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ABSTRACT
In this paper, we present a new hierarchical clustering and visual-
ization algorithm called H-BLOB, which groups and visualizes
cluster hierarchies at multiple levels-of-detail. Our method is fun-
damentally different to conventional clustering algorithms, such
as C-means, K-means, or linkage methods that are primarily
designed to partition a collection of objects into subsets sharing
similar attributes. These approaches usually lack an efficient
level-of-detail strategy that breaks down the visual complexity of
very large datasets for visualization. In contrast, our method com-
bines grouping and visualization in a two stage process construct-
ing a hierarchical setting. In the first stage a cluster tree is
computed making use of an edge contraction operator. Exploiting
the inherent hierarchical structure of this tree, a second stage
visualizes the clusters by computing a hierarchy of implicit sur-
faces. We believe that H-BLOB is especially suited for the visual-
ization of very large datasets and for visual decision making in
information visualization. The versatility of the algorithm is dem-
onstrated using examples from visual data mining.

keywords: clustering, categorization, partitioning, informa-
tion visualization, non-linear dimensionality reduction, physics-
based graph layout, cluster visualization, multidimensional infor-
mation visualization.

1 INTRODUCTION
The term clustering refers to the process of grouping similar
objects, where similarity is captured by a metric function [28],
[29].

Clustering methods have been a hot topic in different research
fields such as: statistics, pattern recognition, machine learning,
etc. Because of the constantly increasing size of datasets over the
last years, clustering also has advanced to a key technology in the
area of information visualization and data mining. In fact, with
the use of today’s technology for data generation and collection,
typical datasets have grown by magnitudes. Since the human cog-
nitive system is limited to recognize only a very small number of
objects at once (around 7 objects) as well as due to performance
restrictions of today’s graphics hardware we are forced to the use
an efficient level-of-detail strategy. Consequently, literature
describes various interesting data clustering approaches including
their efficient and refined implementations [8], [9], [13], [17],
[18], [19].

Because our main interest lies in visualizing clusters, we
focus on the problem of clustering large data sets in coordinate
space [12], also referred to as the Euclidian space, in which data
objects can be represented as vectors . Unlike data sets in
a distance space [12], also referred to as the data domain or the
arbitrary metric space, the vector representation gives access to
various efficiently implemented vector operations (e.g. addition,
multiplication, dot-product, etc.), which enables one to calculate
simplified representations of complex data subregions at interac-
tive rates. Similar operations are not defined in distance space.

The only possible operation is the computation of a distance func-
tion between two data objects, thus rendering the problem of
clustering much more complex.

Since many problems in information visualization are located
in distance space, and thus non-accessible for our methods, a pro-
jection from distance space into coordinate space has to be
defined. Such a projection operator maps each data object from
distance space to an -dimensional vector in coordinate space
while preserving relative distances between objects. Thereafter,
vector-based clustering methods may be applied and their results
can be visualized in 2D or 3D space.

This approach entails an additional advantage. Once the pro-
jection operator has been applied, the objects have become data-
independent, i.e. the clustering algorithm operating on those
objects is highly reusable for a large variety of data clustering
tasks.

There exist several techniques for topology-preserving trans-
formations [24]. One of them is called multidimensional scaling
(MDS) [27]. Other widely spread methods are employing with
neural networks, namely with topology-preserving Kohonen net-
works [25], [26], which belong to the group of self-organizing
features maps (SOM). As a third technique spring-embedding
systems (SES) perform the desired transformation by running a
physics-based simulation process [22], [23].

Our clustering research activities take place in the context of
the IVORY project, where we develop a JAVA-based framework
for physics-based visualization and analysis of multidimensional
data relations [5], [6]. The system is based on quantifying the
similarity of related objects, which governs the parameters of a
spring-embedding system. Since the spring stiffnesses correspond
to the computed similarity measures, the system will converge
into an energy minimum, which reveals multidimensional rela-
tions and adjacencies in terms of spatial neighborhood. In our
research work, IVORY serves as a versatile information visual-
ization environment to explore visual metaphors and advanced
interaction paradigms.

In order to simplify the geometry and topology of complex
object setups, IVORY already provides a set of clustering algo-
rithms for postprocessing. In contrast to many other cluster-based
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Figure 1: Clustering of a subset of objects performed with BLOBS. a)
Initial object layout b) Clustered configuration with enclosing
BLOB surface.
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systems, IVORY not only calculates clustered object layouts
including corresponding one-level partitions (as a group of clut-
tered single objects) but also computes an enfolding surface
(ellipsoids, BLOBS (implicit surfaces), etc.) for each cluster [5],
[6]. Aiming at a reduction of complexity, such a surface can
replace a large group of single objects in a higher level of repre-
sentation. Without losing significant visual information, the scene
can drastically diminish in complexity. At the same time, the
visual distinctness increases.

