linear. Embedded curves would therefore need to be stored in a sepa-
rate data structure.

• Error modeling: The first few papers on subdivision surfaces did not have a strong
notion of error, and it was not well understood how to compute the position of a point
on the limit surface. Recent papers on subdivision surfaces built methods to map points
from any level to the limit surface using eigenanalysis, and this would help to construct
better error models.

The construction of rigorous errors for the SWT is more difficult. As already discussed
the error associated with subdivision schemes is well understood, and the wavelet com-
ponent of the SWT explicitly defines an inner product. One of the components that is
missing for an error analysis are well defined basis functions. In Section 5.2.2 and in
Section 5.2.5 the scalar and wavelet basis functions have been defined only as a limit
toward infinity.

• Smoothness of the surface: The different subdivision operators generate different sur-
faces in the limit, but all of them try to generate smooth surfaces. The better-known

operators presented in Section 5.1 either generate  or  surfaces.

The SWT representation is based on the subdivision operators, and it can therefore gen-
erate smooth representations. If the full resolution surface is not smooth it is sufficient
to compute more subdivision steps to get a smoother surface.

• Multiresolution editing: The basic subdivision schemes do not define a multiresolution
representation of meshes, they just provide operators to refine and smooth meshes.
These operators are applied to the input coarse mesh, and in the limit they generate
smooth surfaces. It is therefore not possible to compute multiresolution edits on these
schemes.
It is however possible to construct separate data structures that store the edits, which
could then be integrated during the subdivision steps. Such an implementation would
result in smooth edits, since subdivisions always generate smooth surfaces indepen-
dently of the input mesh.

The SWT provides a natural framework for edits at different levels of resolution, since
the meshes are represented in a multiresolution hierarchy. The edit operations will be
smooth, since the underlying basis functions are the subdivision operators.
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• Surface fitting: In his thesis [42] Hoppe describes a strategy to fit a subdivision surface
through a cloud of unorganized points, for which nothing is known, not even the macro-
topology of the surface that they define. This is accomplished by first fitting a triangular
mesh through the points, then by simplifying it, and finally by building the representa-
tion based on a subdivision operator.

There is no automatic fitting procedure which constructs a SWT representation. It is
however possible to use Hoppe’s thesis to construct a triangular mesh with subdivision
connectivity and then to construct the wavelet representation on top of it.

• Support of local high variation in the curvature of the surface: Although the basic sub-
division operators described in this section generate smooth surfaces, it is possible to
extend them to model non-smooth regions. There are three main contributions that
allow us to model non-smooth regions:

1. In his thesis [42] Hoppe describes an extension of the Loop subdivision that allows
to define edges in the mesh that do not have to be smoothed.

2. T. Sederberg describes a Non-Uniform Recursive Subdivision Scheme (NURSS)
that extend the classic Doo-Sabin and Catmul-Clark schemes to non uniform B-
Splines. This extension has been described in Section 5.1.1; further information
can be found in the original paper [75].

3. T. DeRose presented in [22] a simple strategy that allows to model non-smooth
regions with subdivisions.

The SWT representation can also be extended to support high variation in the curva-
ture, but it would be necessary to construct the appropriate basis functions and matrices
for the filter bank algorithm.

• Changes of the surface over time: The problem of encoding changes of the mesh over
time for the basic subdivision schemes and for the subdivision wavelet transform
reduces to the problem of representing the changes in the coarsest input mesh over
time. If this can be accomplished, then both representations can automatically handle
changes over time.
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6 Hierarchical B-Splines

Hierarchical B-Splines are yet another possible surface representation for geologic data.
Traditional approaches that use control vertices and locally supported basis functions rep-
resent a surface as

(EQ 6.1)

where is a set of control vertices, and are basis functions with a

local support, and represent the order of the basis functions, and and define the
global parametrization of the surface.

The problem with this representation is that either:

1. There are not enough control vertices to model all the desired surface.

2. There are too many control vertices that are not used to model anything.

The hierarchical B-spline approach starts with a sparse set of control vertices and adds
more control points locally where they are needed to model small details.

In the next subsections the tools necessary to build a hierarchical B-Spline representation
will be developed, namely:

• a refinement operator that increases the number of control points in Eq. 6.1. Increasing
the number of control points decreases the support of the basis functions. This allows to
introduce small details to the surface.

• an operator that allows to apply a refinement locally on the surface. Next, the concept
of overlay will be introduced, that will be used to store fine level patches relative to the
coarser level patches. This will allow to propagate edit operations from the coarse
patches to the fine patches.

All the details regarding hierarchical splines and some of the applications/enhancements
can be found in the original papers [36], [35], and [34].

6.1  Refinement Operator

The hierarchical structure presented in this section works with any surface representation
that models a surface using locally supported basis functions. To better illustrate the
behaviour of the H-Spline representation the cubic B-Spline function will be used as an
example. Operators for other basis functions can be computed similarly.

The input of the refinement operator is a surface defined as

(EQ 6.2)

S u v,( ) di j, Ni
k u( ) N j

l v( )⋅⋅
j
∑

i
∑=

di j,{ } Ni
k u( ) N j

l v( )

k l u v

S u v,( ) di j, Ni
k u( ) N j

l v( )⋅⋅
j
∑

i
∑=



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

75

The number of control points in the surface can be increased by decreasing the support of
the basis function. The surface would then be defined as

(EQ 6.3)

The shape of the new surface described in Eq. 6.3 must remain the same as the shape of
the original surface defined in Eq. 6.2. This can be achieved easily, since a B-Spline func-

tion  can be written as a linear combination of B-Spline functions :

(EQ 6.4)

An example is shown in Figure 6.1:

Figure 6.1 Two scale relation for cubic B-spline functions

From Eq. 6.2, Eq. 6.3, and Eq. 6.4 the value of the new control points can be com-

puted using Eq. 6.5

(EQ 6.5)

where the value of  and  is derived directly from Eq. 6.4.

In matrix notation, a refinement of the control vertices is specified as

(EQ 6.6)

The equations derived in this section enable us to refine a grid of control points into a finer
resolution grid. This, as already mentioned, enables us to create more detailed surfaces.
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The operation described in this subsection refines the whole surface. This could introduce
a large overhead if the surface has large flat regions, since only few control points are
required to model these regions. A straightforward improvement to the representation con-
sists in building operators capable to refine the surface only locally, thus minimizing the
number of unused control points.

Forsey was the first to use the refinement formula Eq. 6.4 to construct a multiresolution
representation of a surface. This idea was used some years later to construct a wavelet rep-
resentation that uses endpoint interpolating cubic B-Spline basis functions.

6.2  Offset Referenced Overlays

In the previous section a general subdivision rule for B-Spline surfaces was developed. If
this subdivision rule is applied to all the control points of a two-dimensional surface, then
the number of control points would increase by four. This is usually not desirable, since
only some regions in the surface need the additional degrees of freedom.

We will show an example of how to build a local overlay. The white squares in Figure 6.2
represent the area of influence of the control vertex : if this control points is moved,

the surfaces enclosed in the white rectangles will move with .

Figure 6.2 The support of a control vertex of a cubic B-Spline surface

If the area of influence of the control vertex is too large, and a users wants to insert finer
level details into the surface, then it is necessary to compute a refinement around . The

new set of control points generated in this way, called overlay, will have a smaller support,
thus allowing to edit smaller parts of the surface. A simple overlay is illustrated in
Figure 6.3: the support of the center control point of the overlay, drawn as a set of

di j,

di j,

di j,

di j,

d'i j,
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gray squares in the figure, is now just one fourth of the support of the original control point
.

Figure 6.3 An overlay for a cubic B-Spline patch

These overlays can be inserted where needed, so that control points are added only where
the complexity of the surface requires them.

There is still one problem that was not addressed: if one of the black control vertices in
Figure 6.3 is moved, then this change needs to be propagated to the overlay, since the sup-
port of the black vertices and the support of the white vertices of the overlay are not dis-
joint. If the control vertices in the overlay are initialized using Eq. 6.6, then changes

in the black control vertices that define the coarse level shape of the surface cannot be
propagated to the overlay, and therefore edit operations will not be executed correctly. The
author solved this problem by making use of local frames: the control points of the overlay
are stored in the form

(EQ 6.7)

where

(EQ 6.8)

stores the initial position of the control vertices dictated by the control vertices in the base
mesh, and stores the edit operations applied to the overlay with respect to a local

coordinate system.

6.3  An Example of the H-Spline Representation

In this section we present a small example showing how the H-Spline representation
works; we will also show why it is necessary to store the control points of overlays in a
local frame.

di j,

d'i j,

d'i j,

d'i j, ri j, oi j,+=

ri j,{ } α left D α right⋅ ⋅=

oi j,



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

78

Figure 6.4 illustrates some edits computed on an surface represented with an H-Spline:

Figure 6.4 Edit of a surface represented as an H-Spline

The next list briefly describes the edit operation presented in Figure 6.4:

• a) represents our initial surface: all the control points lie on a plane, and therefore the
surface that they define also lies on a plane.

a) b)

c) d)

e) f)
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• In b) the central control point is moved vertically; this results in an edit operation that
has support on the whole patch.

• In c) an overlay around the central control point is constructed. The initial position of
the control points in the overlay guarantees that the surface in c) interpolates the surface
b). The white spaces between the two patches are used to better distinguish between the
patches; after the overlay has been inserted the surface remains continuous and smooth.

• In d) the central control point of the overlay is moved horizontally. This does not
change the overall shape of the initial patch, but just the dark gray component that
describes the support of this control point.

• In e) only the coarse level of the surface is shown. The edit computed in d) is not visi-
ble, since it was computed in the overlay. The central control point of the coarse mesh
is moved to the right.

• Finally, in the surface shown in f) visualizes the two edit operations computed in d) and
e). If the overlay was not stored in a local frame the edits would have not looked natural
and the results would have been counterintuitive.

6.4  Evaluation

In this section the hierarchical spline surface representation will be evaluated using the cri-
teria specified in Section 2.

• Modeling of two-manifolds with boundaries: H-Splines can be used to model complex
two-manifold surfaces. Since a global parametrization is required, and since the basic
H-Spline algorithm uses uniform splines, it is not possible to model an arbitrary two-
manifold surface.
The H-Splines require a certain regularity, since a global parametrization defined by the
two coordinates and must exist, but they allow us to model surfaces with irregular
boundaries.

• Computation of surface-surface intersections: The surface intersection problem could
be solved using the two solution already described in Section 4.5 and Section 5.3:

1. a separate hierarchical bounding box data structure can be used to accelerate the
computation of the intersection curves. This data structure stores information on
the piecewise linear approximation of the spline that is used for rendering.

2. an algebraic method can be used to compute more precise solution on the B-Spline
surface. This could be accomplished by generalizing existing methods that works
on Bezier patches.

• Scalable representation: The H-Splines are scalable in the sense that they do not
require a uniform refinement in order to model small details in a surface.

• The representation is compact: an expert user is capable of modeling a surface
using the minimum number of control points. Novice users usually generate far too
many control points, most of which are not used to model any feature. All these
control points could be considered as an overhead.

u v
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• It is easy to extract a good approximation of a surface using a few control points:
an approximation can be constructed simply by taking the coarse set of control
points and adding any number of overlays.

• The construction of the representation and the reconstruction of the surface are
both very fast algorithms that work in real-time.

• Modeling of non-manifold singularities, tears and cracks: In general it is not possible to
represent any non-manifold or pseudo-manifold singularities, but some non-manifold
surfaces can be easily constructed using B-Splines. For example it is very easy to model
a surface that intersect itself, but in general it is not possible to model an horizon or
fault that splits into two horizons or faults.

