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Abstract

Most analytical methods are relative and hence require calibration. Calibration measurements
are normally performed with reference materials or calibration standards. Typically least squares
methods have been employed in such a manner as to ignore uncertainties associated with the cal-
ibration standards. However different authors [3, 4, 11] have shown that by taking into account
the uncertainties associated with the calibration standards, better approximations to the model are
possible.

We show a complete, numerically stable and fast way to compute the Maximum Likelihood (fitting
of a) Functional Relationship (MLFR), and we show how the model described in [11] is a unnecessarily
restricted case of our fully general model.

1 Calibration and Measurement

Since measurement instruments obey physical laws, they can be modelled by mathematical functions.
These functions describe only the qualitative behaviour unless all free parameters p are quantified. Cal-
ibration is the process of quantifying these parameters. For example, consider the measurement of a
weight using a spring balance.

Here we denote weights with x ∈ R and stretches of the spring with y ∈ R. Let xcs be a known weight
of a calibration standard and ycs be the stretch of the spring balance for this calibration standard. For
a given calibrated balance p the following holds true: ycs = f(xcs,p). This f is called the calibration
function. The art of calibrating consists of adjusting the parameters p (e.g. spring constant) using several
calibrating pairs xi and yi such that yi ≈ f(xi,p) holds for all i as well as possible.

For an unknown mass x̂, weighing with a calibrated spring balance requires the measurement of a spring
stretch ŷ and subsequent application of the measurement function g(ŷ,p). In other words, x̂ ≈ g(ŷ,p).
Note that g is the inverse function of f .

In the case that the pairs (xi, yi) were exact this would be a standard problem. But in practice every
measurement is subject to uncertainties. Therefore, not only the calibrating pairs (xi, yi) but also their
respective uncertainties (αi, βi) must be known and taken into consideration. Throughout this paper the
error random variables e

(x)
i respectively e

(y)
i are treated as e

(x)
i ∼ N (0, αi) respectively e

(y)
i ∼ N (0, βi).

This fully conforms with the “Guide to the Expression of Uncertainty in Measurement” (GUM) [10].

With respect to our spring balance example, this implies that the real calibration weights are not xi

but xi + e
(x)
i . Analogously the correct values for the stretch are no longer yi but yi + e

(y)
i .

Note that the uncertainties of x and y are uncorrelated. That is, the error of the calibration standard is
independent of the error of the reading.
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2 Calibration Models

Before we start considering calibration models, it is necessary to agree on a number of the assumptions.

The measurement tool is expected to work according to the function f(·, ·) in use. This means that there
exists a set of parameters which describes the apparatus correctly. In other words, the model is assumed
to be exact.

Every error random vector (rv) u is assumed to be normally distributed and is denoted by u ∼ N (µ,C)
where µ ∈ Rn is the mean vector and C ∈ Rn×n is the covariance matrix of the rv u ∈ Rn. The well
known probability density function (pdf) is

pdf(u) = err (u− µ,C) = (2π)−
n
2

1√
det (C)

e−
1
2 (u−µ)TC−1(u−µ).

A crucial point for the further development of calibration models is the exact specification of the calibra-
tion process. A reasonable assumption for one calibration measurement is the following (the process is
schematically depicted in figure 1):

• Choose the i-th calibration standard xi (whose real but unknown value ξi differs from xi by e
(x)
i ).

• Let p be the real but unknown set of parameters that describes the tool exactly. Here ηi shall
denote the true but (again) unknown value f(ξi,p).

• Finally, the reading mechanism of the tool generally imposes an additional error e
(y)
i . This leads

to yi = ηi + e
(y)
i .

