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Abstract
This paper gives an overview of several results and techniques for graphs
algorithms that compute the treewidth of a graph or that solve otherwise
intractable problems when restricted graphs with bounded treewidth more
efficiently. Also, several results on graph minors are reviewed.

1 Introduction

The notion of treewidth is playing a central role in many recent investigations
in algorithmic graph theory. There are several reasons for the interest in this,
at first sight perhaps somewhat unnatural notion. One of these reasons is the
central role that the notion plays in the theory on graph minors by Robertson
and Seymour (see Section 5); another reason is that many problems that are
otherwise intractable become polynomial time solvable when restricted to graphs
of bounded treewidth (see Section 4).

There are several ‘real world’ applications of the notion of treewidth, amongst
others in expert systems [91], telecommunication network design ([46]), VLSI-
design, Choleski factorization, natural language processing [89] (see e.g. [21] for
a brief overview.) An interesting recent application has been found by Thorup
[127]. He shows that for many well known programming languages (like C, Pascal,
Modula-2), the control-flow graph of goto-free programs has treewidth bounded
by a small constant (e.g., 3 for Pascal, 6 for C). Thus, certain optimization
problems arising in compiling can be solved using techniques relying on small
treewidth.

2 Definitions

The notion of treewidth was introduced by Robertson and Seymour in their work
on graph minors [101].
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Definition. A tree decomposition of a graph G = (V| E) is a pair (X, T) with
T =(I,F) atree, and X = {X; | i € I} a family of subsets of V', one for each
node of T, such that

o Uer Xi =V,
e for all edges {v,w} € E there exists an i € I with v € X; and w € X;, and
o forall 7,7,k € I: if j is on the path from 7 to k in 7', then X; N X, C X.

The width of a tree decomposition ((I, F),{X; | i € I}) is max;cr |X;| 1. The
treewidth of a graph G is the minimum width over all tree decompositions of G.

There are several equivalent notions to treewidth (for an overview, also of
classes of graphs that have a uniform upper bound on the treewidth, see [25]);
amongst others, graphs of treewidth at most k are also known as partial k-trees. A
notion related to treewidth is pathwidth, defined first in [99]. A tree decomposition
(X,T) is a path decomposition if T is a path; the pathwidth of a graph G is the
minimum width over all path decompositions of GG. A survey giving relations to
notions of graph searching has been written by Bienstock [14].

Another notion that is related to treewidth and that might be more suitable
in some cases for implementation purposes is branchwidth [115].

A tree decomposition can easily be converted (in linear time) in a nice tree
decomposition of the same width (and with a linear size of T'): here the tree T
is rooted and binary, and nodes are of four types:

e Leaf nodes i are leaves of T' and have | X;| = 1.

e Introduce nodes i have one child j with X; = X; U {v} for some vertex
velV.

e Forget nodes i have one child j with X; = X, <{v} for some vertex v € V.
e Join nodes 7 have two children j with X; = X; = X},.

Using nice tree decompositions instead of normal ones does in general not
give additional algorithmic possibilities, but it considerably eases the design of
algorithms, and one can also expect in several cases to have better constant
factors in the running times of algorithms that use nice instead of normal tree
decompositions.

3 Determining treewidth

In this section we review a number of results on the problem, to determine the
treewidth of a given graph.



The problem to determine, when given a graph GG and an integer k, whether
the treewidth of G is at most k is NP-complete [5], even for graphs of maxi-
mum degree at most 9 [36], bipartite graphs, or cocomparability graphs. For
several special graph classes, there exist polynomial time algorithms to deter-
mine the treewidth of graphs in the class, e.g., for chordal graphs, permutation
graphs [33], circular arc graphs [123], circle graphs [85], and distance hereditary
graphs [40]. See also [34, 60, 71, 76, 77, 87]. One of the most interesting open
problems here is the complexity of treewidth when restricted to planar graphs.
As branchwidth can be solved in polynomial time on planar graphs [122], and
branchwidth differs at most a factor 1.5 from treewidth, we have a polynomial
time approximation algorithm for treewidth on planar graphs with performance
ratio 1.5. For arbitrary graphs, there is a polynomial time approximation algo-
rithm for treewidth with performance ration O(logn) [30]; it is an interesting
(but probably hard) open problem whether treewidth can be approximated with
constant performance ratio.