In this paper we introduce the concept of H-BLOB clustering.
Our new technique discovers and visualizes clusters by a two-
stage procedure. During the first stage, an agglomerative hierar-
chical algorithm computes a cluster tree, partitioning data objects
into a nested sequence of subsets. This is what we call the analyt-
ical clustering step. In a second stage, the intrinsic visualization
takes place. We compute a single enclosing shape for each cluster
which approximates the outline of the included data objects as
closely as possible. For the visualization we propose a new tech-
nique called H-BLOBS, which is a direct improvement to the
BLOB clustering algorithm presented in [5].

The remainder of the paper is organized as follows. In
Section 2, we discuss related work on clustering and some of our
initial approaches. In Section 3, we present the technique we use
for fast analytical clustering and introduce the H-BLOB algo-
rithm dedicated to visualize cluster hierarchies using implicit sur-
faces. The paper closes with Section 4 describing the
implementation issues and its versatility on the basis of a real
world example.

2 RELATED WORK AND FUNDAMEN-
TAL APPROACHES

Clustering algorithms can be roughly divided into two categories:
partitioning and hierarchical methods. In the following two sub-
sections we present a variety of widely used partitioning, respec-
tively hierarchical clustering algorithms, followed by a
description of different advanced cluster visualization techniques.

The following list is far from being complete, but it should
point out the main clustering techniques, most of today’s cluster-
ing algorithm are base upon. Mainly, this section conduces to set
our work into context and better understand our approach.

2.1 Partitioning Methods
Partitioning cluster methods (PCM) attempt to analytically subdi-
vide a set of data objects into a certain number of clusters, where-
upon they assume that clusters are of hyper-ellipsoidal shape and
of similar size. Like other centroid-based techniques they gener-
ally fail, if clusters differ significantly in shape or size. We will
have a closer look at two representative algorithms and their qual-
ities.

C-Means
The basic idea of the C-means method is to join an object obji to a
cluster clustj if the distance between the position xi of the data
object obji and the center cj of the cluster clustj is less than a
threshold value :

(1)

The center position cj of cluster clustj is defined by the arithmetic
average of the positions of all data objects xi enclosed by cluster
clustj

(2)

where N designates the number of data objects within the current
cluster.

The C-means algorithm iterates over all data objects obji and
verifies for each object obji if there exists a cluster clustj the cen-
ter cj of which is closer to xi than . If there are such clusters the
object will be added to the cluster that is closest to the object.
Otherwise a new cluster is generated with the object xi as its only
member. After assigning the object to the cluster’s center position
will be updated, i.e. the center will shift.

A major disadvantage of the C-means method is the user
defined selection of the cluster threshold value . Eventually, the
determination of a proper value for could be very difficult.
With too large a value clusters will contain objects which do not
correspond. On the other hand, too small a value will result in
clusters each holding only one single object. Another drawback is
the sensitivity of the algorithm to the order of traversal of given
objects. In particular, the choice of the starting object has a great
influence on the resulting cluster distribution.

The cost of the C-means algorithm is of order O(n2) being
defined by the worst case scenario, with each object located in its
own cluster. But due to the very simple operations the C-means
method relies on, it is very fast in general.

K-Means

K-means belongs to the class of iterative clustering techniques.
Choosing the K-means method we have to preselect the number k
of clusters, the algorithm would generate.

First k initial cluster centers are defined. An object obji is
assigned to the cluster clustj when its center cj is closest to the
object position xi. In such a way, all objects are associated to
exactly one cluster. At the beginning of the next iteration, the
cluster centers cj of all k clusters are updated to the arithmetical
average of all positions xi of associated objects. Thereafter,
another assignment round starts using the recently computed
cluster centers. The iteration loop stops if all cluster centers have
converged into a stable position.

The K-means method poses a problem concerning the selec-
tion of the initial positioning of the k Clusters. A unlucky choice
could have great influence on the resulting object clustering.

