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Abstract

We present a new approach to the multi-robot path planning problem, where a number of
robots are to change their positions through feasible motions in the same static environment.
Rather than the usual decoupled planning, we use a coordinated approach. As a result we
can show that the method is probabilistically complete, that is, any solvable problem will be
solved within a finite amount of time. A data-structure storing multi-robot motions is built in
two steps. First, a roadmap is constructed for just one robot. For this we use the Probabilistic
Path Planner, which guarantees that the approach can be easily applied to different robot
types. In the second step, a number of these simple roadmaps are combined into a roadmap
for the composite robot. This data-structure can be used for retrieving multi-robot paths. We
have applied the method to car-like robots, and simulation results are presented which show
that problems involving up to 5 car-like robots in complex environments are solved successfully
in computation times in the order of seconds, after a preprocessing step (the construction of
the data structure) that consumes, at most, a few minutes. Such a preprocessing step however
needs to be performed just once, for a given static environment.

1 Introduction

In many situations multiple mobile robots operate in the same environment. When the robots
stay far enough apart they can plan their motions more or less independently, but when they
get within close range of each other, their motions must be coordinated in order to avoid mutual
collisions and deadlock situations. For example, when two robots want to drive though a narrow
corridor in opposite directions, one of them must wait at the entrance of the corridor to let the
other pass.

We present a new and powerful approach for solving multi-robot path planning problems in
known static environments. In our setting, a number of robots move independently in the same
workspace (containing obstacles), and the task is to compute feasible paths for the robots that
bring each robot from some start configuration to some goal configuration, while avoiding (mutual)
collisions. See also Figure 1.

We will refer to the separate robots Ay, ..., A, as the simple robots. One can also consider the
simple robots together to be one robot (with many degrees of freedom), the so-called composite
robot. A feasible path for the composite robot will be referred to as a coordinated path. We assume
in this paper that the simple robots are identical, although, with minor adaptions, the presented
concepts are applicable to problems involving non-identical robots as well.

Our approach constructs a roadmap for the composite robot, that is, we compute a network of
feasible motions for the composite robot. Once this roadmap is available, path planning queries
can be solved in a simple way. As a result, after the preprocessing step building the roadmap,
path planning queries are solved in just a few seconds. The roadmap for the composite robot
is constructed in two steps. First, a simple roadmap is constructed for just one robot. Then, n
of such roadmaps are combined into a roadmap for the composite robot consisting of n simple
robots. We will refer to such a composite roadmap as a super-graph. After such a super-graph has
been constructed, which needs to be done just once for a given static environment, it can be used



-
=

Figure 1: Simulation of 3 car-like robots moving in a cluttered environment.

for retrieval of coordinated paths. We will present two super-graph structures: flat super-graphs
and multi-level super-graphs. The latter are a generalisation of flat super-graphs, and consume
much less memory for problems involving more than 3 robots. The approach is a flexible one, in
the sense that it is easily applicable to various robot types, provided that one is able to construct
simple roadmaps for one such robot. Furthermore, proper construction of the simple roadmaps
guarantees probabilistic completeness of the resulting multi-robot planners. In this paper we apply
the super-graph approach to car-like robots.

The paper is organised as follows: We will first, in Section 2, give an overview on related
previous work. In Section 3 we give some general definitions and notations that will be used
throughout this paper. Then, in Section 4, we define formally the multi-robot path planning
problem, and also we describe the discretisation that we use. The Sections 5 and 6 describe the
two super-graph methods for solving multi-robot path planning problems. These methods are
applied to problems involving up to 5 car-like robots in Section 8, and simulation results are
presented. These demonstrate the methods power and its efficiency regarding computation costs
and memory consumption. In Section 9 we discuss how a form of probabilistic completeness of the
multi-robot planners can be obtained, in the case where the simple roadmaps are constructed by
the Probabilistic Path Planner PPP [0594, SO95b, KSL096, Kav95]. Finally, some conclusions
are drawn and some future work is indicated in Section 10.

2 Related previous work

Motion planning for multiple robots has been studied extensively over the past ten years. We
review some major results. (For more detailed overviews see also [Lat91] and [HA92].) Approaches
to the multi-robot motion planning problem are often categorised as centralised and decoupled.
Centralised approaches treat the separate robots as one composite system, and typically perform
the planning in a composite configuration space, formed by combining the configuration spaces
of the individual robots. Decoupled approaches first generate paths for the separate robots more
or less independently, and then consider the interactions between the robots (with respect to the
generated paths).

Centralised approaches have the advantage that, at least in theory, they allow for complete
planners (that always find a solution when one exists), whereas decoupled planners inherently
are not complete and can lead to deadlock situations. However, the practical difficulty with
centralised planning is that, if completeness is to be obtained, it yields methods whose time



complexity is exponential in the dimension of the composite configuration space. For example, if
we have m robots with &k degrees of freedom each, a complete planner will have a time complexity
exponential in m*k. This means that, assuming we do not consider the dimension of the composite
configuration space as a constant, the multi-robot path planning problem is PSPACE-complete
(See, e.g., [Lat91]). Even the apparently simple problem of motion planning for arbitrarily many
rectangular robots in an empty rectangular workspace is still PSPACE-complete [HSS84].

Centralised planning Schwartz and Sharir [SS83] have described an exact cell decomposition
algorithm for multiple discs in the plane moving among polygonal obstacles. Their approach is
based on critical curves. The complexity of the algorithm is O(n?) for 2 discs, and O(n'3) for
3 discs. In [SS88], Sharir and Sifrony present a general O(n?) algorithm for two robots each
with 2 degrees of freedom. The robots can be discs or manipulators. Ardema and Skowronski
[AS91] describe a method for generating collision-free motion control for two specific, constrained
manipulators, by modelling the problem as a non-cooperative game. Other centralised approaches
for tackling multi-robot planning problems include various potential field techniques. Tournassoud
[Tou86] proposes a potential field approach where the motion coordination is expressed as a local
optimisation problem. Barraquand and Latombe [BL90, BL91] have applied the randomised path
planner RPP, a general potential field method that uses random motions for escaping local minima,
to multi-robot planning problems. In [BLL92] Barraquand, Langlois, and Latombe present a
potential field technique for many discs in environments with narrow corridors. To escape local
minima, so-called constrained motions are executed which force one configuration coordinate to
increase or decrease until a saddle point of the potential function is attained. This potential field
planner has been successfully experiment ed with for up to 10 robots.

Decoupled planning Erdmann and Lozano-Pérez [ELP86] proposed the scheme of prioritised
planning. First, priorities are assigned to the robots. Then, in order of decreasing priority, the
robots are picked. For each picked robot a path is planned, avoiding collisions with the static
obstacles as well as the previously picked robots, which are considered as moving obstacles. An
important question in this scheme is how to assign the different priorities to the robots. Buckley
[Buc89] proposes to assign the priorities such that the number of robots that can move in a
straight line from their start configuration to their goal configuration (so-called linear robots)
is maximised. In [War90], prioritisation is combined with a potential field that is defined on a
time-varying configuration space.

O’Donnell and Lozano-Pérez [OLP89] introduced a decoupled planning approach called path
coordination, which is based on a scheduling technique originally developed by Yannakakis et al.
[YPKT79] for concurrent database access by several users. It is assumed that the planning problem
involves just two robots. First, paths P, and P, for the two robots are planned independently.
Then, a two dimensional coordination diagram is constructed, where the x-axis corresponds to
path P; and the y-axis to path P,. A point (z,y) in the coordination diagram corresponds to the
placement of the first robot at the configuration P;(z) and the second robot at the configuration
Po(y)t. If the two robots intersect at the configurations P (x) and Py (y), then (x,y) is a forbidden
point in the coordination diagram. The path coordination now is performed by searching for a
path connecting the bottom left corner and the top right corner in the coordination diagram, not
going through any forbidden points. If it is found, such a path describes a velocity coordination
of the two robots along the two paths that brings both robots to their goal configurations without
mutual collisions. Whether such a coordination exists of course depends on the initially chosen
paths P and P,. Coordination diagrams for two manipulators are analysed in [BL92, CCL94].
Furthermore, scheduling issues are studied through use of coordination diagrams in [LT90].

