STRICTIFICATION OF COMPUTATIONS ON
TREES

Joao Saraiva} Doaitse Swierstra and Matthijs Kuiper

Department of Computer Science, University of Utrecht
P.O. Bozx 80.089, 3508 TB Utrecht, The Netherlands
email: {saraiva,kuiper,swierstra}@cs.ruu.nl

phone: +31 30 2536761

Abstract

An attribute grammars describes a computation over a recursive data
structure (syntax tree). The corresponding evaluator can be directly en-
coded as a set of lazy evaluated functions. In this paper we show how this
set may be converted into a larger set of strict functions and a collection
of new data types. We call this process, which is based on a global data
flow analysis, strictification. The resulting set of small functions and the
new data types are amenable to further analysis and optimization. Es-
pecially the elimination transformation leads to very efficient programs,
both in time and space, and which are much more suited for incremental
(i.e. memoized) and parallel evaluation.

Introduction

Functional programs written in a lazy language can be surprisingly short and
elegant; unfortunately this elegance comes at a price, since in general they
are also expensive to evaluate, due to the overhead associated with the demand
driven execution model and the associated dynamic scheduling of computations.
A lot of research has been done on strictness analysis, in order to move some of
the decisions to be taken about the evaluation order from the dynamic to the
static realm.

In this paper we present techniques, some of which originate from the field of
attribute grammars, which enables us to transform a specific class of functions
into a larger set of mutually recursive functions, which however are all strict in
their all arguments. In this way the inherently lazy part of the computation
becomes explicitly represented in the program, and the resulting program can
be evaluated in a data-driven instead of a demand driven way.

After this general transformation has been performed we are left with a
large set of mutually recursive small strict functions, each of which usually
does not perform much work. This resulting set can however, since the overall
computation has been unravelled, be analysed for often occurring special cases,

*On leave from the Department of Computer Science, University of Minho, Braga, Portugal.

and be subjected to further transformations in order to perform work which can
be done statically, and to make the remaining run-time data structures as lean
as possible.

The work described here originates from our work on constructing an incre-
mental evaluator for higher-order attribute grammars [VSK91]; the traditional
approaches for evaluating attribute grammars —i.e. the decoration of an ab-
stract syntax tree by means of a generated tree-walking automaton— proved
to be no longer applicable due to the fact that the abstract syntax tree (i.e.
the argument controlling the overall computation) is no longer an invariant
data structure in the computation but depends also on intermediate results of
the overall computation [Pen94, CP96]. Since our new evaluation model only
uses the generated strict functions we can rely on efficient function caching for
achieving incremental evaluation.

We show that even when one is not aiming at incremental evaluation, the
transformations performed are useful: since strictness is improved it becomes
easier to perform parallel evaluation, and the transformed programs in general
execute faster and in less space.

In this paper we show, by means of a running example, how the actual
transformation is being performed, and what final optimisations become enabled
as a result of this. The techniques shown have all been implemented and form
part of the current LrC-attribute grammar based program synthesizer.

1 The Class of Functions Considered

The class of functions we are considering are the so-called circular functional
programs, as introduced in [Bir84]. Although such programs have proved to
be surprisingly hard to explain to the average functional programmer, they
actually become a lot simpler to understand and design if one considers them
as the representation in a lazy functional language of an attribute grammar
evaluator [KS87, Joh87]. More recently this class of functions became known
as catamorphisms, although the context in which such catamorphisms got their
name (i.e. the formal derivation of functional programs) usually restricts itself
to recursive functions which take only one parameter of one specific data type
as an argument [BAM96]. In attribute grammar terms one would say that one
is dealing with a grammar which has only a single non-terminal.

Attribute grammars are usually thought to be implemented by using so-
called tree-walk evaluators which evaluate and store attribute values in the
nodes of a recursive data structure (the abstract syntax tree) and thus evaluate
all the values in the data-flow graph induced y the rules for assigning values
to its attributes. In its functional programming counterpart lazy evaluation is
used to schedule the computations of values dynamically. In our bootstrapped
LRrc-system it appears that a corresponding tree-walk evaluator may visit a
specific node up to 13 times. The equivalent circular program would have many
function calls with arguments depending on results of the same call.