A well studied case is when the parameter £ is a fixed constant. We distinguish
here results for two versions of the problem: the decision problem, where we only
must decide whether the treewidth of the input graph is at most &, and the
construction problem, where also a tree decomposition of width at most & must
be given, when existing.

The first polynomial time algorithm for the (construction and decision) prob-
lem used O(n**2) time and was found by Arnborg, Corneil, and Proskurowski
[5]. Using deep results on graph minors, Robertson and Seymour then gave a
non-constructive proof of the existence of a decision algorithm that uses O(n?)
time [115]. This algorithm has the following structure. First, in O(n?) time, we
can find a tree decomposition of the input graph G with width at most 4k + 3,
or decide that the treewidth of G is at most k. (To be precise, Robertson and
Seymour use branchwidth to give a similar result; the technical difference is not
important.) Then, this tree decomposition is used to check in linear time whether
G contains an element of the obstruction set of graphs of treewidth at most k
(see section 5.)

The first step of this algorithm was improved by Matousek and Thomas [94],
who gave a faster randomized algorithm, by Lagergren [90], who gave a parallel
algorithm using O(log®n) time and O(n) processors on a CRCW PRAM, or a
sequential O(nlog?n) time algorithm, and Reed, who gave an algorithm running
in O(nlogn) time. Each of these algorithms either determines that the treewidth
of input graph is more than G or finds a tree decomposition of width at most
f(k) for some linear function f. (See [42] for a simple linear time algorithm
for the pathwidth variant of this problem.) In [32, 86|, Bodlaender and Kloks
address the second step of the algorithm of Robertson and Seymour: they give an
algorithm for the second step that solves the construction problem in linear time
(i.e., provided a tree decomposition of bounded but perhaps not optimal width
has been found). Using the algorithm from [32], in [24] for each fixed k, a linear
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time algorithm is given for both the decision and construction problem. Each of
the algorithms mentioned in this paragraph has a hidden constant factor that is
at least exponential in & — in all cases, the factors seem too large for practical
purposes, but little experimental work has been done so far.

An interesting different approach was taken by Arnborg et al. [6]. They use
graph reduction to obtain algorithms that use linear time, but more than linear
memory. More on graph reduction can be found in Section 4.

Work has also been done on parallel algorithms for the fixed parameter case of
the treewidth problem. Older algorithms by Bodlaender [17] and Chandrasekha-
ran and Hedetniemi [43] need large numbers of processors. The first algorithm
with work (product of time and number of processors) only a polylogarithmic fac-
tor more than linear was the algorithm by Lagergren [90], discussed above. This
result was improved by Bodlaender and Hagerup [31], who, combining paralliza-
tions of the sequential algorithms of [24] and [6] with new techniques, obtained
the following results. On an EREW PRAM, the construction problem can be
solved in O(log®n) time; the decision problem can be solved in O(lognlog* n)
time on a EREW PRAM and O(logn) time on a CRCW PRAM. Each of the al-
gorithm has optimal speedup, i.e., the product of time and number of processors
is linear.

In the case that k is 2, 3, or 4, better algorithms have been found. Practically
efficient linear time algorithm exist, based on graph reduction [8, 94, 119]. The
parallel algorithms for & = 2,3 by [73] were improved by the results in [31],
mentioned above. For £ = 2, a parallel algorithm for the construction problem
that uses O(lognlog* n) time on a EREW PRAM and O(logn) time on a CRCW
PRAM and has optimal speedup has been found by de Fluiter and Bodlaender
[54, 55].

See also [37] for a closely related problem.

4 Finding algorithms for problems on graphs of
small treewidth

For large numbers of graph problems, it has been shown that they are solvable
in linear time, polynomial time, or become a member of NC, when the inputs
are restricted to graphs of treewidth at most k for some constant k. Underlying
many of these results, there are a few common techniques. In this section, these
techniques are reviewed.

A technique that is very often applicable for solving problems on graphs of
bounded treewidth is the one, discussed below. It can be characterized as: ‘com-
puting tables of characterizations of partial solutions’ for each node i € I in a
tree decomposition of bounded width — in bottom-up order. The technique first
appeared (in 1992) in the context of graphs of bounded treewidth in a paper by



Arnborg and Proskurowski [9]; another paper founding this technique was Bern
et al. [13].

