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Abstract

In the �eld of pattern matching, there is a clear trade-o� between

e�ectiveness, accuracy and robustness on one hand and e�ciency and

simplicity on the other hand. For example, matching patterns more

e�ectively by using a more general class of transformations usually

results in a considerable increase of computational complexity. In this

paper, we introduce a general pattern matching approach which will be

applied to a new measure called the absolute di�erence. This pattern-

similarity measure is a�ne invariant, which stands out favourably in

practical use. The problem of �nding a transformation mapping to the

minimal absolute di�erence, like many pattern matching problems, has

a high computational complexity. Therefore, we base our algorithm on

a hierarchical subdivision of transformation space. The method applies

to any a�ne group of transformations, allowing optimisations for rigid

motion. Our implementation of the method performs well in terms of

reliability and e�ciency.

1 Introduction

In applications such as pose determination [15], object recognition [26],
vehicle tracking [24], optical character recognition [27], stereo matching
[4], content-based image retrieval [18], medical registration [25], and radio-
therapy alignment [6], a major problem is �nding a transformation which
matches part of a pattern A to some part of another pattern B. Patterns
typically consist of features extracted from industrial parts, technical draw-
ings, sketches, hand-writing, digital pictures, and medical scans.

In this paper, general-purpose geometric pattern matching will be dealt
with. The proposed method is not specialised for any speci�c application.
Furthermore, no estimates of optimal matches will be made prior to the
matching phase. The main goal is to derive a method which is general
enough for matching a large variety of patterns reliably, while keeping the
amount of computational e�ort reasonably low. No assumptions about the
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input patterns will be made and no domain-speci�c knowledge will be in-
corporated in the method.

Heuristics used in most practical methods make assumptions that do not
hold for more general shape matching. A well-known heuristic in pattern-
matching is to align the centroids of two patterns. This eliminates transla-
tion, allowing another method to solve for the remaining degrees of freedom.
In applications where patterns can have signi�cantly large absent parts, such
an approach is predestined to fail. Another heuristic is to assume that sim-
ilarity is a convex function of the transformation parameters. This would
allow simple hill-climbing techniques to �nd an optimal match. However,
if rigid motions are considered, any symmetrical or nearly-symmetrical pat-
tern will make the convexity assumption invalid, for any reasonable measure
of pattern-similarity.

In contrast with many other methods, our algorithm puts only minor re-
strictions on transformation space. For example, when matching under a�ne
transformations, patterns are allowed to scale to arbitrary small sizes. Since
the proposed pattern similarity measure, the absolute di�erence, behaves
well under such transformations, this poses no problems. If in a particular
application, assumptions can be made about the speci�c regions in trans-
formation space which can be expected to contain optimal matches, this
knowledge can be put into our basic algorithm without much e�ort. Such
restrictions of transformation-space can result in major speedups.

Geometric pattern matching, can be seen as the process of �nding a
mapping between two patterns in such a way that some similarity-measure
is optimised. Exact pattern matching methods [3, 20, 12] decide whether
or not transformations exist which map a pattern precisely onto another
pattern. Unfortunately, in most practical applications measurement-errors
and limited numerical precision render exact matching algorithms ine�ec-
tive. Flexibility in case of perturbations and roundo� errors can be achieved
by considering point-set correspondences. Correspondence-based pattern
matching methods include minimum weight matching, uniform matching,
minimum deviation matching and bottleneck matching [2, 1]. A major dis-
advantage of these methods is that, in principle, only point sets having
equal sizes can be matched. Much work has been done on matching point
set patterns without establishing correspondences by means of the Hausdor�
distance [12, 11, 16, 9, 8, 22, 19]. Although robust against perturbations,
the Hausdor� distance is very sensitive to occlusion and absent or outlying
parts. The partial Hausdor� distance [7, 21] is a pattern-similarity measure
which overcomes this drawback by matching only parts of patterns. As a
result, the partial Hausdor� distance is not a metric. More seriously, the
distance is dependent on a threshold parameter specifying the minimal frac-
tion of matching points, which must be known a priori. Alt [14] proposes the
symmetric di�erence which de�nes a metric, and if used for minimisation,
deals well with outlying or absent parts in shapes. However, the symmet-
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ric di�erence and the Hausdor� distance variants are not invariant under
a�ne transformations, and scaling in particular. This results in unwanted
behaviour of these similarity measures under scaling and a�ne transforma-
tions, making restrictions on transformation space necessary.

In this paper, a variation on the symmetric di�erence, called the absolute
di�erence, is proposed. Like the symmetric di�erence, this measure is robust
against perturbation, occlusion and outlying or absent parts. In contrast
with the partial Hausdor� distance, the absolute di�erence is a metric and
does not depend on a parameter. Unlike the Hausdor� distance variants and
the symmetric di�erence, the absolute di�erence is a�ne-invariant, allowing
it to be used for minimisation under any a�ne transformation group without
the need of restricting the transformation space.