K-means’ iterative behavior and the apriori unknown number
of iterations makes the cost estimation more difficult than for the
C-means algorithm. In each step, the algorithm calculates the dis-
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Figure 2: a) Partitioning using C-means method with threshold , where
the assignment of object x is undetermined. Object y, on the oth-
er hand, could not be assigned to any existing cluster. There-
fore, it generates a new one. b) Completely clustered scene.

Figure 3: The same scene as in fig. 2 clustered with the K-means
algorithm a) The iteration steps for the 3 cluster centroids. b)
Resulting clustered layout.
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tances between all n object and the k cluster centers, i.e. calcu-
lates nk distances. Since k is constant, the costs are of order O(n)
per iteration step.

2.2 Hierarchical Methods
Hierarchical clustering methods (HCM) are commonly used in
the area of information visualization and data mining. In contrast
to partitional clustering methods, that subdivide a set of objects
into a certain number of clusters, hierarchical clustering generates
a nested sequence of partitions. We call this a cluster tree (as
shown in fig. 4).

An agglomerative hierarchical clustering algorithm starts with n
atomic clusters, each containing exactly one object. At each step,
the algorithm merges the two most similar1 clusters and thus
decreases the total number of clusters by one. These steps recur
until only one single cluster, containing all objects, remains. Any
two clusters generated by such a procedure are either nested or
disjoint. In contrast, divisive hierarchical clustering reverses the
process by starting with a single cluster holding all objects and
subdividing it into smaller sets [8].

Many variants of agglomerative hierarchical clustering meth-
ods are known, mainly differing in the definition of the metric
applied in updating the similarity between existing and merged
clusters.

Along with the incremental algorithms mentioned above,
there is a group of non-incremental clustering methods (e.g.
CLUSTER/S [20]). The discussion of those algorithms is beyond
the scope of this paper, and their methods are not considered in
the following.

In the remainer of the section we shall discuss two different
hierarchical clustering methods: the single linkage method and
the complete linkage method. For an in-depth description we refer
to [7].

Single Linkage Method
Another straightforward and quick clustering technique is called
single linkage method (SLM) or nearest neighbor technique. For
this algorithm we define the distance between two clusters as the
minimal spacing between two arbitrary objects, each located in
two different clusters. Assume that dij is the distance between
object obji from cluster clusti and object objj from cluster clustj.
Then, the distance Dij between clusters clusti and clustj is defined
as

. (3)

That means we measure distances between two clusters as the
distance of the closest pair of objects each belonging to a differ-
ent cluster. The SLM synthesizes clusters analogous to the gen-
eral description found at the beginning of this section.

A problem of SLM is the algorithm’s tendence to generously
accept object chains as clusters. Assume we have an object con-
figuration like the one shown in fig. 5. The SLM would string
objects between A and B to a chain. Thus, objects A and B will
be assigned to the same cluster. SLM generates three clusters
(drawn with a solid line). Building only two clusters (shown with
a dotted line) would be a superior solution.

Unlike centroid-based algorithms, this method could discover
clusters of arbitrary shape and different size. Unfortunately, the
procedure is highly susceptible to noise and outliners.

To build up the cluster tree, the single linkage method has to
compute the pairwise distance between every two objects, i.e.
supposed we have n objects, we have to perform
distance evaluations per iteration, which dearly is of order
over all n iteration steps.

Complete Linkage Method

Another clustering method, the complete linkage method (CLM),
takes into account the chain formation and defines the distance
between two clusters Dij as the maximal distance between two of
their objects

(4)

Supposed we run the CLM on an object topology that already
contains two shorter cluster chains, the distance between the two
clusters is now defined by the two furthest away objects not
located in the same cluster. This is equal to the distance of the
outermost object on the one side of a chain and the outermost
object on the other side of the other chain. Thus, chain formation
is suppressed.

As mentioned at the beginning of this section, there are many
other well known clustering algorithms, i.e. BIRCH [17], which
is basically an extension of the K-means clustering, but ade-
quately addresses the problem of large datasets. CURE [18] rem-
edies the drawback of single centroid representation by taking
advantage of a multi-centroid representation of clusters. Hence
this algorithm is more robust to outliners and identifies clusters
varying in size and having non-spherical shapes. A recent
approach is called CHAMELEON [19], a hierarchical clustering
algorithm that measures inter-cluster similarity based on a
dynamic model. In addition to other algorithms, CHAMELEON
clustering is based not only on vicinity of objects but also consid-
ers corresponding connectivity information. This combination
results in a robust handling of data that consists of clusters being
of different shape, size or density.