Embedding of curves is not feasible, since the basic primitive of the H-Splines is the B-
Spline, and a curve defined over a B-Spline patch might be represented only with a high
order polynomial. Piecewise linear curves can be embedded in the piecewise linear
approximation of the surface.

• Error modeling: The basis function used as a modeling primitive in the H-Spline repre-
sentation is the B-Spline. This basis function is very well studied, and it allows to con-
struct advanced error models.

• Smoothness of the surface: Depending on the degree of the B-Spline basis function that
is chosen to model surfaces, the H-Splines representation is able to model smooth sur-
faces, for example using cubic B-Splines, or not, for example using the simple order
zero B-Splines.

• Multiresolution editing: The original paper that introduced the concept of H-Spline
described a multiresolution editing tool. This capability is fully integrated in the repre-
sentation. Edit operations affect the control points of the B-Spline functions and there-
fore the changes in the surface will be smooth.

• Surface fitting: Forsey presented in [34] a technique for an automatic surface fitting of
clouds of points. However the surface generated by the algorithm had to be a simple
height field.

• Support of local high variation in the curvature of the surface: If the underlying B-
Spline basis is smooth, then the H-Spline representation will not be able to model non-
smooth regions well; if the B-Spline basis is not-smooth, then local high variation in
the curvature can be modeled easily.
In the original concept of the H-Spline it is not possible to model non-smooth regions
with higher order splines, since the representation can only use uniform B-Splines. It
would be of interest to construct an extension of the H-Spline representation that is
based on the non-uniform B-Spline basis functions.

• Changes of the surface over time: Changes of the surface over time can be modeled ele-
gantly with H-Splines: it is only necessary to construct three dimensional overlays
instead of the standard two dimensional overlays. This strategy would probably intro-
duce some overhead, since overlays might not be needed in the same place at different
points in time.
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7 Mesh Based Representations

The mesh based surface representations define a surface with a collection of vertices and
polygons, usually triangles. This means that these representations only work with piece-
wise linear surfaces.

In this section some of the better known representation will be described:

• W. Schroeder’s vertex removal algorithm [74].

• H. Hoppe’s progressive meshes algorithm [43].

• M. Garland’s and P. Heckbert’s pair contraction algorithm [37].

• Li’s compression of 3D models [47].

Closely related to these representations are the papers that apply signal processing tech-
niques to meshes with arbitrary connectivity that will be presented in Section 8.

7.1  Vertex Removal Algorithm

William Schroeder et al. presented in [74] a simple algorithm for mesh decimation based
on a vertex removal strategy. The algorithm is general enough to be able to handle non-
manifold surfaces, and it allow the user to set constraints to maintain some of the features
of the original surface.

The algorithm is subdivided into three steps:

• characterization of the local topology of a vertex: each vertex in the mesh is classified
according to the microtopology of the neighborhood. The five possible classifications
of the vertices are given in Figure 7.1:

Figure 7.1 Classification of the vertices of a mesh

The first two elements in Figure 7.1 represent the local connectivity common to the ver-
tices of a two-manifold surface: the neighborhood of a vertex is either homeomorphic
to a disc, as in the case of simple, or to a half disc, as in the case of boundary.
In the non-manifold case the surface intersects itself at the vertex, possibly resulting in
some edges bounding more than two triangles.
The interior edges and interior vertices are used to constrain the decimation of the sur-
face. Interior edges define the boundary of regions with different properties. For exam-

Simple Boundary Non-Manifold Interior edge Interior corner
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ple an interior edge could be inserted if the dihedral angle between the two triangles
that share the edge is larger than a user-specified threshold.

• error norm evaluation: after the first step all the vertices have been classified. In this
second step the error introduced by the removal of a vertex must be computed.
Schroeder did not use just one error norm, but he constructed different error norms for
the different classes of vertices. The following list describes the error norms used in the
original algorithm:

• Simple vertex: the error introduced by the removal of a simple vertex is com-

puted as the distance between and the average plane defined by the vertices on

the star of , as shown in Figure 7.2.

Figure 7.2 Removal of a simple vertex

The distance  can be computed efficiently as

(EQ 7.1)

where

(EQ 7.2)
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(EQ 7.4)

(EQ 7.5)

(EQ 7.6)

(EQ 7.7)

• Boundary vertices and interior edge vertices: The most important visual artifact
introduced by the removal of both boundary and interior edge vertices is not the
“flattening” of the geometry, but the change of the shape of the boundary and of
the interior edges.
It makes sense therefore to use a different error norm than the norm defined in
Eq. 7.1, such as the error model illustrated in Figure 7.3:

Figure 7.3 Removal of a boundary edge or of an interior edge

The error norm is therefore proportional to the minimum distance between the ver-
tex  that has been removed and the new edge .

• Non-manifold and interior corner vertices: these two types of vertices are not
removed in the decimation process, since their removal could change the topology
of the mesh or remove essential features.

The error introduced by the removal of each vertex is stored in a sorted list. The algo-
rithm will then remove the vertex that introduces the smallest error.

• vertex removal: in the previous step the vertices have been ranked according to the error
that their removal would introduce in the surface. In the next step the vertex that intro-
duces the smallest error is removed from the mesh. After this removal operation the
mesh contains a hole that was not present before. It is therefore necessary to re-triangu-
late the hole.
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The algorithm used in the paper is fairly simple, and it is based on a divide-and-conquer
strategy. The idea is to connect two vertices on the boundary of the hole with an edge,
thus splitting the problem into two sub-problems. Since the algorithm should be capa-
ble to handle any non-manifold mesh it is very easy to construct an example where such
an algorithm would fail. In this case the vertex is not removed from the mesh.

An example outlining the divide-and-conquer strategy is presented in Figure 7.4:

Figure 7.4 Re-triangulation via divide-and-conquer strategy
a) Boundary of the hole that must be triangulated
b) Triangulation of the hole

The error norm evaluation and the vertex removal operations can be applied to simplify
the mesh by removing one vertex at a time:

(EQ 7.8)

After the removal of a vertex from the mesh the error associated with the vertices on its
star must be recomputed, since the removal operation might have changed the error associ-
ated with these vertices. The new error values will replace the old values stored in the error
list.

a)

b)

M Mn Mn 1– … Mi→ → →=
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7.2  Progressive Mesh

The progressive mesh (PM) algorithm by Hugues Hoppe is probably one of the better
known mesh based schemes to organize, store and transmit meshes of triangles. A detailed
description of this scheme and its various extensions, such as view dependent PM and pro-
gressive simplicial complexes, can be found in [43], [44], [67], and [45]. Progressive
meshes have been extended to three dimensional tetrahedral meshes in [77].

The progressive mesh scheme builds a continuous level-of-detail approximation of an

input mesh ; the two components that define the representation are:

1. A coarse mesh . This mesh is much less detailed than the original mesh and it con-

tains fewer triangles. Usually the mesh corresponds to the coarsest possible mesh

that has the same topological type as the input mesh .

2. A set of vertex split records . Each record contains enough

information to split a vertex in two vertices, thus inserting one or two new triangles in

the mesh. If a single vertex split operation is applied, it will transform the mesh

to . Applying all the vertex split operations to the mesh will result in the

original mesh .

In typical applications the only information available is the input mesh : no information

is available on the mesh or about the records. It is therefore necessary to

develop an algorithm to compute this information.

The necessary information is generated starting from the input mesh applying edge

collapse operations , which are the inverse of the  operations.

These two operations are shown in Figure 7.5.

Figure 7.5 Edge collapse and vertex split operations
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The information for the progressive mesh scheme is then constructed as follow:

• Starting from the input mesh perform edge collapse operations. The

resulting mesh is our coarse mesh :

(EQ 7.9)

• Store the inverse of the  operations as  operations:

(EQ 7.10)

• The last important component required to construct a progressive mesh representation
of meshes is an error norm. Eq. 7.9 and Eq. 7.10 specify how to build the representa-
tion, and the error norm drives the construction by specifying which vertices should be
removed first.
The error norm will be used to decide how important edges are. This will allow us to
compute an edge collapse that removes the -th least important vertex from the

mesh. Since least important vertices are removed first, it is possible to construct an

error norm that guarantees that the error associated with a mesh is smaller or equal

than the error associated with a mesh  if . This is formalized in Eq. 7.11:

(EQ 7.11)

However the greedy nature of the algorithm does not construct best approximations: in
order to guarantee that an approximation satisfies an error too many triangles will be
used.

Furthermore to any approximation there is an associated error that specifies
how different the approximation is from a reference mesh, usually the full resolution
surface.

The error function that Hoppe has chosen is defined by an energy function:

(EQ 7.12)

(EQ 7.13)

(EQ 7.14)

where are a collection of vertices whose distance to the mesh is

measured, and  is an elasticity constant.

The distance energy described in Eq. 7.13 measures the total squared distance of a col-

lection of points sampled on the reference mesh to the mesh . The spring energy
function described in Eq. 7.14 corresponds to placing a spring on each edge with ten-
sion .
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The vertices used in the -th edge collapse operation are chosen in such a way that
Eq. 7.15 is minimized:

(EQ 7.15)

The algorithm that constructs the PM representation described in this section only used the
geometric information to compute the error associated with an edge collapse operation. If
other information is available, such as normals, material properties, shading techniques,

texture coordinates, then this could also be used in the evaluation of the error . If
the representation would be used in a seismic ray tracer for example, the error associated
with the normals at each triangle would be as important as the error associated with the
geometry position of the vertices. The error norm should then try to find the edge collapse
that minimizes both the changes in the geometry and in the normals.

A more detailed discussion on the progressive mesh representation can be found in the
original papers of Hoppe [43].

7.3  Pair Contraction

In [37], Michael Garland and Paul S. Heckbert presented a surface simplification algo-
rithm based on a quadratic error metric.

The algorithm proposed in this paper is similar in flavor to the progressive mesh scheme.

The idea is to build a sequence of meshes  from an input mesh .

The two most noticeable differences between this representation and PM are:

• Instead of using an edge collapse operation (as in Section 7.2) Garland created a new
operator called pair contraction. A pair contraction introduces a new ver-

tex in the mesh, moves the vertices and to , connects all the incident edges of

 and  to , and finally removes  and  from the mesh.

This operator is very similar to the edge collapse operator; the most important differ-
ence between the two operators is that the pair contraction operator can contract two
vertices that do not share an edge, as shown in the right of Figure 7.6. The resulting rep-
resentation has therefore the ability to change the topology of the mesh.

From the definition given above any pair of vertices could be used for a pair

contraction. This would not generate high quality results in general, since merging dis-
tant vertices could introduce visual artifacts as well as self-intersections in the represen-
tation. The author introduced therefore the concept of a valid contractions:

Lemma 2: a pair contraction of is defined as valid if either an edge connects

the two vertices or

(EQ 7.16)
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where is an mesh dependent threshold parameter.

Figure 7.6 Pair contraction operator
a) The pair contraction operator collapses the edge (v1, v2)
b) The pair contraction operator collapses two vertices that do not share an edge

• The second important difference is how the error norm is used to evaluate the error
introduced by a pair contraction operation.
In PM the error is measured with an energy function: the lower the change in energy the
better the edge collapse.
Garland and Heckbert constructed a quadratic error metric: each vertex is assigned a

 matrix , and the error at a vertex is defined as

(EQ 7.17)

(EQ 7.18)

(EQ 7.19)

(EQ 7.20)

Basically the matrix contains the information needed to compute the sum of the dis-

tances of the vertex to a set of planes. This error metric allows to compute the posi-
tion of the vertices that minimizes the error.