Another decoupled approach has been developed by Liu et al. [LKNT89]. Here, as in the path
coordination approach, the initial path of each robot is planned separately. Then intersections
among the paths are tested for. If these exist, it is attempted to resolve the conflicts by globally

LGiven a path P for some robot, we denote the configuration that the robot attains at time ¢ when moving along
the path by P(t). This is formalised in Section 3.



modifying the initial paths using a Petri net formulation. In concept the planner is applicable to
systems with many robots. The presented implementation however only works for a two robot
system.

Alami et al. propose a Plan Merging Paradigm [ARIS95] for execution and control of a large
fleet of autonomous mobile robots. The robots incrementally merge their plans into a set of
already coordinated plans, through exchange of information about their current state and their
future actions. Planners based on traffic rules are described in [Gro88, KNT92, Wan95, WP95,
LLCT95]. Some recent work on decoupled planners experimented with on real robots includes
[CE92, CFAT95, SG96]. As is the case in general for decoupled methods, these planners do not
work well in very constrained environments.

Weaker centralisation: Roadmap coordination As mentioned above, in order to obtain
complete planners, centralised planning approaches are required. For relatively simple problem
settings, some practical complete planners have been developed/proposed (see above). However,
it seems that for more challenging problems the centralised approach leads to prohibitive time
complexity due to the PSPACE-completeness of the multi-robot planning problem. For this rea-
son many researchers have dropped the requirement of completeness and focused on decoupled
approaches. This has resulted in many planners that solve interesting problems, but satisfy no
form of completeness. As also pointed out by La Valle and Hutchinson in [VH95], it seems that
most research has focused on two opposite ends of a spectrum, with centralised planning at one
end and decoupled planning at the other. With centralised planning, no constraints are imposed
on the robot motions before considering the interactions between the robots, while with decou-
pled planning very strong constraints are imposed on the robot motions prior to considering the
robot interactions. An approach lying somewhere in the middle of the spectrum will be one that
only weakly constrains motions of the separate robots. This can be achieved by constraining the
robots to lie on independent roadmaps (instead of paths). This roadmap coordination idea has,
in different forms, previously been used by Shibita and Fukuda in [SF93] and by La Valle and
Hutchinson in [VH95].

The super-graph scheme that we propose in this paper? falls in the class of roadmap coordina-
tion methods. Roadmaps are constructed for the separate robots, and the robots are constrained
to lie on these. The coordination of the robots along these roadmaps is achieved by building
and searching a data-structure that, in concept, represents a Cartesian product of the separate
roadmaps. A strong point of our approach is that it leads to probabilistically complete planners
that are capable of solving complicated problems that cannot be solved by decoupled planners and
would consume far too much time and memory for existing complete planners. This shows that
indeed by moving away from the extremes on the “centralisation spectrum” one can obtain forms
of completeness while yielding planners of acceptable time-complexity.

3 Preliminary definitions and notations

We start with giving some definitions and notations that will be used throughout this paper.

The robots and their C-space Let Aj,..., A, be n instances of some (simple) robot A,
present in a workspace W, together with a set of obstacles whose union we denote by B. We
refer to A as the simple robot, and to (Ay,...,A,) as the composite robot. Furthermore, let C
be the space of all possible configurations of A, and let C; be a the subset of C consisting of all
configurations ¢ such that A placed at c intersects no obstacles. That is, Cy is A’s free configuration
space, or free C-space. Given a configuration ¢, we denote the workspace-area occupied by A, when
placed at ¢, by A(c).

2Preliminary extended abstracts of this paper have been given in [S095a7 5096}



The free-flying robot: @ The carlike robot: I:l

Figure 2: Two simple roadmaps. At the left the robot is a translating disc, and at the right a
car-like rectangle. The edges are shown in thick lines. In the left roadmap the actual local paths
coincide with the edges. In the right roadmap this is not the case, and the corresponding local
paths are indicated by thin curves. In both examples we see that an edge e and a node z with
A(e) @ A(x) (because e’s sweep-volume intersects A placed at x). This means that = blocks e.

Paths and roadmaps for the simple robots Now let us look at paths. A path P for A is
a continuous map P € [0,1] = C. For [0,1] — C, we also use the shorthand notation CI®!. Tt
maps time ¢ to configurations, hence describing a motion of the robot A. If P lies in C; (that is,
Vt € [0,1] : P(t) € Cy), then we refer to P as a free path. If, in addition, P describes motions that
are performable by the robot A, we say that P is a feasible path for A. A path that describes
no motion of A (that is, A is stationary), we refer to as an identity path. For this we define
I €C — C%Y ag the function mapping ¢ to ¢t — c¢. We denote the workspace-area swept by A,
when moving along a path P, by A(P). Given two paths P and @ with P(1) = Q(0), we denote
their concatenation by P & ). Formally:

(P& Q)(t) = P(2t) for t < % and Q(2t — 1) for t > %

We will use roadmaps for the simple robots (simple roadmaps) as basis for building the super-
graphs. For this, we assume the simple roadmap of A to be of a certain form. Namely, we assume it
to be stored as a graph G = (V, E), with the nodes V' corresponding to collision-free configurations.
The edges are pairs of collision-free configurations and correspond to feasible paths. We assume
namely that we have a local planner L € C x C — CI® that constructs paths that are feasible
for A in absence of obstacles (that is, paths describing motions that are performable by A), and
an edge (a,b) is allowed to be present in E ouly if L(a,b) is collision-free (and, hence, feasible).
Given an edge (a,b) € E, we refer to L(a,b) as the local path connecting a and b. So, given a path
[e1,¢a,...,c] in the graph G, L(cy, c2) ® L(ca,c3) @ ... L(ck—1,ci) is a feasible path for A, from
¢1 to ¢x. The workspace area swept by A when moving along a local path L(e) is denoted by A(e),
e’s sweep volume. For convenience, for arbitrary objects A and B, we will refer to the statement
ANB # 0 (A and B intersect) by A ® B. We say that an edge e € E is blocked by a node x € V if
A(e) @ A(z) (see also Figure 2). An edge e being blocked by a node x means that a simple robot
cannot move along the local path corresponding to e if another simple robot is stationary at the
configuration x.

Paths for the composite robot A coordinated path for the composite robot (Ajy,..., A,) is a
n-tuple of paths feasible for A that, when executed simultaneously, introduce no mutual collisions
between the simple robots. This is formalised by Definition 1.



Definition 1 Let Ay,..., A, be n simple robots, and let s1,...,8, and gi,...,gn be given free
configurations (that is, Vi € {1,...n} 1 s; €Cf ANgi €Cs). If Py,..., P, € CI%' are feasible paths
for A, such that for alli,j € {1,...,n}

° Pl(O) =35; A Pl(].) =q;
o i ve(0,1]: ~A(P(t) @ AP (1))

then (Py, ..., P,) is a coordinated path for (Ai,..., A,) solving the problem ((s1,-..,8n),(g1,---,
gn)). We define the length of (Pi,...,P,) as Y ._, length(P;).

Given two coordinated paths P = (Py,...,P,) and Q = (Q1,...,Q,) with P(1) = Q(0), we
denote their concatenation (P ®Q1,..., P, ®Qn) by P® Q. Clearly, P Q will be a coordinated
path as well.

A special type of coordinated paths that we will use as basic building blocks is that of trivial
coordinated paths. A trivial coordinated path is defined as a coordinated path (P, ..., P,) where at
most one P; is not an identity path. That is, such a path describes a multi-robot motion where at
most one of the simple robots moves, while all the others are stationary. A discretised coordinated
path is now defined as being the concatenation of a finite number of trivial coordinated paths. So
a discretised coordinated path describes a multi-robot motion where at any time instant at most
one robot moves.

Definition 2 A coordinated path for (Ay,..., A,) is a discretised coordinated path if it is the
concatenation of a finite number of trivial coordinated paths.

4 Discretising the multi-robot planning problem

Definition 3 The multi-robot path planning problem for Ay, ..., A, is defined as follows: Given
start configurations s1,...,S, and goal configurations gi,...,¢gn (with s;,g; € Cr), find a coordi-
nated path for (Ai,..., A,) solving the problem ((s1,...,8n),(g91,---,9n))

The first step of our multi-robot planning scheme consists of computing a simple roadmap,
that is, a roadmap for the simple robot A. This roadmap will subsequently be used for the
construction of a roadmap for the composite robot. Basically, any algorithm that constructs
roadmaps can be used in this phase. However, in order to obtain some form of completeness, there
are certain requirements. In Section 9 we give a condition that guarantees a form of probabilistic
completeness of the multi-robot scheme when the Probabilistic Path Planner (Section 8.2) is used
for construction of the simple roadmaps.