As an example of such a circular program we present a analyser for a small
language, called BLOCK, which consists of programs of the following form:

blk main: (use y;
blk f: (dcl w;use y;use f)
dcl z;dcl z;dcl y;use w

)

Such programs describe the basic block-structure found in many formal lan-
guages, with the peculiarity however that declarations of identifiers may also
occur after their first use. Furthermore, an identifier from a global scope is
visible in a local scope only if is not hidden by an a declarations with a same
identifier in a local scope. In a block an identifier may be declared at most once.

According to these rules the above program contains two errors: at the outer
level the variable x has been declared twice and the use of the variable w has
no binding occurrence at all.

The abstract grammar of the language is described by the following recursive
data type definitions:

data Program = P Items

data [Items NiLITEMS
Cons_IteEms Item Items
Brock Name Items
DecL Name

Use Name
IpENT String

data Item

data Name

Figure 1 presents the lazy program for the BLOCK language written in
HASKELL.

evalProgram (P items) = (errors)
where (dclo, errors) = evalltems items (NiwENv) 0 dclo

evalltems (NiLItems) dcli lev env = (deli, [])

evalltems (Cons_ ITems item items) dcli lev env = (dclos , errors)

where (dclo1, errorsi) = evalltem idtem dcli lev enw

(dcloz, errorsy) = evalltems items dclor lev env

(errors) = errorsy ++ errorss
evalltem (Brock name items) dcli lev env = (dclor , errorsi)
where error) — lookup_env name lev dcli

dclo1) = cons_env name lev dcli
dcloa, errorsy) = evalltems items env (lev + 1) dclos
€TTOTS1) = error ++ errorss

A~~~

evalltem (DecL name) dcli lev env = (dclo, errors)
where (errors) = lookup_env name lev dcli
(dclo) = cons_env name lev dcli

evalltem (Use name) dcli lev env = (deli , errors)
where (errors) = is_member_env name env

Figure 1: The lazy program which performs the static semantic analysis of a
BLOCK program.

The functions cons_env, lookup_env and is_member _env perform the usual
operations in an environment. The environment is implemented as a binary
search tree.

This program is a circular program: one of the results of a function call is
also one of its arguments. Thus, lazy evaluation is essential.

Because we allow an use-before-declare discipline, a conventional imperative
implementation of the required analysis naturally leads to a program which
traverses the abstract syntax tree twice: once for processing the declarations of
identifiers and constructing an environment and once for processing the uses of
identifiers using the computed environment to check for the use of non-declared
names. The uniqueness of names is detected in the first traversal: for each
newly encountered declaration it is checked whether that identifier has already
been declared at the same level. In this case an error message is computed. Of
course that identifier might have been declared at a global level. Thus we need
to distinguish between identifiers declared at different levels. We introduce a
variable lev used to compute the level of a block. The environment is a partial
function mapping an identifier (name) to its level of declaration (lev).

As a consequence, semantic errors resulting from duplicate definitions are
computed during the first traversal and errors resulting from missing declara-
tions in the second one. In order to make the problem more interesting, and
to demonstrate our techniques, we require that the error messages produced
in both traversals are to be merged in order to generate a list of errors which
follows the sequential structure of the program.

Observe that the environment computed for a block and used for processing
the use-occurrences is the global environment for its nested blocks. Thus, only
during the second traversal of a block (i.e., after collecting all its declarations)
the program actually begins the traversals of its nested blocks; as a consequence
the computations related to first and second traversals are intermingled.

Let us analyse in detail the most intricate function alternative of the above
program: the function alternative applied to BLOCK nodes. Figure 2 shows
the induced dependency graph, which follow from a flow analysis of the total
program.

visit I

visit II

remote
dependencies

dclo errors

Items A A

|

Figure 2: Dependency graph of function evalltem alternative BLOCK.

