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Abstract

The purpose of this report1 is to de�ne optic 
ow for scalar and density images without using
a priori knowledge other than its de�ning conservation principle, and to incorporate measurement

duality, notably the scale-space paradigm. It is argued that the design of optic 
ow based appli-
cations may bene�t from a manifest separation between factual image structure on the one hand,
and goal-speci�c details and hypotheses about image 
ow formation on the other. The approach
is based on a physical symmetry principle known as gauge invariance. Data-independent models
can be incorporated by means of admissible gauge conditions, each of which may single out a dis-
tinct solution, but all of which must be compatible with the evidence supported by the image data.
The theory is illustrated by examples and veri�ed by simulations, and performance is compared to
several techniques reported in the literature.

1 Introduction

The conventional \spacetime" representation of a movie as a sequence of consecutive time frames could
be called pseudo-static in the sense that it does not explicitly account for a kinematic relation between
local image samples. Such relations naturally arise as a consequence of apparent conservation laws. It is
for this reason that the concept of \optic 
ow" has been introduced by Gibson in the context of optical
pilot navigation [26].

Nowadays optic 
ow has become a familiar, yet still confusing concept in computer vision and image
analysis. A meaningful de�nition depends very much on data-independent models. It is therefore of
fundamental importance to study optic 
ow in the context of structural conventions and data evidence
without reference to subjective factors.

The approach adopted in this article is inspired by original work of Arnspang [2, 3, 4, 5], which in
turn pursues the classical approach of Horn and Schunck [31]. However, the novelty of this article is
threefold:

� Measurement duality is taken into account. More speci�cally we think of optic 
ow extraction as
a measurement process on raw data that cannot be decoupled from the �ducial collection of image
processing �lters used to probe the data. The principle of duality is explained in Section 2.1.

� We do not incorporate semantics beyond a level needed to de�ne image structure (\proto-semantics").
This gives leeway to bring in prior knowledge and assertions about image formation, task, et cetera,
which is needed for speci�c applications. We point out how this can be accomplished in the setting
of a so-called gauge �eld theory , the idea of which is outlined in Section 2.2.

� We propose a robust computational recipe, di�erent from existing schemes, to assess the 
ow up
to any desired order of approximation. This is the subject of Section 3.

An implication of duality is that our optic 
ow �eld is not of a \speedometer" type (one velocity per
base point), but is de�ned by virtue of a set of �ducial \point operators". In particular we consider
the familiar Gaussian scale-space paradigm [35, 39, 84], and show in which precise sense the problem of
\deep structure" naturally carries over to optic 
ow. This problem is induced by the fact that there are

1Accepted for publication in the International Journal of Computer Vision.
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no a priori preferred spatial and temporal inner scales. Scale preferences are most sensibly inferred a
posteriori from image structure given a practical task and a suitable model [55, 56, 58, 64, 65, 66]. In
particular, spatial and temporal scales can be adjusted to 
ow �eld, and vice versa, which seems natural
if only for considerations of dimensional analysis: velocity and spacetime scales must be physically
dependent. In particular, motion transparency is not precluded from the outset.

For the sake of simplicity we consider images in which grey-value represents a relevant physical
parameter associated with some conserved quantity. We distinguish two usual cases, one in which the
quantity of interest is a scalar , and one in which it represents a density [15]. For the sake of de�niteness
one may think of depth in the case of range imaging, and of proton density cine-MR, respectively.
(Caution: \shading" does not fall in either category unless by way of approximation or under suitable
conditions.) For reasons of brevity we concentrate on the scalar case, and only brie
y touch upon the
density case. Section 4 serves as a test and illustration of the theory based on an analytically tractable
stimulus. In Section 5 we make a conceptual comparison with similar models proposed in the literature,
notably by Otte and Nagel [68] and by Werkhoven and Koenderink [83]. We also describe a quantitative
study on a benchmark sequence, and compare performance with results from existing techniques as
reported by Barron et al. [7]. We summarise results in Section 6 and discuss some aspects relevant for
applications and future development.

2 Preliminaries

This section serves to introduce some preliminary concepts that are essential in order to appreciate
the precise de�nition of optic 
ow, which will be presented in the next section. We also establish the
notation.

2.1 The Duality Paradigm

It is impossible to conceive of a grey-value sample without accounting for some kind of \measurement
aperture". Thus in order to make inferences one has to rely on mutual interaction between a \naked"
source �eld (a raw image sequence in digital format, say) and a conventionally designed class of probing
devices, or �lters. This state of a�airs is familiar to mathematicians as duality [8, 9, 74, 78], and is a
public fact to physicists.

Needless to say that duality a�ects image analysis. It introduces an inevitable bias; we are interested
in the source, not in the device. To some extent the bias will be eliminated if we consider a large ensemble
of independent devices, or �lter bank . The latter then becomes the descriptive paradigm for modelling
the source of interest [17, 18].

A convenient way to proceed is to de�ne a linear �lter space, � say. The set of all continuous
mappings �! IR is known as its topological dual , and is denoted �0. Thus instead of representing raw
images as functions we may consider them as mappings of localised �lters into the real numbers (\local
samples").

For general image processing purposes one could take smooth �lters of rapid decay, S(IRn) (Schwartz
space) [9, 17, 18, 21, 72]. \Rapid decay" is a condition to enforce �lter con�nement. Smoothness and
rapid decay are strong topological requirements, yet insigni�cant constraints from a pragmatic point of
view. This is so because the raw image data are modelled by the topological dual S0(IRn) (tempered
distributions), which is richer in structure than any of the prototypical Banach spaces Lp(IRn) usually
encountered to model such data (p � 1, typically p = 1; 2;1). In particular we decline from assertions
about regularity of our data.

A nice property of S(IRn) is that it is compatible with image processing demands: if we sequentially
�lter our source data we obtain a result which can be explained in terms of yet another �lter from
the same �lter class; S(IRn) is said to form a (convolution) algebra. Thus a sample of a processed
image will be a sample according to the original de�nition (a probe of device space). This is almost
never the case with an arbitrarily chosen �lter class. A disadvantage is that S(IRn) is too large to
be implemented. Selecting a �nite subset will quite likely cause loss of generality and violation of the
consistency requirement (this need not be a problem for speci�c purposes). The paradox can be solved
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by postulating a point operator , a positive �lter that generates an autoconvolution algebra. There is in
fact only one in S(IRn), apart from its width and base point, viz. the normalised Gaussian. In this way
conventional scale-space theory arises naturally from topological duality.

In general, topological duality admits well-posed and operationally well-de�ned2 di�erentiation. The
trick is \transposition" of operators (possibly ill-posed or even ill-de�ned) into a suitably designed �lter
space in which such operators are well-behaved. The idea behind transposition is well-known from linear
algebra. Consider a pair of operands taken from two linear spaces, (u; v) 2 U � V , say, and suppose
one has a recipe for mapping each such pair into a number (a duality principle or a scalar product,
for instance). If a linear transformation S(u) 2 U has the same e�ect on the mapping as a linear
transformation T (v) 2 V , in the sense that (S(u); v) produces the same result as (u; T (v)) for all (u; v),
then T is called the transposed operator associated with S (vice versa), notation: T = Sy (S = T y). For
example, if (F; �) is a source-detector pair, and F [�] the numerical response from mutual interaction,
then by de�nition rF [�] = F [ry�]. The crux in this example is that transposition is merely a mental
process: the reason why the l.h.s. makes sense is by virtue of the r.h.s. (the operational part!), where
di�erentiation precedes discrete sampling. It is easy to see that in case of topological duality we have
ry = �r, in other words, that di�erentiation is anti-symmetric.

Combined with the point concept this leads one to consider the Gaussian family , G(IRn) � S(IRn),
i.e. the class of all derivatives of the basic point operator [37, 45]. It is a complete family, and thus
does not limit potential image analysis. The topological dual G0(IRn) is nothing but the well-known
scale-space representation [35, 84], more precisely, its strati�cation into local jets of successive orders
[23, 27, 43, 48, 49, 69]. It has a straightforward implementation up to some order and within physical
scale limits (grain and scope). We will henceforth assume familiaritywith the basics of scale-space theory
[6, 19, 20, 22, 23, 33, 34, 35, 38, 40, 41, 42, 43, 44, 46, 53, 54, 56, 57, 58, 84]. Especially its interpretation
in the context of topological duality will turn out to be crucial for our optic 
ow de�nition.

2.2 Aperture Problem and Optic Flow Ambiguity

It is taken for granted that optic 
ow is a vector �eld [73, 74]. This re
ects the desire to link correspond-
ing points|whatever these may be|separated by arbitrarily small temporal intervals. The motivation
for this is of course that in the physical world such pointwise connections are actually meaningful; ideally
they correspond to particle motion or wave phenomena.

Paradoxically, there is still a lack of public consensus on an unambiguous de�nition. Broad support
exists with regard to the assertion that optic 
ow is constrained by some conservation principle. The
classical example is the well-known \Optic Flow Constraint Equation" [2, 3, 4, 5, 7, 31, 32, 60, 61, 68,
71, 75, 76, 79, 83]. If we adopt public consensus as our guideline, then optic 
ow must be a homotopy
rather than a vector �eld; see Figure 1.

The ambiguity of pointwise connections is known as the aperture problem [28, 59, 81]. As soon as
one attempts to extend the optic 
ow de�nition beyond the intrinsically de�ned homotopy, one has
to come up with a model in order to \solve the aperture problem". Di�erent models yield di�erent
solutions, none of which can be falsi�ed on the basis of data evidence, yet some of which might provide
an e�cacious solution able to successfully support an application, while others might fail. Thus optic

ow disambiguation requires a model as well as a task for its justi�cation, which of course explains the
lack of consensus.