The main advantages of quadratic error metrics are their efficiency, since the storage
requirement is of 16 floating point values per vertex and the error can be evaluated with
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two matrix-vector multiplications, and the intuitive understanding of what the error
means.

Once these two components have been defined, the rest of the algorithm is very similar to
PM: at iteration the error introduced by every legal pair contractions is measured, and

the contraction that introduces the smallest error is used to compute the mesh .

7.4  Progressive Compression of 3D Meshes

Li et al. [47] developed a strategy to compress 3D meshes progressively. The interesting
aspect of this approach is that both the topology and the geometry are progressively
encoded in the same bitstream. In this way it is possible to transmit the most important
information first.

In order to build the bit stream, two operations must be available:

• Coding of topological information: this information is coded using a vertex removal
strategy, such as the algorithm constructed by William Schroeder: unimportant vertices
are removed, and the hole that is generated by the removal operation is re-triangulated
using a divide-and-conquer strategy. An example of vertex removal is shown in
Figure 7.4 in Section 7.1.

This is a simple approach and it allows to remove vertices progressively. In order to
reconstruct the original mesh, i.e. to invert the removal operation, it is necessary to
store enough information to recover the neighborhood of the vertex that has been
removed. Li uses the following information to invert a vertex removal operation:

1. The index of one of the new triangles generated by the vertex removal operation.

2. One bit per edge: a value of 1 specifies that the adjacent triangle was also gener-
ated by the removal operation, a 0 specifies the adjacent triangle wasn’t generated.

A vertex is then re-inserted in the mesh by first computing its star and then applying a
trivial re-triangulation. The star is retrieved by finding all the triangles that were
inserted during the vertex removal step: the index of one of these triangles is stored in
the representation, and the others can be found using the 1’s and 0’s. An example is
shown in Figure 7.7.

• Coding of geometric information: A second operator is needed to encode the geometric
information. In his original paper Li used a progressive quantization approach.

Standard quantization algorithms map a value , where is a set of finite size,

onto a value , where is a set of finite size and . The standard exam-

ple consists in mapping a float or double value, a 32 or 64 bit value, onto a smaller set

of size , where is a parameter that specifies the trade-off between the quality of the
quantization and the compression rate. If this approach is applied to the geometric
information of a mesh, then it is possible to compress the information. The problem

i

Mn i–

x S1∈ S1

x' S2∈ S2 S1 S2»

2i i



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

90

with this approach is that the information in the bitstream is not sorted in order of
importance: the vertices are stored sequentially.

Figure 7.7 Introducing a vertex in the mesh
a) mesh before the insertion of the vertex.
b) mesh after the insertion of the vertex.

A better strategy consists in progressively quantizing the information from the most
important part of the information to the least important. The most important informa-
tion of the geometry component of a mesh corresponds to:

1. the most significant bits (MSB) of every vertex of the mesh.

2. the most important vertices in the mesh defined by the vertex removal algorithm.

Therefore, it makes sense to encode the MSB of the important vertices first, and only in
a second step store the least significant bits (LSB) or the position of unimportant verti-
ces.

This idea can be easily implemented using a threshold and the two rules defined in

the following list:

0. initialization:

 half of the maximum magnitude of the geometric data

1. significance identification:

If then and

If then and

Otherwise and

2. refinement quantization:

If then and

If then and

where represents the -th component of the vertex , the store the sign and

the magnitude of the -th component of the vertex , the store the part of the

1

1

0

0

00

0

a) b)

T 0

T 0 =

v j c, T i> S j i c, , 1= E j i c, , v j c, 1.5 T i⋅–=

v j c, T i–< S j i c, , 1–= E j i c, , v j c, 1.5 T i⋅+=

S j i c, , 0= E j i c, , v j c,=
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-th component of that has not been quantized yet, are the quantized bits of

the -th component of , and the  are the threshold values used in the process.

The significance identification rule is used for the first iterations, where is defined

by , and once has been set to either or

 the refinement quantization rule will be used for the remaining iterations.

The geometric value of a vertex can then be reconstructed from the sequence
, where corresponds to the number of bits used in

the quantization process.

Finally, the values and can be encoded progressively by first encoding all the

values at iteration , then the values of iteration  and so on.

The two algorithms presented in this section, vertex removal and progressive quantization,
allow us to simplify the mesh by reducing the number of vertices and to store the geomet-
ric information according to its importance. The next step consists in merging the two
algorithms together, in order to build a single bitstream that encodes both geometric and
topological information. One possible coding strategy consists of:

1. Set to the value of the maximum magnitude of all prediction residues of every vertex
that has to be removed, then define a threshold sequence for the geometric information

(EQ 7.21)

2. Define a threshold sequence for the topologic information

(EQ 7.22)

where , and represents the average number of bits required for a vertex

addition.

3. In layer all the vertices with prediction residue are added, and the geomet-

ric information of all the vertices present in the mesh are refined up to .

7.5  Evaluation

In this section the mesh based methods described in Section 7.1 through Section 7.4 will
be evaluated using the criteria specified in Section 2.

• Modeling of two-manifolds with boundaries: The main strength of mesh based repre-
sentations is their ability to model most triangular meshes. All of the representations
described in this section can model two-manifolds with boundaries, and most of them
can model non-manifold surfaces as well.
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• Computation of surface-surface intersections: The previous representations described
in Section 4 through Section 6 could in theory use two different approaches to compute
intersections, using either a separate bounding box data structure or algebraic methods.
Mesh based representations can only use a hierarchical bounding box data structure to
accelerate the intersection computation, since algebraic methods require some degree
of regularity in the surface and are usually applied to higher order functions.

Most of the mesh based representations construct a multiresolution representation
which is not described by a tree, but by a direct acyclic graph (DAG). As a consequence
more triangles need to be tested during the computation of the intersection, since there
are many more dependencies in the representation.

• Scalable representation: The mesh based representation described in this section are all
scalable, since they all fulfill the following properties:

• The representations are compact: the progressive mesh representation and Heck-
bert and Garland representation based on pair contraction require less storage than
a trivial single resolution representation of a mesh.

Li brings this concept even further and describes a method to reduce the storage
requirements even more by encoding both the topological and geometric informa-
tion in a bitstream.

Schroeder’s algorithm is not as advanced, and the storage requirements are there-
fore higher. The problem of this representation is that it is difficult to store the
topology at all the resolutions in a compact way, since the connectivity changes
after each vertex removal.

• The representations are capable of generating simplified approximations of a
mesh, thus allowing us to interact with very complicated and dense geological
models. These approximations are usually not “optimal”, i.e. they do not minimize
an error norm, they are just good approximations constructed using greedy algo-
rithms. The approximations are constructed starting from a coarse representation
of the surface and adding enough details to meet the needs of the user: for example
using the progressive mesh representation the approximation would be constructed
by first taking the coarse representation and by applying n vertex split operations.

Schroeder’s representation based on vertex removal is the only exception. Surfaces
are not stored in a hierarchical representation; the algorithm is only capable to take
a fine resolution mesh and simplify it.

• The construction of the representation is also very efficient: all the algorithms pre-
sented in this section can construct a representation in time. If the
user specifies more complex error norms the total complexity of the algorithms can

increase, usually resulting in  algorithms.

Once the representation of a mesh has been constructed these algorithms can build
an approximation of the full resolution mesh in linear time.

• Modeling of non-manifold singularities, tears and cracks: Basically all the mesh based
representations described in this section can handle non-manifold surfaces.

O n nlog⋅( )

O n2( )
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Schroeder’s representation can model two-manifolds easily, since special masks are
defined in order to handle these singularities (see Figure 7.1). Pseudo-manifolds are not
handled explicitly in the original paper, but it would be possible to extend the algorithm
to correctly handle these singularities.

The original paper on progressive mesh did not address the problem of representing
non-manifolds using the edge collapse and vertex split operators, but in the paper of
progressive simplicial complexes J. Popovic and H. Hoppe [67] extend the theory of the
progressive mesh to non-manifolds. Pseudo-manifolds were not handled explicitly, but
it should be possible to extend the representation to handle these singularities as well.

The representation constructed by Heckbert and Garland does handle non-manifolds as
well, since the representation is very similar to the progressive mesh. Pseudo-manifolds
are not handled explicitly, but it should be possible to extend the representation to han-
dle them correctly.

Li’s representation is based on Schroeder’s representation, and therefore it can handle
non-manifold singularities well, and it could be extended to handle pseudo-singulari-
ties.

The mesh based representations can model tears and cracks as piecewise linear curves
embedded in the piecewise linear representation of the surface. The data structure that
describes the curves is separate from the multiresolution representation of the mesh.

• Error modeling: During the construction of the representations the mesh based algo-
rithms minimize some error norm. The resulting representations are therefore usually
capable to construct approximations which satisfy some error conditions.
All the algorithms presented in this section have the drawback of constructing the sur-
face representations using a greedy approach: Schroeder and Li remove the vertices
that introduce the smallest error, and Hoppe and Heckbert-Garland collapse pairs of
vertices that introduce the smallest error. As a consequence the representations will
usually not be optimal, i.e. they use too many triangles to guarantee any error norm.

• Smoothness of the surface: All mesh based representations assume the surface is piece-
wise linear, and therefore they cannot build smooth representations of surfaces.

• Multiresolution editing: Schroeder’s representation does not support multiresolution
editing since it does not construct a multiresolution representation of surfaces.

Hoppe’s and Heckbert-Garland’s representations construct a multiresolution represen-
tation of surfaces, so it may be argued that it is possible to build a multiresolution edit-
ing tool on top of the representation. A multiresolution editing tool built on top of these
representations would not generate good edits for two reasons:

1. an edit would affect both low and high frequency components of the mesh. Good
edit operations are usually only performed on the low-pass component of the mesh
which contains the structural information the user wants to edit.

2. the information needed to reconstruct the full resolution mesh is not stored using
details, nor it is encoded using local frames. As a result an edit at any level of reso-
lution but the finest would result in meaningless changes in the mesh.

Li’s representation does not construct a multiresolution representation explicitly, but
the bitstream it generates implicitly defines a multiresolution representation that could
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be used to construct a multiresolution editing tool. Such a tool would have the same two
problems described above for Hoppe’s and Heckbert-Garland’s representations.

• Surface fitting: There is no fitting algorithm that takes as input a collection of points
and generates a representation based on Schroeder’s algorithm. However it could be
possible to construct a triangular mesh from an unorganized cloud of points and then
compute Schroeder’s representation as a post-process.

In his thesis Hoppe constructed a fitting scheme which constructed a representation
very similar to his progressive mesh representation. This algorithm could be adapted to
generate PM representations automatically.

Since the PM representation is very similar to the representation constructed by Heck-
bert and Garland it would be possible to take Hoppe’s fitting scheme and adapt it to use
the quadratic error norm and to automatically construct a representation based on the
pair contraction operator.

Li’s representation is based heavily on Schroeder’s algorithm, so the same comment
applies to this scheme: the simplest approach would be to construct a triangular mesh
that fits the collection of points and in a post-process to construct Li’s representation.

• Support of local high variation in the curvature of the surface: All the mesh based rep-
resentation can model local high variation in the curvature since the underlaying sur-
face representation is a piecewise linear surface.