The local variable error is computed taking the environment which consists
of the global environment and the local declarations processed thus far (dcli).
This value is concatenated to the list of errors generated by processing the body

of the block. Because of lazy evaluation the computation of the list of errors is
suspended until it is really necessary. So, the computation of the local variable
error is suspended too. As a consequence, the declarations collected in dcli
must be kept in memory until the computation of the variable error is finally
enforced! Thus a huge closure must be kept until finally the list of errors is
required, 7.e. until the end of the evaluation.

Figure 3 shows a profile of the use of heap memory of the lazy program
processing a BLOCK source text. The profile was produced by the nhc heap
profiler [RR96].

‘ block_circ_flags +RTS -p -RTS 152353 bytes x seconds

@
=
2

M 69% Main.rc_cons_env

40k]
[119% Main.consAST:167:21

O

7% Main.visit_Item

6% <STRING>

1% Main.visit_Item:111:7

1% Main.consAST:167:15

1% Main.visit_ltems

1% Main.Irc_map_single_update

3% OTHER

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 second

Figure 3: Lazy accumulation of suspended computations.

This profile shows a heap that grows quickly to a peak size of =~ 50kbyte
diminishing afterwards. The unnecessary accumulation of the environment is
causing this huge memory consumption (Irc_cons_env, which constructs the
environment, produces 70% of the total heap space). The heap grows linearly
in the number of blocks. Although this profile was obtained using the HASKELL
strict flag, the lazy accumulation is not avoided.

2 Strictification

In this section we present our technique to transform circular programs into
strict ones. We use well known attribute grammar static analysis techniques
[AlIb91, Paa95] in order to break up the circularities into a large set of small
multiple traversal functions.

The transformation is performed in two steps: based on a global analysis of
the program we find a partial order in which the arguments, local values and
results of a function can be computed. Then we derive a set of visit sequences
for each constructor of the circular program. Such visit sequences statically
associate a fixed sequence of moves and computations with each constructor of
the abstract syntax tree (productions of the grammar). The number of visits
to a data type is statically fixed too. A wisit subsequence is associated to each

of the visits. It specifies a subset of arguments/results of the original circular
function which are needed/computed in a particular visit.

Secondly we transform these visit sequences into wvisit functions. To combine
the effects of the individual traversals we introduce visit trees. These visist trees
are a small adaption of our previously introduced bindings [PSV92]. Visit trees
are needed to pass values that are computed in one traversal and that are used in
a subsequent one!. We call such dependencies between traversals inter-traversal
dependencies. In the circular program these dependencies are handle by the lazy
evaluation machinery.

2.1 Computing Visit Sequences

In this section, we show how to derive wvisit sequences from the circular programs.
We use Kastens’ ordered scheduling algorithm to derive the visit sequences
[Kas80]. Our presentation in this paper is necessarily short. Full definitions can
be found in [Kas80] and [Pen94| (page 122).

We start by briefly describing visit sequences since they are the result of this
step. A visit sequence describes the operations which must be performed by a
tree walk automata when visiting a node: eval x computes value z, visit (n,v)
descends to node n for the »'" time and suspend v returns from the v*" visit to
the father node.

The visit sequences are obtained in four steps: first a dependency graph for
all the circular function alternatives is computed. Once the dependencies are
computed we can detect whether an argument in a call depends on a result
of the same call. Such dependencies force additional traversals to the data
types where such functions are applied. Figure 2 shows the dependency graph
derived from function evalltem alternative BLOCK. This graph illustrates the
dependency forcing additional visits to data type Items: the argument enwv of
function evalltems depends on its result dclo.

Secondly, a linearization of those dependency graphs is computed. This
step computes a linear (total) order for all the circular functions in which the
arguments and results must be computed. In our example the order computed
for evalltems is lev, dcli, dclo, env, errors.