Given a graph G = (V, E) storing a simple roadmap for robot A, we are interested in solving
multi-robot problems using G. We assume here, for the moment, that all start configurations s;
and goal configurations g; are nodes of G (We drop this assumption in the next section.). The
idea is that we seek paths in G along which the robots can go from their start configurations to
their goal configurations, such that at any time instant:

e at most 1 robot moves along a local path L(e),
e the other robots are stationary at nodes zq,...,z, 1 of G,
e and none of the nodes x1,...,x,—1 block the edge e.

In this way, clearly, mutual robot collisions are avoided, while robot-obstacle collisions are ruled
out by the fact that we move along the simple roadmap. We say that we discretise the multi-robot
planning problem to G.

Definition 4 Let G = (V, E) be a simple roadmap. A coordinated path for (Ai,...,An) is a
G-discretised coordinated path if it is the concatenation of a finite number of trivial coordinated
paths Ty, ..., Ty, where (Vi € {1,...,k})

T; = (I(c1), ..., I(cm), L(e), I(¢ms1),- .-, I(cn_1)) with the ¢c;’s in Vand e € E



Figure 3: A G-discretised coordinated path P for 3 translating disc-robots, solving the prob-
lem ((cs,c1,¢3),(ca,c6,c1)). If we denote the edge connecting nodes ¢; and ¢; by e;;, then
P = (I(c5),I(c1), Les2)) & (I(cs), L(e1s), I(c2)) ® (I(cs), L(ess), I(ca)) & (L(esa), I(cs), I(c2)) @
(I(ca),I(c6), L(e21))-

See Figure 3 for a simple example of a G-discretised coordinated path. Of course, moving only
one simple robot at a time will result in unnecessarily long paths for the composite robot, but, as
we shall see later, this can be remedied with some simple smoothing techniques. In Section 9 we
show that, provided a suitable roadmap construction method is used, solving G-discretised path
planning problems (instead of continuous ones) is sufficient to guarantee probabilistic completeness
of the multi-robot planning scheme.

5 The flat super-graph method

The question now is, given a simple roadmap G = (V, E) for a robot A, how to compute G-
discretised coordinated paths for the composite robot (Ay,...,A,) (with all A; identical to A).
For finding G-discretised coordinated paths, we introduce the notion of flat super-graphs:

Definition 5 Let G = (V, E) be a simple roadmap and let n be the number of simple robots. The
induced flat super-graph Fj2 = (Vr, Ex) is defined as follows:

o (21,...,2,) € V™ is a node of F& if and only if i # j = -~Alx;) @ A(x;).
We refer to the nodes of F§ as (flat) super-nodes. Given a super-node X = (z1,...,%,),
we refer to the x;’s as X’s underlying G-nodes.

o Two super-nodes X = (x1,...,2,) and Y = (y1,...,y,) are connected by an edge of Fg if
and only if for exactly one i € {1,...,n} x; # y;, and x; is connected to y; by an edge e in
G that is not blocked by any x;, with j # i. The edge e is referred to as (X,Y)’s underlying
G-edge. We refer to the edges of Fi as (flat) super-edges.

We refer to G as the underlying simple roadmap of Fg.

See Figure 4 for an example of a (simple) flat super-graph. So each node of F( corresponds to
a feasible placement of the n simple robots at nodes of G, and each edge of Fj corresponds to
a feasible motion of one simple robot along an edge of G. That is, each edge in F/ corresponds
to a trivial coordinated path. Hence, any path in the flat super-graph describes a G-discretised



Figure 4: At the left we see a simple roadmap G for the shown rectangular robot A (shown in
white, placed at the graph nodes). We assume here that A is a translational robot, and the areas
swept by the local paths corresponding to the edges of G are indicated in light grey. At the right,
we see the flat super-graph F2, induced by G. It consists of two separate connected components.

coordinated path, and vice-versa. So we see that the problem of finding G-discretised coordinated
paths for our composite robot reduces to graph searches in F7.

We however want to use the flat super-graph for solving arbitrary multi-robot problems, not
only such where the start and goal configurations are nodes of G. For this, we define what we
refer to as coordinated retractions.

Definition 6 Let G = (V, E) be a simple roadmap. A coordinated retraction of a tuple (cy1,...,cn) €
C} is a coordinated path (Pe,, ..., P.,) with: Vi € {1,...,n}: P,(0) = c; A P, (1) € V.

In words, a coordinated retraction of (¢i,...,¢,) is a coordinated path, moving each simple robot
A; from ¢; to a node of G. Of course, coordinated retractions are easy to find only if G is of
sufficient density. The algorithm for the computation of the retractions depends on the type of
roadmap used.

Algorithm 1 now summarises how a multi-robot problem can be solved with a flat super-graph.

Algorithm 1 — Flat super-graph method

Let G be a simple roadmap, and Fg the induced flat super-graph. Let ((s1,-..,8n),(g1,---,9n))
be a problem to be solved.

1. Compute a coordinated retraction (Ps,, ..., Ps,) for (s1,...,8n). (If this fails, then G is of
insufficient density.)

2. Compute a coordinated retraction (Py,,...,Py,) for (g1,...,9n). (If this fails, then G is of
insufficient density.)

3. Find the shortest path Pr in Fp between node (P, (1),...,Ps, (1)) and node
(Py, (1),..., P, (1)). If no such path exists, then there exists no G-discretised solution to the
retracted problem.

4. Transform the graph-path Pr to a G-discretised coordinated path P. This can be done by
transforming each pair of consecutive super-nodes in Pr to a trivial coordinated path (using
the functions I and L), and concatenating the resulting coordinated paths.

5. Let P be the concatenation of (Ps,,...,Ps,), P, and (P,,,..., P, ) reversed.
6. Smooth P.



Typically, the paths directly retrieved from the super-graph are unnecessarily long. Partially
this can be caused by the underlying simple roadmap. For example, in our implementation (as
described in Section 8) we will use probabilistic graphs as underlying simple roadmaps, forcing
the simple robots to follow routes between randomly generated configurations. Furthermore, we
obtain G-discretised coordinated paths from the super-graph. As explained earlier, these describe
multi-robot motions where only one simple robot moves at a time. Clearly, to reduce the total
path length, it is often beneficial to allow for simultaneous robot motions. This is why, in the
last step of Algorithm 1, we smooth the coordinated path. The aim of this post-processing step is
to reduce the coordinated path length, by short-cutting redundant path segments and combining
alternating simple robot motions into simultaneous ones. In Section 7 we will present a general
heuristic technique for this smoothing.

The size of a flat super-graph, as defined above, is exponential in n (the number of robots).
However, the entire data-structure does not have to be stored explicitly. Given a particular super-
node X, its neighbours in F7 can each be retrieved in constant time provided that, for each
(z,e) € V x E, we know whether A(z) intersects A(e). This asks for a data-structure of quadratic
size (in the size of G) that for each node-edge pair (z,e) stores whether A(z) ® A(e). Using
optimised intersection routines, such a data-structure, which we refer to as the G-intersection
map, can be computed and updated quite efficiently. Hence, for performing graph searches in
F&, we need only to compute and store the set Vr of super-nodes. If however n is large, then
the required amount of memory can still be very (too) large. For example, if the underlying
simple roadmap has 100 nodes and there are 4 robots, then the induced flat super-graph might
contain up to 100* = 100.000.000 nodes. Our experiments indeed show that for up to 3 robots
the flat super-graph method works fine, but for more robots the memory consumption becomes a
bottleneck. So we should try to reduce the number of super-nodes. The multi-level super-graph
method, described in the next section, aims at this.

6 The multi-level super-graph method

A way to reduce the size of the super-graph is to combine multiple node-tuples into single super-
nodes. We will first describe and motivate the idea informally in Section 6.1. In Section 6.2
we define the algorithm and the required data-structures. Section 6.3 deals with a technique for
further reducing the size of the data-structure.

6.1 The idea

When humans are driving, and they know that no other vehicles are near them, they do not take
into account the exact positions of those other vehicles for every maneuver they perform. Only as
other vehicles come within closer range, more care is taken to avoid collisions. And only in really
pathetic situations do drivers actually have to get out of their cars, and start talking to each other
in order to make a “coordinated plan”.

