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Abstract

Exploratory analysis of remotely-sensed data aims at acquiring insight as to the stability of

possible classi�cations of these data and their information value for speci�c applications. For

this purpose, knowledge of the uncertainties underlying these classi�cations is imperative.

In this paper, we introduce various measures that summarise for a classi�cation, in a single

number per pixel, the distribution and extent of the uncertainties involved. Since exploratory

analysis needs e�ective ways of conveying information to the user, we in addition address

various ways of cartographic visualisation of uncertainty.

1 Introduction

The ability of space- and airborne instruments to measure the amount of electromagnetic radiation
reected and emitted by the Earth's surface has proved to be valuable for the understanding of
our environment, as it provides for an overwhelming ow of data on the appearance and condition
of our planet. The data yielded by remote sensing can be subjected to various types of computer-
assisted manipulation, to arrive at derived data sets tailored to di�erent types of application.
Computer-assisted classi�cation of remotely-sensed data into qualitative classes, for example, is
useful for extracting information that can be exploited for cartographic purposes, such as in the
generation of thematic maps of land cover types. Den�egre (1994) elaborates on the cartographic
meaning of remotely-sensed data acquired by Earth observation satellites such as the Landsat
series and SPOT series.

For a proper cartographic application, the �tness for use of a set of remotely-sensed data needs
be assessed. The practicability of the data and their classi�cation can be established by means of
an accuracy assessment procedure. An error matrix is created for the classi�cation by matching a
random sample and its counterpart from a reference data set representing the actual environment.
From such a matrix, various statistics are derived (Janssen and Van der Wel, 1994). Accuracy
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assessment based on an error matrix, however, has several drawbacks. Among these is the non-
spatial and general character of a global statement like 95% accuracy for an entire classi�cation.
Also, the random selection of sample data disregards the occurrence of di�erences in stability of
class assignments. Moreover, accuracy assessment is a time-consuming and cost-intensive process.
As a consequence, it is easily omitted which, of course, is undesirable and may lead to the use of
data that are un�t for the application at hand.

For assessing the �tness for use of a set of remotely-sensed data, however, accuracy is not
the only consideration. More in general, the phrase data quality is used to refer to the extent to
which the characteristics of the data meet the requirements of the application aimed at by the
user. A high quality indicates a relatively high information value for the considered application or,
stated in another way, a good �tness for use. Uncertainty is a key issue in quality assessment and,
therefore, in the assessment of �tness for use of a data set. Unwin (1995) presents an overview of
the issue of uncertainty in classi�cation.

For investigating uncertainty, e�ective measures need to be designed. To this end, it is relevant
to consider the purpose to which these measures are to be employed. In this paper, we focus on an
exploratory perspective. Exploratory analysis of a set of remotely-sensed data aims at acquiring
insight in the stability of various possible classi�cations of these data. For this purpose, knowledge
of the uncertainties underlying these classi�cations is imperative. As in exploratory analysis,
classi�cation is an iterative process, it needs not only measures for assessing the uncertainty in
a classi�cation but also e�ective ways to convey this information to the user. Visualisation is
generally considered a useful means of communication of potentially relevant information. In this
paper, we present a class of measures of uncertainty tailored to the purpose of exploratory analysis
of remotely-sensed data and address various ways of cartographic visualisation of uncertainty.

The paper is organised as follows. In the next section, we discuss the issue of uncertainty
in the classi�cation of remotely-sensed data. Then, the current state-of-the-art in cartographic
visualisation of uncertainty is reviewed. Subsequently, a class of highly informative measures
building on the notion of weighted uncertainty is introduced. These measures allow for quite
convincing visualisations, as is shown in the last section using examples from the CAMOTIUS1

project.

2 Uncertainty in remote-sensing classi�cations

Discrete remote-sensing classi�cation, by its very nature, neglects the fuzzy character of our envi-
ronment and, as a consequence, introduces uncertainty in class assignments. This uncertainty is
typically further propagated throughout subsequent stages of post-classi�cation editing, intended
to produce a cartographically attractive product: post-classi�cation editing may, for example, in-
duce an unpredictable smoothing of potentially signi�cant phenomena. Lunetta et al. (1991) give
an overview of the sources of errors and uncertainties in remote-sensing classi�cation.