Next, a set of partitions [r1,72,...,7,] is computed for each data type.
A partition 7,(t) = ([arg], [res]) defines which arguments [arg] are needed to
compute the results [res] during visit v to data type t. Since we are converting
a partial order into a total one we have here a considerable freedom, which may
be exploited when computing the partitions. Here we use Kastens’ algorithm
which maximizes the size of the partitions and minimizes the number of visits.
The resulting partitions for our example are:

([], [errors])
([lev, deli], [delo])

([env], [errors])

m1(Program)
w1 (Items, Item)
mo(Items, Item)

Finally, the visit (sub)sequences are produced according to the previous
partitions. For each partition ,(t) = ([arg], [res]) and for each constructor of
type t a visit subsequence is produced which defines the sequence of instructions
that are needed in order to compute the results [res] using the arguments [arg].

IThis happens for example when a circular program computes some information which is
assigned to nodes in the tree and that is used later on.

Figure 4 shows the two visit subsequences derived for data constructor BLOCK.
The data type is used to distinguish different occurrences of a variable in the
visit subsequences.

visit 1: w1 = ([deli, lev], [delo]) visit 2 : w2 = ([env], [errors])
eval Items.lev (= lev+1) eval Items.dcli (= env)
eval error (= lookup_env...) visit (Items, 1)
eval delo (= cons_env...) eval Items.env (= Items.dclo)
suspend 1 visit (Items, 2)
eval errors (= lerror ++ Items.errors)

suspend 2

Figure 4: Visit sequences for data constructor BLOCK derived from the circular
program

Observe that, the variable [error is evaluated in the first visit subsequence
and it is used in the second subsequence. Such dependencies are discussed in
next section.

2.2 Computing Visit Functions

In imperative programming the implementation of visit sequences is straightfor-
ward: values needed in later visits are stored in the nodes of the original tree.
Thus no problem arises when a later visit uses values computed in previous
ones. In a purely functional setting values cannot be stored in the original tree.
As a consequence, values needed in future traversals must be explicitly passed
around.

We propose a new technique to transform visit sequences into pure functions.
Our approach mimics the imperative approach: values needed later are stored
in a new tree, called a wisit tree. Such values have to be preserved from the
traversal that creates them until the last traversal that uses them. Each traversal
builds a new visit tree with the additional values stored in the nodes for the
next traversal. We will show that as a result of optimizations this tree may be
quite different from the original tree. The functions that perform the subsequent
traversal find the values they need either in their arguments or in the tree nodes,
exactly as in the imperative approach. A set of visit tree types is defined, one
per traversal. Subtrees that are not needed in future traversals are discarded
from the visit trees concerned. As result any data no longer needed is indeed
no longer referenced.

This technique requires a static analysis of the visit sequences in order to
determine the set of inter-traversal dependencies itd. A visit sequence of a data
constructor C has an inter-traversal dependency between visit v and w, with
v < w, if there is a value z that is computed in subsequence v of C which is
used in subsequence w of C. We denote this by (C*7" |[x]).

It determines also which subtrees can be discarded from the subsequent
visit trees. A new set of visit tree types is computed according to the inter-
traversal dependencies and discarded subtrees determined previously. Finally,
it computes the set of visit functions corresponding to these new visit tree types.
Figure 5 shows the four stages of our technique.

Visit Inter Traversal Discarded) Visit Tree Visit Strict

Sequences Dependencies Subtrees Types > Functions > Program

Figure 5: Stages need to produce the visit functions.