In other words, as long as the cars are at safe distances from each other, the maneuvers are
performed more or less locally. Now because in the super-graph data-structure no distinction is
made between situations where the robots are located near to each other, and situations where
this is not the case, it intuitively seems that a flat super-graph stores too much information. One
would expect that size reduction of our data-structure should be possible by avoiding the storage
of super-nodes corresponding to robot placements where the robots lie far apart from each other.

As explained, we plan the robot motions along local paths stored in a simple roadmap, and no
direct information about the workspace and C-space is used. Hence, we must define the notion
of two robots being “near” to each other in terms of the simple roadmap structure. The idea
is to consider, for each simple robot, certain neighbourhoods (subgraphs) within G in which the
robot is present, and to say that two robots are “near” to each other if, while staying within
their neighbourhoods (subgraphs), they could block each others motions. During the planning,
we will, at each planning step, identify maximal robot neighbourhoods (subgraphs) such that the
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Figure 5: A subdivision of the simple roadmap into two subgraphs A and B. Combining the
subgraphs into super-nodes reduces the size of the super-graph.

robots are not “near” to each other. In this way it will suffice to keep track of the occupied
neighbourhoods, and it will allow us to ignore the exact robot positions in the simple roadmap.

Let us clarify the idea with an example. See Figure 5. We see a simple roadmap G = (V, E) for
the shown free-flying disc-like robot. Let us assume that we want to use it for finding G-discretised
coordinated paths for two such robots A; and A;. For this we can build the induced flat super-
graph F2 = (Vz, Ex), where Vz will be V x V. The problem ((z7,x3), (22, 74)) is solved by the G-
discretised coordinated path corresponding to the path [(z7, 23), (24, 23), (24, 1), (22, 21), (22, 3),
(z2,24)] in FZ. As explained in the previous section, this path is present in the flat super-graph
72,

Now let us consider a subdivision of G into two connected subgraphs A and B (induced by,
respectively, {1, 22,23} and {z4, x5, 26, 27}) as shown in the figure. No node in either of the two
subgraphs blocks an edge in the other subgraph. Hence if A; and Ay are positioned at nodes in,
respectively, A and B, either of the robots can move along any local path within its subgraph,
without possibly colliding with the other (stationary) robot. We say that A and B are independent
(This notion is formalised in Section 6.2.). The idea now is that we replace the set of flat super-
nodes {x1,...,23} x {z4,..., 27} by just one super-node (A, B), and the set of flat super-nodes
{z4,...,x7} x {z1,..., 23} by just one super-node (B, A). Through this we achieve a significant
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size reduction of our super-graph.

Let us again consider the problem ((x7,x3), (22, 24)). The tuples (z7,23) and (3, 24) are now
not longer present as nodes in the super-graph, but instead we have the super-nodes (A, B) and
(B, A) that “contain” (x7,x3) and (z2,24). Hence, we seek a path in our “reduced” graph solving
this problem. For example, (A, B) and (B, A) will be connected by the path [(A, B), (x2,x1), (22, 23),
(B, A)]. We will give the exact definition of the data-structure in the next section. Also we will
show that any G-discretised coordinated path will correspond to a path in the “reduced” super-
graph, and that any path in the “reduced” super-graph can easily be transformed to a G-discretised
coordinated path.

In this example we have just performed a subdivision at 1 level of G. In the multi-level super-
graph method, described in the next section, subdivision are performed at multiple levels. That is,
subgraphs such as A and B in Figure 5 are further subdivided into smaller (connected) subgraphs.
We build a hierarchy of subgraphs, with G as root, and at the lowest level subgraphs consisting
of just 1 node and no edges. The idea works for more than two robots as well. Given n robots,
instead of combining pairs of subgraphs into super-nodes, we will combine n-tuples of subgraphs.

6.2 Formalisation of the multi-level super-graph method

We now formalise the idea introduced in the previous section. Let G = (V, E) again be a simple
roadmap. A key notion in the multi-level concept is that of so called independent G-subgraphs.
We refer to a graph (V,E) with V C V and E = EN (V x V) as a G-subgraph. In other words,
(17, E) is the subgraph of G induced by V. The idea is that a set of G-subgraphs is independent if
none of the subgraphs contains a node that blocks an edge in any of the other G-subgraphs (see
also Figure 6).

Definition 7 Let G = (V,E) be a simple roadmap. Given sets V CV and E C E, we denote
JreV:deec E: Alz)@ Ale) by V@ E.
A set of G-subgraphs {(Vi,Ey),(Va, E2),...,(Va, E,)} is independent if and only if:

Vie{t,on} : Vieqr,ony 10 £ J = Vi @ Ej

The basic idea of multi-level super-graphs now is that we define the super-nodes as tuples
of independent and connected G-subgraphs. This makes sense, since if {(Vi, E1),...,(Va, En)}
is a set of independent and connected G-subgraphs and we have (a1,az,...,a,) € Vi X ... X
V. and (by,ba,...,b,) € Vi x ... X V,, then finding a coordinated path solving the problem
((a1,a2,-..,a,),(b1,ba,...,b,)) can be accomplished by n independent graph searches in the G-
subgraphs {(V1, E1),..., (Va, En)}.

For the construction of a multi-level super-graph we use a data-structure which we refer to as
a G-subdivision tree. It gives a recursive subdivision of G into connected G-subgraphs.

Definition 8 Given a simple roadmap G = (V, E), we define a tree T = (V, E7) to be a G-
subdivision tree, if it has the following properties:

e Fach node in Vr is a connected G-subgraph. We refer to these nodes as T-nodes, and to
the set of T-nodes at level | as V.

e G is the root of T.
o The children (Vi,Ey),...,(Vi, Ey) of each internal T-node (V,E

form a partition of V.

) are such that Vi, Vi

o The leafs all lie at the same level, and each leaf consists of one G-node and no G-edges.

We say that a tuple of T-nodes (X1, Xa, ..., X) covers a tuple of T-nodes ()?1,)2'2,...,)?;6) iff
Vieq1,..ky : Xi is an ancestor of X;. Furthermore, (X1, Xs,...,Xy) covers a tuple of G-nodes
(T1, %2, k) iff Yieqr, k) + T5 € Xi's nodes.

3We say that the root located at level 1, its children at level 2, etc.
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Figure 6: A simple roadmap G for a translating disc, subdivided into G-subgraphs A, B, and C
induced by, respectively, {a;,as,as}, {b1,b2,b3}, and {c1,c2,c3}. A and C are independent, as
well as B and C. However, because the edge (by, bs) is blocked by the node a3, A and B are not
independent. Hence the set {4, B,C'} is neither.

Once we have constructed a G-subdivision tree 7, we can use it to build a multi-level super-
graph Mg, which we then refer to as being 7-induced. We define the nodes of our multi-level
super-graph as tuples of independent 7-nodes of the same level. The key observation with respect

to the size-reduction of our super-graphs is that if a tuple of independent of 7T-nodes (wy, ..., wy,)
covers a tuple of T-nodes (i1, ...,W,), then {wy,...,w,} must be independent as well. This will
allow us to discard potential super-nodes (X, X, ..., X,,) that are covered by others. In this way

any subdivision tree 7 defines a unique multi-level super-graph. This formalised in the following
definition:

Definition 9 Let G = (V, E) be a simple roadmap, T = (V, E7) an associated G-subdivision
tree, n the number of robots, and Fl = (Vr,Ex) the induced flat super-graph. The induced
multi-level super-graph Mg = (Va, Enq), is defined as follows:
o Atuple (X1, Xo,...,Xn) € VE, (for somel) is a node of Mg if and only if (X1, Xz, ..., Xy»)
is independent and no other independent (X1, Xs,...,X,) € Vi covers (X1,Xs,..., X,).
We refer to nodes of M+ as (multi-level) super-nodes.

o A pair of multi-level super-nodes (X,Y) forms an edge in M@, if and only if IX,Y) e
Ex : X covers X AY covers Y. We refer to such an edge (X,Y) as an underlying F-edge of
(X,Y) (there can be more than one). We refer to edges of M as (multi-level) super-edges
(See also Figure 7).