The complexity of pattern matching under both the Hausdor� distance
and the symmetric di�erence correlates with the dimension of the transfor-
mation space under which these measures are minimised. Rucklidge [21]
proved lower bounds for the number of continua in transformation space for
which the directed Hausdor� distance between point sets is minimal. For
planar point sets of size n, the number of minimal regions under translation,
rigid motion, translation and scaling, and a�ne transformation are 
(n3),

(n5), 
(n7) and 
(n9), respectively. These constructions can be modi�ed
to work for the symmetric di�erence and the absolute di�erence as well.

The pattern matching method proposed in this paper avoids explicit
consideration of all minima by splitting up transformation space in a top
down manner. This approach will be most e�cient if optimal matches are
concentrated within a limited number of small regions in transformation
space. Under such circumstances our algorithm will eliminate large subsets
of transformation space at an early stage. In [10], we applied our hier-
archical minimisation-approach to the partial Hausdor� distance. In the
current paper, an algorithm for matching using the absolute di�erence will
be developed.

The new algorithm can be used to approximate the minimum absolute
di�erence within any desired accuracy, reporting a near-optimal transforma-
tion in the process. The method is general: it works for points of arbitrary
dimension, and various classes of transformations, including translations,
scalings combined with translations, rigid transformations, similarity trans-
formations, area-preserving transformations, and a�ne transformations in
general.

2 Pattern and shape similarity

A pattern is a set or a function which is used to model a number of features.
A shape can be seen as a pattern modulo the action of a group. For example,
consider a planar point set A and a non-trivial translate B of A. Under the
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group of translations, A and B have equal shapes, while seen as patterns
A and B are di�erent. A transformation group acting on a set of patterns
de�nes a collection of shapes. The shape of a pattern is de�ned as the set
of all images of that pattern under transformation. A space of shapes is
obtained by de�ning a metric on shapes.

Section 2.1 de�nes certain topological transformation groups which can
be used to transform patterns. The construction of metric spaces of patterns
and shapes is discussed in Section 2.2. Section 2.3 deals with the use of
metrics for measuring similarity of patterns and shape. Appendix A recalls
the basic de�nitions of topological transformation groups and metric spaces.

2.1 Topological transformation groups

Distinct topological transformation groups will be used for modelling phys-
ical phenomena like object-movement and viewpoint-change. For example,
the group of rigid motions acting on subsets of R2 can be used to model the
freedom of movement of 
at objects on a table. The a�ne group acting on
sets in R2 is a good approximation for a change of camera-viewpoint under
weak perspective. The group of homeomorphisms acting on R3 can be used
to model three-dimensional tissue-deformations.

The set of all homeomorphisms on a �xed space is denoted by Hom.
Homeomorphisms are continuous invertible mappings having a continuous
inverse. Every topological transformation group acting on a space is a sub-
group of the group of homeomorphisms of that same space. For example,
the general linear group GLd consists of all non-singular d� d-matrices. A
more restricted transformation group is SLd, the group of d � d-matrices
having a unit determinant. The orthogonal group, a subgroup of GLd, is
the collection Od of all non-singular matrices A for which AAt = I. A
subgroup of both SLd and Od, the special orthogonal group, is de�ned by
SOd = Od \ SLd. The non-linear group of d-dimensional translations is
denoted by Td.

The composition G �H of two groups G and H consists of all gh, where
g 2 G and h 2 H. The a�ne transformationsAd and the isometriesMd are
the compositions Td �GLd and Td �SOd, respectively. and the as Td �SOd.
The special a�ne transformations and the rigid transformations are de�ned
by SAd = Td � SLd and SMd = Td � SOd, respectively.

Each group has speci�c invariants. For example, the ratio of areas and
line parallelism are a�ne invariants. The special a�ne transformations pre-
serve area. Isometries and rigid transformations preserve both length and
area.
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2.2 The shape of a pattern

Shapes are de�ned as patterns modulo the action of a transformation group.
Let G be a topological transformation group acting on a set of patterns P .
Then each pattern A 2 P determines a unique shape GA consisting of the
set of all images of A under G, that is, GA = fgA j g 2 Gg. The group G
de�nes an equivalence relation �G on P , where A �G B if and only if there
exists a transformation g 2 G such that gA = B, for A;B 2 P . Therefore,
a shape GA of a pattern A 2 P can be seen as the equivalence class in P
under �G containing A. The class of shapes P=G determined by G and P
is the set of all these equivalence classes P=G = fGA j A 2 Pg. This means
that patterns A and B have the same shape when a transformation g 2 G
exists such that gA = B.

The set of patterns P and the collection of corresponding shapes P=G
will be treated as metric spaces. Choosing a metric � on P results in a metric
space of shapes (P; �). The metric � can be used to model pattern-similarity.
That is, the choice of pattern-metric determines how similar patterns are.