2.3 Cluster Visualization Methods

There is quite large a number of algorithms and systems treating
the subject of cluster visualization. Practically all of them take the
problem of cluster visualization simply as a layout problem, thus
focusing on optimizing the computation and spatial grouping of
crowds of single data objects. The visualization then is limited to
drawing just a simple shape (dot, icon, glyph, etc.) for each data

Figure 4: a) Probable object arrangement with 8 objects. b) Correspond-
ing cluster tree with 4 levels generated by an agglomerative, hi-
erarchical clustering algorithm

1In the current context similarity of two objects is defined by
the inverse of their distance. Thus the algorithm merges the two
closest clusters in each step.
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Figure 5: Generation of chains applying the single linkage method
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object (shown in fig. 6a). Thus, the actual visual clustering pro-
cess is rather done by the user’s perceptual system than by the
visualization system itself.

There are two reasons to go a step further: first today’s graph-
ics hardware, though current progress in this area is tremendous,
is not yet ready for the data volumes we would like to address
with present data management systems (i.e. data warehouses).
Second, the user’s perceptual system should be relieved of gather-
ing single points to a cluster object. In order to speed up the deci-
sion making process and to increase the decision’s quality, cluster
visualization has to take the step to the next higher level of visual
representation.

Only a few approaches make an effort in this direction. Some
of the systems attempt to break down complexity by running a
preclustering algorithm on the initial dataset. Afterwards the sys-
tem confines itself to displaying only objects on a chosen cluster-
ing level, where clusters are represented by a simple shape at the
position of their centroids. Doing so, we lose most of the informa-
tion contained in a cluster. Only the cluster’s position is visible to
the user. Information about the internal object distribution,
including size, orientation and variation is visually not available
to the user.

Initial work about a more powerful visualization method is
reported in [30], where wrapping hyperspheres accomplish the
clustering of data objects. Furthermore, some of the authors of
this paper proposed a PCA-based technique in [4] where the basic
idea was to wrap ellipsoids around each object group whose
shape is controlled by the principal components of the respective
cluster (shown in fig. 6b). In either approach restriction to a quad-
ric surface representation of the clustering hull represents an
unnecessary restriction. The internal object distribution is only
rough an approximation, as well in size as in orientation. This
drawback gets addressed by an algorithm called BLOB-clustering
[4], the fundamental idea of which is to use blob functions com-
bined with a marching cube [3] algorithm to represent the enfold-
ing cluster surface (see fig. 6c). The generated shape represents
the distribution of the included data objects in the best possible
manner.

However, all of the cluster visualization methods mentioned
above are limited to work only based on partitioning clustering
algorithms. Non of them takes advantage of the hierarchical
information cluster structures inherently contain. Therefore, we
propose a new simple and fast clustering technique that has its
strength in the visualization of hierarchical clustering structures,
say cluster trees.

3 H-BLOB: HIERARCHICAL CLUSTER
VISUALIZATION USING ISOSUR-
FACES

The H-BLOB (Hierarchical BLOB) algorithm is considered to be
a direct derivative of the BLOB clustering method, extended by
the capability to handle hierarchical settings. In fact, it is a combi-
nation of techniques and algorithms described in preceding sec-
tions, each one applied on a preferable subtask corresponding to
their strengths.

The algorithm can be split into two stages, starting with an
analytical clustering process building up a cluster tree, which is
followed by the hierarchical cluster surface computation in com-
bination with the visualization process.

3.1 Stage I: Edge Collapse Clustering

Inspired by the persuasive idea of the edge collapsing algorithm
presented in [2], we propose a new simple and efficient clustering
method, called edge collapse clustering (ECC).

The algorithm we present, belongs to the category of agglomera-
tive hierarchical clustering methods. Thus, the general structure
is very similar to the methods presented in Section 2.2.

In contrast to the linkage methods the ECC bases on centro-
ids; hence, it only works in coordinate space. We define the dis-
tance Dij between two clusters clusti and clustj as the distance
between their centroids ci and cj

. (5)

The process of cluster merging works analogous to the pro-
cess shown in Section 2.2, but with the following extension:

All clusters clusti obtain a weight wi corresponding to the
number of objects contained in clusti. The weight wi is initialized
with a value of one. With each iteration, the algorithm merges the
two closest clusters, i.e. the pair of clusters with minimal distance
Dij, into a new one, called clustnew with centroid cnew. At the
same time, the parameters of the new cluster are updated corre-
sponding to the formulas below:

(6)

(7)