Given a simple roadmap, an associated G-subdivision tree, and the number of robots, Defini-
tion 9 defines uniquely the induced multi-level super-graph Mg = (Vaq, Enq). It can easily be
proven that Mg cannot be larger than 7, but apart from this, there is no theoretical bound
on the size of M@. So in the worst case, which could occur when simple robot is very large with
respect the free space, Mg can be as large as 7. However, as simulation results presented in
Section 8.4 indicate, in realistic cases the size of M- is typically much smaller than that of the
induced flat super-graph F2.4

4 Also, as we will see later (Sections 6.3 and 8), it typically suffices to build only a relatively small (but properly
chosen) portion of the whole multi-level structure for capturing the connectivity of the free C-space of the composite
robot.
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V]
((a,b,d),(a,c,d)) € Er = ((A,B,D),(A,C,D)) € Exm

Figure 7: Assume (A, B,D) and (A,C,D) are super-nodes in a multi-level super-graph Mg . If
((a,b,d),(a,c,d)) is an edge in the corresponding flat super-graph FZ, then ((A, B, D), (A,C, D))
will be an edge in Mg

We want to stress here that the flat super-graph F(%, which can be enormous for more than 3
robots, is only used for definition purposes. For the actual construction of our multi-level graph
M@+ we fortunately need not to compute F7%. Given a simple roadmap G = (V,E) and an
associated G-subdivision tree 7, Mg can be computed with an output sensitive algorithm in
O (V| + |Eam]) log(|V])) time, using O(|Vaq|+|Erq|) storage (or O(|Vay|), if one restricts M-
to be a forest). The computation costs for G and T of course depend on the used algorithms. The
storage for T will in general be O ((|[V'| + |E|)log |V|). We will not give details here.

The question is whether we loose any information when using the multi-level super-graph
instead of the flat super-graph. This appears is not to be the case. Theorem 1 shows that
multi-level super-graphs are equivalent to the flat super-graphs by which they are induced. Hence
we reduce storage without losing power. Theorem 1 uses a notion of covering introduced in
Definition 10.

Definition 10 Let G = (V, E) be a simple roadmap, n the number of robots, Ff = (Vir, Ex) the
induced flat super-graph, Mg = (Vaq, Earq) an induced multi-level super-graph, and Pr a path
in F5 describing a G-discretised coordinated path P.

e A node X € Vyg covers Pr if and only if each node x of Pr is covered by X.
o A path Py = [X1,...,X,,] in M@ covers Pr if and only if
AQ1,. ., Qm :Pr=Q1® ... 2Qm AYie {l,...,m}: X; covers Q;
where Q ® Q denotes here the concatenation of the graph paths Q and Q

o A path Py =[Xyq,..., Xp] in MR covers P if and only if it covers Pr.
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(91,---

Xi(=Xg)

Figure 8: Transformation of a path Py = [Xy,..., X}] in a multi-level super-graph to a G-
discretised coordinated path Pr = Py T & P, ®To ® ... D Py & Tr_1 & Pi, where T; is the
trivial coordinated path corresponding to the F-edge e;.

Theorem 1 Let G = (V,E) be a simple roadmap, n the number of robots, F& = (Vr, Ex) the
induced flat super-graph, and Mg+ = (Vaq, Eam) an induced multi-level super-graph. If Pr is a
path in F§ then there exists a path Pag in M@ such that Py covers Pr.

Proof

Let Pr be a path in 7. Each x € Vi is covered by exactly one X € V. This follows directly
from the definition of V. Hence, we can partition Pr into say k consecutive (and maximal)
segments Q1,...,Q, such that all flat super-nodes in Q; (for 1 < i < k) are covered by a single
multi-level super-node X;. It remains to be shown that X, is connected to X;y; (for 1 <i<k—1)
by a multi-level super-edge. Let ¢; be the last element of @; and ¢;11 the first in Q;4;. Because
Pr is a path in F2 we know that (¢;, ¢i+1) € Ex. Hence it follows from the definition of Ex that
(Xi7Xi+1) € Eng.

A path retrieved from a multi-level super-graph M@ - does not directly describe a G-discretised
coordinated path. Given a particular problem ((s1,...,3n),(g1,...,9n)) with the s;’s and g¢;’s in
V, one first has to map (s1,...,s,) and (g1,...,9,) to nodes X, and X, of M7, then retrieve
a path connecting X, and X, from Mg, and finally transform this path into a G-discretised
coordinated path solving the original problem. Algorithm 2 describes how these steps can be
performed (See also Figure 8).

Algorithm 2 — Multi-level super-graph path retrieval

Let ((S1,---4,80), (g1, -, 9n)), with the s;’s and g;’s in V', be a problem to solve.

1. Identify nodes Xs € Vi and X, € Vi such that X covers (s1,...,S,) and X, covers
(g1, 9n)-
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2. Find the shortest path Py = [X1,..., Xi] in M@y connecting X, and X, (with X1 = X,
and X = Xg). If no such path exists, then there exists no G-discretised solution to the
problem (Theorem 1).

3. Foreachi € {1,...,k—1}, let e; = (Yiq, Yi) be an underlying F-edge of (X;, Xiy1), and let
T; be the trivial coordinated path corresponding to e;.

4. Find a G-discretised coordinated path Py connecting (s1,...,8n) to Yi4, such that Py is
covered by Xi.

5. For each i € {2,...,k —1} find a G-discretised coordinated path P; connecting Y;_1. to Yi,
such that P; is covered by X;.

6. Find a G-discretised coordinated path Py connecting Yi_1. to (g1,...,9n), such that Py is
covered by Xy.

7. Let Pr=PioTioPdTo®.. ®P 1 ®T, 1D Py
Now Pr is a G-discretised coordinated path solving the problem ((s1,...,5n),(g1,--+,9n))-

So in Step 5 we repeatedly compute a G-discretised coordinated path P; connecting a pair of
flat super-nodes (Y;_1., Yiq). It is easy to see that this is always possible. Y;_;, and Y4 are covered
by the same multi-level super-node X;. Due to the definition of V4, we know that X; consists of
n independent and connected G-subgraphs G1,...,G,. Hence, we can obtain the G-discretised
coordinated path P; by performing n independent and local graph searches in the subgraphs G4
to G,. An analogous argument holds for the Steps 4 and 6.

In Algorithm 2 we assume that the start and goal configurations are present as nodes in G.
Algorithm 3 now describes how an arbitrary multi-robot problem can be tackled, using coordinated
retractions to G and Algorithm 2.

Algorithm 3 — Multi-level super-graph method

Let G be a simple roadmap, and Mg+ an induced multi-level super-graph. Let ((s1,...,5n),(91,---,
gn)) be a problem to be solved.

1. Compute a coordinated retraction (Ps,, ..., Ps,) for (s1,...,8n). (If this fails, then G is of
insufficient density.)

2. Compute a coordinated retraction (Py,,...,Py,) for (g1,-..,9n). (If this fails, then G is of
insufficient density.)

3. Retrieve a G-discretised coordinated path P connecting (Ps, (1),..., Py (1)) and (P, (1),...,
P, (1)) (Algorithm 2). (If this fails, then there exists no G-discretised solution to the (re-
tracted) problem.)

4. Let P be the concatenation of (Ps,,...,Ps,), P, and (P,,,...,P,,) reversed.
5. Smooth P.

The smoothing step (5) will be treated, as mentioned earlier, in Section 7.

6.3 Sieving the multi-level super-graphs

Simulation results (see also Section 8.4) show that the size of multi-level super-graphs is consider-
ably smaller than that of equivalent flat super-graphs. Further size-reduction can be achieved by
using what we refer to as sieved multi-level super-graphs. From experiments we have observed that
the connectivity of the free C-space of the composite robot is typically captured by only a quite
small portion of M, namely by that portion constructed from the relatively large subgraphs in
T. For this reason, we construct Mg incrementally. We sort the subgraphs in 7 by size, and
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pick them in reversed order of size. For each such picked subgraph we extend the super-graph
M. accordingly. By keeping track of the connected components in Mg we can determine the
moment at which the free space connectivity has been captured, and at this point the super-graph
construction is stopped.

This however asks for an extra action prior to the graph search in the multi-level super-graph
(Step 3 in Algorithm 3). Not every flat super-node will now be covered by a multi-level super-node.
Hence, given a problem (s,g) (=((s1,.--,5n),(g1,--.,9n)) with the s;’s and g¢;’s in V'), we must
first find (G-discretised) coordinated paths connecting the flat super-nodes s and g to flat super-
nodes § and § that are covered (by some multi-level super-nodes X and Y'). We use probabilistic
motions along the simple roadmap for finding such paths, as described below in Algorithm 4.

Algorithm 4 — Connecting to multi-level super-nodes

Let (¢1,...,cpn) be a flat super-node that we want to connect to a covered flat super-node.
Initially set Q to be (I(c1),...,I(cn)).
while Q(1) not covered (by a multi-level super-node):

Let (c1,...,cn) = Q(1).