• Changes of the surface over time: Depending on the changes in the topology of the
mesh over time, these changes can be model more or less easily. The same classifica-
tion of the changes used in Section 4.5 for the pseudo-wavelets applies here as well:

1. If the connectivity of the mesh remains the same at all times then the changes in

the geometry can be encoded easily by storing a function at each vertex

instead of a single vector value .

2. If the connectivity changes, but the topological type remains the same at all times
then changes can be encoded by first computing a remesh of the surface at all

the times , and then by applying the solution constructed in 1.

3. If the topological type of the surface changes as well in time, then the only solution
is to store different representations of the surface at each time

ti

f t( )
x y z, ,( )

ti

ti

ti



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

95

8 Signal Processing for Meshes

In this last section some of the representations based on signal processing tools will be
analyzed. These primitives are used to smooth the surface usually by minimizing the
Laplacian operator. There are four main contributions to this field:

• Gabriel Taubin [86] was the first that tried to map standard filtering techniques to
meshes with arbitrary connectivity.

• Leif Kobbelt [48] used the work of Taubin as a starting point to construct a multiresolu-
tion editing tool for meshes with arbitrary connectivity. In order to accomplish this he
constructed an operator to smooth surfaces as well as a local frame operator.

• Igor Guskov et al. constructed in [46] a better smoothing operator, and used it to build
non-uniform subdivision schemes and a multiresolution representation of meshes.

• Desbrun et al. constructed in [24] a smoothing operator based on the notion of curva-
ture flow, and used implicit integration instead of the less stable explicit integration to
accelerate the convergence of the algorithm.

8.1  Signal Processing on Meshes

Gabriel Taubin presented in [86] a new idea based on signal processing techniques that
allows to smooth surfaces while imposing different types of constraints. In this section the
basic ideas of this signal processing approach will be discussed briefly.

8.1.1 Fairing of One Dimensional Curves

Given a curve defined by the vector , where the values

represent the vertices and the edges are defined between each pair of vertices
, the Laplacian operator is defined as

(EQ 8.1)

and can be represented in matrix form as

(EQ 8.2)

The one dimensional curve can now be faired with two different methods:

1. One obvious strategy consists in computing the Discrete Fourier Transform (DFT) of
the signal and removing the high energy component from the signal. Using a Fast

Fourier Transform (FFT) this could be accomplished in

Instead of computing the FFT of the input signal it is also possible to compute the

eigenvalues and the eigenvectors of the matrix . The

vector  could then be re-written as

x x1 … xn, ,( )T= xi i, 1 … n, ,=

xi xi 1+,( ) i, 1 … n 1–, ,=

∆xi
1
2
--- xi 1– xi–( ) 1

2
--- xi 1+ xi–( )⋅+⋅=

∆x K– x⋅=

x
O n nlog⋅( )

x
ki i, 1 … n, ,= ui i, 1 … n, ,= K

x
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(EQ 8.3)

(EQ 8.4)

The high frequencies in the signal could be eliminated by leaving out the eigenvectors
that correspond to higher frequencies, which are defined as the eigenvector whose cor-
responding eigenvalue is larger than a threshold. This second strategy has the same
complexity as the FFT approach: .

Note, that the removal of high frequency information from the DFT of the signal

results in the same faired signal as the reconstruction of the signal via Eq. 8.3 using
only eigenvectors that correspond to low frequency information.

An example of surface fairing using this strategy is presented in Figure 8.1. The images
were obtained using Eq. 8.3 to reconstruct the signal:

Figure 8.1 Fairing of a 1D signal using an eigenanalysis
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2. A simpler and faster operator that allows to remove high energy information from a one
dimensional curve is the Gaussian filter, or more generally any low-pass filter. These
filters do not compute the exact projection of a signal into the space of the low-fre-
quency signals, but they compute good approximations very fast.

One of the most simple filter is the Gauss filter, which can be defined as

(EQ 8.5)

with .

An example of this low-pass filter is given in Figure 8.2:

Figure 8.2 Gaussian filter

The most important drawback of the gaussian filter is that while it smooths the signal it
also shrinks it, and thus the area or volume of the signal is not preserved in any way.
The method constructed by Taubin, which will be presented in the next section, will
overcome this limitation.

8.1.2 Fairing of Arbitrary Meshes

The strategies presented in the previous section allow to smooth a one dimensional sig-
nals. In this section a smoothing operator will be described that can be applied on two-
manifold meshes with arbitrary connectivity.

The Laplacian operator at the vertex is defined as the weighted average of the edge vec-

tors :
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(EQ 8.6)

(EQ 8.7)

The matrix  can be defined as

(EQ 8.8)

where I is the identity matrix, and W is the matrix whose (i, j) element corresponds to wi,j.

The low-pass filtering can now be redefined in matrix form as

(EQ 8.9)

The goal is now to find a function , for which for the low frequencies,

and for the high frequencies present in the surface. A simple function satisfy-
ing this criteria is

(EQ 8.10)

where  and .

∆xi wi j, xi x j–( )⋅
j star xi( )∈
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The fairing operator has been applied to a synthetic model that was generated using the
Loop subdivision scheme (see Section 5.1.3) and successively noising the right half of the
mesh. The results are presented in Figure 8.3:

Figure 8.3 Non-shrinking fairing strategy

This fairing algorithm does not suffer the problem of shrinkage as the simple Gaussian fil-
ter does described in Section 8.1.1, since after the Gaussian smoothing step represented by

in Eq. 8.10 an un-shrinking operation represented by in Eq. 8.10 is
performed.

This algorithm can be further generalized by imposing constraints to the fairing process.
The different constraints that can be applied are quickly described below:

• Interpolatory constraints: fix the position of some vertices so that they are not moved
during the smoothing step. There are two possible implementations of these constraints,
one resulting in a non-smooth neighborhood of the interpolated vertices, the other in a
smooth neighborhood.

• Smooth deformations: the smooth interpolatory constraint can also be used to build
smooth deformations of the mesh.

• Hierarchical constraints: labelling the vertices using some pre-defined rules makes it
possible to smooth specific regions of the mesh; for example it is possible to smooth

Surface after 5 smoothing steps

Surface after 50 smoothing steps

Input noisy surface

Surface after 10 smoothing steps

I λ K⋅–( ) I µ K⋅–( )
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only the boundary of the mesh or to define different regions of the mesh that will be
smoothed separately, which means that there will be no smoothing across the bound-
aries of the regions.

• Tangent plane constraints: by defining the normal at a vertex it is possible to put con-
straints on it.

Remark: the fairing operator presented by Taubin can also be used to construct a subdivi-
sion scheme that does not suffer the problem of shrinkage, as opposed to the classic subdi-
visions presented in Section 5.1.1 through Section 5.1.3. This is accomplished by using
the fairing operator that was developed in this section to smooth the geometry in conjunc-
tion with any subdivision operator. This subdivision scheme was used in [90] to construct
a multiresolution editing tool based on subdivision surfaces.

Figure 8.4 shows the subdivision surface generated using the fairing operator to smooth
the geometry of the mesh:

Figure 8.4 Non-shrinking subdivision surface using the fairing scheme

8.2  Multiresolution Modeling of Meshes

Leif Kobbelt et al. introduced in [48] a multiresolution editing tool that can handle meshes
with arbitrary connectivity. The authors achieve this goal by defining two operators on the
mesh: a local frame operator and a discrete fairing operator.

8.2.1 The Local Frame Operator

Local frames were first introduced in [36] and they are used to encode the geometric infor-
mation of vertices in a local coordinate system. Since vertices are encoded using a local
coordinate system, edit operations at any level of resolution are automatically propagated
to the full resolution mesh.

Local frames could be defined in many different ways. In the paper of Kobbelt they are
constructed using the following strategy:

v
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1. Construct a local frame space that will be used to code the vertex. This space is defined
as a parametric function

(EQ 8.11)

over a local neighborhood of the mesh, as shown on the left of Figure 8.5:

Figure 8.5 Local frame space define over a local neighborhood of a triangle mesh

In order to evaluate the unknown , , , , , and in Eq. 8.11 it is first

necessary to define the support of the frame space, which is defined by a triangle and
the three neighbor triangles, as shown in Figure 8.6:

Figure 8.6 Support of the frame space

Next, a parametrization for the points must be constructed.

The parameter position of the first three vertices can be freely set to

(EQ 8.12)

(EQ 8.13)

(EQ 8.14)

The parameter position of is not unique, and it depends on the projection

operator.
A simple idea is to first project these points on the plane defined by :

(EQ 8.15)
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(EQ 8.16)

(EQ 8.17)

(EQ 8.18)

Next, Eq. 8.12 - Eq. 8.18 can be used to compute the parametrization of the vertices
:

(EQ 8.19)

where

(EQ 8.20)

and

(EQ 8.21)

(EQ 8.22)

Once the parametrization of the vertices has been computed it is possible to

compute the unknown in Eq. 8.11:

(EQ 8.23)

(EQ 8.24)

(EQ 8.25)

(EQ 8.26)

n
d1 d2×
d1 d2×

----------------------=

d1

x1 x0–

x1 x0–
----------------------=

d2

x2 x0–

x2 x0–
----------------------=

x3 x4 x5, ,

ui vi,( ) c1 c2,( )=

xi' c1 d1 c2 d2⋅+⋅=

c1

d1
T xi⋅ d1

T d2⋅( ) d2
T xi⋅( )⋅–

d1 d1
T d2⋅( ) d2⋅– 2

--------------------------------------------------------------------=

c2 d2
T xi d1

T d2⋅( ) c⋅ 1–⋅=

x0 … x5, ,

a x0=

au x1 x0–( ) 1
2
--- auu⋅–=

av x2 x0–( ) 1
2
--- avv⋅–=

1
2
---u3 u3 1–( ) u3v3

1
2
---v3 v3 1–( )

1
2
---u4 u4 1–( ) u4v4

1
2
---v4 v4 1–( )

1
2
---u5 u5 1–( ) u5v5

1
2
---v5 v5 1–( )

τ 0 0

0 2τ 0

0 0 τ

auu

auv

avv

x3 x0–( ) u3 x0 x1–( ) v3 x0 x2–( )+ +

x4 x0–( ) u4 x0 x1–( ) v4 x0 x2–( )+ +

x5 x0–( ) u5 x0 x1–( ) v5 x0 x2–( )+ +

0

0

0

=



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

103

The parameter in Eq. 8.26 is used to control the curvature of the frame

space. If is set to zero the curvature is not constrained, and the local frame space

 will interpolate the six points  that generate it.

2. In a second step a vertex has to be coded in the local frame space. The vertex is

coded as a triple , where is the parameter position of the point on

whose normal intersects the vertex , and specifies the distance between the

frame space and the vertex .

The triple can be computed by first making an initial guess on , for
example

(EQ 8.27)

and then using an iterative algorithm to relax the approximation to the solution. In the
original paper a Newton iteration was used, as shown in Eq. 8.28 through Eq. 8.30

(EQ 8.28)

(EQ 8.29)

(EQ 8.30)

The system iterates until the approximation is close enough to the solution. Finally, the
vector  is coded in a single value :

(EQ 8.31)

It is possible to code into a single value , since is parallel to the normal of the

frame space  at the position .
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An example of Newton iteration is given in Figure 8.7:

Figure 8.7 Newton iteration is used to compute local frame coordinates

The local frames can now be used with any existing decimation scheme to efficiently code
vertices that have been removed in a local coordinate system. They can also be used to
store the original position of the vertices that are being smoothed with the discrete fairing
operator that will be introduced in the next subsection.