The algorithm has the following structure (k is assumed the assumed constant
upper bound on the treewidth of input graph G = (V, E)):

e Find a tree decomposition of G of width at most k. (This can be done in
linear time, as discussed above.)

e Transform it into a nice tree decomposition, say ({X; | i € I},T = (I, F))
of width at most k, |I| = O(|V|), r the root of T

e Compute for each node 7 € I a certain table. To compute a table for a
node 7, one only uses tables already computed for the children of ¢, the
type of node i (leaf, forget, introduce, or join), and the information about
G, restricted to X;. Thus, these tables are computed in bottom-up order.

e The answer to the problem can be found by inspecting the table of the root
r.

e Construction versions of problems usually need another phase, where tables
are used again to construct a solution (when one exists). We will not go
into detail for this step.

To describe what type of tables are needed, we first introduce some additional
notions.

A terminal graph is a triple H = (V, E, X), where (V, E) is a graph with
vertex set V and edge set E, and X is an ordered subset of the vertices in V,
called the terminals of G. A terminal graph with [ terminals is also called an
[-terminal graph. The operation ¢ is defined on pairs of terminal graphs with
the same number [ of terminals: H & H' is obtained by taking the disjoint union
of H and H' and then identifying the ¢th terminal of G with the ith terminal of
H' for all i, 1 <i <. A terminal graph H is a terminal subgraph of a graph G,
iff there exists a terminal graph H' with G = H & H'.

To every node i in a nice tree decomposition ({X; | i € I},T = (I, F)) we
associate the terminal graph G; = (V;, E;, X;), where V; is the set {v | v € X;
and j =i or j is a descendant of i in T}; E; = E[Vi] = {{v,w} € E | v,w € V}},
or, in other words: the subgraph induced by vertices in the sets of the node j
and all nodes below j in T, with X; as the set of terminals. (The ordering of X;
is not important.)

At this point, we are ready to describe the ‘build tables of partial solutions
technique’ more precisely. Suppose we want to solve a certain problem X, where
for the moment we assume that X is a graph property. The algorithm design
follows the following steps.



. Define a notion of solution. For instance, if X is the Hamiltonian circuit

problem, then a solution for a graph G is an actual Hamiltonian circuit in
G.

. Define a notion of partial solution. A partial solution is an object that can
be associated with a terminal graph. When this terminal graph H is a
terminal subgraph of a graph G, then the partial solution should describe
possible behavior of a solution on GG, when we ‘only look to what happens
on H'. For instance, a partial solution for Graph Coloring is a coloring of
the vertices of the terminal graph, a partial solution for Hamiltonian circuit
is a set of paths between the terminals in the terminal graph, disjoint except
possibly for their endpoints and covering all vertices in the terminal graph.

. Define a notion of extension of partial solution. We must specify what it
means that a solution is an extension of a partial solution. This is usually
very natural, for instance, for graph coloring, a solution for G = (V, E),
i.e., a coloring f of G, is an extension of a partial solution (coloring ¢) for
terminal subgraph H = (V', E', X) iff ¢ is the restriction of f to W.

. Define a notion of characteristic of a partial solution. It is meant to de-
scribe ‘what is needed to know about the partial solution to see whether it
can be extended to a solution’, i.e., if two partial solutions have the same
characteristic, then one can be extended to a solution if and only if the
other can be extended to a solution. See below for examples.

. A full set of characteristics for a terminal graph G is the set of all charac-
teristics of partial solutions on GG. The full set of characteristics of a graph
G; for a node 7 in a nice tree decomposition is also called the full set for
i. Show for each of the four types of nodes (leaf, introduce, forget, join),
that for node i, a full set for i can be computed efficiently (in constant
or polynomial time), given the full sets for all children of i, assuming that
there are at most k£ + 1 terminals in each of the involved terminal graphs.

. Show that the problem can be decided efficiently (in constant or polynomial
time), given a full set for the root node r of the nice tree decomposition.