Pick a random k from {1,...,n}.

Let E be the set of outgoing edges of node ci, (in G).

Pick a random edge e from E.

Let Q = (I(c1),...,I(cr—1),L(e), I(ckt1),---,1(cn))-

if e not blocked by c1,...,CL—1,Cht1y---,Cn

then set Q = Q & Q.

This algorithm fits into Algorithm 3 as follows: The probabilistic G-discretised paths, obtained
by Algorithm 4, connect the 2 retraction paths (computed in the steps 1 and 2 of Algorithm 3)
with the G-discretised coordinated path P (computed in step 3 of Algorithm 3). So Step 4 of
Algorithm 3) now consists of the concatenation of 5 coordinated paths.

7 Smoothing the coordinated paths

The last step in both the flat super-graph method as well as the multi-level super-graph method
consists of smoothing the coordinated path found. The goal is to shortcut redundant path segments
and combine alternating simple robot motions into simultaneous ones.

Again, we assume that our composite robot is a n-tuple (A, ...,.A,) consisting of n instances
of a simple robot A, and that L € C[®' is a local planner for A. We use the following proba-
bilistic algorithm for reducing the lengths of coordinated paths. Recall here that the length of a
coordinated path is defined as the sum of the lengths of the composing simple paths.

Algorithm 5 — Smoothing a coordinated path

Let P = (P,...,P,) be the coordinated path that is to be smoothed.
loop until ...

Randomly pick t1,ts € [0,1] with t; < ts.

Let (a1, .. .,an) = P(t1) and (by,...,b,) = P(t2)

Let Q = (L((Ll, bl)a AR L(ana bn))

if Q is collision free and shorter than the [t1,ts] segment of P

then for all t € [t1, 2] let P(t) = Q ( =3 )

to—1t1

So we try to replace random portions of the path P by path segments computed by the local
planner for each of the simple robots. However, such a replacement takes place only if the new
path segment is collision-free and shorter than the old one.
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Figure 9: A car-like robot, positioned at configuration (z,y,8).

As the dots in the above algorithm imply, the stop criterion can be chosen in various ways.
A problem is that, in general, it is unknown what the length of the shortest (coordinated) path
solving a particular problem is. Hence, we do not have an absolute stop criterion. Typical criteria
one can use are to smooth for a fixed amount of time, or up to the point where no significant gain
is achieved any longer.

Experiments with Algorithm 5 show that one obtains paths that (intuitively) look very good,
in running times that are on the order of seconds.

8 Application to car-like robots and simulation results

We have applied both the flat super-graph method as well as the multi-level super-graph method
to car-like robots. First, in Section 8.1, we describe the car-like robots that we use. Then,
in Section 8.2 we briefly describe the Probabilistic Path Planner (or PPP) which we use for
constructing the simple roadmaps. We proceed, in Section 8.3, with some details about the
construction of the super-graphs (e.g., how to construct the G-subdivision trees), and finally we
present simulation results for a number of problems involving three, four, and five car-like rohots.

8.1 Car-like robots

A car-like robot is a mobile object, nonholonomically constrained in its motions such that it
can only move forwards and backwards, and follow certain curves of a lower-bounded turning
radius (for a formal definition, see [Lat91, SO95b]). Intuitively, it can perform the motions that
an ordinary car can. A configuration of a car-like robot consists of three parameters z, y, and 6,
where (x,y) defines the robots planar position, and 6 its orientation (see also Figure 9). Hence, it
has a 3-dimensional C-space.

8.2 The Probabilistic Path Planner PPP

The Probabilistic Path Planner (or PPP), which we use for the construction of the simple roadmaps,
is conceptually very simple. An undirected graph G = (V, E) is constructed, with nodes corre-
sponding to free configurations of the robot and edges to simple feasible paths.

The construction is done incrementally, by repeatedly adding a random® free configuration ¢
to V, and trying to connect ¢ to nearby nodes in V', which we refer to as ¢’s neighbours, by a local
planner. Whenever such a connection succeeds, a corresponding edge is added to E. The local

5Heuristics are used for generating more nodes in certain “interesting” areas of the free C-space.
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planner, which has already been introduced in Section 3, is a simple but fast planner. Given two
argument configurations a and b, it constructs a path connecting a and b that is feasible in absence
of obstacles. Then, it tests whether this path intersects any obstacles. If so, failure is returned,
and otherwise the local planner succeeds. If the local planner is chosen properly (see also Section 9
and [SO95b, Sve96)), then probabilistic completeness of the (global) planner is guaranteed.

The local planner and an associated distance measure, used for selecting the neighbours of a
new node, are the only robot dependent components of PPP. This makes the method flexible and
easily applicable to different robot-types. This flexibility propagates to the multi-robot extension
that we present in this paper. For more details on PPP we refer the reader to [OS94, KL94,
HST94, SO95b, KSLO96, Kav93].

Applying PPP to car-like robots asks for a local planner that computes paths that are feasible
for these robots. We use the RTR local planner, which uses simple curves (that is, circle arcs of
constant turning radii) and straight line motions for building the local paths. Given two argument
configurations a and b, the planner constructs the shortest path consisting of a simple curve,
followed by a straight line motion, followed by another simple curve, that connects a and b. This
local planner has the properties that guarantee probabilistic completeness. For more details on
PPP applied to car-like robots, we refer to previous work [SO95b].

8.3 Construction of the super-graphs

Note that, given a simple roadmap G = (V, E), Definition 8 gives no unique specification of a
G-subdivision tree 7. Hence, an important question is how to compute this data-structure. In
our implementation we use a simple heuristic algorithm. After the root r (=G) has been created,
a number of its nodes are selected heuristically, and subgraphs are grown around these nodes,
until all nodes of r lie in some subgraph. Heuristics are used that aim at keeping the subgraphs
compact. These subgraphs form the children of r, and the procedure is applied recursively to each
of these. The recursion stops at subgraphs consisting of just one node. Care is taking to build a
perfectly balanced tree, by down-copying those leafs that do not lie at the deepest level of T.

Regarding the construction of the multi-level super-graphs M@, we apply the “sieving” idea
as described in Section 6.3. That is, we construct Mg incrementally, by picking the subgraphs
of T in order of decreasing size and, for each such subgraph, extending Mg appropriately (as
described by Definition 9). The construction is stopped at the moment that M. consists of
just one major component. More specifically, we stop the construction at the point where 95%
of the flat super-nodes covered by nodes of Mg are covered by nodes of M@ lying in the
same connected component. The computation costs for constructing a multi-level super-graph
M = (Va, Eam), induced by a simple roadmap G = (V, E), are O ((|[Vam] + [Eam]) log(|V])),
and O(|Vap| + |Eaq|) storage is used.

Finally, for solving multi-robot path planning problems with our super-graphs, we need to
compute coordinated retractions (as defined in Definition 6). We do this again in a simple way.
Given a tuple (¢1,...,¢,) € Cy, for each ¢; we pick the nearest node ¢ in V, and we construct
(L(e1,é1),-..,L(cn, én)). If this gives no collisions (neither between robots and obstacles and nor
between robots mutually), we take this path as coordinated retraction. Otherwise the retraction
fails. To remedy such failures, one must either extend the simple roadmap, or use a more powerful
retraction method.

8.4 Simulation results

We have implemented both the flat super-graph method as the multi-level super-graph method
in C++. We have run the resulting planners on various environments for different numbers of
robots. Since the size of flat super-graphs depends exponentially on the number of robots, the flat
super-graph method does not yield practical results for more than 3 robots. For this reason we
only present results obtained with the multi-level planner (see [SO95a] for some results obtained
with the flat method). The experiments were performed on a Silicon Graphics Indigo? workstation
rated with 96.5 SPEC{p92 and 90.4 SPECint92.
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Figure 10: Scene 1, together with 3 independently constructed roadmaps. In the top-left corner
of the scene we see the simple (car-like) robot.

We show results for 5 different scenes, and in each scene we present results for one or more
simple roadmaps that are used for generating multi-level super-graphs. For each scene we report,
for varying numbers of (simple) robots, the computations costs (in seconds) and the memory
consumption of the associated multi-level super-graphs. Also we give indications of the computa-
tion costs required for retrieving coordinated paths from the super-graphs. Finally we show some
snapshots of retrieved coordinated paths.