8.2.2 The Discrete Fairing Operator

The second operator that is needed to correctly edit meshes with arbitrary connectivity at
multiple levels of resolution is a discrete fairing operator. This operator is used to smooth
the mesh in order to remove high frequency information. The smoothing operator is very
useful, since edit operations are usually applied only to the low-pass component of the
mesh.

The discrete fairing has been implemented with the so-called umbrella algorithm. The
goal of this algorithm is to minimize either the so-called membrane energy defined as

(EQ 8.32)

or the thin plate energy defined as

(EQ 8.33)

Initialization After 1 iteration

After 2 iteration Converged solution

q q

qq

EM f( ) f u
2 f v

2+∫=

ETP f( ) f uu
2 2 f uv

2 f vv
2+ +∫=
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Eq. 8.34 and Eq. 8.35 shows the partial differential equations (PDE) that correspond to the
energy minimization of Eq. 8.32 and Eq. 8.33:

(EQ 8.34)

(EQ 8.35)

The operators used to minimize both energies are local: the function that updates a vertex
uses only the information on the vertices surrounding , represented by the vertices

 in Figure 8.8:

Figure 8.8 Vertices used in the umbrella algorithm

The parametrization of these vertices has a direct impact on the fairing function. Kobbelt
has chosen a simple symmetric parametrization for the vertices :

(EQ 8.36)

The use of this parametrization allows to construct a discrete operator that models the
Laplacian

(EQ 8.37)

as well as a discrete operator that models

(EQ 8.38)

Finally, the fairing is obtained using a fixed-point iteration of either Eq. 8.37 or Eq. 8.38:

1. the solution of the discrete problem , which minimizes the membrane
energy, is computed by using a simple fixed-point iteration:

(EQ 8.39)
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The algorithm iterates, until the system converges towards a mesh with the property
 for all vertices .

An example of the relaxation procedure is shown in Figure 8.9:

Figure 8.9 Minimization of the membrane energy

2. The solution of the discrete problem , which minimizes the thin plate
energy, is slightly more complex, but it can also be solved with a fixed point iteration of
the form

(EQ 8.40)

where

(EQ 8.41)
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The parameter represents the valence of the vertex , and represents the

valence of the -th neighbor vertex of . The algorithm will iterate Eq. 8.40 until a

mesh with the property  is created.

An example of the iterative process that minimizes the thin plate energy is given in
Figure 8.10:

Figure 8.10 Minimization of the thin plate energy

8.2.3 Construction of an Edit Operator

The local frames and the discrete fairing operators developed in the previous sections can
now be used to construct a multi-resolution editing tool that can handle meshes with arbi-
trary micro-topology. In this section the algorithm will be presented briefly; further infor-
mation can be found in the original paper of Kobbelt:

• the first step consists in the coarsification of the mesh using any decimation algorithm,
for example any of the algorithms presented in Section 7.1 through Section 7.4 could

νi xi νi j,

j xi

U2 x( ) 0=

Initial mesh Mesh after 1 iteration

Mesh after 4 iterations Mesh after 20 iterations
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be used. The position of the vertices removed from the mesh is stored in local frames,
so that the edit operations automatically affect these vertices as well.

It is important to remove as many vertices as possible in order to compute real-time
edits on the mesh; on the other hand the coarse mesh should contain the structural
details that need to be edited.

• In a second step the surface is smoothed using the discrete fairing operator. Either the
membrane or the thin plate energy can be minimized. The difference vectors between
the original position of the vertices and their position after the smoothing are stored in
local frames.

• Next, the user needs to specify the area where the edit operation has to take place and
how the edit will modify the mesh.

• Once the edit has been computed, the detail vectors storing high frequency information
of the mesh are re-introduced.

• Finally, the mesh can be refined, re-introducing the vertices that have been removed in
the first step of the algorithm.

8.3  Multiresolution Signal Processing for Meshes

In [46] Guskov, Sweldens and Schroeder present a new signal processing algorithm that
can be used to fair meshes with arbitrary microtopology, which is based on the technical
report [40] of Guskov. The most important difference between this new approach and the
approach of Taubin [86] and the approach of Kobbelt [48] is that the operators that
approximate the Laplacian also consider the geometric information and not only the topo-
logical information.

In the first subsection the difference operator of first and second order will be constructed
for meshes described in a functional setting, which means that each vertex position is
described as

(EQ 8.42)

where and correspond to the global parameter position of the vertex and

is a function which describes the z-values.
The results produced in this setting will then be generalized to the standard 3D setting,
where two-manifold meshes do not have a natural global parametrization.

Next, an irregular subdivision scheme based on the operators described above will be
introduced, which allows to construct smooth surfaces with irregular connectivity.
An extension of the Burt-Adelson pyramid based on the subdivision and difference opera-
tors will also be derived. This scheme allows to compute smooth downsampling while
storing the information needed to invert the process.

xi ui vi g ui vi,( ), ,( )=

ui vi xi g ui vi,( )
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8.3.1 Difference Operators in the Functional Setting

In order to introduce the first and second order difference operators some notation needs to
be defined. The components needed for the construction of these operators are given in
Figure 8.11:

Figure 8.11 Triangles in the functional setting

The first order divided difference of the function for a triangle is

defined as the gradient of :

(EQ 8.43)

The gradient of the function , function only defined at the vertex positions, at the

triangle  can be computed solving the linear system of equations:

(EQ 8.44)

which results in

(EQ 8.45)

(EQ 8.46)
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(EQ 8.47)

It should be noted that the gradient in the interior of a triangle of the mesh remains con-

stant, since the function is only defined for the three vertices that define the trian-

gle and the function  is assumed to be piecewise linear in the interior of .

Next the author defines the second order differences. This can be computed as the differ-
ence between the first order divided difference associated with two neighbor triangles.
Equivalently it can be defined as the difference of the normals of two neighbor triangles,
where the normal of a triangle  is defined as

(EQ 8.48)

This results in a vector that describes the second order difference

(EQ 8.49)

(EQ 8.50)

where , and is the edge shared by the two triangles (see

Figure 8.11). Eq. 8.49 and Eq. 8.50 can be expanded to:

(EQ 8.51)

(EQ 8.52)

Finally, the curvature at an edge can be estimated by computing the signed norm of the
vector components defined in Eq. 8.51 and Eq. 8.52:

(EQ 8.53)

where

, (EQ 8.54)
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, (EQ 8.55)

and

(EQ 8.56)

represents the length of the edge  projected onto the parameter space.

The operator computed in Eq. 8.53 can now be used in a relaxation algorithm to compute
the new values of  for all vertices , so that the energy

(EQ 8.57)

computed from Eq. 8.53 is minimized.

The relaxed value of a point  is then computed as

(EQ 8.58)

where

(EQ 8.59)
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Eq. 8.53, and is the set of all the edges on the 1-ring of the vertex , as shown on the

right of Figure 8.12.

Figure 8.12 Parameters of Eq. 8.58
a) Vertices on the one-ring with flaps of i
b) Edges on the one-ring of i

8.3.2 Extension to the Non-Parametrized Meshes

The operators derived in Section 8.3.1 are not directly applicable on arbitrary meshes,
since in general no global parametrization of meshes is known. Furthermore if such a
parametrization would exist, the three components of the vertices, , , and would have
to be faired separately.

It is however possible to generalize Eq. 8.58 slightly and to construct a new operator that
smooths non-parametrized mesh vertices :

(EQ 8.60)

In order to correctly compute the weights the value (see Eq. 8.59) needs to be

computed. This operation requires a local parametrization of the mesh. Fortunately the
support of this parametrization is very small: it just has to cover the two triangles that
share the edge , since the operator Eq. 8.53 has exactly this support. A simple parametri-
zation that does not introduce distortion is presented in Figure 8.13: the edge between the
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two triangles is used as a hinge, and one triangle is rotated on it until the two triangles lie
on the same plane. This parametrization is called hinge map.

Figure 8.13 Local parametrization using hinges maps
a) Two triangles in 3-space
b) The hinge map rotate one triangle in the plane defined by the other triangle

This simple parametrization allows one to compute the values described in Eq. 8.54 and
Eq. 8.55, basically four areas and the length of the edge .

Once the weights have been computed, the same relaxation step can be performed on

the mesh vertices , until the mesh has been faired.

8.3.3 Non-Uniform Subdivision

The second order difference operator can also be used to construct a so-called non-uni-
form subdivision scheme. This non-uniform scheme is defined over a mesh based decima-
tion scheme; in the original paper the authors used a simplified progressive mesh
algorithm based on half-edge collapse, where one vertex is removed from the mesh by col-
lapsing it into another neighbor vertex.

The flow of the algorithm is outlined below:

• the first step consists in constructing a progressive mesh representation from an input
mesh. An important difference between standard subdivision schemes and this new
scheme is that in the former case the input mesh is coarse and it is refined, whereas in
the latter case the input mesh is a fine mesh that is coarsified through a decimation algo-
rithm.
The result of this step is a sequence of meshes

(EQ 8.61)

• The subdivision algorithm starts with the coarse mesh . Each subdivision step
introduces a new vertex, defined by the vertex split operation. Going from a subdivision

level  to the new level  is accomplished in the following steps:

• The position of the vertex being introduced is computed using Eq. 8.60:
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(EQ 8.62)

• The position of the vertices on the one-ring of the newly introduced vertex are
also updated using Eq. 8.60:

(EQ 8.63)

• All the other vertices in the mesh do not move:

(EQ 8.64)

8.3.4 Burt-Adelson Pyramid

The Burt-Adelson pyramid can be used in conjunction with the second order difference
operator to construct a hierarchical representation of a mesh. The removal of a vertex

from an input mesh  is computed in four steps:

• Pre-smoothing: downsampling a signal without first pre-smoothing it usually intro-
duces aliasing effects. It is therefore necessary to smooth the one-ring neighborhood of
the vertex :

(EQ 8.65)

• Downsampling: the vertex is removed from the mesh. The removal could be per-
formed with the half-edge collapse operation.

• Subdivision: the subdivision scheme presented in Section 8.3.3 can be used as a refine-
ment operator. The mesh is refined by introducing the vertex back in the mesh and
computing its position using Eq. 8.60 as well as the new position of the vertices on the
one-neighborhood of .
This information will be used to compute the detail information in the next step.

Using the subdivision rule Eq. 8.62 the position of the vertex  can be estimated as:

(EQ 8.66)

and using the subdivision rule Eq. 8.63 the position of the neighbor vertices of can be
estimated as:

(EQ 8.67)
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• Computation of the details: the detail values needed to invert the downsampling step,
one for the vertex and one for every neighbor of , are stored in a local frame

:

(EQ 8.68)

These four steps are presented graphically in Figure 8.14:

Figure 8.14 Extended Burt-Adelson pyramid scheme

The parameters and in store enough information to reconstruct the original

mesh. The reconstruction process is described by the following steps:

• The vertex is reintroduced, and its geometric position is guessed using the non-uni-
form subdivision scheme

(EQ 8.69)

The position of the vertices on the one-neighborhood of are also smoothed using the
rules constructed in Section 8.3.3:

(EQ 8.70)

• In a second step the detail values stored in are added back to the vertex and the

vertices on its one-neighborhood:

(EQ 8.71)

8.4  Implicit Fairing Using Curvature Flow

M. Desbrun et al. presented in [24] some interesting enhancements to the basic smoothing
strategy constructed by Taubin presented in Section 8.1. These enhancements allow to
construct a more robust algorithm to smooth meshes with arbitrary topology and reduce
the need of human supervision during the smoothing process. Furthermore the operators
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presented in this paper allow to obtain better results, both with respect to the quality of the
smoothing and the shape of the triangles in the mesh.