The type of the visit tree for the first traversal is the type of the original tree.
The visit trees for the following traversals are defined as:
visit tree for traversal n = original tree

— discarded subtrees
+ values needed in traversals > n

The mapping of the visit sequences to pure wisit functions is as follows: for
each data type T and for each visit v € [1..n], with n the number of visits of
T, a visit function eval, T is produced. Such function eval,T has the visit
tree T, as its first parameter and the arguments of partition m,(T) as further
parameters. The visit function returns the visit tree for next traversal v+ 1 and
the results of the corresponding partition. The visit function of the last visit n
of T" does not return any new visit tree. The signature of these functions are:

eval, T :: Ty — argy — (Twy1,7€50)

eval,T :: Ty, = argn — resn,
with 1 < v < n and arg, (res,) is the set of argument (result) types of visit v.
Each visit function eval,T is defined by giving a function definition for each
constructor of type 7. These definitions are selected by using pattern matching
on the respective data constructor. The body of a function definition is derived
from the respective visit subsequence.

Let us analyse the visit sequences presented in figure 4 and derive the corre-
sponding visit functions. We start by computing the inter-traversal dependen-
cies. Observe that the local variable error and the level lev are evaluated in
the first visit subsequence. They are however needed in the second one: error
to evaluate Items.errors, i.e. the complete list of errors, and lev to compute
the level of nested blocks (see figure 4). The set of inter-traversal dependencies
derived is:

itd={ (BrLock!™2 [ITtems.lev,error]),
(DecL' =2, [error])}

Next the set of discarded subtrees is computed. Subtrees of type Name of
declarations and blocks are used in the first traversal only. They are used in
constructing the environment and detecting duplicate declarations (see figure 2).
Thus they can be discarded from the second traversal.

After that the set of visit tree types is derived. The type for the first visit
is the type of the original tree:

type Items; = Items

The visit tree type for the second traversal is:

data Items = Uses Name

| DecLy Error

| Brocks Int Error Items;
|

data Itemss NiLITEMSs

Cons__ITEmMS2 Items Itemss

Finally, the visit functions based on visit trees are derived according to
visit sequences and the newly derived data types. The circularity of function
evalltems is broken into two traversal functions, both strict in their arguments.
The first traversal function computes the collection of declarations used as the
initial environment in the second traversal. Inter-traversal dependencies values
are stored in the visit tree during the first traversal. In the second traversal
such values are ready to be used.

evaliItem (Brock; name items.1) dcli lev = ((BLocks (lev + 1) | error items_1), dclo)

where (| error) — lookup_env name lev dcli
(dclo) = cons_env name lev dcli

evalaItem (Brock, lew | error items.1) env = (errors)

where (, dcloz) = evaljitems items_1 env| lev lev , error
(errorsy) = evalpitems dclos

(errors) = | error ++ errorss

The function evalsItem contains the two calls to the visit functions which
evaluate the body of a block. The first call returns the visit tree which
is used as the first argument of the second call.

Observe that, the circular function call of the lazy program (see figure 1)

(dclo2, errorss) = evalltems items env (lev+1) dcloo

is now unravelled and it is evaluated strictly by the two traversal functions called
during the second visit to blocks as follows:

(errorsy) = uncurry evalsItems (evaliltems items_ 1 env lev)

the increment of the lev is performed in the first visit (see visit functions above).

3 Elimination of Redundant Computations

After strictification the resulting programs are constitute of a large set of small
strict functions, each of them working on a particular data type. Such small
functions provide ample opportunity to be further transformed in order to elim-
inate unnecessary steps in the computation.

A source of inefficiency in the resulting strict programs is the existence of
redundant data constructors (nodes) in the visit trees. These nodes lost their
semantic meaning on a specific traversal, i.e. no useful computation is being
performed during a traversal. Such nodes can be eliminated, yielding smaller
visit trees and consequently more efficient programs. We consider three kind of
redundant nodes: syntactic, copy and unit nodes.

e syntactic Nodes: Auxiliary data types which are used when structuring
the circular program. They are used only to improve comprehensibility
and are not needed during computation. Those data types can be detected
statically and unfolded when producing the strict program.

e Copy Nodes: Data constructors whose associated visit subsequence for a
specific visit consists of copy rules only. Copy rules are equations of the

are computed in first
visit and used in the
second one

form a = id 3. These nodes can be detected and eliminated statically. The
corresponding data constructor and visit function definition are eliminated
from the strict program. An example of a dependency graph of such a visit
(sub)sequences is given in figure 6.

v

Figure 6: Copy Terms: Non crossing copy rules only

e Unit Nodes: Data constructors which only store values for subsequent
traversals. Such terms are identified statically. Their elimination however
is performed dynamically: if values stored in an instance of such construc-
tors are the unit elements of the functions going to be applied to them
then this node does not contribute to the program semantics. So, they
are not included in the visit trees. Figure 7 characterizes such terms.