Scene 1 See Figure 10 for the first scene, and 3 independently constructed roadmaps of increasing
size. The scene is relatively easy in the sense that for most path planning problems there exist
many (topologically) different solutions.

In the two tables below the simulation results are given. In the left table, we see the sizes and
computation costs of the simple roadmaps (1 corresponds to the leftmost roadmap, 2 to the middle
roadmap, and 3 to the rightmost roadmap in Figure 10). In the right table we have, for each of
the 3 simple roadmaps, the sizes and computation costs of the multi-level super-graphs for 3, 4,
and 5 robots. The two leftmost columns (labelled G and n) define the used simple roadmap and
the number of robots. The third and fourth column (|V| and |Ex4|) give the size of the resulting
multi-level super-graph (in terms of nodes and edges). In the fifth column (¢£x¢) the computation
time required for the construction of the multi-level super-graph is given (this does not include
the computation time of the simple roadmap, which is given in the left table). Finally, the last
column (¢,) indicates the time required for the retrieval (including smoothing) of a coordinated
path from the super-graph. This value of course varies over different problems, and the values
that we give are merely meant as indications.
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So we see that the number of super-nodes lies on the order of thousands, and the computation
times are less than one minute. Not surprisingly, the super-graph size increases with the number
of robots. However, we see that the size of the simple roadmap does not seem to have great
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Figure 11: Snapshots of a coordinated path for 5 robots in Scene 1, retrieved from a multi-level
super-graph.

=

h g 4
impact on the size of the multi-level super-graph. In fact, for 5 robots we see that the super-graph
size even decreases with increasing size of the simple roadmaps. This is caused by the “sieving”
algorithm, as described in Section 6.3, which prunes the super-graph structure. It appears that
this pruning can be performed more effectively with large (and dense) simple roadmaps than with
small ones. Thanks to this, we can use simple roadmaps of high node density (such as the third
simple roadmap in Figure 10).

The results given in the table say nothing about the quality of the super-graph, in terms of how
well it captures the connectivity of the composite C-space, or, in other words, how many queries
it does or does not solve. It is not clear how this should be measured. Experiments however make
us believe that the super-graph induced by the simple roadmap 3 is sufficient for solving almost

all non-pathetic problems (under which the example showed in Figure 11). This is a result of the
high node density of the underlying simple roadmap.
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Figure 12: Scene 2.

Scene 2 See Figure 12 for the second scene, together with 3 independently constructed roadmaps.
This is a more complicated scene. In particular in the middle regions, it is difficult for the robots
to pass each other, and much coordination of their motions is required.

In the two tables below the simulation results are again given. These are of the same form
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Figure 13: Snapshots of a coordinated path for 5 robots in Scene 2, retrieved from a multi-level
super-graph.

as for Scene 1. We see that Scene 2 indeed requires larger super-graphs. For 5 robots and the
third simple roadmap, the algorithm even failed to generate a super-graph consisting of one major
component (due to memory problems). Again we see that, whereas the number of robots has
large impact on the size of the data-structure, the size of the simple roadmap has not. As in
the previous example, the third simple roadmap has sufficient density to yield a super-graph that
solves most practical problems in the scene. See Figure 13 for snapshots of a coordinated path
retrieved from it.
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1[3] 186 546 32 [ 50
1 [ 4] 7752 | 37968 | 4.6 || 10.0
(G IVI]IEI] te | 1 [ 5] 127680 | 776160 | 132.3 || 30.0
141 51729 2 [3] 732 4110 | 64 [ 5.0
2 [ 60 [ 111 ] 6.7 2 [4] 8976 | 52176 | 8.9 | 10.0
3 [ 131287 [ 19.1 2 [ 5| 78120 | 552000 | 99.7 || 20.0
33 3882 [ 22758 [ 384 [ 5.0
3 [ 4] 62520 [ 571488 | 934 [ 15.0
3[5 - - - -

Scenes 3, 4, and 5 The Scenes 3, 4, and 5, shown in Figure 14 together with the used simple
roadmaps, are of a very different nature than the first two scenes. The free space for the simple
robot is very narrow, and any maneuver of one simple robot requires appropriate motions of the
other robots as well. These are typical scenes where previous approaches failed.

We built multi-level super-graphs for 3 robots in Scene 3, for 4 robots in Scene 4, and for
5 robots in Scene 5. The used simple roadmaps have about 50 nodes and 120 edges, and their
construction time is about 3.5 seconds.

In the following table the results for Scene 3 are given (for 3 robots). We see that in 6 seconds
a multi-level super-graph is constructed that consists of 7800 nodes and almost 50.000 edges.
Although the node density of the simple roadmap is quite low, most interesting problems are
solved by the induced super-graph. One such problem is the so-called swapping problem, where
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Figure 15: Snapshots of a coordinated path for 5 robots in Scene 5, retrieved from a multi-level
super-graph.

the three robot are lined up in the main corridor (that is, vertically), and they are to reverse their
order.

Lo [ Vaul [ [Badl [ tra || £ |
[3 ] 7800 | 47496 [ 6.0 [ L5 |

For Scene 4 and 4 simple robots we have the following results. More than 40.000 super-nodes
and over 250.000 super-edges are required in the super-graph for grasping the composite robots
free space connectivity. The computation time is 41.1 seconds. Again the resulting super-graphs
solves most interesting problems, under which the swapping problem.

(o ] Vaal [ Enal [ tae [ 2 ]
| 4 ] 40656 | 265728 [ 41.1 || 5.0 |

For 5 robots in Scene 5 things get really difficult. A super-graph with nearly 300.000 nodes
and nearly 2.000.000 edges is required. The computation time is more than 20 minutes. See
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Figure 15 for snapshots of a coordinated path, retrieved from the constructed super-graph, solving
the swapping problem for 5 robots.

(ol WVl | [Badd [ v [| & |

| 5 || 318360 | 1839600 | 1346.7 || 12.0 |

Summarising, we can say that the super-graphs for the Scenes 3, 4, and 5 are significantly
larger than those for the first two scenes. The cause for this must be that the compact structure
of the free space in the Scenes 3, 4, and 5, as well as the relatively large size of the robot, cause
more subgraphs to interfere. Hence, in the last three scenes, subdivision into smaller subgraphs is
required.

9 Probabilistic completeness with PPP

In this section we show that solving G-discretised path planning problems is sufficient, in the sense
that this guarantees a form of probabilistic completeness for locally controllable simple robots. We
show that, if the simple roadmap is constructed properly with PPP, then, given a solvable multi-
robot problem, the probability that there exists a G-discretised solution to this problem goes to
1 when the construction time of the simple roadmap G goes to infinity. By proper construction
we mean that a local planner L is used that satisfies a local topological property exploiting the
local controllability of the simple robot. First, in Section 9.1, we explain local controllability and
we define the local topological property. Then, in Section 9.2 we give a proof of the completeness
claim.

9.1 Local controllability and the local topological property

First we describe the concept local controllability (in the literature also referred to as small-
time local controllability or local-local controllability), adopting the terminology introduced by
Sussman [Sus83]. Given a robot A, let ¥4 be its control system. That is, ¥ 4 describes the
velocities that A can attain in C-space. For a configuration ¢ of a robot A, the set of configurations
that A can reach within time 7T is denoted by As (< T, ¢). A is defined to be locally controllable
iff for any configuration ¢ € C Ax , (< T, c¢) contains a neighbourhood of ¢ (or, equivalently, a ball
centred at ¢) for all T > 0. It is a well-known fact that, given a configuration ¢, the area a locally
controllable robot A can reach without leaving the e-ball around ¢ (for any € > 0) is the entire
open e-ball around c.

We now assume that robot A is locally controllable. What will be required is a local planner L
for A that exploits the robots local controllability. This will be the case if L respects what we call
the local topological property (TP), as defined in Definition 12 using the notion of e-reachability
introduced in Definition 11. We denote the ball (in C-space) of radius € centred at configuration
¢ by Bc(c).

Definition 11 Let L be a local planner for A. Furthermore let € > 0 and ¢ € C be given. The
e-reachable area of ¢ by L, denoted by Ry ((c), is defined by
Ry (c) = {¢ € Bc(c)|L(c, ) is entirely contained in Be(c)}

Definition 12 Let L be a local planner for A. We say L has the local topological property TP

iff
Ve>0:30 >0:VeeC: Bs(e) C Rree)

We refer to Bs(c) as the e-reachable d-ball of c.