A source of confusion about the aperture problem is its association with the existence of \straight
edges". This naturally fuels the frequently heard argument that \the aperture problem is a false
problem", one that can be overcome as soon as \enough structure" is present in the image bright-
ness, e.g. by taking into account \corner points", or the image's \higher order di�erential structure"
[60, 61, 62, 68, 75, 76, 79, 82, 83]. That this is a misconception follows immediately from the trivial
invariance of image structure under isophote automorphisms, making any tangential 
ow component
conceivable (recall Figure 1). Data evidence does not compel us to make any choice whatsoever. Thus
from a syntactical point of view, the aperture problem is not a problem, but a (generic) invariance
property .

2A de�nition is called \operational" if it is algorithmically stated; as such it must only contain references to unambiguous
machine concepts.
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Figure 1: There is equal support from the data for all vectors connecting points on corresponding iso-grey-level
contours at two successive moments. The time-parametrised transition from a given isophote to its successor
as a whole is called a homotopy (the assertion here is that isophote topology does not change). Data evidence
does not support pointwise connections, thus optic 
ow cannot exist as an intrinsic image property. Gauge
transformations|explained in the text|are all di�eomorphisms con�ned to isophotes; under such transforma-
tions a given optic 
ow �eld is mapped to one that is equivalent in the sense that there is no observable e�ect

on the data. The logical consequence is that one cannot get around the aperture problem unless by way of
data-independent models.

If any, the true problem must be one of semantics. Semantics must be subordinate to, but cannot
be deduced from mere structure. Indeed, a closer look into the literature reveals that, in one way or
another, one always brings in semantics in optic 
ow disambiguation schemes. Because it is essential
to have a handle on semantics for the purpose of validation and, if necessary, revision, it is desirable to
manifestly separate intrinsic and extrinsic optic 
ow d.o.f.'s3, only to combine them in the �nal stage.
By de�nition, syntactical optic 
ow re
ects the intrinsic d.o.f.'s and is conventionally de�ned in terms
of the spatiotemporal structure of the image data. Once de�ned, structure is evidence; it is pointless to
make assumptions about something one already knows.

In physics, the segregation into intrinsic and extrinsic d.o.f.'s is manifest in so-called gauge �eld
theories. Transformations con�ned to the subspace of extrinsic d.o.f.'s are called gauge transformations.
Evidence depends only on the intrinsic d.o.f.'s and is said to be gauge invariant . In a gauge �eld, the
extrinsic d.o.f.'s merely enter as disposable variables introduced by an observer to simplify the description
of a gauge invariant physical system. The essence of gauge �eld theories is that the redundancy of
auxiliary variables is implicit by virtue of a nontrivial gauge invariance of the system at hand. Otherwise
it would be senseless to consider them in the �rst place. Figure 2 illustrates the general idea behind a
gauge theory, and the way optic 
ow �ts into such a framework.

Indeed, syntactical optic 
ow is a gauge �eld. A \standard" (but in principle ad hoc) representation
of the factual homotopy is normal 
ow , sometimes called the optic 
ow �eld, to be distinguished from
the physically induced image velocity or motion �eld [29, 30]. A gauge transformation, in casu any
isophote automorphism, maps one admissible vector �eld onto another without a�ecting the data. The
extra constraint introduced to single out a unique solution is called a gauge condition; see Figure 1.
The gauge condition provides a clear entry point for bringing in prior knowledge [29]. Thus the gauge
condition expresses the semantics, and the gauge-�xed solution could be called the semantical optic 
ow
�eld , a \meaningful" member of the metamerical class of syntactically equivalent �elds. It is important
to appreciate that its signi�cance is only relative to the interpretation implied by the gauge condition,
and ultimately, relative to the performance of a practical task. For this reason it is equally important to
keep syntax and semantics nicely apart until we know exactly what we are after, and even at that stage
we may want to re-interpret, change our minds, in other words, alter our gauge in a feedback kind of
fashion until we get things to work properly. After all, any a priori assertion we make may be wrong.

Considerations for �xing the gauge are basic image formation details, as well as presumptive object
attributes such as rigidity or non-elasticity constraints for solid objects [12, 14], incompressibility and
continuity conditions for 
uids [1, 11], et cetera, and of course even the postulate of the very existence
of such objects (segmentation and classi�cation). Also, mathematical constraints of smoothness are

3d.o.f.('s) = \degree(s) of freedom".
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Figure 2: In a gauge theory one considers a manifold M of higher dimensionality than the actual base space of
physical observables B. The \super
uous" degrees of freedom introduced in this way (p; q; : : :) e�ectively cancel
out as a result of a symmetry principle postulated forM (\gauge invariance"), i.e. there is a strati�cation into
\invariant orbits" that induce identical observations on B (by virtue of the \projection map" �), irrespective
of the gauge condition (�1;�2; : : :) one chooses to impose (as long as it is admissible, i.e. transversal to the
orbits). The manifold M , together with its inherent symmetry, thus merely enters as a \model space" for B, in
which the manifestation of the latter may be signi�cantly simpler than in any non-gauge model con�ned to B.
In the case at hand M will be the vector bundle of n-vectors v representing all possible optic 
ow vector �elds
compatible with the image data, while B comprises the actual optic 
ow evidence in the form of, say, the normal

ow �eld components (more precisely, the 1-dimensional homotopy of iso-grey-level contours). The virtue of a
gauge theoretical approach to optic 
ow lies in the fact that one can model B via a simple, viz. linear model for
M , at the price of only a mild concession: local redundancy, or gauge invariance. In this case there are n � 1
gauge degrees of freedom (per base point), which can be �xed by imposing equally many gauge conditions, none
of which contradicts data evidence (\tangential 
ow"). These gauge conditions must re
ect a priori knowledge
or a hypothesis about the physical cause of the induced 
ow.
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often used to �x the gauge. Typically neither one of these provides a globally acceptable constraint; the
nature of the gauge depends on the adequacy of local semantics. For example, in the context of machine
vision none of the assertions that motion is induced by projection of a shaded, su�ciently smooth, rigid
surface patch, et cetera [29, 31, 77, 80], is supported by the evidence; at best there is no contradiction.
In medical imagery blood 
ow satis�es physical incompressibility and continuity constraints, whereas
bone tissue induces rigid motion, soft tissue deforms nonrigidly, et cetera, but one does not know in
advance which applies where. The general idea behind such motion constraints|not to be confused with
the OFCE|is invariably the same; they express optic 
ow coherences implied by speci�c assumptions
about source �eld coherences, the veri�cation of which must be measured relative to the performance
of speci�c algorithms. In the exploitation of the semantically inspired gauge system, therefore, trial-
and-error, feedback, nonlinearities, or whatever we choose to call the successive re�nement leading to
a consistent gauge, will be rule rather than exception, a process akin to the hermeneutic circle in the
transcription of an unknown language (conditionally accept tentative explanations that improve global
coherence of the context). The gauge invariant subsystem, on the other hand, is fully determined by a
data driven feedforward procedure, and is basically a kinematic reformatting of spatiotemporal image
data.

2.3 Computational Problems

There are many possible approaches to optic 
ow measurement [7, 36], not all of which have been
investigated in-depth. The classical approach based on the OFCE de�nes the optic 
ow vector �eld
locally by means of a conservation law; invariant grey-values are attributed to points which are dragged
along the 
ow. Its traditional formulation is less than fortunate though, since it bypasses measurement
duality. A related computational problem is ill-posedness, since the method relies on conventional ill-
posed di�erentiation, and so one has to incorporate a regularisation scheme. Since the outcome of
ill-posed problems depends crucially on the details of regularisation, only a thorough motivation of the
latter will guarantee that we don't end up with a grab-bag solution.

Although this way of reasoning is in principle legitimate and re
ects the usual way of handling the
OFCE, we feel that it is somewhat indirect. Since one clearly has to regularise ill-posed problems, one
might consider recasting the OFCE into a well-posed problem from the very outset. The two conceptual
problems, the unavoidable dependency on regularisation method and the problem of ill-posedness, can
be played o� against each other; reformulating the OFCE in the framework of topological duality solves
both problems simultaneously.

2.4 Notation

We will adhere to the following notation. A point in spacetime is indicated by x, its coordinates by
x�, with � = 0; : : : ; d = n � 1, in which d is the dimension of space (typically 2 or 3), and n that of
spacetime. Index values 0 refer to time. Summation convention is implied for pairs of matching indices:
a�b

� � a0b
0 + : : : + an�1b

n�1. Readers not familiar with tensor parlance may choose to ignore the
distinction between upper and lower indices at the expense of one mild concession: that all coordinates
are taken relative to a Cartesian frame. In integral expressions we use a pre�x notation for the measure
dx, so that it precedes everything in the integrand that depends on x. The symbol ZZ+0 is used to denote
all natural numbers including zero.