If the two clusters are of different weight, the new cluster will
be located closer to the heavier, i.e. larger cluster, which is desir-
able in praxis.

b)a) c)

Figure 6: Different techniques to visualize clusters of data objects. a) cluster represented by a cluttered group of single objects b) visualization with ellip-
soidal surfaces wrapped around clusters c) objects visually combined by a BLOB surface.
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Fig. 7 illustrates the algorithm by means of an example with 5
objects spread on a plane. Each iteration step is shown on a sepa-
rate line, with the actual object arrangement in the left half and
the current cluster tree on the opposite side. Starting with 5 single
objects, the ECC algorithm merges them into a single cluster after
the same number of iteration steps. The red line, highlights the
edge to be collapsed next.

Since each cluster is defined by its centroid only and as the
distance metric depends only on the centroid’s coordinates, every
two clusters are virtually interconnected with exactly one edge of
length Dij. Consequently, ECC takes advantage of the inherent
hierarchical structure of a cluster tree. The computational com-
plexity for each iteration step is defined by the corresponding
number of clusters. This is an advantage compared to the linkage
algorithms, which always operate on the initial set of all single
objects. Hence, the ECC algorithm is computational less complex
than linkage methods.

The disadvantages concerning the fragile user-driven parame-
ter preselection of the C- and K-means methods do not apply for
ECC. Although this technique is partly based on centroids, it is
more stable with respect to unconstrained shapes and different
cluster sizes than C- and K-means. The effect of chain formation
does not occur for ECC.

Unfortunately, the ECC is still in the same polynomial order
as the linkage techniques. It also preforms n iterations steps and

computes in each of the steps distances. Since ECC
computes distances based on centroids we get a triangular cost
scheme over all iterations, which results in an complexity of order

 regarding the number of computed distances.

3.2 Stage II: Cluster Tree Visualization

The cluster tree generated as a result of the first stage must now
be visualized, Each hierarchy level should be handled separately,
i.e. we compute a separate surrounding surface for each cluster at
a specific hierarchy level.

As a basic idea we devote resources to the BLOB algorithm
described in [5]. The fundamental idea of BLOB clustering is to
give each object a spatial extension by attaching a spherical prim-
itive to its center. In general a primitive is a working model com-
prising a parameterized oriented shape and a corresponding 3D
field function . Primitives and their parameterization
will be explained in more detail in the next section.

To compute a BLOB surface, we superimpose all field func-
tions in space and accordingly run a marching cube
algorithm [3] to extract the implicit surface at a given isovalue.
The subsequent sections explain how we extend this algorithm in
order to handle hierarchical cluster structures efficiently.

Visualization using BLOBS

As a straightforward approach to visualize a single cluster on
a given cluster level, we could assume a scenario where a primi-
tive is attached to each of the cluster’s objects. Supposed we
choose a skillful parameterization of those primitives, we could
accomplish an isosurface, that fully encloses all objects and the
visualization problem would be superficially solved.

Even if this approach results in fair visual results, it has a tre-
mendous handicap. For very large clusters holding a huge number
of single objects the computational cost rises exponentially. That
effect occurs because in order to perform an isosurface extraction
we have to evaluate the superimposed field at given points in
space which involves the evaluation of the field equation for every
single primitive. The problem could be eased if we find a way to
limit the number of primitives during visualization.

We consider the cluster tree shown in fig. 8, subdivided into 3
hierarchical levels. The topmost cluster on level I contains all 5
objects (ABCDE). If we intend to visualize this cluster, we have
to take into account five different primitives – one for each object.

To limit the number of primitives we propose the following
approach: instead of attaching primitives to every single object,
we just consider the objects one level below the level of interest.
Thus, in order to visualize the cluster in level I we attach primi-
tives to the level II cluster objects, i.e. to the clusters (ABC), (D)
and (E). Or, if we aim to visualize clusters of level II, we utilize
cluster objects from level III and so forth.

To provide for satisfactory results, we need to extend the
characteristics of the primitives used, which – in the original
BLOB paper [5] – were restricted to be of radial symmetric
shape. This is due to the fact that in contrast to the previous
BLOB clustering algorithm primitives now have to account for
the properties of a whole object set rather than of only one single

Figure 7: a) - e) Progressive edge-collapse algorithm. Red line indicates
edge to be collapsed next. Current cluster tree levels (I-V) are
shown on the righthand side.
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object. We suggest the extension of our concept of a primitive to
an elliptical feature, the so called ellipsoidal primitive. The fol-
lowing sections will give a more exact definition.