A local planner verifying TP, at least in theory, always exists, due to the robots local controllability.
It has been shown [SO95b, SO95c¢, Sve96] that a local planner for a robot A verifying TP guarantees
probabilistic completeness of PPP for A. In the next section we show that it also guarantees
probabilistic completeness of the multi-robot super-graph planners when using simple roadmaps
constructed by PPP.
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9.2 Probabilistic completeness proof

Given a set of free configurations W and a simple roadmap G = (V, E) computed by the PPP,
we denote by G W W the graph (V UW,E U{(a,b) € W x V|L(a,b) is collision free}). In other
words, GW W is the graph that one obtains by adding the configurations in W to G together with
corresponding edges, in the same way as the random nodes are added to G by PPP. Furthermore,
we denote PPP using a specific local planner L by PPP(L). We need the notion of C-space
clearance of coordinated paths.

Definition 13 Let Q = (Q1,...,Qxn) be a coordinated path for the composite robot (Ay, ..., Ap).
We say that Q has a C-space clearance of € iff

Vit €[0,1] : V(er,. .. ¢n) € B(Q1(t)) X ... X B(Qn(t)) i ety ooicn €ECr ANi# § = ~Ale;) @ Aley)

Intuitively Definition 13 states that a coordinated path @ has a C-space clearance of € if anywhere
in @ every simple robot can be displaced (in C-space) over a distance < e without possibly
introducing any collisions.

Theorem 2 Let L be a local planner verifying TP for a locally controllable robot A. Let ((s1,- ..,
$n),(g1,---,9n)) be an arbitrary problem for the composite robot (A, ..., A,), for which there
exists a solution in the open free C-space of the composite robot (that is, one without robot-robot
and robot-obstacle contacts). Then, within a finite amount of time, PPP(L) will construct a

simple roadmap G such that a G-discretised solution for the problem exists, where G = G
{817"'78nvglv"'7gn}-
Proof

It is easily shown that the existence of a coordinated path in the open free C-space is equivalent
to the existence of a coordinated path of non-zero C-space clearance, and that this again implies
the existence of a discretised coordinated path of a certain positive C-space clearance.

So let P be a discretised coordinated path, solving ((s1,...,84),(g1,---,9a)), of a C-space
clearance € > 0. Take > 0 such that

VeeC:Bs C Ry s.(c)

We know that such a § > 0 exists, due to the fact that L verifies the local topological property
TP.

Since P is a discretised coordinated path, it is composed of trivial coordinated paths, that is,
coordinated paths describing motions where exactly one simple robot moves. Since any subpath
of a trivial coordinated path is itself a trivial coordinated path, we can subdivide P into trivial
coordinated paths of arbitrarily short length. So take trivial coordinated paths Q1,...,Q} such
that

1
P=Q1€B...€BQk/\Vi€{1,...,k}:length(Qi)§5(5

Let c(inys- -+ Clin)s C(i41,1)s - - - » C(i+1,n) e configurations of A such that (c(;1),-..,c(in)) is con-
nected to (¢(i4+1,1), - - - C(i+1,n)) by the path Q; (for all 1 <4 < k). Furthermore, let m; € {1,...,n}
be such that c(; m;) # C(i+1,m;) (mi is unique).

Now let G = (V, E) be a simple roadmap constructed by PPP(L), and assume that for each
¢(i,;) there exists a node n(; ;) € V within distance %5. Formally, for all ¢ € {1,...,k + 1} and
j €{1,...,n}, assume there exist n(; ;) such that n¢; ;) € VN Bis(c(i,j))-

Let Fg be the flat super-graph induced by G' (and n). Let N; = (n(i1),...,0(i,n)). We now
claim that (1) Vi € {1,...,k+ 1} : N; € Ve, and (2) Vi € {1,...,k}: (N;yNiy1) € Er.

e The first claim follows directly from the definition of C-space clearance of coordinated paths.
Recall that each (c(i1),...,¢(in)) = P(t) for some ¢ € [0,1], and that P has a C-space
clearance of €. Due to the fact that (n(;1),...,n(n)) € (B%(S(C(i,l)), .. -73%5(%‘@))) and
0 < € we know that

N(i1)y - Nin) € Cr AJ1 # J2 = A, ) @ AR, )
This means that NV; € Vr.
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Figure 16: Hlustration to the proof of Theorem 2.

e The second claim can be proven using the local topological property of L. We have seen
that D(C(i,m;)» Clit1,m;)) < %5, D(C(i,m;) M(iymi)) < %5, and D(C(i41,m;)> Mit1,m;)) < %5.
From these inequalities it follows that D(n(; m,), M(i+1,m,)) < 6. So, due to L verifying TP,
it follows that

L(n(i,m;)7 n(i+1,m;)) lies in B%e(”(i,m;))
and, hence,
L(1(5,m;)> N(i41,m,)) lies in B%e+%5(c(i,m;)> C Be(C(i,m,))-
SO L(N(i,m,;), N(i+1,m,)) lies within distance € of ¢(; ,,,;), and since each n; ;) with j # m; lies
within distance € of ¢(; ;, it follows from the fact that (c;1),..., ¢ n)) lies on a coordinated
path of C-space clearance e that

A g)) @ AL my ) N(it1,ms)) for j #my.
This concludes the proof of claim (2). See also Figure 16.

From (1) and (2) it directly follows that (n(1,1),-..,7(1,,)) is connected by a G-discretised path to
(n(k+1,1), .. .,n(kﬂm)). Furthermore, by arguments analogous to that used in the proof of claim
(2), one can show that (s1,...,sy) is connected to (¢(1,1), -+, C(1,n)) a0 (C(rg1,1)s- -5 C(kt1,n)) tO
(g1,...,gn) by G-discretised paths, where G = G W {s1,...,5,,01,...,0n}.

The assumption was that for each c(; ;) there exists a node in G' within distance %(5. Due to the
random node generation of PPP, the probability that each (C-space) ball of radius %6 contains a
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node of G goes to 1 as the running time of PPP goes to infinity. This concludes the proof of the
theorem.

Theorem 2 states that, given an arbitrary solvable problem for the composite robot, PPP
will, within a finite amount of time, construct a simple roadmap G with which the problem can
be solved. This does not say anything about the expected running times required for solving
particular multi-robot path planning problems. As the results presented in the previous section
illustrate, these running times are highly dependent on the complexity of the scene. Currently we
are working on methods to give upper bounds on the expected running times of the algorithm, in
terms of certain geometrical properties of the free C-space (see also [Sve96]).

10 Conclusions

We have presented a new approach to multi-robot path planning, that is particularly suited for
constrained environments. Roadmaps for the composite robot are derived from roadmaps for
the underlying simple robots. The power of the presented approach lies in the fact that only
self-collision avoidance is dealt with for the composite robot, while all other (holonomic and
nonholonomic) constraints are solved in the configuration spaces of the simple robots. Hence,
expensive computations in the configuration space of the composite robot are avoided. Also, the
method is probabilistically complete.

The roadmaps for the simple robots can be computed via PPP, a probabilistic single-robot
method that has recently been developed and applied to a broad variety of robots. PPP is very
time-efficient and flexible, in the sense that it is easily applied to different robots. We have shown
that this flexibility propagates to the presented multi-robot extension by applying the multi-
robot method to car-like robots. Simulation results indicate that the method is very efficient in
both computation time and memory. Another nice property of the method is that a super-graph
constructed for a particular problem can be reused for solving other multi-robot problems (in
the same static environment) as well. However, the coordinated retractions, path searches in the
super-graph, and smoothing, must be performed for every individual query.

There remain many possible improvements. For example, we have done only few experiments
with different types of G-subdivision trees. It is important to investigate the influence of the
numerous possibilities on the performance of the multi-level super-graph planner. For many ap-
plications, it even seems sensible to use characteristics of the workspace geometry for determining
the subgraphs in the G-subdivision tree.

We have seen that for up to 5 independent robots the method proves practical. However, in
many applications one has to deal with much larger fleets of mobile robots. Due to the enormous
complexity of such systems, only decoupled planners can be used here. We think our method
can be integrated into such decoupled planners for resolving deadlock situations in specific (local)
workspace areas where these could arise. For example, if M is such an area, the global decoupled
planner could enforce a rule stating that, at any time instant, no more than e.g. 4 robots are
allowed to be present in M. Path planning within M can then be done by a centralised planner
like ours.
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