In the next few subsections the following improvements will be discussed:

• Use of an implicit solver in the smoothing process

• A simple strategy to guarantee the preservation of the volume of a mesh during the
smoothing process

• A new geometry-based operator based on the Laplacian

• A new operator based on the concept of curvature flow

8.4.1 Implicit Fairing

The fairing process described by Taubin using Eq. 8.9 corresponds to integrating the diffu-
sion equation using an explicit Euler scheme. The equation for the smoothing step is
shown in Eq. 8.72

(EQ 8.72)

The inherent problem with this approach is that explicit methods behave poorly if the sys-
tem is stiff, and in order to converge to the correct solution it is necessary to use very small
time steps. The choice of the time steps is dependent on the input mesh, more precisely it
is dependent on the length of the edges of the input mesh, and therefore manual interven-
tion is necessary to compute good-quality results. Since the time steps are required to be
small usually many iterations are needed to converge to the smooth mesh.

The problems of the previous approach can be solved by using implicit integration. It is
well known that implicit integration methods are more stable than explicit methods. As a
consequence fewer iterations will be needed to converge to the solution, since larger time
steps can be used. In an implicit method the approximation of the Laplacian is

computed using the geometric information at iteration and not the information at

iteration . If this concept is applied to Eq. 8.72 the following system of equations can be
derived:

(EQ 8.73)

From an algorithmic point of view, the most important difference between Eq. 8.72 and
Eq. 8.73 is that while Eq. 8.72 can be evaluated very easily using a matrix-vector multipli-
cation, a system of equations must be solved to compute the result of Eq. 8.73. Although
the implicit method can require more time to compute an iteration, the authors found out
that the algorithm is usually faster, since fewer iterations are required to converge to the
solution.
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In Figure 8.15 a simple comparison of the two integration methods is presented. For the
same number of smoothing iterations the implicit method generates better results, since it
is more stable and can work with larger time steps.

Figure 8.15 Comparison of explicit and implicit integration
a) Original triangular mesh
b) Noise is added to the mesh a)
c) Result after five smoothing steps using an explicit method
d) Result after five smoothing steps using an implicit method

8.4.2 Volume Preservation

In his original paper Taubin avoids shrinking in the mesh by applying an un-shrinking
step, as shown in Eq. 8.10. In general this approach gives good results, and no shrinking
effects occur during smoothing. The major drawback of this scheme is that the volume is
not preserved in any way: the volume can vary from smoothing step to smoothing step.

Desbrun proposes in [24] a simple strategy that allows to maintain the original volume of
the mesh using a simple linear time algorithm. The author computes the volume of all ori-
ented pyramids defined by the triangles in the mesh and by a point in space (the origin for
example). This volume can be computed easily using Eq. 8.74

(EQ 8.74)
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where

(EQ 8.75)

and

(EQ 8.76)

 represent the three vertices that define the triangle .

The volume can then be preserved during the smoothing process by first computing the
initial volume of the mesh , and by scaling the vertex positions of the mesh during iter-

ation  by .

8.4.3 A Geometry-Based Laplacian Operator

Desbrun et al. identified a fundamental problem in the formulation of the Laplacian opera-
tor defined by Taubin in [86] and by Kobbelt in [48]: their definition of the Laplacian is
based only on topological information and not on geometric information. This problem
has been identified by Guskov et al. as well who also presented a new operator (see
Section 8.3).
The most important drawback that purely topological methods have is that if the mesh has
non-uniform density, then after smoothing the mesh will lose some features, such as sym-
metry (see the original paper for pictures describing the problem in more detail).

The authors extended the basic Laplacian operator by considering edge lengths, and not
only the valence of the vertices. The resulting formula is shown in Eq. 8.77

(EQ 8.77)

where

(EQ 8.78)
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8.4.4 The Curvature Flow Operator

Perhaps the most interesting extension presented in the paper is the new operator based on
the concept of curvature flow. The operator that was presented in Section 8.4.3 still has
one shortcoming: if the algorithm is applied to a flat triangular mesh, where all triangles
lie in a plane, the smoothing step will move the vertices in the plane. The mesh generated
is still flat, but the shape of the triangles has changed during the smoothing step.
The curvature flow operator is formulated in such a way as to avoid these changes in the
shape of the triangles. This is accomplished by moving the vertices only along the surface
normal  with speed proportional to the mean curvature , as shown in

(EQ 8.79)

The mean curvature  is defined as

(EQ 8.80)

The authors used the following definition of curvature normal to build the operator for
meshes with arbitrary connectivity:

(EQ 8.81)

where is the area of a small region surrounding , and is the derivative of with

respect to the coordinates of . If the area is assumed to be the union of the triangles

that surrounds , then Eq. 8.81 can be expanded into

(EQ 8.82)

where and represents the angles opposite to the edge , as shown in Figure 8.16.

Figure 8.16 Notation used in Eq. 8.82
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8.5  Evaluation

In this section the fairing operators presented in this section will be evaluated using the
criteria specified in Section 2.

• Modeling of two-manifolds with boundaries: The fairing operators presented in this
section only require a local parametrization on a very small neighborhood, so they can
be applied to any two-manifold mesh, and no subdivision connectivity is required. If
the two-manifold has boundaries, special operators need to be constructed to avoid
shrinkage.

• Computation of surface-surface intersections: The fairing operators described in this
section do not encode the topology of the surface they are applied on, instead they are
normally used to encode the geometric information. The goal of these operators is to
fair meshes and generate smooth approximations of non-smooth meshes. The represen-
tations constructed with these operators do not contain the information needed to com-
pute intersection curves, and it is therefore necessary to use an external data structure
such as a hierarchical bounding box to accelerate the computations.

Kobbelt’s and Guskov’s representations are based on progressive meshes, and therefore
they have the same problem the standard progressive meshes have: too many triangles
have to be tested to find the intersection. For more information refer to Section 7.5.

• Scalable representation: Taubin’s and Desbrun’s representations are not scalable, since
they do not construct a multiresolution representation of the surface. The fairing opera-
tors affect only the geometry of a surface, but not the connectivity.

• If the surface is stored in a compact data structure then this representation is also
compact, since it only modifies the geometry of the surface.

• The representation can only return a faired mesh, but it does not compute a coarse
approximation of the mesh.

• All the fairing algorithms have a linear complexity , where is the num-
ber of iterations used in the fairing step.

Kobbelt’s representations use a fairing operator in conjunction with a mesh simplifica-
tion algorithm such as progressive mesh. As a result the author is able to construct scal-
able multiresolution representations of surfaces that satisfy these properties:

• The representation is compact, since it is based on progressive mesh. Faired verti-
ces as well as the detail information stored by the progressive mesh representation
are stored in local frames to allow multiresolution editing of surfaces, and this rep-
resentation does not introduce an overhead.

• The representation is capable of building faired approximations of the mesh. In
order to do that Kobbelt first extracts an approximation from the progressive mesh
representation, and then he fairs it using the umbrella algorithm.

• The construction of the progressive mesh representation takes at least ,
and the reconstruction can be performed in linear time. The umbrella algorithm has
a linear complexity of , where represents the number of smoothing iter-
ations on the mesh.

O k n⋅( ) k

O n nlog⋅( )

O k n⋅( ) k
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However this approach is not well suited for an adaptive representation, since the fair-
ing process is not integrated into the progressive mesh representation, it is a post-pro-
cess applied to the mesh extracted from the progressive mesh.

Guskov’s representation also used a fairing operator in conjunction with a progressive
mesh representation, but he constructs a non-uniform subdivision that integrates the
smoothing in the progressive mesh.

• The representation Guskov describes in [46] is not compact: the topology is stored
compactly using the PM representation, but the geometry is not. Analyzing the
encoding step of the geometry, described by Eq. 8.65 through Eq. 8.68, shows
immediately that in order to store the geometry of a single vertex being removed,

details values must be stored, where represent the valence of the

vertex . In [18], Daubechies and Guskov describe how it would be possible to
construct a compact critically sampled representation, but no practical solution to
the problem is provided.

• The representation described in Section 8.3 is capable to construct approximations
of full resolution surfaces. This is accomplished constructing an operator that
inverts the representation that is constructed using the Burt-Adelson pyramid
described by Figure 8.14.

• The construction of the representation has a minimum complexity of ,
which is the time required to construct a PM representation. The encoding of the
geometry can be performed very efficiently and it does not increase the complexity
of the construction algorithm. An approximation can be extracted from the repre-
sentation in  time.

• Modeling of non-manifold singularities, tears and cracks: The Laplacian is not defined
at non-manifold singularities, and therefore the representations presented in this section
are not able to model them.

Taubin and Kobbelt assume the vertices on the star of a vertex can be parametrized reg-
ularly using Eq. 8.36. This parametrization assumes that the operator is applied over a
manifold surface.

Guskov’s representation does not require a regular parametrization, since the idea is to
use not only topological information, but also geometric information. Since the only
parametrization the author requires is very local and can be constructed in many ways,
such as using the hinge map, at first it seems that this representation might be powerful
enough to represent these singularities. This is not true however, since in the construc-
tion of the weights used in Eq. 8.60 the author assumes that an edge bounds at most
only two triangles.

Desbrun also assumes implicitly that his operators are applied on two-manifold
meshes, since he makes use of primitives such as the Laplacian and normal which are
not well defined at non-manifold singularities.

None of the three representations can represent curves in the surface with their data
structure. Since the surfaces are represented as piecewise linear meshes, it is possible to

1 V 1 j( )+ V 1 j( )

j

O n nlog⋅( )

O n( )
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construct a separate data structure that stores the embedding of the piecewise linear
curve in the mesh.

• Error modeling: None of the representations described in this section construct an error
model, since the goal is not to construct the most accurate approximations of a surface,
but to smooth piecewise linear meshes and eventually to construct a multiresolution
representation of meshes based on a smoothing operator.

An interesting error that could be analyzed further describes how well the different
operators described in Eq. 8.6, Eq. 8.37, and Eq. 8.53 approximate the Laplacian. Since
the Laplacian is not well defined in this setting the evaluation of the quality of the oper-
ators remains an outstanding problem.

• Smoothness of the surface: The four representations are by definition not smooth, since
they operate on a piecewise linear approximation of smooth surfaces. However the goal
of the operators is to minimize the discrete Laplacian by modifying the geometry of the
meshes, which means they are constructing the smooth approximation of a mesh using
the same number of vertices and the same connectivity. This corresponds to projecting
a piecewise linear mesh to the space of the meshes with lower frequency.

• Multiresolution editing: Taubin’s and Desbrun’s representations do not construct a mul-
tiresolution representation of surfaces, and they are therefore unable to edit the surface
at different levels of resolution.

Kobbelt constructs a representation based on a smoothing operator similar to the opera-
tor built by Taubin, but it uses it in a multiresolution representation based on progres-
sive mesh. The resulting representation allows to compute edit operations at any level
of resolution well. The quality of the edits is further enhanced by storing the geometric
information in local frames.

The representation based on the Burt-Adelson pyramid constructed by Guskov also
allows multiresolution edits, since it is based on the PM representation and encodes the
geometric information in local frames.

• Surface fitting: Non of the existing surface fitting algorithms construct any of the repre-
sentation described in this section automatically. Any fitting scheme that generates a
single resolution mesh can be used in Taubin’s and Desbrun’s representations to con-
struct the input mesh that will then be smoothed with their operators. The fitting strat-
egy developed by Hoppe in his thesis can be used to construct the basic PM
representation that will then be used by Kobbelt and Guskov in their representations.