The uncertainty that is introduced during classi�cation of a set of remotely-sensed data is
characterised by the probability vectors that are yielded as a byproduct by most probabilistic
classi�cation procedures (Goodchild et al., 1992). In a maximum a posteriori classi�cation, for
every pixel in the data, a vector of probabilities is calculated that speci�es for each recognised
class its probability of being the true class. If a pixel is viewed as a statistical variable C that has
one of the classes Ci, i = 1; : : : ; n, for its value, then the vector computed for this pixel speci�es
the posterior probabilities:

Pr(C = Ci j x)

1CAMOTIUS has been a research project in which the cartography section of Utrecht University, the ITC, the
National Physical Planning Agency (VROM-RPD), and Eurosense b.v. participated. Funding was provided by the
Netherlands Remote Sensing Board (BCRS). The main objective has been the development of a demonstration
software package showing knowledge-supported classi�cation of remotely-sensed data and the derivation and sub-
sequent visualisation of quality information. A sample copy of the CAMOTIUS package can be achieved by ftp via
the WWW-site of the International Association for Mathematical Geology (IAMG).
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for i = 1; : : : ; n, where x denotes the available data. The probability vectors yielded by classi�-
cation reect the di�erences in uncertainty in the resulting classi�cation and may be considered
indicative of dubious classi�cations, of mixed pixels, of heterogeneous classes, or of fuzzy bound-
aries between classes (Goodchild et al., 1992).

Building on probability vectors, various measures of uncertainty may be used. An example
of such a measure is the maximum probability appearing in a probability vector. The value of
this maximum probability is an expression of the strength of the class assignment and of possible
confusion with other classes. A high maximum probability, such as 0.95, raises few doubts about
the classi�cation of the pixel at hand. A lower maximum probability, such as 0.50, however,
could very well indicate a dubious class assignment. The di�erence between the maximum and
second ranking probabilities in the vector may then serve to clarify this doubiousness as it provides
information about the certainty of the most probable class. Note that these measures of uncertainty
do not provide the user with a global indication of the practicability of a set of remotely-sensed
data and their classi�cation as accuracy measures do.

3 Visualisation of uncertainty

Cartographers have traditionally been concerned with quality, as their integrity is reected in the
appearance of their maps. This implicit "stamp of approval", as Morrison (Guptill and Morrison,
1995) calls it, has gradually lost its signi�cance with the advent of computer technology and
the dissemination of mapping abilities to application specialists rather than cartographers. On-
screen maps are more transitory than paper maps. Also, several di�erent on-screen maps are easily
generated as di�erent visualisations of the same data, which further contributes to their ephemeral
character. Traditional visualisation by | possibly insigni�cant | colours for a remote-sensing
classi�cation may not be su�cient for the application aimed at by the user. Some visualisation
of data quality is called for. In fact, graphical representation of the quality of remotely-sensed
data has recently evolved as a challenging cartographic activity: several interesting representation
methods are being explored, building on the possibilities o�ered by computer technology (Beard
et al., 1991).

Using the visualisation model of DiBiase (DiBiase et al., 1992), we review several techniques
for the visualisation of uncertainty, tailored to the support of exploratory analysis of remotely-
sensed data. A distinction is made between static and dynamic visualisation. In static visualisation
graphic variables are applied for capturing uncertainty into a spatial pattern; dynamic visualisation
adds time as an extra dimension to the visualisation. Conveying uncertainty by means of graphic
variables in a static map is �rmly rooted in cartographic tradition and can, therefore, bene�t from
the existence of a sound theoretical framework (Bertin, 1983). Dynamic cartography, on the other
hand, is still evolving: its | sometimes | immature concepts have yet to deal with considerations
of feasibility, both with regard to technology and perception. The review in this section is by no
means exhaustive, but is intended to give an impression of some of the more feasible ways to
convey uncertainty.

3.1 Static visualisation

A starting point for the visualisation of uncertainty by graphic variables is provided by the theory
of semiology of graphics of Bertin (1983). In his theory, Bertin distinguishes six graphic variables:
colour hue, orientation, shape, size, texture or grain, and value, each of which can be attached to
points, lines, and areas in a map. In addition to these six variables, other graphic variables have
been suggested in recent years, such as structure or pattern arrangement (Muehrcke and Muehrcke,
1992) and, with respect to the representation of uncertainty, colour saturation (MacEachren, 1992).
The graphic variables that are most suitable for conveying the quantitative character of uncertainty
are value (grey-scale maps), colour saturation (bivariate maps), colour hue (associative ranking
maps) and a combination of the latter two variables (dichotomy maps) (Van der Wel et al., 1994).
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Probably the simplest visualisation of the uncertainties underlying a remote-sensing classi�ca-
tion is in a grey-scale map depicting the maximum probability per pixel as a colour value. The
colour values used, typically range from black for a low maximum probability to white for a high
one. An example grey-scale map is shown in Figure 1. It will be evident that also grey-scale