ξi

e
(y)
i

(0, 0)

e
(x)
i

f(·,p)

xi

yi

ηi

Figure 1: Process of a calibration measurement

2.1 Berkson Model

The Berkson Model [5, 6] is a statistical model that handles exactly the described process depicted in
Figure 1. It behaves as follows

ξi = xi + e
(x)
i (1)

yi = f(ξi,p) + e
(y)
i ,

where xi is a known and constant value and the errors e
(x)
i and e

(y)
i are independent and normally

distributed with means 0 and variances α2
i and respectively β2

i .
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A Taylor series expansion of f(ξi,p) around xi yields an expression that reveals the connection between ξi

and yi

yi ≈ f(xi,p) +
∂

∂x
f(xi,p) · e(x)

i + e
(y)
i = f

(i) + f
(i)
x e

(x)
i + e

(y)
i , (2)

where f
(i) = f(xi,p) and f

(i)
x = ∂

∂xf(xi,p). Equations (1) and (2) make the following relations obvious:

Var (ξi) = Var
(
xi + e

(x)
i

)
= α2

i

Var (yi) ≈ Var
(
f

(i) + f
(i)
x e

(x)
i + e

(y)
i

)
= f

(i)
x

2
α2

i + β2
i

Cov (ξi, yi) ≈ E
[
e
(x)
i

(
f

(i)
x e

(x)
i + e

(y)
i

)]
= f

(i)
x α2

i .

2.1.1 Fitting of ξ and p (XiP-fit)

As can be seen in Section 2.1, the pdf of (ξi, yi) can be written as bivariate normal distribution

pdf(zi) = err (zi,Ci) =
1
2π

1√
det (Ci)

e−
1
2zi

TC−1
i zi ,

where zi and Ci are defined as follows:

zi =
(

ξi − xi

yi − f
(i)

)
and Ci =

(
α2

i f
(i)
x α2

i

f
(i)
x α2

i f
(i)
x

2
α2

i + β2
i

)
.

We generalize to all n measurements, and allow additional correlations amongst the errors e
(x)
i respec-

tively e
(y)
i denoted by Cx respectively Cy. This leads to the

pdf(ξ,y) = err (z,C) = (2π)−n 1√
det (C)

e−
1
2zTC−1z,

where z and C now are defined as

z =
(

ξ − x
y − f

)
and C =

(
Cx CxFx

FxCx FxCxFx + Cy

)
.

Now, analogously,

f =
(
f

(1)
, . . . , f

(n)
)T

and Fx = diag
(
f

(1)
x , . . . , f

(n)
x

)
.

Thus we know the value of the pdf at (ξ,p) given x and y. The maximum likelihood principle aims at
maximizing this value. Hence

max
ξ,p

(
(2π)−n 1√

det (C)
e−

1
2zTC−1z

)
(3)

must be solved for p and ξ. See Section 3 for computational details.

2.1.2 Fitting of p (P-fit)

In the previous section we fitted for both parameters p and ξ. Hence we found the most probable pairing
of p and ξ, i.e. an estimation for the true shape of f and simultaneously the true values of the calibration
standards x. However, it is often the case that one is not interested in an estimation of the calibration
standard values, but rather one is interested in the most probable shape of the calibration function f
regardless of any estimation for x.
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Consequently, we are looking for the pdf of y only. This is computed by the law of total probability [13].
We show the derivation of it for one calibration pair (x, y). We use f = f(x,p) and fx = ∂

∂xf(x,p) as
short forms.

pdf(y) =
∫ ∞
−∞

pdf
(
y
∣∣ ξ) pdf (ξ) dξ

=
∫ ∞
−∞

err (y − f(ξ,p), β) err (ξ − x, α) dξ

≈
∫ ∞
−∞

err (y − f − fx(ξ − x), β) err (ξ − x, α) dξ

=
1
2π

1
αβ

∫ ∞
−∞

e−
1
2

(y−f−fx(ξ−x))2

β2 e−
1
2

(ξ−x)2

α2 dξ

=
1√
2π

1√
α2f2

x + β2
e
− 1

2
(y−f)2

α2f2
x+β2

=⇒ pdf(y) ≈ err
(
y − f,

√
α2f2

x + β2
)

The generalization to the n-dimensional case is now straight forward:

pdf(y) ≈ err (z,C) = (2π)−
n
2

1√
det (C)

e−
1
2zTC−1z

with
z = y − f and C = FxCxFx + Cy.

Hence we know the value of the pdf at p given x and y. Again using the principle of maximum likelihood,
we are left with the maximization problem

max
p

(
(2π)−

n
2

1√
det (C)

e−
1
2zTC−1z

)
. (4)

Superficially, this looks equivalent to equation (3), but recall that C and z are defined differently. See
Section 3 for the computation of p.