Figure 7: Unit Nodes: f and ¢ are functions, a and 3 values computed in an
earlier traversal and f x @« = zand gy B = .

Let us return to our example. Consider the data types that describe the
abstract grammar of BLOCK presented in section 1. The data type Items was
only used to structure the circular program: neither the lazy nor the strict
program computes any value when traversing nodes of that type. Arguments
and results are just being passed on. A more efficient program is obtained if the
definition of data type Item is unfolded:

NILITEMS2

data Itemso =
| Cons_ Uses Name Itemso
|
|

Cons__DEcLa Error Itemso
Cons_Brocka Int FError Itemsiy Itemso
Consider now the declaration nodes. In the first visit an error is produced

if the same identifier has been declared before at the same level. In the second
visit that error is concatenated to the list of errors. However, nodes where no
error occurred do not contribute to that list since they contain the unit element,
of list concatenation: the empty list. They are unit nodes and can be removed
from the visit tree. The respective function definition is statically modified in
order to identify if the error contains the unit element. In that case no node is
dynamically created. The function definition applied to the unfolded data types
and which perform the unit element detection is presented next.

10

evaljItems (Cons_DecL, name items_1) dcli lev = (vistrees, dclo)
where (error) = lookup_env name lev dcli
(dcliz) = cons_env name lev dcli
(dclo , items.2) = eval;Items items_1 dcliz lev
vistreea | error == || = items.2
| otherwise = (Cons_DrcLy error items_2)

4 Results of Strictification

This section presents the results of the strict program processing BLOCK texts.
We consider two strict programs: one without the elimination optimization and
the other with elimination.

Figure 8(a) shows the visit tree computed in the first traversal (and used in
the second traversal) of the strict program without the elimination optimization.
The source text is the example sentence. Figure 8(b) shows the visit tree com-
puted in the first traversal but now using the strict program obtained with the
elimination. In both visit trees the block’s bodies contain the original abstract
syntax tree (marked with dotted circles). Remember that only in the second
traversal the evaluator descends to the nested blocks.

CONS_ITEMSg Cons_ UsEg
Cons_ ITEMSy N .

ConNs_ BLOCKy

Cons_ DECLy

- — For Cons__Useg
“Cons_Tremsy O -

O NILITEMSp
O
Y CoNs__ ITEMS

~ error
Cons_Use; — ~

Cons_ DECLy A N

O NILITEMS

a) Strict Program without Elimination b) Strict Program with Elimination

Figure 8: Visit trees for the second traversal without elimination (a) and with
elimination (b)

Using the elimination optimizations all the declaration nodes are removed
from the tree during the first visit, except the one that really contains a semantic
error. This node stores the only error detected in the first traversal that must
be preserved for the second traversal. Elimination yields smaller trees and as a
result decreases memory consumption and execution time.

Figure 9 presents a heap usage profile of both strict programs. The source
BLOCK text is the same used when producing the profile of the lazy program
(figure 3).