0 1

Figure 1: Maximum probabilities depicted in a grey-scale map.

maps can be generated that represent for each single qualitative class this class' probability per
pixel. The information content of such maps, however, is rather restricted. This can be improved
to some extent by the simultaneous representation of the classi�cation itself in a separate map
(Foody and Curran, 1994; MacEachren, 1992; Van der Wel et al., 1994). Relating uncertainty to
classes by means of a pair of static maps, however, is quite cumbersome.

Computer technology enables straightforward integration of the representations of qualitative
classes and quantitative uncertainty in a classi�cation by means of colour hue and colour saturation
respectively. The resulting bivariate maps are highly informative, reecting the strengths with
which the classes have been assigned to the various pixels. The high information content, however,
produces a complex interpretation key. Moreover, colours with low saturation may be di�cult to
distinguish, thus contributing to confusion in the interpretation (Brown and Van Elzakker, 1993).

By nature, colour hue fails to give an impression of order as required for conveying the quanti-
tative character of uncertainty. It can nevertheless be applied for this purpose by taking advantage
of the subjective associations by which people deal with a sequence of hues. An example is the
tra�c light principle illustrated in Figure 2. Red, yellow, and green convey prohibition, alertness,
and permission, respectively. From the probability vectors yielded by classi�cation, an associative

ranking map can be generated in which pixels having a high maximum probability in their vector
and a large di�erence of this probability with the second ranking one are displayed in green and
pixels with a low maximum probability and a small di�erence with the second ranking probability
are displayed in red. Yellow spots in the map indicate ambiguous pixels, that is, pixels with a
moderately high maximum probability in their vector but a hardly convincing di�erence value.

The associative capability of colour hue can also be exploited to convey deviation from a user-
de�ned threshold value. Suppose that a minimal probability of 0.50 for class assignment to a pixel
is considered critical for some application. Pixels with a maximum probability in their vector
lower than or equal to 0.50 then are characterised by a blue colour hue, whereas pixels with a
maximum probability above the threshold value are depicted in red, with the colours blue and red
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Figure 2: The principle of an associative ranking map.

chosen so as to refer to an association with temperature ranges. The amount of deviation from the
threshold value given by the user can in addition be represented by colour saturation. Figure 3
illustrates the basic idea of such a dichotomy map. The usefulness of these maps strongly depends

threshold

0

1

Probability Meter

Figure 3: The basic idea of a dichotomy map.

on the acquaintance of the user with the selected association.
In addition to using graphic variables in a two-dimensional map, uncertainty may be represent-

ed by introducing a third dimension. In an uncertainty landscape, peaks express high probabilities,
valleys lower probabilities. An uncertainty landscape may be draped with a many-coloured class
layer.

3.2 Dynamic visualisation

Dynamic visualisation, in which time is added as an extra dimension, is rapidly gaining ground.
MacEachren (1994) distinguishes between the use of temporal graphic variables to animate static
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maps and their use to depict dynamic processes in time. Because the uncertainties underlying a
remote-sensing classi�cation basically lack meaning in terms of evolution in time, we focus on the
use of temporal variables to make static maps more readily accessible.

A clickable map basically is a traditional many-coloured map of a classi�cation of remotely-
sensed data with activatable extra information. The information concerning the uncertainty un-
derlying the classi�cation is not directly visible in the map but may be activated by pressing the
mouse button at a pixel. Upon pressing the button the pixel's vector of probabilities is shown as a
separate graphic. Alternatively, pressing the mouse button can reveal the second most likely class
for the pixel, directly in the image, by changing the colour assigned to the pixel. By transecting
the image with the mouse, an uncertainty pro�le can be created, displaying for every pixel visited,
the associated probability vector.

Instead of graphically visualising the uncertainty underlying a remote-sensing classi�cation,
Fisher (1994a) proposes sound as a sensory variable: a strident noise may be used to alarm a
user whose cursor is entering a less reliable part of the map, relating uncertainty proportionally
to tone. Sound can facilitate the visualisation of uncertainty while preserving the static graphic
variables for the thematic information of the classi�cation at hand. The perceptual consequences
of exploiting sound for conveying information have, however, hardly been explored (Krygier, 1994).