More formally: we have relations solx, psolx, exyx, and a function chx, cap-
turing respectively the notions ‘solution’, ‘partial solution’, ‘extension’, and ‘char-
acteristic’. soly is a relation with two arguments (G,s), G a graph and s a
‘solution string’, such that for all graphs G: X(G) < s : solx(G,s). (This is
comparable to a definition of NP.) psoly is a relation with two arguments (H, s),
H a terminal graph, and s a ‘partial solution string’. exx is a relation with four
arguments (G, s, H,s'), G a graph, s a solution string, H a terminal graph, s' a
terminal solution string. The following must hold, for all G, s, H, s’

exx(G,s,H,s') = 3dH': G=H & H' A solx(G,s) A solx(H,s")
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Also, the following must hold, expressing that every solution has a partial solution
on any terminal subgraph:

VG, s,H,H": (solx(G,s) NG =H & H') — 3s' : psolx(H,s") Nexx(G, s, H,5")

chx is a function on pairs (H, s), H a terminal subgraph and s a partial solution
string, defined when psolx(H,s) is true. It must fulfill, for all terminal graphs
H, H', H", partial solution strings s, s’

chx(H,s) = chx(H',s") = (3" : exx(H ® H",s",H,s)) & (3" :
exx(H' @& H", s" H' ")) (1)

The full set of characteristics of terminal graph H is fullx(H) = {chx(H,s)
| psolx(H, s)}.

As example, we look to the problem to decide whether a graph G = (V| E)
has chromatic number at most three, i.e., is there an f : V' — {1, 2,3}, such that
V{v,w} € E': f(v) # f(w)?

The notions ‘solutions’, ‘partial solution’, and ‘extension’ are obvious, and
discussed above. The characteristic of a partial solution f : W — {1,2,3} of
terminal graph H = (W, F, X) is the restriction of f to X, f|x. The following
lemma, shows the correctness of this notion of characteristic.

Lemma 4.1 Let H = (V,E, (vq,...,v)), H = (V',E' (v],...,v))) be l-terminal
graphs. Let ¢, c be 3-colorings of the vertices of H and H', such that for 1 <i <1,
c(v;) = (v}). Then for any l-terminal graph H", there exists a 3-coloring of
H & H" that extends ¢, if and only if there exists a 3-coloring of H' & H" that
extends .

The proof of the lemma is easy: color the new vertices in H” in both cases is
the same way. An important element in the proof is the following observation:
there are no edges between a vertex that belongs to H but not to X, and a vertex
that belongs to H' but not to X in the graph H & H'.

Next, notice that for any node ¢ in the nice tree decomposition ({X; | i €
IN.T = (I,F)) of G = (V,E), G is of the form G = G, & H for some terminal
graph H. This follows from the definition of tree decomposition: the only vertices
in V;, adjacent to vertices in V <V, are those that belong to X;.

What this all amounts to is that the full set of characteristics of G; is actually
all one needs to know about the terminal subgraph G; when solving the 3-coloring
problem. Additionally, as for each i, | X;| < k+ 1, if G is a graph of treewidth at
most k, each full set contains at most 3**! elements, which is constant when k
is a constant. It is not hard to show that full sets can be computed in constant
time, given the full sets of the children of a node. This has to be shown for each
of the four cases: leaf node, introduce node, forget node, join node. We only look
at the case of introduce node here.



Lemma 4.2 Let \3 be the 3-coloring problem, ({X; | i € I},\T = (I,F)) a
nice tree decomposition of G = (V, E), i an introduce node with child j, and
X, = X; U{v}. A function f: X; — {1,2,3} belongs to fullys(i), if and only if
flx; € fullys(j) and for all w € X;, if {v,w} € E, then f(v) # f(w).

The proof relies on the fact that v can only be adjacent in G; to vertices in X
— this follows from the definition of tree decomposition. The lemma shows that
we can compute full sets for introduce nodes, given a full set of the child, and
only very local information. Similar lemmas exist for the other types of nodes.

Computing full sets in bottom up order, we finally have a full set for the root
node. Now, as G is 3-colorable, if and only if the full set for the root node is
non-empty, we can directly decide the problem.

When we used a tree decomposition of width, bounded by a constant, each
computation of a full set took time, only exponential in that constant, hence the
entire algorithm uses linear time.