The source �eld of interest is modelled either by a scalar function f (any reasonable model for
the raw pixel data will do), or by a corresponding linear continuous functional F [�], if we want to
conceive of it as a mapping of �lters � 2 G(IRn) into the reals. In other words, F 2 G0(IRn). These
two representations are interchangeable, since F is fully determined by f : F [�] =

R
dx f(x)�(x) (the

so-called Riesz representation theorem).
Furthermore, we will reserve the symbol � for the zeroth order Gaussian point operator, and write

��1:::�k , or @�1:::�k�, for its k-th order derivative w.r.t. x
�1 ; : : : ; x�k (covariant derivatives are understood

when using non-Cartesian coordinates). Without loss of generality we will assume that our base point of
interest corresponds to the origin of our coordinate system, and for simplicity of notation consider unit
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Figure 3: In a scalar interpretation of the OFCE it is asserted that points, or �xed-scale samples taken at
these points, lying on one 
ow line, share the same grey-value attribute. In the density case, grey-values are
attributed to volume elements which are themselves susceptible to the 
ow. In this sketch, the shaded patches
represent corresponding volume elements, the size of which is seen to increase in the density case due to the
divergence component of the 
ow �eld; conservation entails that their volumetrically integrated grey-values be
the same provided the integration aperture is consistently transformed by the 
ow. White means dense, black
means void, background colour has no meaning. The boxes symbolise pixel values.

spatial and temporal inner scales. It is straightforward to make spatial and temporal scale parameters
explicit if desired.

An important tool in models of 
ow and conservation is the so-called Lie derivative. Lie derivatives
capture variations of spacetime quantities along the integral 
ow of some vector �eld. To take a Lie
derivative, one therefore needs to know this vector �eld. Actually, we shall only consider the 1-st order
Lie derivative of an image, which will give us a linear model of optic 
ow; this is not a restriction and
should not be confused with the spatiotemporal di�erential order of the 
ow �eld one might be interested
in. We have no reason to impose any a priori restrictions on this. The vector �eld will, of course, be the
optic 
ow �eld, but note that it is a vector in spatiotemporal sense, including a not necessarily trivial
temporal component. We will denote the in�nite resolution4 �eld by v� � (v0;~v).

The Lie derivative of a scalar function f w.r.t. a vector �eld v� is given by the directional derivative
Lv f = @�f v

�. Similarly, if f represents a density, we have Lv f = @� (f v
�) (Figure 3). However, like

any classical derivative expressions like these are ill-posed, and, besides, require f to be di�erentiable,
which is an operationally void constraint for discrete data. Well-posed di�erentiation is obtained by
identifying f with its scale-space representation F 2 G0(IRn); this brings the �lter paradigm into focus.

Having established notations and conventions, we now turn to the theory.

3 Theory

The following assumption will be made in order to connect to the usual optic 
ow terminology.

Assumption 1 (Temporal Gauge: Conservation of Topological Detail)

8x 2 IRn : v0(x) = 1 :

This is a locally weak, but globally not necessarily realistic assumption, stating that the 
ow is ev-
erywhere nonvanishing and transversal to constant-time frames, in other words, that the topological
properties of the isophote topography are preserved over time despite deformations. It therefore ex-
presses conservation of topological detail5. Thus Assumption 1 is an instance of a gauge condition
enforced on the basis of an a priori model (Figure 4).

We shall be needing a formal expansion of v� near the origin, truncated at some arbitrary order M ,
v�M say. This is a polynomial intended to capture a �nite number of local d.o.f.'s of the vector �eld.

4In�nite resolution is of course merely hypothetical, but serves to de�ne the actual multiresolution �eld via an integral
formula similar to the Riesz representation form for the raw image data f . We return to this later.

5Conservation|as opposed to invariance|presupposes temporal causality.
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Figure 4: A transversal and a non-transversal 
ow-line (through P and Q, respectively). The latter one is
excluded by transversality. The upper branch of that curve has an anti-causal orientation. It can be given a
causal interpretation simply by reversing the upper arrow; in that case, however, Q becomes an annihilation
point, thus violating the assumption of \conservation of topological detail". Note that if the spatial optic 
ow
�eld vanishes, the 
ow-lines will be parallel to the time axis.

De�nition 1 (M-th Order Formal Expansion) The formal expansion of orderM of the vector �eld
v�, denoted v�M , is an M -th order polynomial

v�M (x) =
MX
l=0

1

l!
v�M ;�1:::�l

x�1 : : : x�l ;

the coe�cients of which may depend on M .

The �nite set of coe�cients v�M ;�1:::�l
(to be de�ned later on so as to approximate the optic 
ow �eld's

derivatives @�1:::�lv
�(x=0) at the origin), corresponds to the d.o.f.'s we shall try to solve for. Note that

v�M is not required to be the M -th order Taylor polynomial of v�. The idea of approximation is merely
a deviation of order O(kxkM+1).

The Lie derivative of the image with respect to the optic 
ow vector can be made well-posed by
formulating it as a tempered distribution.

Proposition 1 (Lie Derivative of a Raw Image) The Lie derivative of a raw image F 2 G0(IRn)
is de�ned by virtue of its dual; i.e. for every � 2 G(IRn) we have

Lv F [�] def= F [Lyv �] ;

in which Lyv � = �@� (� v�), if the raw image is a scalar, and Lyv � = �@�� v�, if it is a density.

In the subspace of distributions in which one can take classical Lie derivatives of the raw image f as
explained in the previous section, one can easily prove Proposition 1 using the integral expression for
F [�] and subjecting it to a partial integration (voil�a, the minus sign). Beyond that subspace it is a
matter of de�nition.

Note that if the raw image represents a scalar, then the �lter is a density (n-form in geometric
jargon). Otherwise, if the raw image is a density, we must interpret the �lter as a scalar with regard
to Lie derivation. This is the plain consequence of duality. For example, in the \generalised motion
constraint equation" Schunck considers the 
ow of a \naked density" �eld [71]. This result does not
account for the essential role of duality. Transposed to �lter space we obtain a scalar transformation of
the �lters (the second case in Proposition 1).

Our goal is to reconcile syntactical optic 
ow with the duality paradigm, notably scale-space theory,
and to derive an operational scheme for its computation. We henceforth assume that the source is a
scalar; the density case is brie
y outlined, but the details are left to the reader.

In the spirit of the traditional approach, we de�ne gauge invariant optic 
ow as any vector �eld that
preserves F [�]:
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De�nition 2 (Syntactical Optic Flow: Global De�nition) See Proposition 1. The syntactical op-
tic 
ow �eld is de�ned as the equivalence class of 1-resolution vector �elds v� that satisfy the OFCE

Lv F [�] = 0

at every base point in spacetime. In integral form this reads:Z
dx f(x) @� (�(x) v

�(x)) = 0 ;

assuming the source to be a scalar.

In this way the vector �eld v� and the scalar source data f are coupled in a natural way.
Disambiguation requires us to decide on the gauge. In the absence of a priori knowledge we may

take|only for the sake of presentation|the \standard gauge" that nulli�es tangential 
ow, and in
addition asserts that topological detail is conserved.

De�nition 3 (Standard Gauge: Normal Flow) Cf. De�nition 2. Normal 
ow is de�ned as optic

ow subject to the standard gauge

L�v F [�] = 0 ;

in addition to the temporal gauge of Assumption 1. Here, �v represents the spatial dual of v: �v�v� � 0
and �v0 � 0.

Note that there are typically d � 1 such independent equations, and 1 more for the temporal gauge,
per base point and per level of resolution. Altogether we end up with n = d + 1 �eld equations for
the components of the standard solution, as it should. Note that in practical cases only the gauge
equations are replaced. The gauge invariant equation of syntactical optic 
ow is always the same; image
modality and speci�c task are immaterial. The problem of optic 
ow extraction (operational de�nition),
in whatever meaningful gauge, is to unconfound source data and vector �eld from the resulting system
of equations.

Although formulated for one sample point only, De�nition 2 as well as De�nition 3 should be under-
stood as globally valid identities (as is, trivially, Assumption 1); they remain true if we extend the model
from local samples to global images (sets of local samples endowed with a spacetime topology6 [17, 18]).
This can be expressed in terms of a countable set of local constraints by stating that all spatiotemporal
derivatives at the point of interest vanish as well (caution: Lie derivatives and ordinary derivatives do
not commute).

De�nition 4 (Syntactical Optic Flow: Local De�nition) Recall De�nition 2. At �xed spacetime
base point the syntactical optic 
ow �eld is equivalently de�ned as the equivalence class of 1-resolution
vector �elds v� that satisfy the linear system

@�1 :::�kLv F [�] = 0 forall k 2 ZZ+0 ;

in which the spatiotemporal derivatives of Lv F [�] are de�ned as usual:

@�1:::�kLv F [�] = (�1)k
Z
dx f(x)Lyv ��1:::�k(x) ;

with Lyv ��1:::�k = �@� (��1:::�k v�).
(The case for a density image should be clear: no derivative on v�.) Note that in the static case, i.e.
if the source is time-independent, a standard solution is v� = (1;~0). In the general case we need an
operational method to solve for the optic 
ow �eld. In order to accomplish this, the idea pursued below
will be to get the �eld v�, de�ned implicitly by De�nition 2, \out of the integral".

In principle, the optic 
ow �eld v� contains an in�nite number of d.o.f.'s. This is inconvenient.
Moreover, most of them are irrelevant or computationally inaccessible anyway. However, depending on

6Assuming homogeneityonemay replace local samplesF [�] by functionvalued distributionsF?� (x) =
R
d� f(x+�)�(�).
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one's task, a 0-th order approximation is usually too restrictive. For example, in the case of real-world
movies, 1-st order properties of the vector �eld may reveal relevant information such as qualitative
shape properties, surface slant [47], and time-to-collision [51, 52]. Unlike 1-st order, 2-nd order is
quantitatively related to intrinsic surface properties of an object [50]. There is no a priori limit to
the highest order that is still accessible and signi�cant; this depends very much on matters such as
image quality (noise and sampling characteristics), resolution of interest, et cetera. But independent of
such considerations of di�erential order , it will be argued below that we must consider an approximation
order which is at least equal to, but may well exceed the di�erential order of interest, in order to provide
a viable approximation. In fact, even for zeroth di�erential order, there is no a priori upper limit for
an acceptable approximation order M � 0, though if image quality permits, there will typically be only
a set of measure zero at which such an M exceeds computationally realistic limits (
ow discontinuities;
we return to this brie
y in Section 6).