Extension to Ellipsoidal Primitives

Ellipsoidal primitives are a direct extension to the common prim-
itives determined in [5]. The characteristics of an ellipsoidal
primitive is specified by an ellipsoidal shape and the field func-
tion . For the definition of the shape and the computation of its
size, orientation and position we refer to [4]. The definition of
is

(8)

where is the distance to ellipsoidal surface,
defines the maximal magnitude of the function inside the ellip-
soid, and  influences the descent of the field function.

Fig. 9 compares the fields of a spherical symmetric primitive
to the field of a new ellipsoidal primitive defined by eqn. (8) on
the basis of their isolines. Inside the red area the field has a value
of .

The field of a single ellipsoidal primitive could be
described as follows: for all points inside the ellipsoid the value
of the field is uniformly . Starting at the surface of the ellipsoid
the field descents exponentially and monotonously as a function
of the distance to the surface.

Computation of Ellipsoidal Gaussian Fields

An ellipsoid is defined by its scaling matrix S, its rotation matrix
R and its center . From the diagonal elements of the scaling
matrix result the three half axes ,  and .

Transforming the ellipsoid into the origin will simplify subse-
quent formulas. In order to compute the value of the field function

at a point from eqn. (8), the coordinates of
have to be transformed: first, is translated by the negative

values of vector  according to

. (9)

Then, is rotated by the inverse rotation matrix R:

(10)

To gather the distance between the transformed point and
the surface of the ellipsoid, it is necessary to intersect the con-
necting line between the center of the ellipsoid – which is equal to
the origin – and the point with the ellipsoidal surface. To this
aim the line  is parametrized with  running from 0 to 1.

(11)

A point is located on the surface of the ellipsoid, if the
ellipsoidal equation evaluates to 1:

(12)

Substituting eqn. (11) into eqn. (12) yields for the intersection
point :

(13)

If , then the point lies within the ellipsoid.
With it could be computed using transformed coordi-

nates:

(14)

Parameter Definition for Ellipsoidal Primitives
The ellipsoidal primitives contain the two parameters and ,
which control the descent and magnitude of the corresponding
field function. These two parameters should be determined auto-
matically, because a configuration by the user may be longsome
and instable. Whenever possible, the algorithm should disburden
the user from such decisions.

The simplest approach would be a static setting for these two
parameters. Unfortunately, this idea is not acceptable because the
visualized clusters vary too much in both scale and position.
Thus, it is impossible to find values that delivering satisfactory
results under all circumstances. The parameters have to set in
context with the underlying ellipsoid. We will discuss two possi-
ble approaches solving this problem:

1. The heavier a cluster is, i.e. the more objects it contains,
the larger becomes the value of the magnitude of the
ellipsoid primitive’s field function.

2. The larger the maximum extension of the ellipsoid is, the
weaker becomes the descent of the ellipsoid primi-
tive’s field function.

Experiments have shown, rule one can lead to very big BLOB
surfaces, e.g. if the object distribution in space is dense. Hence,
this rule was dropped and a fixed value is assigned to (e.g.

=1.0).
The second rule on the other hand is considered to provide an

relevant visual feedback. The parameter  is defined as

(15)

where the value for the constant factor must be determined
experimentally, yet.

Determination of Isovalues to ensure connected
BLOB-Surfaces
According to [5] a BLOB’s shape is strongly influenced by the
corresponding isovalue . The smaller this value, the larger
the BLOB’s extension will get. In order to ensure that a BLOB
encloses all its objects the correct choice of c is crucial. In this
section, heuristics for the automatic determination of isovalues is
presented.

Take the example of fig. 10 where an enclosing BLOB sur-
face for three objects A, B and C has to be computed. The indi-
cated number on the connecting edges illustrates the minimal

Figure 9: Isolines of a) a spherical, symmetric primitive and b) a new
ellipsoidal primitive.
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value of the superimposed field along the edge. In order to assure
as tight a BLOB as possible we have to look for the largest iso-
value which still guarantees that the BLOB does not break apart.

Fig. 11 shows three possible cases for the choice of an iso-
value. On the left hand side, the chosen value results in the illus-
trated split-up into two subclusters because is bigger
than the minimal field value an edges AB and BC. On the right
hand side, too small an isovalue does not provide for a distinctive
shape. The case illustrated in the middle seems ideal. Choosing

– bigger than the minimum on edge AB but smaller than
the minimal value on BC – results in a tight single BLOB surface
enclosing all objects.