2.2 Model proposed in ISO 6143

The method proposed by ISO 6143 [11] is again a maximum likelihood fit:

max
ξ,p

(
K e−

1
2 (ξ−x)TC−1

x (ξ−x)− 1
2 (f(ξ,p)−y)TC−1

y (f(ξ,p)−y)
)

(5)

with K = (2π)−n(det (Cx)det (Cy))−1/2 constant. Comparing this formula with equation (3), one can
see that it is transformed to (5) by assuming that Cx and Cy are both diagonal matrices. This is not
always the case [11, p. 22].

However, using this assumption (5), leads to the minimization problem

min
ξ,p

(
n∑

i=1

(
(ξi − xi)2

α2
i

+
(f(ξi,p)− yi)2

β2
i

))
.

This is the minimization problem described in [11, p. 19]. It belongs to the class of weighted orthogonal
distance regression (Weighted ODR) problems that are thoroughly studied in [2] and [9].
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3 Computations

In this section we show how to solve the maximization problems (3) and (4). For quantifying the mea-
surement uncertainty later, when using the calibrated tool, we need the covariances of the parameters p,
i.e. the covariance matrix Cp. Its use will be demonstrated in Section 4. We explain the computation of
the covariance matrix Cp at the end of each subsection.

Notation We use the following symbols, notations and abbreviations for readability. For matrices, M(i)

denotes the i-th column vector. Additionally, ∂k abbreviates the element-wise derivative with respect
to pk.

JT
p =

(
∂

∂p f
(1)

, . . . , ∂
∂p f

(n)
)

JT
xp =

(
∂

∂p f
(1)
x , . . . , ∂

∂p f
(n)
x

)
Jppk

= ∂kJp

Jxppk
= ∂kJxp

Fxpk
= ∂kFx

3.1 Computing ξ and p

Consider the maximization problem (3). This is equivalent (after taking the logarithm) to the following
minimization problem:

min
ξ,p

(
n log(2π) +

1
2

log(det (C)) +
1
2
zTC−1z

)
.

Now we can drop constant terms. Note that det (C) is also constant. This can be seen by applying a
Cholesky factorization1 on C.

C = RTR =
(

RT
x 0

FxRT
x RT

y

)(
Rx RxFx

0 Ry

)
,

where Cx = RT
x Rx and Cy = RT

y Ry. Note, that det (C) = det
(
RT

x

)
det (Rx)det

(
RT

y

)
det (Ry) =

det
(
RT

x Rx

)
det
(
RT

y Ry

)
= det (Cx)det (Cy) and since it is independent from ξ and p, it is constant.

Lucky us! We are left with the following minimization problem

min
ξ,p

(
zTC−1z

)
.

Solving this is equivalent to solving a nonlinear least squares problem:

min
ξ,p

(
zTC−1z

)
= min

ξ,p

(
zTR−1R−Tz

)
= min

ξ,p

(
rTr
)

= min
ξ,p

r 2 = min
ξ,p

S (ξ,p) .

There are different standard solvers for such problems, e.g. the Gauss-Newton (or the further developed
Levenberg-Marquardt method), the Newton method, the spectral decomposition method, etc. [14, 1, 12,
8, 7]. The following condition holds for the computed minimum

JTr = 0, (6)

where J denotes the jacobian of r with respect to ξ and p. Its structure is shown in equation (8). The
statement above can be verified as follows: we define w = (ξ,p)T. Linearizing the function r(w+∆w) ≈
r(w) + J∆w we get S (w + ∆w) ≈ S (w) + 2∆wTJTr +O( ∆w 2). Thus equation (6) is obviously true
in a minimum.

1There exists a Cholesky factorization for any symmetric positive definite matrix. This is the case for all covariance
matrices by definition.
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3.1.1 The Computation of Cp

For a good estimation of the measurement error we will need the covariance matrix Cp of p. We therefore
rewrite equation (6) as

h(w,y) = JTr = 0. (7)

The function h is an implicit description of the maximum likelihood criterion. Thus, w is determined by
y only (and of course x which is constant for a given set of calibration standards). Since y is a rv with a
known covariance matrix, we are now able to compute the covariance matrix of w and thus of ξ and p.