A traditional many-coloured map of a remote-sensing classi�cation and its associated maxi-
mum probability grey-scale map may be toggled to result in a combined sensation of classes and
uncertainty in a dynamic map pair. The time lapse between the alternating display of maps
can generally be selected interactively. Caution, however, is called for to avoid annoying e�ects
of only slowly interchanging images. Such an alternating display of maps typically results in a
phenomenon known as chromatic adaptation: the display of the many-coloured map causes an
after-image that is projected onto the maximum probability map.

The sequential display of di�erent many-coloured thematic maps and associated uncertainty
maps derived from the same set of remotely-sensed data may make up an animation. For example,
the probabilities from the probability vectors yielded by classi�cation can be visualised successively
according to their ranking, thereby enabling the representation of all probabilities underlying the
classi�cation. The animation can follow di�erent schemes, such as sequential, progressive, cyclic,
and back-and-forth. Fisher (1994b) proposes an animation where the display of probabilities is
based on the principle of duration: the higher a class' probability for a pixel, the longer the period
of time the class colour is displayed. Animations can also aid in exploring a three-dimensional
uncertainty landscape: skimming over its peaks and valleys can have a dramatic impact on the
understanding of the uncertainty involved.

4 Weighted uncertainty

The vectors of probabilities computed by a classi�cation procedure for a set of remotely-sensed
data provide useful information about the quality of the resulting classi�cation in terms of the
uncertainty involved. In the foregoing, we briey reviewed some simple quality measures that are
in use for extracting this type of information. Unfortunately, as these measures do not address
the entire probability vectors, they fail to capture the distribution and extent of the uncertainties
underlying a classi�cation. Overall knowledge of the uncertainties involved, however, is imperative
for acquiring in-depth insight in the quality of the classi�cation. To exploit fully the information
content of a probability vector for this purpose, additional measures of uncertainty are called for.

For a detailed exploration of the uncertainties underlying a remote-sensing classi�cation, we
propose using a measure from among a class of measures that build on the notion of weighted
uncertainty. A well-known example of such a measure is the entropy measure originating from
information theory (Shannon, 1948; Kullback, 1954). The measure pertains to a statistical variable
and the uncertainties in its various possible values, expressing in a single number the distribution
and extent of these uncertainties. We would like to note that the use of the entropy measure
for capturing the uncertainty underlying a remote-sensing classi�cation has already been briey
hinted at by Goodchild et al. (1994).
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Figure 4: The entropy and quadratic score of a pixel.

In the entropy measure, the uncertainty in a single value of a statistical variable is de�ned
as the information content of a piece of information that would reveal this value with perfect
accuracy. For a pixel in a remote-sensing classi�cation, viewed as a statistical variable C, the
uncertainty in class Ci is de�ned as:

� log
2
Pr(C = Ci j x)

for i = 1; : : : ; n, where x denotes the available data; the uncertainty is measured in units of bits
of information. Generally, the true class of the pixel is not known and, as a consequence, the
amount of information required to reveal the pixel's class is unknown. The entropy of the pixel is
therefore de�ned as the expected information content of a piece of information that would reveal
its true class. To this end, the entropy measure combines the uncertainties in the various classes
of the pixel by weighting them by their probabilities:

�
X

i=1;:::;n

Pr(C = Ci j x) � log2 Pr(C = Ci j x)

The pixel's entropy is minimal if the uncertainty as to its true class has been resolved. Thus, if
Pr(C = Ci j x) = 1 for some class Ci, 1 � i � n, that is, if class Ci has been established with
perfect accuracy, then the entropy equals zero and there is no further information required to
reveal the pixel's true class. Conversely, the entropy is maximal if none of the classes is preferred,
that is, if there is utter ignorance as to the pixel's true class. So, if the probabilities Pr(C = Ci j x),
i = 1; : : : ; n, are uniformly distributed, that is, if for all classes Ci we have that Pr(C = Ci j x) =

1

n
,

then the entropy is at maximum. Figure 4 depicts the entropy of a pixel that can have one of two
classes; the x-axis represents the probability of one of these two classes and the y-axis represents
the pixel's entropy.

The main advantage of the entropy measure over the simple quality measures mentioned before,
is its ability to summarise all the information contained in a vector of probabilities in a single
number. The entropy measure is, however, not the only measure that exhibits this property. In
essence, any measure that builds on the notion of weighted uncertainty will do the same thing.