A metric � on the set of patterns P is said to beG-invariant if �(gA; gB) =
�(A;B) for all g 2 G and A;B 2 P . The following theorem shows how to
construct a metric shape space (P=G; �) from a metric pattern space (P; �).

Theorem 2.1 Let G be a group acting on a metric space (P; �). Suppose �
is G-invariant. Then �(GA;GB) = ming2G �(gA;B) de�nes a metric space

(P=G; �).

A less general presentation of this result was given by Rucklidge in [21].
If � provides a good measure of pattern-perturbation, the shape-metric

induced by Theorem 2.1 gives a measure � that is reliable when pattern-
perturbations occur. The mapping � : A 7! A=G, which computes the
shape GA corresponding to a pattern A 2 P , is continuous with respect
to the metric spaces (P; �) and (P=G; �). The continuity of � implies that
introducing small changes in patterns A;B 2 P will have a small impact on
the distance �(GA;GB) between the shapes GA and GB.

From here on, the symbol � always denotes a metric on the set of patterns
P , while � denotes a metric on the collection of shapes P=G. The next section
discusses criteria for good pattern similarity measures.

2.3 Measuring similarity of patterns and shapes

In practical applications, patterns inevitably su�er from various defects
caused by aberration, scanning inaccuracies, limited graphical resolution,
roundo�-errors or unreliable edge detection. A reliable pattern matcher
must be based on a similarity measure that behaves well in case such de-
fects occur. Therefore, a pattern-similarity measure � : P � P ! R must
satisfy the following conditions:
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1. The function �must be a metric. Identical shapes should have distance
zero. No negative distances should be allowed. The notion of similarity
should be symmetrical. If the similarity between GA and GB and
between GB and GC are high, the similarity between GA and GC
should be high.

2. Small deformations in patterns A and B must result in a small change
in the pattern-distance �(A;B).

3. The distance � should be low if two patterns have large, highly similar
parts. The distance between two patterns with large similar parts
should on the average be signi�cantly lower than the distance between
any two arbitrary patterns. This means that � must be capable of
detecting similar patterns even if parts in one pattern may be absent
from the other or lying outside of it.

Examples of pattern-similarity measures are the the uniform metric [23]
the Fr�echet distance [13], the Hausdor� distance [16], the partial Hausdor�
distance [21, 10], and the symmetric di�erence [14]. In exact pattern match-
ing algorithms, the discrete metric, de�ned by A 6= B ) �(A;B) = 1, is
used implicitly.

Each pattern-similarity measure, has a speci�c pattern space P on which
it is de�ned. Many similarity values are de�ned on subsets of Rd . For
example, the uniform metric is de�ned on x-monotone curves. The Fr�echet
distance measures the similarity of curves. The Hausdor� distance and its
variations apply to compact sets in Rd . The symmetric di�erence is well-
de�ned on solid sets, which are compact sets that are equal to the closure
of their interior.

The absolute di�erence, which will be de�ned below, behaves similar to
the symmetric di�erence in the case of rigid transformations. The previous
similarity measures were de�ned on a set of patterns P containing subsets
of some space X. The absolute di�erence, on the other hand, uses a class
of patterns Pa in which each pattern A 2 Pa is a function A : X ! R.

De�nition 2.2 The collection of patterns Pa consists of all functions A :
V ! R which can be written as

A(x) =

�
h(ai) if x 2 D(ai)
0 otherwise

for a �nite set faig determining disjoint solids D(ai) and reals h(ai).

Functions in Pa have constant value over a �nite number of solid sets. The
elements of Pa will be called solid functions.

De�nition 2.3 The absolute di�erence �a is de�ned by

�a(A;B) =

Z
x2X
jA(x)�B(x)j dx

6



for A;B 2 Pa.

The symmetric di�erence �s on solid sets in X can be written in terms
of �a by �s(A;B) = �a( ~A; ~B), where ~A(x) = 1 if x 2 A and 0 otherwise.

The area ratio ar(g) is de�ned as the absolute value of the determinant
of the linear component of an a�ne transformation g. This function allows
the following de�nition of an action of the a�ne group Ad on Pa.

De�nition 2.4 Let g 2 G and A 2 Pa. Then gA is the solid function

de�ned by

gA(gx) = ar(g)�1A(x)

for x 2 X.

This action preserves the area between A and the zero function. The
following lemma shows that (Pa; �a) is a metric space.

Lemma 2.5 The absolute di�erence is a metric.

Proof: The metric properties (i){(iv) enumerated in Appendix A must hold.
Properties (i) and (iii) follow directly from the de�nition.

First, property (ii) will be be dealt with. It must be shown that �a(A;B) =
0 implies A = B. The reverse implication is trivial. Assume that the solid
functions A;B 2 Pa are determined in the sense of De�nition 2.2 by faig
and fbjg respectively.