Similar approaches work also for many other problems. In other cases, notions
of partial solution, extension, and especially characteristic are less obvious or
hard to find. For instance, look at the problem to decide, whether on a graph
G = (V, E), given with a number of pairs (v;, w;), 1 <i < r of vertices, there are
paths from each v; to w; that are mutually disjoint. Clearly, a solution here is the
desired set of paths. A partial solution for a terminal subgraph H is a collection
of disjoint paths, some of which end in a terminal, such that certain properties
hold: e.g., if v; and w; both belong to H, there either must be a path between v,
and w; in the subgraph, or both »; and w; must have a path ending in a terminal
(there then must be another path joining these terminals in the solution). Note
there can also be paths between terminals. The characteristic of such a partial
solution then describes which terminals are joined with which vertices from pairs;
one can actually show there are at most a constant number of possibilities when
| X;| is bounded by a constant, and that for each type of node, a full set can be
computed in constant time. See [121].

When designing these types of algorithms, the most important step is the
right choice of characteristic. First, it should fulfill property (1). Secondly, one
should aim for characteristics, such that full sets of [-terminal graph (or [-terminal
graphs of bounded treewidth) have bounded size, i.e., size only depending on [.
Experience shows, that once the right choices for solution, partial solution, ex-
tension, and characteristic are made, the design of the algorithm (i.e., procedures
how to compute full sets for the four types of nodes, and deciding the property
given the full set of the root) usually succeeds, although it often is a lot of detailed
work.

A similar technique works for optimization problems. We omit the more
formal framework here, and give only a sketch. For characteristics, we take
pairs (s,7), with 7 a member of a totally ordered set, usually an integer or real
number — the value of the partial solution. If we have partial solutions with



characteristics (s,7) and (s, ), then we put only that characteristic of these in
the full set with the best value r; or rs.

For instance, suppose we want to solve the problem to find a mapping f of
the vertices of a graph G = (V, F) to colors 1, 2, 3, such that the number of edges
{v,w} € E with f(v) = f(w) is as small as possible. A partial solution for a ter-
minal graph H = (W, F, X) is a coloring f of the vertices in W; the characteristic
of this partial solution is the pair (f|x,r), where f|x is the restriction of f to X,
and 7 is the number of edges {v,w} € F with f(v) = f(w). For each possible
function ¢ : X — {1,2,3}, we have at most one pair (g,r) in the full set of H,
namely the pair with the smallest possible value of . Again, we can compute the
full set for a node when given the full sets for its children in a tree decomposition
in constant time, giving a linear time algorithm. (For similar algorithms, see e.g.,
[80].)

Actually, results exploiting analogues to Myhill-Nerode theory (for finite state
automata) can be used to show existence of an algorithm at an earlier stage of
the design process, when dealing with certain types of decision problems.

Let P be a graph property. Define the relation ~pj on k-terminal graphs as
follows:

Gr~prHe (VK : PGB K) <+ P(H®K))

We say that P is of finite index, when for every k, the equivalence relation
~py has a finite number of equivalence classes.

One can show that every finite index problem can be solved in linear time on
graphs of bounded treewidth (see e.g., [2]). Now, as soon as we have character-
istics which need O(1) bits to describe, we know that the problem is finite state:
if k-terminal graphs G and H have the same full set, then G ~p; H, and there
are only a constant number of different possible full sets.

Graph reduction Another interesting algorithmic method is based on graph
reduction. Here, we observe that when H ~p; H', then when we have a graph
of the type H & K, we can replace it by H' & K and not change the answer of
the problem. When H’ is smaller than H, we have reduced the problem to an
equivalent one of equal size. If P is of finite index, one can show that there exists
a set of such ‘safe’ graph reduction rules for P, that can be used for a linear time
algorithm of the following form: repeatedly apply a reduction rule to G. When
no rule can be applied, we have a graph of size at most some constant, or for
which P does not hold. This method was introduced to the setting of treewidth
in [6]. More on graph reduction can be found in [26, 54].

Monadic second order logic An interesting general framework to quickly
establish that a problem can be solved in linear time on graphs of bounded
treewidth has been established by Courcelle [49, 48, 47, 51|, and extended by
Borie et al. [39], Arnborg et al. [7], and Courcelle and Mosbah [53]. Courcelle



results states that each problem that can be stated in monadic second order
logic can be solved in linear time on graphs of bounded treewidth. Monadic
second order logic is a language to describe graph properties, using the following
constructions: quantifications over vertices, edges, sets of vertices, sets of edges,
(Jv € V, VF C E, ...); membership tests (v € W, e € F), adjacency tests
(v is endpoint of e), and logic operations (V, =, ...). Extensions allow e.g., to
optimize over the size of a free set variable. For instance, the problem whether a
graph has a partition of its vertices in triangles (i.e., we want to partition V' into
Vi,..., V., such that each V; has three vertices and induces a triangle in G) can
be expressed as:

JF CE: YoeV: JweV: JzeV: {vyu} e FA{vaz}eFA
{w,ey e FA-(FyeViy#wnyF#aA{v,y} € F}).