So let us consider the M -th order case. Replacing v� by v�M according to De�nition 1 yields the
following.

Result 1 (M-th Order Optic Flow Approximation) See De�nition 1 and De�nition 4. Using
LvM instead of Lv we have

@�1:::�kLvM F [�] = �
MX
l=0

v�M ;�1:::�l

Z
dx f(x) @��

�1:::�l
�1:::�k (x) = 0 for all k = 0; : : : ;M ;

in which the e�ective �lters ��1:::�l
�1:::�k are given by

��1:::�l
�1:::�k (x) =

(�1)k
l!

��1:::�k (x)x
�1 : : :x�l :

Since the Gaussian family (�1)k��1:::�k (k 2 ZZ
+
0 ) is complete, the set of �lters ��1:::�l

�1:::�k (k; l 2 ZZ
+
0 ) is

apparently overcomplete. Hence they can all be expressed in terms of pure Gaussian derivative �lters
(the case l = 0). For technical details see Appendix A.

Despite the complex appearance of Result 1, it is a straightforward linear system, the coe�cients
of which are well-posed scale-space derivatives, which can in principle be inverted analytically once and
for all (for each M ). It should also be noted that this system di�ers in an essential way from similar
linear systems in optic 
ow parameters proposed in the literature: the size of the system is related to
the order of approximation in a crucial way explained below, and the precise structure of the coe�cient
matrix is the consequence of duality plus explicit exploitation of the scale-space paradigm. We return
to these observations in Section 4.

It is important to note the restriction on the admissible spatiotemporal orders k. Two essentially
equivalent motivations can be given to show that k cannot exceed M .

� Our approximation scheme boils down to replacing the Lie-derivative Lv f = @�f v
� by LvM f =

@�f v
�
M = Lv f + O(kxkM+1). Thus we can consider only spacetime derivatives of order k � M

if we want to keep the unknown remainder small near the point of expansion. Only then can
we expect the coe�cients of v�M to be close to the Taylor coe�cients of v�: a k-th order Taylor
coe�cient of v� equals the corresponding coe�cient of v�M up to O(kxkM�k+1).

� Alternatively, we have to take care not to introduce spurious d.o.f.'s by truncation; the assumption
that the Taylor tail of v� vanishes identically|a hypothesis not evident from the data|boils
down to a gauge condition! We should try to maintain gauge invariance for our approximated
optic 
ow �eld v�M . Allowing arbitrary orders of di�erentiation in Result 1 would certainly break
this invariance in the generic case (i.e. the usual case when v� 6= v�M ), and may even yield an
inconsistent system7! This is another reason why one needs to limit the highest order to k = M .
Indeed, it can be shown that the resulting linear equations are generically independent and indeed
gauge invariant to the same extent as the exact system [24]. Thus the M -th order approximation
does not a�ect the intrinsic ambiguity of optic 
ow at all. Although invariance now relates to
approximations of isophote automorphisms, no arti�cial constraints have sneaked in.

7Which of course can always be \solved" in least squares sense. . .
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Unfortunately, there are several instances in the literature in which a unique optic 
ow �eld is singled
out by speci�c combinations of truncation and di�erentiation. What really happens is that these very
combinations implicitly �x the gauge. One cannot expect this to be a proper way of gauge �xing, except
for coincidental cases or by virtue of the validity of unspeci�ed hypotheses. Such methods transcode
the aperture problem into optic 
ow ambiguity; one establishes an instance of an optic 
ow �eld, the
semantical content of which is not transparent and consequently hard to verify or falsify. Gauge �xing,
or optic 
ow disambiguation, is really a matter of data-extrinsic physical considerations independent of
the image, the OFCE, or anything derived from these8.

An illustrating example|although not accounting for duality|has been given by Amini [1] in the
context of 2D X-ray projection imaging, who argues on the basis of a physical model of incompressibility
of blood, that the projected 
ow must be divergence-free; in the application at hand this su�ces to �x
the gauge (but only for blood 
ow; clearly one needs di�erent models for di�erent tissues). Devlaminck
and Dubus [11] consider density images of deformable media, for which they propose to use the small
displacement theory of elasticity in order to establish a physically meaningful gauge in a Tikhonov
regularisation framework (again, the gauge entails hypotheses about local tissue characteristics, which
calls for a consistency check).

As opposed to conventional schemes based on M -fold implicit di�erentiation of the OFCE, every
k-th order subset of Result 1 contains M -th order components of the approximated optic 
ow �eld. It
is important to keep in mind that the coe�cients v�M ;�1:::�l

in v�M depend on the order M of approx-

imation. In other words, the polynomial approximation v�M+1 is a re�nement of v�M in the sense that
all coe�cients are re�ned. Hence, it is not the Taylor polynomial of v�. Only in the limiting case we
have limM!1 v�M ;�1:::�l

= @�1:::�lv
�(x = 0), so that v�1 = v�, subject to its original, gauge invariant

de�nition. This brings us to another misconception one frequently encounters in the literature on the
OFCE; since a polynomial approximation is typically not a truncated Taylor expansion, one cannot
expect any choice of M to provide an accurate determination of optic 
ow derivatives! The principle of
re�nement is essential.

At this point we have an operational de�nition of optic 
ow, built on the foundations of scale-space
theory. In order to make the connection transparent we can relate it to di�usion.

De�nition 5 (Optic Flow as a Vector-Valued Distribution) Let the source current J� be de�ned
as the linear, vector-valued distribution with Riesz representation j� = v� f , in which v� is the 1-
resolution optic 
ow �eld associated with the raw image f according to previous de�nitions:

J�[�]
def
=

Z
dx j�(x)�(x) :

Then we can de�ne a corresponding nonlinear, vector-valued distribution V �, as follows:

V �[�] =
J�[�]

F [�]
=

R
dx j�(x)�(x)R
dx f(x)�(x)

:

The distribution V � is well-de�ned as long as F [�] 6= 0.

Thus although the 1-resolution velocity �eld v� (or v�M in practice) provides us with a speedometer
type of measurement (one velocity per base point), the necessity of de�ning a �lter space will always give
rise to multiple, yet mutually consistent interpretations (e.g. motion transparency may be accounted
for). In particular, if � is a 2-parameter spatiotemporal Gaussian, then V �[�] de�nes the multiscale
optic 
ow �eld induced by f , with v� as the hypothetical limit of zero spatial and temporal scale. In
that case J�[�] (not V �[�]) satis�es the same di�usion equation as F [�].

Result 2 (Optic Flow Scale-Space) See De�nition 5 for notation.�
@sJ

� = 1
2�J�

lims#0 J
� = j� ;

8In his original work, Arnspang treats the gauge condition as an explicit mathematical constraint.
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Figure 5: First frame of the optic 
ow test sequence, corresponding to t = 0.

in which the spatiotemporal Laplacean (Laplace-Beltrami operator) is de�ned as usual, but with respect
to pseudo-isotropic coordinates x� = (ct;~x), and in which the evolution parameter s is related to the two
independent scale parameters � (isotropic space) and � (time) according to s = �2 = c2�2 for a suitable
value of velocity parameter9 c.

Finally note that the temporal gauge of Assumption 1 is respected, regardless of �lter choice, that the
linear functional J�[�] is always well-de�ned (\linear 
ow"), as opposed to the nonlinear functional
V �[�] (\geometric 
ow"), and that for � = 0 Result 2 reduces to the familiar scale-space di�usion
equation induced by the raw image f . This shows in which precise way optic 
ow inherits its \deep
structure" from that of its generating scalar source �eld.

4 Simulation and Veri�cation

In order to test the theory, and at the same time illustrate how one could proceed in speci�c applications,
we de�ne two analytically tractable (2+1)-dimensional stimuli, one simulating a density, the other a
scalar �eld. We then derive an exact, closed-form expression for normal 
ow in the usual temporal
gauge, exploiting the scalar paradigm for both cases. This is done for the purpose of analysis and
empirical veri�cation, although the construction suggests that in the density case one would probably
want to use the density paradigm instead. Also, simulation has the advantage that evaluation will not
be hampered by uncertain factors such as reconstruction artifacts, complications that often arise in real
image data (and have to be handled on the basis of modality speci�c models).

Noise generally causes any idealisation to be violated, and so we study signi�cant noise perturbations
as well. There ought to be no problem according to theoretical prediction: away from isolated singu-
larities (explained as an artifact of conventional optic 
ow gauge), everything depends continuously on
the noise.

The raw images consist of oscillating Gaussian blobs (Figure 5) that behave as a density and as a
scalar, respectively, and the tests are run on discretised 
oating-point representations of these, as well
as on instances perturbed by 50% multiplicative, pixel-uncorrelated Gaussian noise.