Let fUkg consist of all non-empty intersections D(ai) \D(bj). Clearly,
fUkg is a collection of solid sets on which both A and B have constant
value. The absolute di�erence �a can be written as a sum of integrals over
non-negative constant functions:

�a(A;B) =

Z
x=2[iD(ai)

jB(x)j dx+

Z
x=2[jD(bj)

jA(x)j dx+
X
k

Z
x2Uk

jA(x)�B(x)j dx

Assume A(y) 6= B(y) for some y 2 X. Because jA(y) � B(y)j > 0, the
point y must lie in [iD(ai) or [jD(bj). Suppose y 2 Uk. Then jA(x) �
B(x)j > 0 for x 2 Uk, implying

R
x2Uk

jA(x) � B(x)j dx > 0. Suppose
y 2 D(ai) � [jD(aj). Then y must lie in the non-empty di�erence of two
solid sets. Therefore, there must exist a non-empty solid set S such that
y 2 S � D(ai) � [jD(bj). This implies

R
x=2[jD(bj)

jB(x)j dx > 0. The

remaining case x 2 D(bj)� [iD(ai) is symmetrical.
Metric property (iv) remains. Integrating the inequality jA(x)�C(x)j �

jA(x)�B(x)j+ jC(x)�B(x)j gives the triangle inequality.
�

The next Lemma shows that, unlike the symmetric di�erence, the ab-
solute di�erence is a�ne-invariant. Therefore, the minimum absolute dif-
ference under a�ne transformation is a well-de�ned shape-distance. This
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distance (�) patterns (P ) G metric robust absent

discrete arbitrary subsets Hom yes no no
uniform metric planar curves T2 yes yes no
Fr�echet curves Md yes yes no
Hausdor� compact subsets Md yes yes no
partial Hausdor� compact subsets Md no yes yes

symmetric di�erence solid subsets SAd yes yes yes
absolute di�erence solid functions Ad yes yes yes

Table 1: Comparing properties of pattern-similarity measures.

means that, unlike the Hausdor� distance, the absolute di�erence behaves
well under a�ne minimisation, making ad-hoc restrictions on transformation
space unnecessary.

Lemma 2.6 The absolute di�erence is invariant under the group of a�ne

transformations.

Proof: Invariance under the group of translations Td is trivial. Here, GLd-
invariance will be shown.

Write �a as a sum of integrals as in Lemma 2.5. Let D be some solid Ui,
a set D(ai)�[jD(bi) or a set D(bj)�[iD(ai). Suppose jA(x)�B(x)j = h,
for all x 2 D. Then,

Z
x2D
jA(x)�B(x)j dx =

Z
x2D

h dx

= ar(g)�1
Z
y2gD

h dx

=

Z
y2gD

jar(g)�1A(y)� ar(g)�1B(y)j dx

=

Z
y2gD

jgA(y) � gB(y)j dx

for g 2 GLd. Thus each term of the sum is invariant under the action of
GLd. �

Table 1 gives an overview of the pattern-similarity measures discussed
in this section. The �rst column contains the name of each measure. The
collection of patterns for which a measure is de�ned is given in the second
column. The third column shows the topological transformation group for
which a similarity measure is invariant. The last three columns in Table 1
indicate if the various similarity measures satisfy the metric properties (1),
are robust in case of pattern-perturbation (2) and deal well with outlying
or absent parts (3).
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Table 1 shows that both the symmetric di�erence and the absolute dif-
ference satisfy each of the properties 1, 2 and 3. However, the absolute dif-
ference is invariant under all a�ne transformations, whereas the invariance
of the symmetric di�erence is restricted to area-preserving a�ne transfor-
mations.

3 Finding an optimal matching

This section explains an hierarchical pattern matching method. The pro-
cedure can be applied to any topological transformation group having a
�nite-dimensional real representation. The a�ne group and its subgroups
are important examples of such groups. The general method can be applied
to the variations on the Hausdor� distance, the symmetric di�erence, and
the absolute di�erence.

3.1 The basic algorithm

The problem is �nding a transformation g 2 G that minimises �(gA;B). In
the process, the minimal value of � must be computed. In Rucklidge's ap-
proach [21], a multi-resolution subdivision of transformation space is made
in order to compute matches. Likewise, the technique discussed in this sec-
tion splits up transformation space recursively. For sets of transformations,
a lower bound l for the minimal value of � for the transformed pattern
gA and the pattern B is computed. In each pass of the algorithm, the set
of transformations with the lowest value of l is selected and split up into
smaller sets of transformations. The basic idea is that if, at some stage of
the algorithm, a small set of transformations C has the lowest lower bound l
yet encountered, all transformations in C map A nearly optimal to B under
�.

Let G be a transformation group acting on a metric pattern-space (P; �).
Given a pattern A 2 P , each set of transformationsC � G has a correspond-
ing set of patterns CA � P . The most important component of algorithm
is the lower bound l for which l(C;A;B) � �(A0; B) for A0 2 CA. The
bound l is only useful if it converges to the actual value of � for sets of
transformations shrinking to any single �xed transformation.