As another measure of weighted uncertainty, we briey discuss the quadratic score (Glasziou
and Hilden, 1989). The quadratic score builds on the notion of con�rmation. The uncertainty in
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a single class for a pixel is the amount of probability required to establish this class with complete
accuracy. The uncertainty in class Ci is de�ned as:

1� Pr(C = Ci j x)

for i = 1; : : : ; n, where x once more denotes the available data. The quadratic score of the pixel is
then:

X

i=1;:::;n

Pr(C = Ci j x) � (1� Pr(C = Ci j x))

This measure exhibits the same behaviour in its minimum and maximum values as does the entropy
measure. The two measures di�er, however, in their slopes as is shown in Figure 4. The slope
of the entropy measure is steeper than the slope of the quadratic score. As a result, the entropy
measure for example more strongly weights small deviations from probabilities equal to zero or
one than the quadratic score.

5 Visualisation of weighted uncertainty

The class of measures of uncertainty that have been introduced in the previous section allow for
capturing overall knowledge of the uncertainties underlying a remote-sensing classi�cation. As
these measures summarise the distribution and extent of the uncertainties involved in a single
number per pixel, they provide for conveying uncertainty information in a straightforward way.
Entropy can, for example, simply be visualised in a grey-scale map. The practicality of an entropy
map for exploring uncertainty in remote-sensing classi�cations is illustrated using an example
taken from the CAMOTIUS-package. The CAMOTIUS-package is a PC-application, written in
Visual Basic, that provides a user-friendly approach to data exploration. It o�ers, for example,
a number of probabilistic classi�cation procedures, each yielding vectors of posterior probabilities
as described before.

Our example addresses a data set selected from a Landsat Thematic Mapper image of the
Westland area of the Netherlands. In classifying these data, six land cover classes were distin-
guished: water, grass, arable land, forest, bare soil, and built-up area. The class of built-up
area has been further subdivided in three additional land use classes as urban, industrial, and
greenhouse, the latter being characteristic for the Westland study area. Figure 5 shows some
examples of grey-scale maps of the uncertainties underlying our classi�cation, as o�ered by the
CAMOTIUS-package. These maps, and especially the entropy map, reveal interesting informa-
tion. The distinction between the agricultural areas and built-up areas is clearly reected by
the entropy map while the other maps fail to reveal this information unambiguously. The fuzzy
character of urban areas results in a high entropy (light grey to white in the map) as opposed to
the low entropy (dark grey to black) for pastures that are easily distinguished by the classi�er.
This is especially well illustrated for the area around Maasland, a village that is delineated by a
greyish, north-south orientated spot in the lower right corner of the entropy map. Also, it appears
that employing the entropy measure provides an edge detector. Transitions between homogeneous
areas, such as pastures, are characterised by a high entropy.

In addition to grey-scale maps, the CAMOTIUS-package provides bivariate maps for the si-
multaneous visualisation of qualitative classes and entropy values. Bivariate maps may further be
extended to clickable maps in which pressing the mouse button at a pixel shows the entire vector
of probabilities. Figure 6 illustrates visualisation of the probability vector as an array and Figure
7 shows it as an uncertainty pro�le.
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Figure 5: Examples of grey-scale maps as provided by the CAMOTIUS package: clockwise from
top left are the maximum probability, entropy, di�erence value, and second ranking probability
maps.
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Figure 6: Representation of a probability vector as an array.

6 Conclusions

The advent of computer technology facilitates an exploratory analysis of various classi�cations
of a set of remotely-sensed data to arrive at attractive and cartographically sound products. To
support exploratory analysis, a user needs to be provided with informative measures of uncer-
tainty and with e�ective ways of visualising uncertainty. Various measures are already in use
for extracting uncertainty information from the vectors of probabilities yielded by most classi�-
cation procedures. These measures, however, fail to capture the distribution and extent of the
uncertainties underlying a classi�cation and, as a consequence, may hide relevant information.
We have proposed supplementing them by measures that build on the notion of weighted uncer-
tainty, addressing the entire probability vectors. Since these measures summarise all information
contained in a vector of probabilities in a single number per pixel, they allow for straightforward
visualisation. We have addressed the visualisation of entropy, as an example measure of weighted
uncertainty, in the context of the CAMOTIUS-package.

Providing a user with informative measures of uncertainty and with ways of cartographic visu-
alisation of uncertainty is of key importance to ensure the use of data that are �t for the application
aimed at by the user. We hope that the measures and visualisation techniques introduced in this
paper may contribute to an e�ective assessment of �tness for use of a set of remotely-sensed data.

10



Figure 7: Representation of a probability vector as a pro�le.
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