We define w̄ =
(
ξ̄, p̄est

)T = E [w] and ȳ = E [y] as the means of the respective rvs2. Then

w = w̄ + ∆w and y = ȳ + ∆y.

By definition, we may write
h(w̄, ȳ) = 0

and after linearizing h and inserting the equations above we get

0 ≈ ∂

∂w
h(w,y)∆w +

∂

∂y
h(w,y)∆y

= Hw∆w + Hy∆y

Solving for ∆w and rearranging the expressions we get3

∆w ≈ −H−1
w Hy∆y

=⇒ Cov (w,w) = E
[
∆w∆wT

]
≈ E

[
H−1

w Hy∆y∆yTHy
TH−T

w

]
= H−1

w Hy (FxCxFx + Cy)Hy
TH−T

w

The covariance matrix Cp corresponds to the lower right m×m block of Cov (w,w).

Finally we must show how to compute the matrices Hw and Hy. We start by expanding the expression (7)
using the variables introduced throughout Section 2 and 3.1. On the one hand, we have

Hy =
∂

∂y
h(w,y)

=
(

∂

∂y
JT

)
r + JT

(
∂

∂y
r
)

= 0 · r + JTR−T

(
0
I

)

=
(

R−T
x 0

−R−T
y Fx −R−T

y (diag (ξ − x)Jxp − Jp)

)T

R−T

(
0
I

)
(8)

=

(
−FxC−1

y

−
(
Jxp

Tdiag (ξ − x)− Jp
T
)
C−1

y

)
.

On the other hand, for the i-th column H(i)
w , for 1 ≤ i ≤ n, i.e. the derivatives with respect to ξi, we have

H(i)
w =

(
∂

∂ξi
JT

)
r + JT

(
∂

∂ξi
r
)

=
(

0 0
0 −Jxp

Tdiag (ei)R−1
y

)
r + JTR−T

(
ei

0

)
,

2Note that the mean of several estimated parameter vectors p̄est is not necessarily the true and unknown parameter
vector.

3Notice that the inverse of Hw exists if f is a well behaving function.
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and for 1 ≤ k ≤ m, i.e. the derivatives with respect to pk, we have

H(n+k)
w =

(
∂kJT

)
r + JT (∂kr)

=
(

0 −Fxpi
R−1

y

0 −
(
JT

xppi
diag (ξ − x)− JT

ppi

)
R−1

y

)
r

+JT

((
0 0

−R−T
y Fxpi

0

)
z + R−T

(
0

−J(i)
p

))
,

where ei is the i-th unity vector.

3.2 Computing p only

Consider the maximization problem (4). This is equivalent to the following minimization problem (after
taking logarithms again):

min
p

(
1
2
n log(2π) +

1
2

log(det (C)) +
1
2
zTC−1z

)
.

Note that the matrix C used here is different from the one in Section 3.1. R is again the upper triangular
matrix resulting from the Cholesky factorization of the new C. It is readily seen that det (C) is no longer
constant in p and cannot be neglected. The only constant term we can drop is 1

2n log(2π). Thus, we are
not so lucky anymore! We are now left with the following general minimization problem

min
p

(
log(det (C)) + zTC−1z

)
. (9)

Solving (9) is no longer equivalent to solving a nonlinear least squares problem, as can be seen by the
following derivation

min
p

(
log(det (C)) + zTC−1z

)
= min

p

(
log(det

(
RTR

)
) + zTR−1R−Tz

)
= min

p

(
2 log(det (R)) + rTr

)
= min

p
S (p) (10)

Nonetheless the standard techniques mentioned in section 3.1 can be applied to this problem. But the
effort to solve problem (10) is larger. The construction of the jacobian is more difficult (see Section 3.2.1).
In the minimum the following condition holds:

q + JTr = 0 (11)

Here q = ∂
∂p2 log(det (R)) and J denotes the jacobian of r with respect to p. Again, as in equation (6),

this means that the first derivative with respect to p is zero. The computation of these entities is shown
in the following section.