At this level, the representation of the topological transformation group
G becomes signi�cant. A representation of a group G is a continuous sur-
jective function ' : Rk ! G, mapping a �nite dimensional vector space onto
the set of transformations in G. Finite-dimensional representations exist for
the group of a�ne transformations and its subgroups.

Only rectangular regions R in representation space Rk , called cells, will
be considered. Let l be a lower bound for �, that is, l(R;A;B) � �('rA;B),
for all r 2 R. Suppose that for each � > 0, there exists a � > 0 such that
diam(R) < � implies �('rA;B) � l(R;A;B) < �, for r 2 R. In this case,
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Find-Minimal-Transformation(A;B; �)
1 Compute cells fRig that cover the global minimum.
2 for each cell Ri

3 do Insert Ri in a priority queue Q with key l(Ri; A;B).
4 Extract the minimal cell R from Q.
5 while d(R;A;B) > �
6 do Split R equally on its largest axis into R0 and R00 .
7 Insert R0 in Q with key l(R0; A;B).
8 Insert R00 in Q with key l(R00; A;B).
9 Extract the minimal cell R from Q.
10 return some 'r 2 'R and �('r(A); B)

Algorithm 1: Finding a minimal transformation.

l is said to converge to �. Since only �nite-dimensional representations are
considered, cells R can be split up into disjoint cells R0 and R00, until a cell
containing a transformation within a �xed of the global minimum is found.

Let d be a function that bounds the di�erence between l(R;A;B) and
�('rA;B). Algorithm 1 computes an optimising transformation within any
accuracy � > 0 using the functions l and d. The algorithm starts with
a number of initial cells which cover the global minimum. The rectangular
cells are being split up repeatedly until a su�ciently accurate approximation
of the global minimum is found. The next theorem states the correctness of
Algorithm 1.

Theorem 3.1 Let A;B 2 P and let R � Rk . Suppose

�('rA;B)� l(R;A;B) < d(R;A;B);

for all r 2 R, where d converges to zero as diam(R) goes to zero. Then

Algorithm 1 computes a transformation gm 2 G which brings the distance

value within any constant � > 0 of the global minimum value:

�(gm(A); B) �min
g2G

�(g(A); B) < �:

3.2 Lower bounds for pattern-metrics

In this section, a theorem concerning lower bounds for pattern-metrics will
be derived. Such lower bounds can be used in Algorithm 1. After that,
special instances of this theorem for the absolute di�erence �a, the Hausdor�
distance �h and the symmetric di�erence �s will be discussed.

Many pattern-metrics � can be decomposed as �(A;B) = �(A;B) u
�(B;A), where u denotes some monotone function. A binary function
u : R � R ! R is called monotone if it is increasing in both arguments.
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Theorem 3.2 indicates how one �nds a lower bound for pattern-metrics �
which can be decomposed monotonically in two one-way pattern-distances
�.

Theorem 3.2 Let G be a transformation group acting on a metric space

(P; �) with � invariant under G. Furthermore, let �(A;B) = �(A;B) u
�(B;A), where u is monotone. Suppose � satis�es �(�(C;A); B) � �(CA;B).
Then

�(CA;B) � �(�(C;A); B) u �(�(C�1; B); A)

where C�1 = fc�1 j c 2 Cg.

Proof: The G-invariance of � and the monotonicity of u allow the following
derivation:

min�(CA;B) = minf�(cA;B) u �(B; cA) j c 2 Cg

= minf�(cA;B) u �(c�1B;A) j c 2 Cg

� min�(CA;B) umin�(C�1B;A)

� �(�(C;A); B) u �(�(C�1; B); A):

�

Theorem 3.2 assumes that a pattern-metric � can be written in terms of
a one-way distance �. Theorem 3.2 shows that a bound for � can be found
by considering special patterns, found using a function � , which assume a
distance lower than a collection of transformations of a single pattern. Two
of such special patterns can be substituted for the individual transformed
patterns in the de�nition of � resulting in a lower bound.

Theorem 3.2 has a general character. It can be applied to the absolute
di�erence, the Hausdor� distance and the symmetric di�erence, resulting in
Corollary 3.3, 3.4 and 3.5, respectively.

Corollary 3.3 Let �a(A;B) =
R
A(x)<B(x)B(x)�A(x) dx and let �a(C;A)(x) �

supc2C ar(c)A(c
�1x), for C � Ad and solid functions A and B de�ned on

R
d . Then

�a(CA;B) � �a(�a(C;A); B) + �a(�a(C
�1; B); A)

where �a(A;B) = �a(A;B) + �a(B;A).