The live heap remains constant during the computation, rarely exceeding
10kbyte! The lazy accumulation of the circular program is completely vanished.
The performance of the strict programs is better than the circular one. The
profiles of both strict programs have a similar shape. This is expected since they
traverse the tree only twice. In a program with more traversals we would have

11

[block_vistree +RTS -p -RTS 42527 bytes x seconds | | [block_unf_vi_opt +RTS -p -RTS 41274 bytes x seconds
e s

3|
10k I 35% main.cons AST:187:21 W 373 wain.cons AST:226:32
W 18% <sTRING> [19% <sTRING>

[17% Main.rc_cons_env

1 16% Main.ic_cons_env

B 5% Manisit_tem_1:118:57

O 1% <appLy>
O 15 <appLy> W 1% Manvisit_tems 11167

W 3% omHeR W 10% omHer

sssss o second

Figure 9: Heap profile of the strict programs: left graphic without elimination
and right with elimination.

seen larger differences in performance. Nevertheless, already using this small
example we can clearly see that elimination produces more efficient memory
consumption programs.

5 Applications

In this section we consider three areas where our techniques can be applied: the
incremental and parallel computation of circular programs and the implemen-
tation of higher order attribute grammars.

5.1 Incremental Computation

Function memoization is a efficient technique to implement incremental com-
putations [PT89]. Circular programs relying on lazy evaluation cannot use
standard memoization techniques to achieve such incremental behaviour, since
comparing unevaluated arguments is not likely to work in our situation. After
the strictification process however function memoization can be applied straight-
forwardly.

Furthermore, elimination improves the the evaluator’s incremental behaviour
since fewer redundant function are being memoized, thus avoiding filling up the
memoing tables with useless entries, i.e. the redundant functions that would
be applied if nodes not be eliminated. Moreover, the strict functions contains
exactly the data going to be used in the call and the data is in a canonical form.
Thus no non-used data which might disturb the memoization process is passed
to a visit function.

The size of visit trees give a better estimative of the computations needed to
be performed on a traversal than using a total tree. This more accurate infor-
mation can be used dynamically to decide if a function call is to be memoized
or not [Pug88|.

5.2 Parallel Computation

Implicit parallelism exhibit by multiple traversal algorithms may be hidden by
the circular definitions. In a circular program it may be impossible to discover

12

which traversal functions may be computed in parallel. Consider for example
the circular program presented in figure 1. Our transformation automatically
extracts and identifies such potential parallelism. Moreover, since the argument
of the visit functions are visit trees and not the complete tree communication
overhead is decreased when in a distributed system.

Consider the visit function computed in the second visit to a block. The
two visit functions that analyse the body of a block can be computed in parallel
with the function that traverses the rest of the tree. Thus, the bodies of all the
blocks can be computed in parallel. This parallelism was hidden in the circular

program.
evalpoItems (Cons_Brock, lev error items_body items) env = (errors)
where (dclo, items2) = evaliItems [Items body env lev
(errorsy) = evalpItems items2 dclo
(error_aux) = error errorss
(errorss) = evalsItems Items® env
(errors) = error_aux errorss

The static detection of independent visit functions per se can lead to a too
fine grain of parallelism [Jou91]. The size of a visit tree can be used dynamically
to decide whether two independent function calls may be computed in parallel
or not.

5.3 Implementation of Attribute Grammars

Our work was developed in the context of incremental attribute evaluation of
Higher Order Attribute Grammars. Traditional techniques for incremental at-
tribute evaluations which are based on change propagation [RTD83] do not
handle higher order attribute grammars efficiently [CP96]. An efficient and ele-
gant incremental attribute evaluator can be implemented through visit function
memoization [CP96].

After all the transformations have been performed the resulting programs
show a striking resemblance to code which one would have written by hand. it is
not an unlikely situation that during an analysis a data structure is constructed
which, after the analysis has been completed, needs some small final touch-
ups. In our model you find this phenomenon back by having a first traversal
generating the fragments of the large subtree, in a small visit tree, which is then
transformed into a final value by a small traversal of that tree.