• Support of local high variation in the curvature of the surface: All four representations
work on piecewise linear representation of meshes, and they are therefore capable to
model high curvature in the surface. The smoothing operators are then used to remove
these regions of high curvature. If curvature must be maintained in some specific region
of the mesh, then it is necessary not to apply the smoothers there.

• Changes of the surface over time: This family of representations can model changes in
the surface over time only if the changes do not affect the topological information too
much:

1. If the connectivity of the mesh does not change over time, then the geometric
changes over time can be modeled easily by defining a function at each ver-f t( )
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tex instead of a single value . At a time the value of the vertex would be

extracted from the function: .

2. If the connectivity changes over time, but the macro-topology remains the same,
then it would be possible to compute a remeshing of the surface at all times to

generate surfaces with the same connectivity. Once this has been done the solution
presented in 1. can be applied.

3. If the micro-topology of the mesh changes as well, then the only viable solution is
to keep different representations at each point in time .

The operators presented in this section could also be used to compute antialiasing in
time, thus generating smooth changes of the surfaces over time.

x y z, ,( ) ti

f ti( ) xi yi zi, ,( )=

ti

ti
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9 Representations Commonly Used in Geoscience

In this last section two of the most used representations in geoscience will be described:

• Discrete Smooth Interpolation: this algorithm allows to smoothly fit data through a dis-
crete set of vertices in a surface. The main advantage of this scheme is the ability to
apply a wide number of constraints during the fitting step. This allows to enforce geo-
logical constraints and therefore to generate meaningful representations.

• Quadtrees: this classic representation is used in different fields to represent data that
can be stored in regular grids. It is widely used for terrain visualization and it has been
used in geologic applications. Quadtree representations can often be defined as a wave-
let representation using either the Haar or lazy wavelet basis functions.

9.1  Discrete Smooth Interpolation

The goal of the Discrete Smooth Interpolation (DSI) algorithm, presented by J. Mallet in
[59] is to construct an approximation of the value of a function for all the vertices

in a mesh where is not defined. The algorithm presented in the paper works on
meshes built from polygonal faces. We will limit our description to triangular meshes.

The problem can be formulated as follow: the DSI algorithm will minimize the criterion
specified in Eq. 9.1

(EQ 9.1)

The first term in Eq. 9.1, , is a roughness criterion. This criterion is used to select one

of the infinite number of surfaces that satisfy the second criterion . The approxima-

tion of the function at all vertices where is unknown will then minimize this
criterion. The roughness is defined as

(EQ 9.2)

The term represents a non-negative weight associated with each vertex , and

, the local roughness criterion at the vertex , is defined as

(EQ 9.3)

The set represents the set of vertices on the -th star of the vertex , where is a

user-specified parameter. A vertex is in the -th star of if there is a path

between vertices and of length smaller or equal . The term represents a

weighing coefficient associated with the pair of vertices  and .
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The second term in Eq. 9.1, , describes a set of linear constraints that must be satis-
fied during the interpolation step. Linear constraints can be specified using a linear system
of equations such as

(EQ 9.4)

Since there might be more constraints than degrees of freedom, it is not always feasible to
satisfy all the constraints, and therefore the symbol was used in Eq. 9.4. Furthermore it

is possible to assign a weight , a positive scalar value, to each constraint that describes

its importance; as a result it is desirable to minimize

(EQ 9.5)

for each row  of the matrix  and vector .

The violation of the set of constraints described in Eq. 9.4, i.e. how much Eq. 9.5 differs
from zero for each constraint, is expressed by , as illustrated by

(EQ 9.6)

The term  describes the number of constraints applied to the vertices .

Now that Eq. 9.1 has been fully described it is necessary to solve for the function value
for all vertices where the function is not defined. In order to accomplish this it is

helpful to reformulate Eq. 9.1 as

(EQ 9.7)

The matrix  is defined as

(EQ 9.8)

The matrix  is derived from the expansion of Eq. 9.6
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(EQ 9.9)

and the second matrix, is derived from Eq. 9.2 and Eq. 9.3. Eq. 9.10 describes the

value of the entry  in

(EQ 9.10)

The matrix  is derived from Eq. 9.6 and it is defined as

(EQ 9.11)

The value of the constant  is also derived from Eq. 9.6 and it is defined as

(EQ 9.12)

The index associated with each vertex can be changed without affecting the mesh or the
DSI algorithm. For the sake of simplicity it is assumed here that the value of for the

vertices is unknown, whereas the value of for the vertices

is known. Using this assumption it is possible to decompose the vectors
and matrices defined in Eq. 9.7 as

(EQ 9.13)

(EQ 9.14)

(EQ 9.15)

The value of  is then computed by solving

(EQ 9.16)

which results in the linear system of equations described in Eq. 9.17
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(EQ 9.17)

If a unique solution to the DSI problem is needed, then some constraints must be applied
to the user-specified weights. The constraints have been formulated in

Theorem 5: If the mesh is consistent, i.e. there is a vertex i in every connected component
for which is known, and if the global roughness criterion satisfies

•

•

•

then the DSI equation based on  has a unique solution.

For a proof of this theorem please refer to the original paper [59].

The evaluation of the and matrices needed to evaluate the function at the set of

vertices is very expensive, with respect to both the computation and
the storage requirements. In order to avoid this problem the author constructed an iterative
method that converges to the solution. This is accomplished by observing that in order to
satisfy

(EQ 9.18)

 must satisfy the so-called DSI-equation

(EQ 9.19)

where

(EQ 9.20)

(EQ 9.21)

An iterative algorithm would then continuously update the value at the vertex posi-

tions  where the value of  is not known.
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If Theorem 5 is satisfied, then this iteration will converge to the unique solution of the sys-
tem of equations Eq. 9.17 independently of the choice of the initial value of the s. A
good choice of the initial values would however make the system converge faster.

A more detailed derivation of the iteration process is described in the original paper.

The theory presented in this section can also be extended to the case where more than one
function must be interpolated. If the functions are independent, then the algorithm
described in this section is adequate: every function is treated separately. If the functions
are dependent however, like in the case where three functions are used to code the geomet-
ric information of the vertices (one function per coordinates), then the DSI
algorithm must be extended. The extension is trivial and can be found in the original
paper.

Some application of the DSI algorithm to geometric modeling include:

• Given a mesh, the exact position of some of the vertices, the approximate position of
the remaining vertices and some vectorial constraints, the DSI algorithm will compute
the geometric position of the vertices such that the vectorial constraints are satisfied as
much as possible, and that the final position of the vertices is as close as possible to the
approximate position specified by the user.

• In an interactive environment, a user can be presented with a geological surface. The
user then interacts with the surface by changing the constraints and moving (editing)
the position of some vertices. The DSI algorithm then computes the new shape of the
mesh after the edits.

9.2  Restricted Quadtree Triangulation

Many approaches exists to construct a quadtree representation from a regular grid, most of
them are optimized depending on the particular application. The quadtree representation is
very compelling, since it is fairly simple, but powerful enough to represent large models.
In this survey we will discuss one representation constructed by R. Pajarola in [66]. This
particular paper has been chosen, because it describes a specific implementation of the
Restricted Quadtree Triangulation (RQT) that can handle very large datasets.

This section is organized as follow: in the first subsection the notion of a quadtree and of a
restricted quadtree will be introduced. Next, a practical algorithm to extract an approxima-
tion from the quadtree will be presented, as well as a simple algorithm to construct an
approximation of the error. An elegant and fast triangulation strategy will be discussed
briefly.

f i( )

x y and z, ,
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9.2.1 Restricted Quadtree Triangulation (RQT)

As already mentioned, there are multiple ways to construct a quadtree, for example using
the wavelet theory and the Haar or Lazy wavelet basis functions. The hierarchy used in
[66] is different: a few levels of the quadtree representation are shown in Figure 9.1.

Figure 9.1 Quadtree hierarchy
a) Full-resolution grid
b) Level 0 of the quadtree (root node)
c) Level 1 of the quadtree
d) Level 2 of the quadtree (leaf nodes)

From now on, the term described the set of vertices defined at level in the quadtree,

and the term describes the vertices at level that lie in the center of a quadtree node.

The black dots in Figure 9.1 c) and d) are examples of such vertices

A triangulation of the quadtree hierarchy presented in Figure 9.1 is computed by first
selecting some vertices from the quadtree, usually the most important ones according to an
error criterion, and then the vertices are triangulated according to some rules.
For a quadtree triangulation to be restricted the levels of adjacent quadtree nodes must dif-
fer at most by one in the quadtree hierarchy. Using restricted triangulations is very useful,
since it is possible to construct non-cracked triangulation using simple rules. In his paper
Pajarola describes the restriction of the quadtree triangulation in terms of dependencies.
Each vertex i in the grid depends on a set of vertices. These dependencies can be
expressed in a dependency graph. If a vertex i is selected for the triangulation, then the tri-
angulation is restricted if and only if the set of vertices associated with i in the dependency
graph is also present in the triangulation. Figure 9.2 illustrates the dependency graph for
the first two levels of the quadtree:

Figure 9.2 Dependency graph for the first two levels of the quadtree
a) Dependency of the center vertex of level 2
b) Dependency of the remaining vertices of level 2
c) Dependency of the center vertices of level n
d) Dependency of the remaining vertices of level n

a) d)c)b)

Ll l

Ll
c l

a) b) c) d)
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If any of the vertices drawn in grey in Figure 9.2 is used in the triangulation, then the
arrows indicate which vertices must be included as well in order to have a restricted
quadtree triangulation. The dependency graph must then be followed recursively in order
to guarantee that all the dependencies have been considered. Figure 9.3 shows a simple
example where a set of vertices are selected for the triangulation in a), the dependency
graph is applied to these vertices in b), and finally the new set of vertices is triangulated in
c).

Figure 9.3 Restricted quadtree triangulation using the dependency graph

The author proposed two algorithms that resolve all the dependencies and construct a
RQT in linear time:

1. Using a top-down approach, the first algorithm starts from the root node and visits each
node in depth-first order. If the error associated with a vertex i is larger than a user-
defined threshold, the vertex i is selected. In order to satisfy the restriction criterion the
algorithm must resolve all the dependencies associated with vertex i. Since the depen-
dencies must be resolved it is possible that a vertex is visited more than once, but the
author has proved that the algorithm is still linear.

2. Using a bottom-up approach, the second algorithm starts from the leaf nodes. If the
error associated with a vertex i is high enough, the vertex i is selected. The algorithm
then marks the vertices in the dependent list associated with i, collects them. If the
algorithm visit the vertices in the correct order from the vertices with the most depen-
dencies to the vertex with the least dependencies (the central vertex), then every vertex
is checked exactly once.

9.2.2 Error Computation

In the algorithms described in the previous section a vertex is selected for a triangulation if
its associated error was larger than a user-defined threshold. It is therefore necessary to
compute an error value per vertex. The author defined the error norm for a vertex i at level
l as follows:

(EQ 9.22)

The set  contains all the vertices in the quadtree that depends on the vertex

(EQ 9.23)
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The term describes the best triangulation that does not include , which is defined as

(EQ 9.24)

if the vertex i is the center vertex in a node at level l, otherwise as

(EQ 9.25)

The set contains all the triangles that are affected by the selection of the vertex i in
the triangulation. More precisely it is defined as

(EQ 9.26)

The function  computes the parameter domain of the vertex  and of the triangle .

Finally the function measures the distance between the vertex and the triangle .
Since the data is considered to be an height field, the vertical distance is measured.

In simpler words, Eq. 9.22 measures the error introduced by the removal of the vertex .