Proof: By Lemma 2.5 and Lemma 2.6, the absolute di�erence �a is an
a�ne-invariant metric. Applying Theorem 3.2, gives the result. �

Corollary 3.4 Let �h(A;B) = maxb2Bmina2A kb � ak and let �h(C;A) �
[CA be compact, for C �Md and compact A;B � Rd . Then

�h(CA;B) � max(�h(�h(C;A); B); �h(�h(C
�1; B); A))

where �h(A;B) = max(�h(A;B); �h(B;A)).
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Corollary 3.5 Let �s(A;B) = area(B � A) and let �s(C;A) � [CA be

solid, for C � SAd and any solid A;B � Rd . Then

�s(CA;B) � �s(�s(C;A); B) + �s(�s(C
�1; B); A)

where �(A;B) = area(B �A).

Corollaries 3.3, 3.4 and 3.5 can be used to �nd functions l which can
be used in Algorithm 1. Below, Corollary 3.3 will be applied in deriving a
lower bound for the absolute di�erence under a cell of transformations.

3.3 Bounding the absolute di�erence

Algorithm 1 uses a lower bound for the pattern-distance under a set of
transformations. In this section, a lower bound will be found speci�cally for
the absolute di�erence �a under the group of a�ne transformations. This
achieved by making use of Corollary 3.3.

To arrive at an explicit de�nition of a lower bound function, used in
Algorithm 1, a choice of representation must be made. For representing
the a�ne group Ad, d � d-matrices, which are vectors in Rd

2

, are used for
representing the general linear group GLd, while vectors in Rd are used to
represent translations in Td. Thus d(d+1)-dimensional vectors can be used
to represent Ad.

A traced volume is a set which contains the union of images of a solid
under a set of transformations. Using the current choice of a�ne represen-
tation, a function V which determines a the traced volume given a rectan-
gular solid S and a cell R will be de�ned. Let R = fr j rij � rij � rijg
be a block of d � d-matrices and let S = fs j si � si � sig be a block
in Rd . A traced volume under linear transformation of S under R is de-
�ned by the axis-parallel block L(R;S) = fx j min ti � xi � max tig,
where ti = frijsi; rijsi; rijsi; rijsig. The traced volume of a block S un-

der a block of translations R = fri � ri � rig � R
d can be expressed as

T (R;S) = fx j ri + si � xi � ri + sig. The functions L and T deter-
mine traced volumes under general linear transformation and translation,
respectively. A function V computing the traced volume under a�ne trans-
formation can be found by composition. Let R = R0 � R00 be a block of
a�ne representations, where R0 and R00 are blocks of translations and linear
transformations, respectively. The traced-volume function V is now de�ned
by V (R;S) = T (R0; L(R00; S)).

In addition to traced volumes, a function q which bounds the area ra-
tio ar(c) over transformations c 2 C corresponding to a cell is needed.
From here on, the symbol R always denotes a cell, while C = 'R de-
notes the corresponding set of transformations. The function q must satisfy
q(R) � maxc2C ar(c)

�1. Choosing a converging function q that satis�es this
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property is straightforward. In the two-dimensional case the inequality can
be put into an equality quite easy.

The traced volumes obtained under a�ne transformations are useful for
�nding a function �a which satis�es the conditions of Corollary 3.3. Below, a
function �a which determines a special pattern �a(C;A) for the set transfor-
mations C and the pattern A is de�ned. In accordance with Corollary 3.3,
�a is chosen such that the one-way distance � between the special pattern
�a(C;A) and B bounds �(cA;B) for all c 2 C. This can be accomplished
by taking �(C;A) to be an upper bound for the upper envelope of all cA for
c 2 C. Thus �a can be de�ned as:

�a(C;A)(x) = q(R) maxfA(y) j x 2 V (R; y)g: (1)

Note that �a(C;A) may not be a pattern in the sense of De�nition 2.2. Since
the value of � is well-de�ned for such �a(C;A), this poses no problem. Using
�a a lower bound k for the one-way absolute di�erence � over a cell R can
be derived:

k(C;A;B) = �a(�a(C;A); B): (2)

Applying Corollary 3.3 gives a lower bound l de�ned by

l(C;A;B) = k(C;A;B) + k(C�1; B;A): (3)

In the next section, algorithms for computing l(R;A;B) e�ciently, for vary-
ing R and �xed A;B 2 Pa, will be discussed.

3.4 E�cient lower bound computation

An issue yet uncovered is the e�cient computation of the lower bound l de-
�ned in Equation 1, 2 and 3. In this section, the discussion will be restricted
to the computation of the one-way bound k de�ned in Equation 2. For that
purpose an explicit de�nition of �a, presented in Equation 1, is desirable.
Assume that patterns A and B are represented in the sense of De�nition 2.2
by �nite sets faig and fbig respectively. The function �a(C;A) can be writ-
ten in terms of a set of functions. Each ai determines a function � ia de�ned
by:

� ia(x) =

�
q(R)h(ai) if x 2 V (R;D(ai))
0 otherwise

:

A more explicit version of De�nition 1 is obtained by choosing the upper
envelope of such functions:

�a(C;A)(x) = max
i

� ia(C;A)

At this stage an obvious method for computing the one-way bound
�(�a(C;A); B) comes into sight. First, the upper envelope of the collection
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Build-Tree(B)
1 Let D[n] be a bounding box for each D(bi).
2 Let h[n] be the maximum of all h(bi).
3 if B is determined by only one bi
4 then return leaf n
5 else Let x be the largest axis of D[n].
6 Let b1; : : : ; bt be sorted in the direction of x.
7 Split b1; : : : ; bt on its median into fb0ig and fb

00

jg.
8 c1[n] Build-Tree(B0)
9 c2[n] Build-Tree(B00)
10 return internal node n

Algorithm 2: Building an augmented kd-tree.

of functions � ia(C;A) can be computed, resulting in the function �a(C;A).
Then, during computation of the lower envelope of �a(C;A) and B, the one-
way bound k can be evaluated. However, explicit upper bound computations
are not essential for the computation of k. Therefore, a di�erent approach
is taken.

Here, an algorithm will be derived speci�cally for pattern-functions B
which can be written as a �nite set of disjoint rectangles D(bi) with asso-
ciated function-values h(bi). Assume that these rectangles have some order
for each axis of the coordinate system separately. The basic data-structure
used in the algorithm is the kd-tree [17]. An augmented kd-tree containing
records providing information which can be used to speed up the computa-
tion of the bound is used.

For a pattern B represented by fbig, a balanced kd-tree is built on the
set of regions D(bi). Each node n in the kd-tree has children c1[n] and c2[n].
Each bounding box D[n] in the tree contains the bounding boxes of the
child nodes D[c1[n]] and D[c2[n]]. In addition, each node n has a �eld h[n]
which equals the maximal value of all h(ai) over all leaves in the subtree.
Algorithm 2 gives pseudo-code for building such a kd-tree.

The computation of k(C;A;B) is performed in two stages. First, the kd-
tree tB, built on B, is labelled using each of the traced volumes V (R;D(ai))
and the values q(R)h(ai). This is done by Algorithm 3. After that, Al-
gorithm 4 computes the actual bound for the one-way absolute di�erence
using the labelled tree.

Algorithm 3, the tree-labelling procedure, works as follows. For each
rectangle D(ai), a function � ia can be de�ned in terms of the traced volume
V (R;D(ai)) and the value q(R)h(ai). These values are passed to the root
of the kd-tree. If the sub-pattern represented by a subtree rooted at n
lies completely below � ia, a 
ag o[n] is set. In addition, each node n has a
�eld m[n] which stores the minimum over all leaves l in the subtree, of the
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Label-Tree(n;D; h)
1 if :o[n] ^D[n] \D 6= ?

2 then if D[n] � D ^ h[n] � h
3 then o[n] true

4 else if m[n] < h
5 then if n is leaf
6 then m[n] min(h[n]; h)
7 else Label-Tree(c1[n];D; h)
8 Label-Tree(c2[n];D; h)
9 m[n] min(m[c1[n]];m[c2[n]])

Algorithm 3: Labelling the kd-tree.

Eval-Tree(n)
1 if o[n]
2 then return 0
3 else if n is a leaf
4 then return (h[n]�m[n]) � area(D[n])
5 else return Eval(c1[n]) +Eval(c2[n])

Algorithm 4: Evaluating a labelled tree.

maximum value of any previously processed � ja having value lower than h[l],
for any x 2 D[l].

Algorithm 4 is used to evaluate the labelled tree resulting in the desired
value of k. It does a recursive traversal of the kd-tree built on B starting
with the root. In the process it accumulates the one-way di�erences between
�a(C;A) and B over all subregions in the kd-tree. If a node is encountered
for which o[n] is set, it is known that the corresponding part of the pattern
B lies completely underneath �a(C;A). In that case, a value of zero can be
reported for the subtree as a whole. If a leaf n is encountered, the di�erence
in height of �a(C;A) and B restricted to the domain D[n] is added to the
sum.

The labelling algorithm does not compute k exactly. In case a traced
volume V (R;D(ai)) intersects the block D[l] corresponding with a leaf l in
a tree, but does not contain it, it is treated as if it fully contains D(ai). This
reduces the complexity of the algorithm considerably. The value computed
by Algorithm 4, will in some cases be lower than the actual value of k. In the
experiments, relatively small cubes ai for which this di�erence is insigni�cant
will be used.

Algorithm 5 illustrates the general procedure for computing k(R;A;B),
for cells R, patterns B and a kd-trees tB. The kd-tree can be computed in
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Bound(R;A; tB)
1 for each node n in t
2 do m[n] 0
3 o[n] false

4 for all ai
5 do Label-Tree(root[tB]; T (R;D(ai)); q(R) � h(ai))
6 return Eval-Tree(root[tB])

Algorithm 5: Bounding the one-way absolute di�erence over a cell.

a pre-processing stage, previous to the execution of Algorithm 1, and can
be used each time a lower bound has to be computed (lines 3, 7 and 8 of
Algorithm 1).