(To be precise, instead of {v,w} € F, we should write: Je : e € FAv €
e Aw € e.) The maximum independent set problem can be formulated as:

Vn{gg}é|W|:Vv:Vw:(vGW/\wGW)—>—|({v,w}EE)

Especially the paper by Borie et al. [39] is very helpfull to see what kind of
constructions can be used to express problems in (extensions of ) monadic second
order logic. Problems in monadic second order logic are finite index.

An interesting question is whether language constructions can be added to
monadic second order logic, such that its expressive power becomes sufficient to
describe all problems that are finite index. See e.g., [50, 52, 81].

Additional remarks Some problems whose decision versions are not in NP can
also be solved in linear time on graphs of bounded treewidth. See e.g. [4, 3, 19].
For more algorithms that exploit the small treewidth of graphs, see also
(amongst others) [10, 18, 38, 44, 61, 74, 79, 92, 93, 94, 125, 126, 129, 130].
Dynamic algorithms for graphs of bounded treewidth have been considered
amongst others in [22, 45, 70, 78]. Parametric problems can also be solved effi-
ciently on graphs of bounded treewidth in many cases [68, 69].

5 Graph minors

In a long series of papers, [99, 101, 100, 105, 102, 103, 104, 107, 106, 108, 113,
114, 115, 116, 117, 109, 110, 98, 111, 112] (and others), Robertson and Seymour
showed many deep results on graph minors. Some of these results will be discussed
here.

A graph G = (V, E) is a minor of a graph H = (W, F), if G can be obtained
from H by a series of vertex deletions, edge deletions, and edge contractions,
where an edge contraction is the operation that replaces two adjacent vertices v,
w by a new vertex that is adjacent to all vertices that were adjacent to v or w.
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Theorem 5.1 If G s a class of graphs that is closed under taking of minors,
then there exists a finite set of graphs ob(G), the obstruction set of G, such for
every graph H: H € G, if and only if no element of ob(G) is a minor of H.

The theorem, formerly known as Wagner’s conjecture, is equivalent to stating
that every class of graphs has a finite number of minor-minimal elements. An
example of an obstruction set is the set {Kj5, K33} for the minor closed class of
planar graphs, or the set {/K3} for the minor closed class of forests. There are
several results giving the obstruction sets of specific minor closed classes of graphs,
e.g., the obstruction set of graphs of treewidth two is {K,}; see [11, 120] for the
obstruction set of graphs of treewidth 3, and [84] for the obstruction sets of graphs
of pathwidth 1, respectively 2. The size of the obstruction sets can grow very fast:
for instance, the obstruction set of the graphs with pathwidth at most £ contains
at least k!? trees, each containing 5'3;_1 vertices [124]. Ramachandramurthi [96,
97] investigated the graphs with k+1, k42 and k+ 3 vertices that belong to the
obstruction sets for graphs of treewidth or pathwidth k. See, e.g., also [41, 56].

Some additional results make that Theorem 5.1 has surprising algorithmic
implications. Robertson and Seymour [115] have shown that for every fixed graph
H, there exists an algorithm that decides in O(n?®) time whether H is a minor
of a given graph G. Combining this algorithm with Theorem 5.1, we have the
following result:

Theorem 5.2 (Robertson, Seymour) If G is a class of graphs, closed under
taking of minors, then there exists an algorithm that decides membership in G in
O(n?) time.

(The algorithm checks for each element in the obstruction set of G whether
it is a minor of the input graph.) Note that the result is non-constructive in two
ways: only existence of the algorithm is shown, and the algorithm only decides
but does not construct solutions.

If the minor closed class of graphs G does not contain all planar graphs, then
a linear time algorithm is possible.

Theorem 5.3 (Robertson, Seymour [101]) For any planar graph H, there is
a constant cg, such that every graph with no minor isomorphic to H has treewidth
at most cy.