This example shows how to find an ideal isovalue: look for
the biggest value that still guarantees for a single enclosing sur-
face. This is equivalent to choosing a value such that all objects
are connected by edges with minimal field value bigger or equal
to the isovalue.

There are two problems in this approach: first, graph theory
shows that it is very expensive to find a minimal spanning tree, at
least if cluster sizes approach several hundred objects. Second,
finding the minimal field value on interconnecting lines is expen-
sive too, as it is impossible to find an analytic solution for arbi-
trarily superimposed fields. In the remainder of the section, we
present an approach which in most cases yields suited isovalues.

Fig. 12 shows a constellation of several objects of a cluster
for which an enclosing BLOB surface has to be found. The red
dot marks the center of the cluster. Intuitively, objects close to
cluster center will not cause problems. In contrast thereof, it is
troublesome to account for outliers – objects which are far apart
from the cluster’s center. Instead of looking for a minimal span-
ning tree for all of the cluster’s objects we concentrate on the out-
liers. Therefore, we look for the minimal field value on the
interconnecting lines between the outlier and the cluster center.
Fig. 12 shows these lines highlighted in red. The smallest value
found is regarded as a good approximation to the ideal isovalue.

We are left with the problem of finding the minimal field
value on the lines between outliers and the cluster center. To this
aim, we employ a Newton iteration scheme in order to find the
zero crossings of the first derivative of the superimposed field
function with regard to parametrization t of the interconnecting
line

. (16)

The corresponding Newton iteration step is given by

. (17)

As it is hardly possible to find symbolic expressions for the
first and second derivative of the field function f, they are approx-
imated in terms of central differences as follows:

(18)

As the reader may have noticed, this procedure is not guaran-
teed to find the global minimum but is highly dependent on the
choice of a favorable initial value . In order to find a good value
for , we sample the value of the field function on equidistant
points on the interconnecting line and choose to be the small-
est value found during the sampling procedure. As a matter of
fact, the outlined procedure still does not provide for finding the
global minimum. However, practice has shown, that it yields suit-
able isovalues for non-pathological cases. For clusters of less than
five objects the minimal spanning tree is computed which guaran-
tees for the optimal isovalue.

4 IMPLEMENTATION AND RESULTS
This section documents a concrete implementation of the H-
BLOB algorithm in the context of our information visualization
research project, called IVORY. Following, on the basis of two
examples we illustrate the visual performance and versatility of
our approach.

4.1 Implementation

The algorithm has been fully implemented as a class library in
Java2. For the domain of 3D visualization we apply Java3D in the
version 1.1.2. All computational work is done on a standard PC
completed with a hardware accelerated graphics subsystem
(Open GL). Even for more complex examples we still get interac-
tive frame rates.

Concerning an implementation of the H-BLOB algorithm
there are two main issues. The first one affects the data structure
used for the edge collapse clustering. Since this stage of the algo-
rithm makes heavy use of point-to-point distance calculations and
cluster merging, together with the higher order characteristic of
the problem, makes a good choice difficult. Employing standard
data structures quickly leads to a performance bottleneck, mostly
because of memory shortage. Some promising work addressing
this type of problems could be found in [1]

The second issue is about the isosurface extraction. In spite of
the multi-resolution approach it remains the most time consuming
part of the algorithm. Implicit surfaces may provide very nice
shapes, but are computational very expensive. There are many
sources available to this topic, but for our prototype implementa-
tion our choice was [3].

Figure 10:Three objects for which an enclosing tight BLOB surface has to
be found.

Figure 11:left: iso-value too big, BLOB breaks apart
middle: optimal iso-value, tight BLOB enclosing all objects
right: iso-value too small, non-distinctive shape

Figure 12:Objects of a cluster with so-called outlier objects. The intercon-
necting lines between outliers and the cluster center are marked
in red.
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4.2 Small World Example
This first and small example illustrates the basic properties of the
H-BLOB clustering algorithm. The scene consists of 5 single
objects each represented by a colored sphere. We present two
snap-shots of the cluster tree buildup sequence including the cor-
responding implicit cluster surfaces generated by the H-BLOB
algorithm.

4.3 Document Retrieval Visualization
This example is a from a real document retrieval research project.
We applied our new technique to a hit list (result list) originate
from an intranet document query. The number of single objects is
100. For the clustering stage a maximum of 20 clusters has been
defined. From one picture to the next we respectively merge 50%
of the clusters, what results in 6 hierarchy levels with 20, 10, 5, 3,
2, and 1 clusters. We show 4 selected images from this session.