4.1 Density Gaussian

Consider the following stimulus de�nition in a Cartesian coordinate system:

F (x; y; t) =
1

4�s(t)
e�

x2+y2

4s(t) ; (1)

with the following choice of kinematics:

s(t) = A+ B sin(
2�t

T
) (A > B > 0) : (2)

9One can opt to discard the formal parameter c and write two di�usion equations for spatial and temporal parts
separately.
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Conservation for this stimulus follows fromZ
dxdy F (x; y; t) = 1 8t : (3)

In other words, each time-slice contains the same amount of \mass". The Lie-derivative w.r.t. the vector
�eld v = (vt; vx; vy) is

LvF = Fxv
x + Fyv

y + Ftv
t def
= 0 ; (4)

in which a subscript denotes a partial derivative. This result holds globally. The temporal component
can locally be gauged to unity as usual,

vt
def
= 1 ; (5)

provided topological detail is conserved. We will henceforth write (u; v) instead of (vx; vy). A straight-
forward computation yields the following linear equation:

xu+ yv =

�
r2

2s(t)
� 2

�
_s(t)

def
= �(r; t) : (6)

Normal 
ow can be obtained by imposing an additional spatial gauge, which looks identical to Equation 4
except for a replacement of v = (1;u; v) by its spatial dual �v = (0;�v; u). This yields

xv � yu = 0 : (7)

In other words: the spatial velocity vector ~v is everywhere parallel to ~x = (x; y), which is also obvious
from considerations of symmetry. Solving Equation 6 subject to the gauges 5 and 7 yields the following
solution: �

u
v

�
=

�(r; t)

r2

�
x
y

�
: (8)

The origin is problematic in the gauge 5 even though the example is not at all pathological10. Note also
that ~v = ~0 on the oscillating circle de�ned by r2 = 4s(t) (Ft vanishes identically), and that the direction
of the optical 
ow vector 
ips across this circle (which, by the way, runs counter to our visual percept,
which gives the impression of alternating expansions and contractions). The situation at time t � 0 is
as follows:

� within the zero-
ow radius, ~v points inward, i.e. towards the centre of the blob,

� outside the zero-
ow radius, ~v points outward, and

� the symmetry centre is a singularity.

The singularity arises as an artifact of the scalar 
ow paradigm, for which the imposed gauge conditions
are apparently too strong. In particular the temporal gauge is not compatible with the topological
transitions that occur at the centre, where isophotes continuously pop up or disappear. In reality there
ought to be no fundamental problem, of course; the reader may verify that the singularity vanishes when
using the density paradigm subject to a natural gauge instead, and calculating physically meaningful
quantities, such as the \mass 
ux" through a sphere containing the singularity. For example, a radial
�eld ~v(r) / ~r=r2 in 3D will yield a constant 
ux (by the divergence theorem).

4.2 Scalar Gaussian

We now consider the scalar case. We synthesise a raw image of the form

G(x; y; t) = e�
x2+y2

4s(t) : (9)

10Note that the singularity cannot be \blurred out"; blurring amounts to an o�set in s(t).
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For mathematical convenience we take

�(t) = A+ B sin(
2�t

T
) (A > B > 0) : (10)

Equation 3 does not hold. The Lie-derivative w.r.t. the optical 
ow vector �eld is again given by
Equation 4, F replaced by G. Again we assume the temporal gauge to hold: Equation 5. Unlike
previously, there ought to be no problem with this, since the scalar 
ow paradigm is the appropriate
one to use for this stimulus. We get the following linear equation:

xu+ yv =
r2

2s(t)
_s(t)

def
= �(r; t) : (11)

Normal 
ow can be obtained as in Equations 5 and 7. With Equation 11 this yields the following
solution: �

u
v

�
=

�(r; t)

r2

�
x
y

�
: (12)

The solution di�ers qualitatively from Equation 8. First of all, �(r; t) has a global sign, equal to that
of _s(t); there is no zero-
ow spatial circle across which the 
ow inverts (in agreement with perceptual

ow). Secondly, we indeed encounter no singularity, whereas previously we had

k~v(r)k � 2
j _sj
r

(r # 0) : (13)

4.3 Numerical Test

The frame of interest is the �rst one, corresponding to t = 0. The spatial symmetry centre is taken as
the origin (x; y) = (0; 0). Parameter values are as follows. For Equations 1{2 we take A = 52, B = 20,
T = 16. For Equations 9|10 we choose A = 8, B = 4 and T = 16. We select the same spatial and
temporal scale parameters in both cases: � = 2 and � = 1 (all values relative to pixel scale or frame
interval). Both images are of size 16 � 128 � 128, so that they accommodate full periods, and are
computed with 4 bytes-per-pixel 
oating point precision.

We impose the normal 
ow �eld equations� Lv F [�] = 0
L�v F [�] = 0 ;

for v = (1;u; v), whence �v = (0;�v; u), using the analytical, zeroth or �rst order approximating
schemes (we take Assumption 1 for granted here). The analytical study has been discussed in-depth
in the previous sections. We henceforth refrain from mentioning the �lter � and its associated scale
parameters for the sake of notational simplicity:

L�1:::�k
def
= (�1)k F [��1:::�k ] ;

in which each index �i denotes a scaled partial derivative, e.g. Lxtt = �F [�xtt] = �� �2 F [@xtt�]. It is
important for the discussion that follows to distinguish between the explicit scaling factors � and � for
the amplitudes, and the inner scale parameters of the Gaussian derivative �lters.

The k = 0 approximation is based on a zeroth order polynomial vector �eld

u0(t;x; y) = u ; v0(t;x; y) = v ;

and boils down to the inversion of �
uLx + vLy = �Lt
�vLx + uLy = 0 ;

which is the same as the traditional OFCE for normal 
ow. For k = 1 we have

u1(t;x; y) = u+ utt+ uxx+ uyy ; v1(t;x; y) = v + vtt+ vxx+ vyy ;
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Figure 6: Left: Analytically determined velocity �eld for the density stimulus of Formula 1. Middle & Right:

Velocity �eld obtained in the zeroth and �rst order approximation (�s = 2;�t = 1).

Figure 7: Velocity �eld obtained for the stimulus of Formula 1. 50% Multiplicative Gaussian noise has been

added to the original data. Left: zeroth order approximation. Right: �rst order approximation.

and obtain instead8>>>>>>>>>><
>>>>>>>>>>:

uLx + vLy + utLxt + vtLyt + uxLxx + vxLxy + uyLxy + vyLyy = �Lt
uLxt + vLyt + ut(Lx + Lxtt) + vt(Ly + Lytt) + uxLxxt + vxLxyt + uyLxyt + vyLyyt = �Ltt
uLxx + vLxy + utLxxt + vtLxyt + ux(Lx + Lxxx) + vx(Ly + Lxxy) + uyLxxy + vyLxyy = �Lxt
uLxy + vLyy + utLxyt + vtLyyt + uxLxxy + vxLxyy + uy(Lx + Lxyy) + vy(Ly + Lyyy)+ = �Lyt
uLy � vLx + utLyt � vtLxt + uxLxy � vxLxx + uyLyy � vyLxy = 0
uLyt � vLxt + ut(Ly + Lytt) � vt(Lx + Lxtt) + uxLxyt � vxLxxt + uyLyyt � vyLxyt = 0
uLxy � vLxx + utLxyt � vtLxxt + ux(Ly + Lxxy)� vx(Lx + Lxxx) + uyLxyy � vyLxxy = 0
uLyy � vLxy + utLyyt � vtLxyt + uxLxyy � vxLxxy + uy(Ly + Lyyy)� vy(Lx + Lxyy) = 0 :

The lowest order system has 1 + 1 equations in 2 unknowns, u; v, and is determined in terms of the
image's �rst order derivatives (1 + 2 equations in 3 unknowns if temporal gauge is made explicit). The
�rst order system comprises 4 + 4 equations in 2 + 6 unknowns, u; v; ux; uy; ut; vx; vy; vt, and requires
derivatives of orders 1; 2; 3 (4+8 equations in 3+9 unknowns, respectively). Recall that these parameters
are not the 
ow �eld's partial derivatives; for example, the parameters u; v arising from the latter system
are to be distinguished from, and generally re�ne those of the former (the order tag has been left out
for notational simplicity).

Both systems have been solved numerically by pixel-wise \LU decomposition" as described in Nu-
merical Recipes [70, section 2.3]. (For a global gauge a signi�cant gain of speed may be accomplished
by analytical inversion prior to computation.) The coe�cients|in the spatial domain: convolutions of
the raw image with Gaussian derivative �lters|have been computed using FFT in the straightforward
way. Figures 6{17 show the results (vectors are suitably scaled for the sake of visualisation).

15



Figure 8: Error in velocity �eld obtained for the density stimulus of Formula 1 in the noise free case. Left:

zeroth order approximation. Right: �rst order approximation.

Figure 9: Error in velocity �eld obtained for the density stimulus of Formula 1 after the original image has

been corrupted with 50% multiplicative Gaussian noise. Left: zeroth order approximation. Right: �rst order

approximation.
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Figure 10: Cross-section of the velocity �eld obtained for the density stimulus of Formula 1; analytical (solid

line), zeroth (triangles) and �rst order (stars). Left: noise free case. Right: 50% noise.
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Figure 11: Error in cross-section of the velocity �eld obtained for the density stimulus of Formula 1; zeroth

(triangles) and �rst order (stars). Left: noise free case. Right: 50% noise.

Figure 12: Left: Analytically determined velocity �eld for the scalar stimulus of Formula 9. Middle & Right:

Velocity �eld obtained in the zeroth and �rst order approximation (�s = 2;�t = 1).

Figure 13: Velocity �eld obtained for the scalar stimulus of Formula 9. 50% Multiplicative Gaussian noise has

been added to the original data. Left: zeroth order approximation. Right: �rst order approximation.
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Figure 14: Error in velocity �eld obtained for the scalar stimulus of Formula 9. Left: zeroth order approxima-

tion. Right: �rst order approximation.