In order to measure the correct error, not only the vertical distance between and the tri-
angulation is computed, but also the vertical distance between all the points that depends
on and the triangulation. This is necessary, since if is not present, then all the points

that depends on cannot be present. The drawback of this implementation is that the com-

plexity of the algorithm is larger than .

9.2.3 Fast Triangulation

One interesting enhancement of the representation presented by Pajarola is that the author
is able to construct triangle strips very easily. Once vertices are selected and a restricted
triangulation is built, it is possible to circle counterclockwise through the mesh and visit
all the triangles exactly once. The two masks used to describe the path through the mesh
are shown in Figure 9.4.

Figure 9.4 Masks a) and b) allow to construct a path through the RQT
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Figure 9.5 illustrates how the use of these two masks allows to compute a strip for the
example given in Figure 9.3.

Figure 9.5 Generation of the triangle strip
a) Mask a has been used
b) Mask b has been used

The algorithm is very fast: the strip can be computed in linear time. The triangulation
algorithm discussed in this section can only be applied on grids of size

. If this is not the case, then it is necessary to build other masks to han-
dle special cases that can occur at the boundary.

9.2.4 Other Properties of the Representation

The author described other properties of the RQT representation he developed. By order-
ing the vertices cleverly it is possible, for example, to construct a progressive mesh
sequence with continuous level of details

(EQ 9.27)

If the first vertices from this sequence are used, then the result is a RQT, and furthermore

this is the best representation with vertices in the sense of the error norm presented in
Section 9.2.2.

Since the quadtree segments the data spatially, it is possible to construct view dependent
continuous level of details, simply by assigning different error thresholds to different
patches of the surface, usually quadtree nodes. Since the algorithm still generates a RQT,
there are no discontinuities between patches with different thresholds.

9.3  Evaluation

In this section the DSI algorithm and the RQT implementation of Pajarola will be evalu-
ated using the criteria specified in Section 2.
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• Modeling of two-manifolds with boundaries: The DSI algorithm can be applied to two-
manifold surfaces, the algorithm does not make assumptions on the type or connectivity
of the meshes it is handling.

The RQT representation can only handle grids, and therefore it cannot model arbitrary
two-manifold surfaces. However it is possible to extend the basic RQT algorithm to
handle grids with irregular boundaries and holes.

• Computation of surface-surface intersections: Both representations do not have the
information required to compute the intersections between surfaces. A hierarchical
bounding box data structure could be used to accelerate the computations. Since the
RQT is implemented as a quadtree, it would be possible to include the bounding boxes
directly in the representation.

• Scalable representation: The RQT representation is scalable, since it constructs a mul-
tiresolution hierarchy on top of the full resolution surface. The representation satisfies
these properties:

• The representation is compact, since the overhead introduced by the quadtree is in
the worst case linear.

• The construction of the quadtree proposed by Pajarola is not very efficient, since
the computation of the error has a complexity larger than . However it
would be possible to use simpler error models in order to reduce the time needed to
construct the quadtree.

• An error bounded approximation of the full resolution surface can be constructed
in linear time, since the algorithms presented in Section 9.2.1 to resolve the depen-
dencies and the stripping algorithm described in Section 9.2.3 have a linear com-
plexity.

The DSI algorithm is not used to construct a multiresolution representation of a surface,
and therefore it is not scalable. The DSI is not to be interpreted as a stand alone repre-
sentation, but as a tool to use in conjunction with other representations. The algorithm
is fast and can deform a mesh to satisfy a set of constraints in , where is the

number of vertices in the mesh, and is the number of iterations needed to converge to
the solution.

• Modeling of non-manifold singularities, tears and cracks: The RQT representation can-
not model general non-manifold surfaces, since its connectivity is constrained to regu-
lar grids.

The DSI could be used to enforce linear constraints on a non-manifold model, since the
algorithm does not make any assumption on the mesh it is working on, and since no
parametrization is needed.

Curves could be embedded in the full resolution meshes stored in the two representa-
tions using a separate data structure.

• Error modeling: The error norm Pajarola used for his representation is very similar to
the norms used by the mesh-based methods discussed in Section 7. The representation
can construct a representation that satisfies an error threshold specified by the user, but
more vertices than necessary would be used.

O n nlog⋅( )

O n k⋅( ) n

k
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The DSI algorithm does not construct approximations of the mesh. The algorithm will
construct meshes that satisfy a set of user-defined constraints. If there are more con-
straints than degrees of freedom, then the DSI is going to construct a solution that min-
imizes the two-norm of the residual.

• Smoothness of the surface: The RQT works on the piecewise linear representation of
surfaces, and therefore it is not capable to represent or handle smooth surfaces.

The DSI works on polygonal meshes (usually a triangle mesh), but it is possible to
impose higher order constraints, thus generating “smooth” piecewise linear surfaces.
This is similar to the signal processing papers, which smooth piecewise linear meshes.

• Multiresolution editing: The RQT constructs a multiresolution representation on top of
surfaces, but since the author did not use local frames and smoothing operators to store
the vertices, it is not possible to edit the surface at different levels of resolution effec-
tively.

The DSI algorithm does not build a multiresolution representation, so multiresolution
editing is not supported.

• Surface fitting: The DSI algorithm is often used in geoscience to fit surfaces, for which
the geometric information is not fully known. However the algorithm does not con-
struct the connectivity of the surface: this information must be provided to the algo-
rithm.

The RQT representation does not fit grids through a cloud of points. It would be possi-
ble however to run a fitting algorithm that generates a grid as a pre-computation, feeds
the grid to RQT, which will generate the multiresolution representation.

• Support of local high variation in the curvature of the surface: Both representations
work on piecewise linear surfaces, so they can handle local high variation in the curva-
ture.

• Changes of the surface over time: Since the RQT representation works with regular
grids, the microtopology of the grid is not allowed to change over time. Consequently
the representation can handle changes over time well by specifying a function at

each vertex position that returns the geometric position for time .

Changes in the resolution of the grids can be modeled easily as well.

The DSI is not a representation, so if the surface changes over time, the DSI algorithm
will probably be applied at all times independently. If the functions defined at the

vertices at different time steps are not independent, then the extension to the DSI dis-
cussed in the original paper is capable to handle the dependencies if and only if the
topology remains the same.

f t( )
f ti( ) xi yi zi, ,( )= ti

ti
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10 Conclusions

In Section 4 through Section 8 we analyzed many different representations, and we evalu-
ated them using the requirements described in Section 2. From the evaluation it is clear
that none of the representation satisfies all the requirements.

Comparing the different representations and their properties we conclude that:

• Wavelets represent a very powerful tool for surface representation. The most important
properties of wavelets are summarized below:

+ modeling of the error - Topology limited to regular grids
+ scalable representation - Smoothness set by the basis function
+ surface intersection - Global parametrization required
+ compact representation
+ multiresolution edit
+ changes of the surface over time

Due to the rigorous formulation of the wavelet framework many requirements can be
met with simple and elegant solutions. However, the rigorousness of this framework
limits the topology of the surfaces to simple height fields represented over regular grids,
and it requires a global parametrization of the surface.

• The H-Spline is a very simple and elegant framework that constructs a multiresolution
representation of B-Spline surfaces. Advantages and disadvantages of H-Spline are
summarized in the following list:

+ scalable representation - Smoothness set by the basis function
+ multiresolution edit - Cannot model non-manifold
+ surface intersection - Global parametrization required
+ some control over the error
+ scalable representation
+ changes of the surface over time

Since the H-Spline representation is a predecessor of the B-Spline wavelets it shares
most of the advantages of the wavelets, but it is not always easy to make use of these
advantages. For example it is possible to construct tools that measure error for some
error norms, but it is not as rigorous as for the wavelets. The H-Spline representation is
scalable, but some control points are usually redundant.

H-Splines allow to construct surfaces that are more complex than regular grids, and in
this respect they are more general than wavelets.

• Subdivision schemes construct smooth surfaces in the limit from piecewise linear
meshes with arbitrary connectivity. The advantages and disadvantages of this represen-
tations are listed below:

+ modeling of two-manifolds - subdivision connectivity
+ some control over the error - surface intersection
+ scalable representation (SWT) - changes of the surface over time
+ multiresolution edit (SWT)



ETH Zürich, CS Technical Report #335, Institute of Scientific Computing, February 28, 2000

136

+ modeling of smooth and non-smooth surfaces
+ only a local parametrization is required

Subdivision schemes can model two-manifold surfaces with boundary, but they are lim-
ited in the connectivity of the mesh, since they generate meshes with subdivision con-
nectivity. Subdivision schemes can model non-smooth regions of the surface well using
special operators.

Surface-surface intersections can be computed only using bounding box algorithms,
special algebraic methods for subdivision surfaces need to be constructed.

• Mesh based methods identify surfaces with the piecewise linear meshes. Advantages
and disadvantages of this approach are investigated in the following list:

+ modeling of two-manifolds - error modeling
+ scalable representation - don’t model smooth surfaces
+ modeling of non-smooth surfaces - multiresolution edit
+ no parametrization needed - changes of the surface over time

- surface intersection

Mesh based methods are very flexible and can build scalable multiresolution represen-
tations of two-manifolds and usually non-manifold surfaces. They work with piecewise
linear surfaces, so non-smooth regions can be modeled well.

The drawback of these algorithms is that they lack most of the mathematical back-
ground of the other approaches. As a result error modeling is much less rigorous, and
heuristics are used to model the error; since the representations work with piecewise
linear functions smooth surfaces cannot be modeled, and multiresolution editing tools
do not generate intuitive edits.

• Representations based on signal processing tools construct special operators that mini-
mize the curvature of a mesh. The main features of these representations are described
in the following list:

+ modeling of two-manifolds - surface intersection
+ scalable representation - error modeling
+ multiresolution edit - changes of the surface over time
+ modeling of smooth and non-smooth surfaces
+ only a local parametrization is required

The fairing operator allows to smooth meshes with arbitrary connectivity. As a result,
smooth surfaces can be modeled, and multiresolution editing tools perform well. Note

that no  continuity can be guaranteed by these representations.

From the summary of the representations outlined above the following conclusions can be
drawn:

1. The strong mathematical background of the wavelet representations allow to model
error and to construct compact multiresolution representations for surfaces. Further-

more, since surfaces are represented as functions in it is possible to represent
smooth surfaces and to build multiresolution editing tools.

Cn

R2
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2. Mesh based methods are more flexible: every representation presented in this report can
model at least two-manifolds, and most of them can model non-manifolds as well.
These representations are usually also scalable, but they store redundant information.

3. The signal processing representations lie in between the rigorous mathematical
approach of wavelets and the flexible approach of mesh based methods. These repre-
sentations work on meshes with arbitrary microtopology, and use discrete operators
generated from well-understood signal processing theory to fair surfaces.

Based on this conclusions we describe some possible directions for future works:

1. Methods based on signal processing are very interesting, since they unify some of the
properties of wavelet-like approaches and mesh-based approaches.
It would be interesting to continue in a similar direction and try to build wavelet-like
operators, for which part of the classic wavelet theory could be extended easily. As an
example it would be very interesting to construct operators that work on meshes with
arbitrary connectivity for which a solid error analysis could be built.

2. Another interesting extension of the current representations is the ability to model non-
manifold surfaces. A particularly interesting extension in this direction could be the
modeling of multiresolution representations of intersection curves, as well as any other
curve embedded in a surface.

3. One other possible direction for research is to extend some of the ideas presented in this
paper, particularly the signal processing operators, to three dimensions.
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