5 CONCLUSION
The main contributions of this paper is a new hierarchical cluster-
ing algorithm called H-BLOB, which provides an efficient level-
of-detail strategy and is consequently capable to cluster and visu-
alize very large and complex data volumes. The algorithm is sub-
divided into two stages: Firstly, a simple and fast clustering
strategy – based on edge collapsing – computes a cluster hierar-
chy. Secondly, improving this hierarchical structure, the next
stage visualizes the clusters with nested implicit shapes. The key
concept is an efficient multi-resolution setup, breaking down the
structural and visual complexity of scenes. We have shown the
algorithm’s versatility by experimental results, demonstrating H-
BLOB’s capability to simplify and enhance the feasibility of clus-
ter visualization.
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Figure 13:Small example showing the clustering process by means of
5 simple objects. Snapshot with 4 and 2 clusters are shown.
Level indicates the hierarchy level in respect to the cluster tree.

Figure 14:Document Retrieval Visualization. Cluster hierarchies are
shown with 20, 10, 5 and 1 cluster.
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APPENDIX A: ELLIPSOIDAL
SURFACE PARAMETRIZATION
Parametrization of Ellipsoidal Surfaces
In this appendix we describe how to construct an ellipsoidal sur-
face that encloses a set of N points in space. We
will compute the position, the scaling and the orientation of the
ellipsoid.

Position of the Ellipsoidal Surface
The center of the ellipsoid can be computed
as the arithmetic average of the position of the points in space:

(19)

Scaling and Orientation of the Ellipsoidal Surface
The scaling and orientation of the ellipsoid can be computed with
the covariance matrix C of the set of points. The matrix C is
defined as follows:

(20)

The scaling matrix S is then constructed using the three
eigenvalues ,  and  of the matrix C:

(21)

The orientation of the ellipsoid is specified by the rotation
matrix R, which is defined by the eigenvectors , and of
the covariance matrix C:

(22)

DEFINITION: A value σ is called eigenvalue of a
matrix M, if a vector exists, such that . The vec-
tor is defined as the eigenvector of the eigenvalue σ. A matrix
of dimension N has exactly N eigenvalues and N eigenvectors.

The three eigenvalues of the covariance matrix C defined in
eqn. (20) are evaluated by setting the determinant of the matrix

 to zero and solving the resulting system for σ:

(23)

Fig. 23 can be interpreted as a polynomial of degree
three in the unknown σ. The three solutions , and of

 correspond to the eigenvalues of the matrix C.

Finally, the three eigenvectors , and of C can be
computed from the eigenvalues of C as:

(24)

Since the scaling matrix only contains an average of the final
scaling, it is necessary to adjust the scaling of the ellipsoid.

Adjustment of the scaling

In order to adjust the scaling matrix S it must be tested whether
all the points lie in the interior of the ellipsoid. If this is not the
case, then it is necessary to adjust the scaling of the ellipsoid. To
make the computations easier, the center of the ellipsoid must be
set in the origin of the coordinate system. This is accomplished
by translating and rotating all the points using the position and
orientation of the ellipsoid. Figure 15 illustrates this process with
an example.

The scaling factor τ can be computed from the new coordi-
nates of the all the points and the three eigenvalues

,  and  of the covariance matrix C as:

(25)

The position of a point relative to the ellipsoid can be
extracted from the magnitude of τ:

The point lies in the interior of the ellipsoid

The point lies on the surface of the ellipsoid

The point lies outside the ellipsoid

If , then the value the eigenvalues , and must
be increased, in order to meet the condition .

The strategy to increase the value of the eigenvalues was con-
structed experimentally. The idea behind his method was to make
the three semi-axis of the ellipsoid equally large, thus letting the
ellipsoid approximate a sphere. If after this transformation the
value of τ is still larger than one, the semi-axis are scaled by a
factor of τ, so that the point is guaranteed to lie on the surface of
the ellipsoid.

This strategy can be implemented in four steps:

• Increase the smallest semi-axis up to the largest semi-
axis and check whether the condition can be met.

• Increase the medium semi-axis up to the largest semi-
axis and check whether the condition can be met.

• Increase both the smallest semi-axis and the medium
semi-axis up to the largest semi-axis and check
whether the condition  can be met.

• If none of the previous steps was successful, re-scale the three
semi-axis , , and  by a factor of τ.
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