There are planar graphs with arbitrary large treewidth, and planarity is pre-
served under minor taking, thus it is not possible to prove a variant of Theorem
5.3 for non-planar graphs H. If H is a forest, then there exists a similar upper
bound cy on the pathwidth of graphs that do not contain H as a minor (see
[16, 42]). In [118], it is shown that one can take cy = 202(2Var [ +4Ea))® A gimilar
type of bound was proved by Gorbunov [72]. In some special cases, one can prove
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better bounds. For instance, for H = (Y, the cycle with k vertices, then one can
take cy = k <1 [64]. If H = K,, then one can take cy = 2k <2 [35]. Other
special cases are discussed in [20, 23, 35].

As on graphs of bounded treewidth, one can check for any fixed graph H
whether it is a minor of input graph G in linear time (e.g., for fixed H, the
property can be formulated in monadic second order logic, see e.g., [12]), we have
the following result.

Theorem 5.4 If G is a class of graphs, closed under taking of minors and that
does not contain all planar graphs, then there exists an algorithm that decides
membership in G in O(n) time.

(Let planar graph H ¢ G. Check whether the treewidth of G is at most cgy
(linear time by the algorithm of [24]). If not, answer no. If so, test minorship of
all graphs in the obstruction set — this can now be done in linear time.)

In some cases, self-reduction can help to overcome the non-constructive as-
pects of this theory. A general technique has been established by Fellows and
Langston [67].

An application of the theorem recently arose in the area of distributed comput-
ing, specifically interval routing. The class of graphs for which k-interval routing
schemes exist under varying edge lengths, k-IRS is closed under taking of minors,
hence there exists a linear time checkable characterization for each fixed k. (See
[35] for precise definitions and more results.) Still, no actual characterization is
known.

Several applications for problems from graph layout, VLSI-design, and graph
theory have been found by Fellows and Langston. See e.g., [62, 63, 66, 65, 15].

6 Fixed parameter complexity

Some problems are not (known to be) linear time solvable when restricted to
graphs of bounded treewidth. The following behaviors can often be observed: the
problem is NP-complete; the problem can be solved in O(f(k)n®)) time (k the
treewidth, f, g some functions growing with k); the problem can be solved in time
O(f(k)n®) time (c a constant, f a function). More generally, this type of behavior
can be seen in parameterized problems: part of the instance is distinguished as
the ‘parameter’ often an integer, which might be small in practice. To distinguish
between the second and third type of behavior, Downey and Fellows introduced
the theory of fized parameter complezity [58, 59, 57, 1]. Hereto, they introduced
the notion of parameterized language (or problem): a subset L C ¥* x ¥* for
some fixed alphabet ¥. The second part of the input is called the parameter; we
are interested in what happens if this parameter is ‘small’. Downey and Fellows
also define a notion of reduction between parameterized languages, the class of
fized parameterized tractable problems FPT (the class of parameterized languages

12



L for which there exists an algorithm that decides whether < z,k >€ L in
f(k)|x|¢ time, f a function and ¢ a constant), and a notion of reduction between
parameterized languages (that preserves fixed parameterized tractability). Then
they introduce a hierarchy of complexity classes FTP C W[l1] C W[2] C --- C
Wi] C ---W][P] of parameterized problems. Classes W{i], W|[P] are defined in
terms of reductions to certain parameterized problems on Boolean circuits. It
is conjectured that the hierarchy is proper. So, hardness for W[1] or any larger
class means for a problem that it is unlikely that there exists an algorithm for it
with time complexity of the form O(f(k)n).

As an example: the treewidth of a graph is never larger than its bandwidth.
Bandwidth is solvable in O(f(K)n™) time, K the bandwidth to obtain [75].
Bandwidth is hard for all W7i], i € N [28], and hence it is unlikely that the
bounded treewidth of yes-instances will help to get an e.g., a linear time algorithm
for bandwidth for fixed £, even with the help of tree decompositions. Other graph
problems where yes-instances have bounded treewidth, and which are hard for
W1] or a larger class, can be found in [28, 27, 29, 82, 83].

Postscript

I want to thank all who cooperated with me and informed me on all kinds of
treewidth related topics in the past years, and to apologize to those whose work
I forgot to mention here.
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