Figure 15: Error in velocity �eld obtained for the scalar stimulus of Formula 9, after the original image has

been corrupted with 50% multiplicative Gaussian noise. Left: zeroth order approximation. Right: �rst order

approximation.

-40 -20 0 20 40

Position (pixels from center)

-8

-6

-4

-2

0

2

4

6

8

V
el

oc
it

y 
(p

ix
el

s 
pe

r 
ti

m
ef

ra
m

e)

-40 -20 0 20 40

Position (pixels from center)

-8

-6

-4

-2

0

2

4

6

8

V
el

oc
it

y 
(p

ix
el

s 
pe

r 
ti

m
ef

ra
m

e)

Figure 16: Cross-section of the velocity �eld obtained for the scalar stimulus of Formula 9; analytical (solid

line), zeroth (triangles) and �rst order (stars). Left: noise free case. Right: 50% noise.
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Figure 17: Error in cross-section of the velocity �eld obtained for the scalar stimulus of Formula 9; zeroth

(triangles) and �rst order (stars). Left: noise free case. Right: 50% noise.

5 Comparison with Existing Techniques

In Section 5.1 we make a conceptual comparison with models that are most closely related to ours,
notably by Otte and Nagel [68], and by Werkhoven and Koenderink [83]. In Section 5.2 we compare the
performance of zeroth and �rst order optic 
ow schemes to those reported by Barron et al. [7], using
an appropriate gauge condition.

5.1 Conceptual Comparison with Similar Methods

Upon �rst glance there is nothing remarkable about the linear systems in Section 4.3 (or Result 1 in
general) when compared to similar ones proposed in the literature. It would lead too far to make a
scrutinised comparison here. However, the similarity with a few of these, such as suggested by Otte and
Nagel [68], or by Werkhoven and Koenderink [83], is particularly striking. It is therefore instructive to
point out how our theory di�ers from theirs.

Among others, Otte and Nagel discuss two OFCE-based linear systems, which they refer to as the
\Rigorous Condition" (RC) and the \Integrated Condition" (IC), respectively, and of which they have
presented particular orders by way of example. The gauge invariant part of the RC (top four rows of
[68, Equation 8]) is readily obtained from the �rst order system above by taking the limit �; � # 0 for the
explicit scale factors. This means that such factors as Lx+Lxtt will e�ectively converge to Lx, et cetera.
If the remaining derivatives are still computed at �nite scales �; � > 0, one obtains a conservation law
that is assumed to hold at these �nite scales. Recall that in our scheme, conservation applies to the
hypothetical level � = � = 0, whereas its consequences are investigated at �nite measurement scales.
The reader may verify that if the scalar OFCE is applied to the stimulus of Equation 9 after spatial
blurring to scale �0 > 0, the 
ow will develop a singularity at the origin proportional to

k~v(r)k / s0
s

j _sj
r

(r # 0) ; with 2s0 = �20 ;

which signi�es the inadequacy of the RC. The rest of the RC (all other rows of [68, Equation 8]) has no
counterpart in our theory, as we argued this to be part of a speci�c kind of gauge �xing.

More closely related to our work seems to be Otte and Nagel's IC ([68, Equations 10{11a]). Again,
to be able to compare we must disregard their second order equations, which correspond to semantically
inspired gauge conditions. In addition we must include temporal derivatives; altogether we must consider
the analogous, underdetermined (gauge invariant) set of 4 equations in 8 unknowns, as in the k = 1
system above. In a way the IC is based on duality, which explains the similarity with our method.
However, under the IC the (approximate) Lie derivative is integrated over a spatiotemporal cylinder
(the temporal extension of the spatial sphere used in [68, Equation 9]), and not computed as a smoothly
weighted integral. From a duality perspective, the IC-�lter is an indicator function on a cylinder of
spatial radius and temporal extent proportional to � and � , respectively, which prohibits transposition
of derivatives. Recall that for the purpose of well-posed and operationally well-de�ned derivation,

19



Figure 18: Planar textured surface and vector �eld for translational and diverging motion.

�lter smoothness is an essential demand in our strategy. Taking into account the abovementioned
modi�cations to the IC, one �nds upon careful inspection that the coe�cients resulting from the IC
approach are indeed identical in form to the ones of the k = 1 system above.

In the context of visual motion detection Werkhoven and Koenderink do use the same duality
principle as we do, based on the output of receptive �elds from the Gaussian family [83]. In their
article it is conjectured that

\The aperture problem [. . . ] is not an inherent problem in visual motion detection."

This is evidently true, since visual routines may well be gauge constrained. Curiously, although the
authors do in fact propose an explicit and visually plausible mechanism for gauge �xing, viz. by mon-
itoring the output of a restricted set of receptive �eld types, it does not seem to occur to them that
they have ipso facto brought in an extrinsic source of information, as they adhere to the aforementioned
deeply rooted vox populi :

\Except for image irradiance patterns that vary only in one dimension, it [i.e. the aperture
problem] does not arise if higher order spatial derivatives are considered."

Technically, however, Werkhoven and Koenderink's approach is probably the one that comes nearest to
ours, as it is in fact a gauge constrained instance.

5.2 Performance Comparison with Similar Methods

Barron et al. have compared the performance of nine optic 
ow techniques reported in the literature [7].
In this section we evaluate zeroth and �rst order approximations for the two image sequences known
as the Translating Tree Sequence (TTS) and the Diverging Tree Sequence (DTS), respectively [7, 16]:
Figure 18. Notation: ~u and ~v denote horizontal and vertical components of the ideal velocity �eld, u; v
are the zeroth order coe�cients in the polynomial expansion, again without explicit reference to the
value of approximation order M , and subscripts x and y denote corresponding derivatives or polynomial
coe�cients. In all that follows, scales are set to unity for the sake of notational simplicity: � = � = 1;
with a straightforward rescaling these parameters can be made explicit again.

Our point of departure will be Result 1, with M = 0 or M = 1. Recall that this result involves only
order of approximation and formal geometric interpretation, in casu the scalar 
ow paradigm; apart
from this, its form is independent of task or other external factors. Also recall that the price of this

exibility is an unresolved ambiguity in the form of local gauge invariance. To be able to connect to
the conditions of the benchmark test|at the same time illustrating the intentional use|we therefore
complement our intrinsic equations with knowledge of camera motion.

In the TTS case the camera moves in front of a textured plane along its x-axis, inducing horizontal
velocities. In the DTS case the camera moves towards the plane along its line of sight with the focus of
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expansion (FOE) in the centre of the image. Figure 18 shows the textured plane and the velocity for
both cases11.

For the TTS we use the additional constraint

~v = 0 ; (14)

which is re
ected in the respective polynomial approximators as follows:

v = 0 (M = 0) ; (15)

v = vx = vy = vt = 0 (M = 1) : (16)

This su�ces to solve for a unique, meaningful 
ow �eld.
In the case of the DTS the velocity will always be radial relative to the FOE. We can use this as an

additional constraint:
x~v � y~u = 0 ; (17)

with x and y relative to the FOE. In the zeroth order case (M = 0: ~u = u; ~v = v) this becomes

xv � yu = 0 : (18)

Combining this with Result 1 for M = 0, we can uniquely solve for the zeroth order velocity �eld.
As for �rst order, we may di�erentiate the gauge constraint 17 with respect to x, y and t:

~v � y~ux + x~vx = 0 ; (19)

�~u� y~uy + x~vy = 0 ; (20)

�y~ut + x~vt = 0 ; (21)

which, upon substitution of a �rst order polynomial (M = 1: ~u = u + xux + yuy + tut; ~v = v + xvx +
yvy + tvt), produces four constraints. Note that none of these are admissible in the zeroth order case.
Altogether, the �rst order DTS system is given by0
BBBBB@

Lx Ly Lxt Lyt Lxx Lxy Lxy Lyy
Lxt Lyt Lx + Lxtt Ly + Lytt Lxxt Lxyt Lxyt Lyyt
Lxx Lxy Lxxt Lxyt Lx + Lxxx Ly + Lxxy Lxxy Lxyy
Lxy Lyy Lxyt Lyyt Lxxy Lxyy Lx + Lxyy Ly + Lyyy
�y x �yt xt �xy x2 �y2 xy
0 0 �y x 0 0 0 0
0 1 0 t �y 2x 0 y
�1 0 �t 0 �x 0 �2y x

1
CCCCCA

0
BBBBB@

u
v
ut
vt
ux
vx
uy
vy

1
CCCCCA =

0
BBBBB@

�Lt
�Ltt
�Lxt
�Lyt
0
0
0
0

1
CCCCCA

(22)
Note that the �rst four rows express syntactical 
ow as given by Result 1 for M = 1, and retain their
validity for the TTS sequence, whereas the last four rows re
ect our assumption of camera movement.
The FOE condition expressed by the last four rows in Equation 22 is actually a globally valid, spatial
constraint. For each time frame we therefore have t = 0, because (t;x; y) labels points relative to the
enduring FOE at processing time; the entries (5; 3); (5; 4); (7; 4); (8;3) must therefore be set equal to
zero. In the TTS case the semantical part of the matrix contains only 0's and 1's, the latter in entries
(5; 2); (6; 4); (7; 6); (8;8), in accordance with Equation 16.

5.2.1 Scale Selection

The linear systems discussed previously form the basis of our experimental study, but note that one can
plug in arbitrary measurement scales (we have chosen a few ad hoc values to play with). The question
therefore arises of how to select appropriate scales. Intuitively one would want to choose a spatial scale
corresponding to the size of features in a scene, and let velocities of objects determine an appropriate
temporal scale (velocities are naturally expressed in terms of the ratio of spatial and temporal scale
units). The possibility of scale selection is in fact a powerful feature of the theory.