3.2.1 Computing of Cp

In the first step we derive an expression for

q =
∂

∂p
2 log(det (R))

=
∂

∂p
2 log

(
n∏

i=1

Ri,i

)

= 2
∂

∂p

n∑
i=1

log (Ri,i).
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For the k-th entry of q, we get

qk = 2
∂

∂pk

n∑
i=1

log (Ri,i)

= 2
n∑

i=1

∂
∂pk

Ri,i

Ri,i
= 2

n∑
i=1

∂kRi,i

Ri,i
.

It remains to show how ∂kRi,i can be computed. We begin by writing

∂kC = (∂kFx)CxFx + FxCx (∂kFx)
= Fxpk

CxFx + FxCxFxpk
.

With ∂kC and with the derivation rules applied on C = RTR we get

∂kC =
(
∂kRT

)
R + RT (∂kR) .

This can be easily solved for ∂kR. The diagonal elements of the latter are the wanted ∂
∂pk

Ri,i. As in
Section 3.1.1 we introduce again an implicit function

h(p,y) = q + JTr = 0. (12)

Due to the tricky structure of C we cannot write down an explicit expression for J. However, its
computation is still feasible in a column-wise way. We write the k-th column of J by J(k), for 1 ≤ k ≤ m.
Then we have

J(k) =
∂

∂pk
r

=
(
∂kR−T

)
r + R−T (∂kr)

=
(
∂kR−T

)
r−R−TJ(k)

p .

It remains to compute ∂kR−T. We have I = R−1R. Thus, after taking derivatives on both sides:

0 =
(
∂kR−1

)
R + R−1 (∂kR)

=⇒ ∂kR−1 = −R−1 (∂kR)R−1

Again, as in section 3.1.1, we have to compute Hp and Hy. Let H(i)
y denote the i-th column of Hy. For

1 ≤ i ≤ n, we get

H(i)
y =

∂

∂yi

(
q + JTr

)
= 0 +

(
∂

∂yi
JT

)
r + JT

(
∂

∂yi
r
)

=
(

∂

∂yi

(
J(1), . . . ,J(m)

)T
)

r + JTR−Tei

=
((

∂1R−T
)
R−Tei, . . . ,

(
∂mR−T

)
R−Tei

)T
r + JTR−Tei.

The derivation for Hp is exceedingly odd. Nevertheless here it comes: First we have

∂lqk = 2
n∑

i=1

(∂l∂kRi,i)Ri,i − (∂kRi,i) (∂lRi,i)
R2

i,i

,

(∂l∂kRi,i) can be found by solving

∂l∂kC =
(
∂l∂kRT

)
R +

(
∂lRT

)
(∂kR) +

(
∂kRT

)
(∂lR) + RT (∂l∂kR) .
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Further we need

∂lJTr = (∂lJ)Tr + JT (∂lr)

=
(
∂lJ(1), . . . , ∂lJ(m)

)T

r + JT (∂lr)

∂lr =
(
∂lR−T

)
z−R−TJ(l)

p

∂lJ(k) =
(
∂l∂kR−T

)
r +

(
∂kR−T

)
(∂lr)−

(
∂lR−T

)
J(k)
p −R−T

(
∂lJ(k)

p

)
.

Putting things together yields
H(l)

p = ∂lq + ∂lJTr,

where ∂lq is of course the vector with elements ∂lqk, for k = 1, . . . ,m.

4 Measurement

The first goal of calibration is to compute a good set of parameters to quantify the measurement tool.
An equally important goal is to estimate the measurement uncertainty when using the calibrated device.

Assume that the measuring tool is calibrated. Thus we have a set of estimated parameters p̂ together
with an estimated covariance matrix Ĉp = Cov (p̂, p̂).

Let y ∈ Rs be a measurement vector whose elements are readings taken from the measurement tool. The
readings are subject to errors, of the form y− ȳ = N (0,E), where ȳ is the correct but unknown reading
vector.