We have implemented a system, called LRC, which accepts higher order at-
tribute grammars and produce pure functional attribute evaluators. Incremen-
tallity is achieved through memoization. Information about a very experimental
version of LRC system is available on the internet at

http://www.cs.ruu.nl/people/matthys/lrc_html

6 Conclusions

This paper presented a technique to transform circular programs to strict ones.
Visit trees were introduced to handle inter-traversal dependencies. Such visit
trees can be further optimized in order to eliminate redundant computations and
increase programs’ efficiency. Elimination yields smaller trees, thus decreasing
memory consumption and execution time of the strict programs. The first

13

results show that strict programs are considerably more efficient than the lazy
programs.

References

[AIbO1]

[BAM96]|
[Birs4]

[CPY6]

[Toh87]

[Jou91]

[Kas80]

[KS87]

[Paa9s]

[Pen94]

[PSV92]

[PTS9)

[Pug88]

Henk Alblas. Introduction to attribute grammars. In H. Alblas and
B. Melichar, editors, International Summer School on Attribute Grammars,
Applications and Systems, volume 545 of LNCS, pages 1-15. Springer-Verlag,
1991.

Richard Bird and Oegerikus de Moor. Algebra of programming, volume 100 of
Prentice-Hall Inernational Series in Computer Science. Prentice-Hall, 1996.

R. S. Bird. Using circular programs to eliminate multiple traversals of data.
Acta Informatica, (21):239-250, January 1984.

Alan Carle and Lori Pollock. On the optimality of change propagation for in-
cremental evaluation of hierarchical attribute grammars. ACM Transactions
on Programming Languages and Systems, 18(1):16-29, January 1996.

Thomas Johnsson. Attribute grammars as a functional programming
paradigm. In G. Kahn, editor, Functional Programming Languages and Com-
puter Architecture, volume 274 of LNCS, pages 154-173. Springer-Verlag,
September 1987.

Martin Jourdan. A survey of parallel attribute evaluation methods. In
H. Alblas and B. Melichar, editors, International Summer School on At-
tribute Grammars, Applications and Systems, volume 545 of LNCS, pages
234-255. Springer-Verlag, 1991.

Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229-256,
1980.

Matthijs Kuiper and Doaitse Swierstra. Using attribute
grammars to derive efficient functional programs. In Com-
puting Science in the Netherlands CSN’87, November 1987.
ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1986/1986-16.ps.gz.

Jukka Paakki. Attribute grammar paradigms - a high-level methodology in
language implementation. ACM Computing Surveys, 27(2):196-255, June
1995.

Maarten Pennings. Generating Incremental Evalua-
tors. PhD thesis, Utrecht University, November 1994.
ftp://ftp.cs.ruu.nl/pub/RUU/CS/phdtheses/Pennings/.

Maarten Pennings, Doaitse Swierstra, and Harald Vogt. Using cached
functions and constructors for incremental attribute evaluation. In
M. Bruynooghe and M. Wirsing, editors, Programming Language Imple-
mentation and Logic Programming, volume 631 of LNCS, pages 130-144.
Springer-Verlag, 1992.

William Pugh and Tim Teitelbaum. Incremental computation via function
caching. In 16th Annual ACM Symposium on Principles of Programming
Languages, volume 1, pages 315-328. ACM, January 1989.

William Pugh. An improved replacement strategy for function caching. In
ACM Conference on Lisp and Functional Programming, volume 7, pages
269-276. ACM, july 1988.

14

[RR96]

[RTDS3]

[VSKO1]

Colin Runciman and Niklas Réjemo. Heap profiling for space efficiency. In
John Launchbury, Erik Meijer, and Tim Sheard, editors, Second Interna-
tional School on Advanced Functional Programming, volume 1129 of LNCS,
pages 159-183. Springer-Verlag, 1996.

Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-
dependent analysis for language-based editors. ACM Transactions on Pro-
gramming Languages and Systems, 5(3):449-477, July 1983.

Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. Efficient incremen-
tal evaluation of higher order attribute grammars. In J. Maluszynki and
M. Wirsing, editors, Programming Language Implementation and Logic Pro-
gramming, volume 528 of LNCS, pages 231-242. Springer-Verlag, 1991.

15