We have implemented an automatic scale selection mechanism in which scales are played o� against
numerical stability. This procedure turns out to yield better performance than any �xed scale setting

11Data and 
ow �elds have been obtained from the University of Western Ontario (csd.uwo.ca) by anonymous ftp.
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we have tried. The method is the one proposed by Niessen et al. [64, 65, 66], and works as follows.
Consider the linear system

Av = b : (23)

Generically this equation will be nonsingular, but if A depends on control parameters|in casu scale|a
proper setting may be desirable from a numerical point of view. In particular, since both A as well as
b are measurements with an intrinsic uncertainty, it is important to select values for which the system
of Equation 23 is su�ciently well-conditioned.

A suitable measure readily available from standard matrix algebra is the so-called condition number ,
which relates the induced error in v to those in A and b (small values are preferred):

K(A) = kAkkA�1k : (24)

Here, k : k denotes matrix norm. For instance, using a 2-norm we have

K(A) =
�+(A)

��(A)
; (25)

in which �+(A) is the largest and ��(A) the smallest singular value of A (i.e., eigenvalue of ATA).
Apart from a small condition number we prefer a large signal to noise ratio. To this end we require the
smallest singular value to be larger than a �ducial threshold � [67]:

��(A) > � : (26)

Considering this we have chosen an approach which takes all singular values into account by selecting
parameters that minimise the so-called Frobenius norm of A�1, de�ned as the sum of squares of all
singular values:

kA�1k2F =
X
�

�2�(A
�1) =

X
�

1

�2�(A)
: (27)

Note that if one of the singular values ofA is small this norm will become large. Furthermore, if kA�1k2F
is small, all singular values are large and the matrix is usually well-conditioned.

5.2.2 Results

We have carried out the computation at multiple spatial and temporal scales (� = 1:0, 1:414, 2:0, 2:828,
4:0, 5:656, 8:0, and � = 1:0, 2:0, respectively). We have also computed a velocity �eld based on the
scale selection criterion for these scales.

In order to be able to compare results we use the same angular error measure " as proposed by Fleet
and Jepson [16], and used by Barron et al. [7], which is based on the spatiotemporal orientation of the
measured vector ve relative to that of the correct vector vc (recall that v = (1;u; v)):

" = arccos(bvc � bve) with bv = vp
v � v : (28)

Although we have maintained con�dence measures with velocity estimates, we have used a threshold on
the Frobenius norm to discard uncertain vectors. In Table 1 the results are listed for various spatiotem-
poral scales. The following conclusions can be drawn:

� First order approximation does not necessarily perform better than zeroth order for �xed scales.
Especially at �ne scales the accuracy of higher order derivatives (third order is needed in �rst
order approach) turns out to be problematic.

� Scale selection signi�cantly improves results if all vectors are kept. If for a properly chosen spatial
and temporal scale uncertain vectors are discarded, single scale methods may be as good as or
even outperform the one based on automatic scale selection.

� Scale selection tends to remove outliers, which is apparent from the decreasing standard deviation.
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Parameters TTS DTS
OFCE mean st. dev. density mean st. dev. density

M = 0; � = 1; � = 2 3.17 13.04 100% 3.50 10.29 100 %
M = 1; � = 1; � = 2 3.89 15.11 100% 8.14 17.44 100 %
M = 0; � = 1; � = 2 0.61 1.08 60% 0.98 1.27 60 %
M = 1; � = 1; � = 2 0.70 1.35 60% 2.28 3.88 60 %
M = 0; � = 2; � = 2 1.60 8.68 100% 3.88 10.65 100 %
M = 1; � = 2; � = 2 1.50 8.82 100% 4.76 12.69 100 %
M = 0; � = 2; � = 2 0.38 0.58 60% 1.29 1.53 60 %
M = 1; � = 2; � = 2 0.29 0.41 60% 1.32 2.06 60 %
M = 0; � = 4; � = 2 1.39 8.48 100% 7.39 14.39 100 %
M = 1; � = 4; � = 2 0.71 5.73 100% 2.65 8.63 100 %
M = 0; � = 4; � = 2 0.33 0.43 60% 2.66 2.68 60 %
M = 1; � = 4; � = 2 0.16 0.18 60% 0.79 1.13 60 %
M = 0; � = 8; � = 2 2.08 10.03 100% 11.98 19.65 100 %
M = 1; � = 8; � = 2 1.43 8.53 100% 3.32 9.61 100 %
M = 0; � = 8; � = 2 0.79 3.65 60% 4.35 3.99 60 %
M = 1; � = 8; � = 2 0.42 1.04 60% 1.56 3.88 60 %
M = 0, multiple �; � 0.57 1.76 100% 4.99 7.93 100 %
M = 1, multiple �; � 0.49 1.92 100% 1.15 3.32 100 %
M = 0, multiple �; � 0.42 0.88 60% 2.68 2.66 60 %
M = 1, multiple �; � 0.28 0.65 60% 0.92 2.51 60 %

Table 1: Error statistics for �xed-scale and multi-scale techniques for the OFCE based on the error measure "
(28).

We have compared the performance of our algorithm with the results reported by Barron et al. [7]
(for details the reader is referred to the literature). Table 2 concerns methods in which all vectors
are maintained (\density = 100%"). Our OFCE method compares favourably with these approaches.
This should not come as a complete surprise, since adequate a priori knowledge has been brought in.
However, the results provide support for precisely the kind of approach we have adopted, based on
a reasonable and fairly uncommitted syntactical de�nition of optic 
ow combined with a clear entry
point for sophisticated semantics. It is also evident that scale selection signi�cantly improves results.
Finally, in Table 3 we compare our approach with the best performing algorithms that discard uncertain
estimates. Our approach performs better than the algorithm of Fleet & Jepson, which is the best
performing algorithm reported [7].

Implementation TTS DTS
method mean st. dev. mean st. dev.

Horn & Schunck (original) 38.72 27.67 12.02 11.72
Modi�ed Horn & Schunck 2.02 2.27 2.55 3.67
Uras et al. (unthresholded) 0.62 0.52 4.64 3.48

Nagel 2.44 3.06 2.94 3.23
Anandan 4.54 3.10 7.64 4.96

Singh (step 1, n = 2; w = 2; (N = 4)) 1.64 2.44 17.66 14.25
Singh (step 2, n = 2; w = 2; (N = 4)) 1.25 3.29 8.60 5.60

OFCE (M = 0; � = 2; � = 2) 1.60 8.68 3.88 10.65
OFCE (M = 1; � = 4; � = 2) 0.71 5.73 2.65 8.63
OFCE (M = 1, multiple �; �) 0.49 1.92 1.15 3.32

Table 2: OFCE compared with best performing techniques [7] with velocity estimates in the entire image
domain. Again, scale selection involves the two temporal and seven spatial scale values previously mentioned.
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Implementation TTS DTS
method mean st. dev. density mean st. dev. density

Horn & Schunck (original, krLk � 5:0) 32.66 24.50 55.9% 8.93 7.79 54.8 %
Modi�ed Horn & Schunck 1.89 2.40 53.2% 1.94 3.89 32.9 %

Lucas and Kanade (�2 � 1:0) 0.66 0.67 39.8% 1.94 2.06 48.2 %
Lucas and Kanade (�2 � 5:0) 0.56 0.58 13.1% 1.65 1.48 24.3 %
Uras et al. (det(H) � 1:0) 0.46 0.35 41.8% 3.83 2.19 60.2 %

Nagel krLk2 � 5:0 2.24 3.31 53.2% 3.21 3.43 53.5 %
Singh (step 1, n = 2; w = 2; �1 � 5:0; (N = 4)) 0.72 0.75 41.4 % 7.09 6.59 3.3 %

Heeger 4.53 2.41 57.8% 4.49 3.10 74.2 %
Fleet & Jepson (� = 2:5) 0.32 0.38 74.5% 0.99 0.78 61.0 %
Fleet & Jepson (� = 2:0) 0.23 0.19 49.7% 0.80 0.73 46.5 %
Fleet & Jepson (� = 1:0) 0.25 0.21 26.8% 0.73 0.46 28.2 %

OFCE (M = 0; � = 4; � = 2) 0.33 0.43 60% 2.66 2.68 60 %
OFCE (M = 1, multiple �; �) 0.16 0.18 60% 0.79 1.13 60 %
OFCE (M = 0, multiple �; �) 0.29 0.33 40% 2.04 1.81 40 %
OFCE (M = 1, multiple �; �) 0.14 0.13 40% 0.43 0.40 40 %

Table 3: OFCE compared with best performing techniques reported by Barron et al. [7].

6 Summary and Discussion

In this article we have presented new conceptual and computational aspects of optic 
ow measurement.
An important novelty is the incorporation of measurement duality in the traditional approach based
on the Optic Flow Constraint Equation, which has led to a consistent representation of optic 
ow
that accounts for the role of preprocessing �lters. As a spin-o� we have derived a scale-space for
optic 
ow fully compatible with the conventional scale-space paradigm for grey-scale images. Moreover,
a gauge theoretical approach has been adopted in order to make the distinction \structure" versus
\meaning" manifest, viz. by modelling the former (data evidence) in terms of a system characterised
by a local ambiguity (gauge invariance, basically the \aperture problem" in disguise), and the latter
(models, hypotheses) in terms of a complementary set of gauge constraints. Accordingly we have
argued in favour of a conceptual distinction between \syntactical" (data-de�ned, gauge invariant) and
\semantical" (model-induced, gauge constrained) 
ow.