For 1 ≤ i ≤ s compute x̂i by applying x̂i = g(yi, p̂) or by solving yi = f(x̂i, p̂). For arbitrary (but still
well behaved) functions f(x, p̂) we propose the use of a standard solver such as bisection, regula falsi,
Newton method etc.

The computation of the measurement uncertainty is performed as follows. We represent the exact physics
with ȳi = f(x̄i,pex), where these are the exact and never known values. The given values are x̄i +∆xi =
x̂i, ȳi + ∆yi = yi and pex + ∆p = p̂. Substituting and linearizing these equations leads to

∆yi ≈ f
(i)
x ∆xi +∇pf

(i)T∆p,

where f
(i) = f(x̂i, p̂) and f

(i)
x = fx(x̂i, p̂). Extending this approximation to s readings y and solving

for ∆x, we get
∆x ≈ F−1

x ∆y − F−1
x Jp∆p

and furthermore

Cx = E
[
∆x∆xT

]
≈ F−1

x Cov (y,y)F−1
x

+ F−1
x Jp Cov (p̂, p̂)Jp

TF−1
x

− 2F−1
x Cov (y, p̂)Jp

TF−1
x .

There are two thing to note. First, Cov (y, p̂) can safely be assumed to be 0, since the uncertainties of
the reading for the s measurements are independent of p̂ found during calibration. Second, it is obvious
that no f

(i)
x is not allowed to be 0. In practice this does not present a problem, since nobody would use

a measurement device in a range where the slope of the measurement function is too large.

So we end up with the calculation for

Cx ≈ F−1
x

(
Cov (y,y) + Jp Cov (p̂, p̂)Jp

T
)
F−1

x .
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5 Numerical Comparisons and Simulations

We show four simulations with different calibration functions. The comparison with the predicted values
is quite encouraging. The left hand side figure shows the fitted functions using XiP-fit (thick line),
P-fit (thin line) and the classical least squares fit (dash-dotted line). The two dashed lines build an
approximated 95%–confidence region for the XiP-fit.

The right hand side figure shows the simulated measurement uncertainty for the XiP-fit and the P-fit
(dashed lines) compared to the estimated uncertainties (solid lines).

The calibration data was generated randomly according to figure 1 using the true parameters pex. The
covariances in x and y are known. The uncertainty in y was chosen to be equal at calibration and at
measurement.

5.1 Linear Fit

The calibration function is f(x,p) = p1 + p2x.
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Figure 2: (a) Fitting a linear function with different methods (b) Comparison of estimated and simulated
measurement uncertainty

The calibration data for figure 2 is

x 1.0000 2.0000 4.0000 5.0000 10.0000 20.0000
y 0.2960 0.3712 0.4222 0.4201 0.6402 0.8675

The covariance in x is given by the following matrix:

Cx =


0.0012 0.0016 0.0016
0.0016 0.0032 0.0032
0.0016 0.0032 0.0064

0.0100
0.0400

0.1600


The covariance in y is Cy = diag (0.0003, 0.0003, 0.0004, 0.0005, 0.0009, 0.0020). Finally the
fitted parameters p are as follows4:

4The ISO-Method is implemented in B-Least, a software that BAM provides.
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p1 p2

Exact 0.3 0.03
Classic LS 0.2956 0.029
XiP-fit 0.28567 0.031282
P-fit 0.28577 0.031256
ISO-Method 0.28577 0.031272

Remarks The match of estimated and simulated measurement uncertainty is quite nice. Note that the
measurement uncertainty5 is chosen to be 2%.

5.2 Exponential Fit

The calibration function is f(x,p) = p1 + p2ep3x.
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Figure 3: (a) Fitting an exponential function with different methods (b) Comparison of estimated and
simulated measurement uncertainty

The data for figure 3 is

x 1.0000 2.0000 4.0000 4.1000 4.2000
y 4.1682 15.9362 263.3923 278.6612 245.8233

The covariance in x is given by the following matrix:

Cx =


0.0075 0.0100 0.0100
0.0100 0.0200 0.0200
0.0100 0.0200 0.0400

0.0420
0.0441


The covariance in y is Cy = diag (0.0280, 0.4393, 117.1169, 154.9422, 204.9871). Finally the
fitted parameters p are as follows:

5The uncertainty induced by the reading mechanism
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p1 p2 p3

Exact 0.1 0.8 1.4
Classic LS -62.9821 31.2164 0.5699
XiP-fit 0.39654 0.91511 1.3883
P-fit 0.47711 0.88251 1.3724
ISO-Method -0.060929 1.1143 1.3338

Remarks The uncertainties in the calibration and the measurement data are 5%. This is quite consid-
erable. The errors induced by linearization become now obvious. The simulated uncertainties are thus
bigger but qualitatively still acceptable. Note also that the classical least squares fit is way out of bounds.
The ISO-Method, despite the different numbers, would be just crowding the picture between the XiP-fit
and the P-fit. There was a warning of the B-Least software about a division by zero, but the output
seems still reasonable.

5.3 Power Function Fit

The calibration function is f(x,p) = p1x
p2 .
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Figure 4: (a) Fitting a power function with different methods (b) Comparison of estimated and simulated
measurement uncertainty

Some of the data for figure 4 is taken from NIST6.

x 1.3000 1.4700 1.4900 1.5700 1.6000 1.6800
y 2.3093 2.6972 3.9351 3.8846 4.9255 6.2209

The covariance in x is Cx = diag (0.0027, 0.0035, 0.0036, 0.0039, 0.0041, 0.0045). The co-
variance in y is Cy = diag (0.0070, 0.0177, 0.0196, 0.0292, 0.0338, 0.0489). Finally the fitted
parameters p are as follows:

p1 p2

Exact 0.7700 3.8000
Classic LS 0.5801 4.5005
XiP-fit 0.6676 4.2387
P-fit 0.8618 3.5703

6http://www.itl.nist.gov/div898/strd/index.html → Nonlinear Regression → Dan Wood

http://www.itl.nist.gov/div898/strd/index.html
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Remarks The uncertainties in the calibration and the measurement data are 4%. Again the lineariza-
tion induces a shift between the estimated and the simulated measurement uncertainty. Note that the
P-fit is visually better in the sense that it is closer to the exact function. This is the case for most of
the experiments we have studied.

5.4 Sigmoid Function Fit

The calibration function is f(x,p) = p1
1+ep2−p3x
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Figure 5: (a) Fitting a sigmoid function with different methods (b) Comparison of estimated and simu-
lated measurement uncertainty

Some of the data for figure 5 is taken from NIST7. They assign it a “higher level of difficulty”.

x 9 12 15 75 78 81
y 8.8916 12.0857 12.3492 64.5600 64.8196 71.5168

The covariance in x is Cx = diag (0.0729, 0.1296, 0.2025, 5.0625, 5.4756, 5.9049). The covari-
ance in y is Cy = diag (0.0786, 0.1126, 0.1592, 3.8960, 3.9862, 4.0616). The fitted parameters
p are as follows:

p1 p2 p3

Exact 70.0000 2.5000 0.0700
Classic LS 124.6656 2.7761 0.0375
XiP-fit 72.5830 2.4889 0.0641
P-fit 72.2162 2.4931 0.0650

Remarks The uncertainties in the calibration and the measurement data are 3%. As opposed to the
other examples estimated and the simulated measurement uncertainty are very close together. This is
due to the fact that the uncertainties in the calibration data are relatively small, which is the case for
reasonable calibrations anyhow. Notice how the measurement uncertainty seems to explode as soon as
the calibration function’s slope is heading towards zero.

7http://www.itl.nist.gov/div898/strd/index.html → Nonlinear Regression → Rat42

http://www.itl.nist.gov/div898/strd/index.html


Estimating Measurement Uncertainty, O. Chinellato and E. Achermann 14

6 Conclusion

Taking the of calibration data into account is important for cases with very strong correlation or with
relatively large uncertainties. However, there is no sound reason to ignore it, since it does not seriously
affect the runtime behaviour.

The P-fit leads to slightly higher measurement uncertainties, but it recovers the “exact” parameters
generally better (in our experiments). This is explainable with it’s property of “integrating over all
possible true x–values”.

Classical least squares fitting is not suitable for calibration tasks.
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