Syntax pertains to structure, which is itself of course a product of reasoning. In general one needs
to decide on the geometric interpretation of the image data|the \proto-semantics" of image formation:
scalar versus density, topological duality, 
ow-de�ning conservation principle, et cetera|in order to
de�ne the 
ow �eld's syntactical structure. In addition one needs to address the semantics of the
problem by gauge �xing; examples are the normal 
ow condition, and even the usual assumption of
conservation of topological detail. In practice one will often need more sophisticated gauges. We believe
that the theory is particularly suited for modelling 
ow in medical imaging, but with some modi�cations
it may well be of wider applicability, e.g. in the context of binocular stereo [63, 65].

As for the computational part, we have presented a robust, operational de�nition of syntactical optic

ow in arbitrary dimensions and to arbitrary orders of approximation. The emphasis has been on the
scalar case, but it has also been pointed out how to deal with densities.

The theory for the scalar case has been veri�ed by means of an analytically tractable stimulus.
Numerical simulation of optic 
ow extraction in (2 + 1)D shows qualitatively acceptable results in
lowest order, and quite accurate quantitative results in �rst order approximation, even in the presence
of substantial multiplicative noise. We have also compared the performance of zeroth and �rst order
schemes on a benchmark sequence with similar ones proposed in the literature [7]. The �rst order case
outperforms existing techniques if appropriate hypotheses are used to �x the gauge.

An aspect that has not been addressed here is optimal order ; we have formulated the optic 
ow
extraction method for arbitrary orders of approximationM , involving partial image derivatives of orders
as high as 2M +1. Optimality of di�erential order is therefore a decisive factor; this depends on various
details such as noise, discretisation characteristics, reconstruction quality, resolution of interest, et cetera.
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Higher orders are quite likely to improve results even further as far as these quality criteria permit. This
is to be expected because the formal expansion vM converges to the actual optic 
ow de�ning generator
v as M !1, at least in theory. In practice it is useful to consider the Cauchy di�erences vM+1 � vM ,
since these are actually computable up to some order M . From these one can infer the rate of successive
re�nement of the various optic 
ow parameters, and thus get an impression of the rate of convergence
of the local optic 
ow �eld expansion. In turn this enables predictions concerning which orders are
relevant and which can be savely ignored, depending on image structure, instead of committing oneself
to a predetermined truncation order. Moreover, if the Cauchy di�erences do not decrease su�ciently
fast, so that they become negligible before the optimal order prohibits further re�nement, then we
e�ectively have an optic 
ow discontinuity . This is of interest in segmentation tasks. Finally, knowledge
of re�nement is also important because all optic 
ow parameters, even the lowest order ones, are only
reliably extracted if M -th order provides a su�ciently accurate local approximation. Only in that
case will order of approximation be a good substitute for di�erential order, so that we can compare
the coe�cients of v�M with the corresponding Taylor coe�cients of v�. The principle of re�nement
is therefore important, because no a priori truncation order M will guarantee a globally acceptable
approximation. We have made sure, however, that truncation will never introduce a \spurious gauge",
so that we can bring in knowledge in an unbiased way.

A largely unsolved problem is how to handle the deep structure of scale-space, although promising
approaches do exist in the form of coarse-to-�ne principles, automatic scale selection mechanisms, and
topological descriptions based on catastrophe theory. In our numerical study we have exploited the
scale degree of freedom so as to obtain the most reliable high-resolution optic 
ow approximation by
monitoring the condition number of the de�ning linear system as a function of spatiotemporal scale.

Last but not least, it should be noted that the real problem in practice is always one of semantics, viz.
to establish and validate appropriate gauge conditions on the basis of a priori knowledge. Semantical
optic 
ow quite likely requires a hermeneutic circle in which complementary cues are synchronised,
since any initially hypothesised model may fail independent of data quality (e.g. 
ow-segmentation-
registration). Results must be evaluated relative to task performance and multiple cue consistency, not
to \ground truth".
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A The Filters ��1:::�l
�1:::�k

Using the following lemma we can get rid of the derivative @� in the integrand of Result 1:

Lemma 1 Using parentheses to denote index symmetrisation, we have

@��
�1:::�l
�1 :::�k

(x) = ���1:::�l
�1:::�k�

(x) + � (�l� �
�1:::�l�1)
�1:::�k

(x) :

It is understood that �
�1:::�l�1
�1:::�k � 0 if l = 0.

The proof of this lemma is straightforward and will be omitted. Using this lemma we can rewrite
Result 1:

Result 3 See Result 1.

@�1:::�kLvM F [�] =
MX
l=0

v�M ;�1:::�l

Z
dx f(x)

�
��1:::�l
�1:::�k�(x)� ��1:::�l�1

�1:::�k (x) ��l�
�
:

(Note that we do not need to make index symmetrisation for �1; : : : ; �l explicit here; it is automatically
achieved by virtue of symmetry of the coe�cients v�M ;�1:::�l

.)
In order to express the overcomplete set of �lters ��1:::�l

�1:::�k in terms of Gaussian derivative �lters
��1:::�m , consider the following diagram.

��1:::�l
�1:::�k(x)

F�! �̂�1:::�l
�1:::�k(!)

? # # ??
��1:::�l
�1:::�k(x)

F
�1

 � �̂�1:::�l
�1:::�k(!)

Instead of simplifying directly in the spatial domain (the act of which is symbolised by ?), we take
the equivalent Fourier detour (F ! ?? ! F�1), and simplify in Fourier space (??). We can make the
following formal identi�cations of operators (the l.h.s. in the spatial domain, the r.h.s. in the Fourier
domain):

x�
F�! i

@

@!�
;

@

@x�
F�! i!� : (29)

We need one more de�nition.

De�nition 6 (Hermite Polynomials) The Hermite polynomial of order k, Hk, is de�ned by

dk

dxk
e�

1
2 x

2

= (�1)kHk(x) e
� 1

2x
2

:

This is appropriate for the 1-dimensional case. Let us de�ne the n-dimensional analogue of the Hermite
polynomials as follows.

De�nition 7 (Hermite Polynomials in n Dimensions) The n-dimensional Hermite polynomial of
order k, Hi1:::ik , is de�ned by

@k

@xi1 : : : @xik
e�

1
2x

2

= (�1)kHi1:::ik(x) e
� 1

2x
2

:

These n-dimensional Hermite polynomials are related to the standard ones in the following way.

Lemma 2 (Relation to Standard De�nition) The n-dimensional Hermite polynomials as de�ned
in De�nition 7 are tensor products of one-dimensional Hermite polynomials as de�ned in De�nition 6.
More precisely,

Hi1:::ik(x) =
nY

j=1

H
�
i1:::ik
j

(xj) ;

in which �i1:::ikj denotes the number of indices in i1; : : : ; ik equal to j.
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Clearly we have
Pn

j=1 �
i1:::ik
j = k, since this simply sums up all indices. The separability property of

Lemma 2 follows straightforwardly from De�nition 6, when applied to a multidimensional Gaussian.
Having established all basic ingredients and notational matters, we can now relate the overcomplete

family of �lters ��1:::�l
�1:::�k to the Gaussian family. This is easy, since all we need to do is to use Leibniz

product rule for di�erentiation in

�̂�1:::�l
�1:::�k(!) =

(�1)k
l!

i
@

@!�1
: : : i

@

@!�l

�
i!�1 : : : i!�k �̂(!)

�
; (30)

(see Formula 29 and the de�nition of the �lters in Result 1). Then, each time we have to take a derivative

of �̂(!), we use the explicit property of the Gaussian stated in De�nition 7. In this way we arrive at

Result 4 (The Filters ��1:::�l
�1:::�k

and the Gaussian Family) Let S denote the index symmetrisation
operator (applying both to upper as well as lower indices), then we have

�̂�1:::�l
�1:::�k

(!) =

(�1)k
l!
S
8<
:

min(k;l)X
m=0

(�1)m
�

l
m

�
k!

(k �m)!
��1�1 : : : �

�m
�m i!�m+1 : : : i!�k (�i)l�mH�m+1:::�l(!) �̂(!)

9=
; :

Fourier inversion yields

��1:::�l
�1:::�k(x) =

(�1)k
l!
S
8<
:

min(k;l)X
m=0

(�1)m
�

l
m

�
k!

(k �m)!
��1�1 : : : �

�m
�m @�m+1 : : :@�k i

l�mH�m+1 :::�l(ir)�(x)
9=
; :

Note that this expression is real in the spatial domain, since i pH�1:::�p (ir) is a real di�erential operator
for any p 2 ZZ+0 . To see this, look at the explicit form of a Hermite polynomial:

Hk(x) =

[ k=2 ]X
m=0

(�1)m
�

k
2m

�
(2m� 1)!!xk�2m ; (31)

in which [x ] denotes the integer part of x 2 IR, i.e. the largest integer less than or equal to x, and in
which the double factorial (2m� 1)!! indicates the product 1� 3� : : :� (2m � 1). Consequently,

i kHk(i
d

dx
) = (�1)k

[ k=2 ]X
m=0

�
k
2m

�
(2m� 1)!!

dk�2m

dxk�2m
; (32)

very real indeed. The general n-dimensional case follows from this observation. Note also that the r.h.s.
of Result 4 is a linear combination of Gaussian derivatives of the type ��1:::�p , with p = 0; : : : ; k + l.
Thus we have indeed proven overcompleteness of the (apparently (k + l)-th order) �lters ��1:::�l

�1:::�k by
explicitly rewriting them in terms of Gaussian derivatives.
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