3.5 Specialisation for rigid transformations

In this section tighter traced volumes will be derived speci�cally for the
group of rigid transformations. Using these tighter traced volumes will result
in a faster algorithm for this special subgroup. The focus will lie on the two-
dimensional case.

Planar rotations can be represented by angles r 2 R, resulting in a repre-
sentation ' de�ned by 'r(x) = (cos(r) x1� sin(r) x2; sin(r) x1+cos(r) x2),
for x 2 R2 .

By expressing x in polar coordinates one can determine the minimum
and maximum Cartesian coordinates x gets when the angle r is swept along
an interval R � R. This results in a block O(R; x). For a block S 2 R2 a
traced volume O(R;S) can be obtained by computing the axis-parallel block
bounding all O(R; x) for all four corners x of S.

The traced-volume operators for rotation and translation can be com-
posed as V (R;S) = T (R0; O(R00; S)) where R = R0 � R00. Since rotations
have unit determinant, the function q(R) is simply a constant function with
value 1.

4 Results

The metric introduced in Section 2 and the matching algorithm presented
in Section 3 work in any dimension. In this section, the results obtained
by running a series of tests on pairs of feature patterns obtained from 2D
images will be shown. Each test consists of a pair of images depicting similar
objects. Some are di�erent views of the same object, some examples consist
of an image and a transformed subimage. Implementations of our method
for both the one-way Hausdor� distance �h and the one-way di�erence �a
were tested.
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Each example has a natural transformation group associated with it.
Examples in which relatively 
at three-dimensional objects are seen from
di�erent views with a large focal distance ask for matching under a�ne
transformations. Di�erent copies of two-dimensional drawings, on the other
hand, ask for rigid transformation. Finally, assuming that three-dimensional
objects have the same orientation with respect to the camera, translation or
translation in combination with scaling can be used.

4.1 Input data

Figure 1{10 depict the tests. For each �gure, the pictures above left and
above right, depict the grey-scale images on which feature patterns A and B
are superimposed, having white and black dots, respectively. The patterns
A and B were extracted using either edge-detection or corner-detection. For
each test, the patterns A and B served as inputs.

Figure 1 above right shows a bomber with markings. The markings were
cut and cropped manually, resulting in the grey image above left. Figure 2
above right shows a machine with a connector. The neighbouring image
shows a di�erent but similar connector. Figures 3 and 4 both depict three-
view drawings of a plane. For these two, the images on the left are rotated
and translated versions of the top view from the right image. Figure 5 con-
tains images of two planes of the same type, but with di�erent paintings.
They are shown from approximately the same side but at slightly di�erent
distances. Figure 6 depicts contains pictures of the same plane taken from
di�erent side-views. Figure 7 shows two frontal views of the same plane
taken from di�erent distances. Figure 8 has two di�erent views of the same
�ghter. Figure 9 shows a picture of the Mir in varying distance and ori-
entation. Figure 10 shows two di�erent views of the same reconnaissance
plane.

In some cases the patterns consists of edges, in others they consist of
corners. Figure 1{7 show edge-patterns obtained by Sobel edge-detection
followed by thresholding. Figure 8{10 show corners which were indicated
manually. The patterns were presented to the Hausdor� matcher as point
patterns. For the absolute di�erence matcher, the point sets were converted
to sets of cubes having a radius of 5 pixels for edge-features and 40 pixels
for corner-features.

4.2 Parameter settings

The fact that the Hausdor� distance is not invariant under a�ne transforma-
tions, and scaling in particular, cannot be ignored during the tests. Allowing
the a�ne transformations to approach a scaling factor of zero, produces de-
generate results for the one-way Hausdor� distance. This could be expected
since the scaling of a set A to �t in a small spherical neighbourhood of some
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point of B allows the one-way Hausdor� distance to be arbitrarily small.
Since such degenerate matchings are not very interesting in a comparison,
the method using the one-way Hausdor� distance had its transformation
space restricted to exclude arbitrary small scalings. Table 2 shows which
initial parameters were used to constrain the linear part of transformation
space for both implementations. In each test the accuracy was set to one
pixel. This means that the reported matches di�er at most the equivalent
of one pixel with a global optimum match.

4.3 Matches and statistics

The matches resulting from each test were visualised using both the patterns
and the grey-scale images. The middle row of Figure 1{10 show the trans-
formed pattern A superimposed on the pattern B. The bottom row of each
�gure shows the average grey-scale image of the transformed A grey-scale
image and the B grey-scale image. The middle left and bottom left images
show the transformation computed by the one-way Hausdor� matching al-
gorithm, while the middle right and bottom right images show the results
obtained by the one-way absolute di�erence.

Table 3 shows, for each test, the transformation group which was used for
matching, and the cardinalities of the patterns. The groupU2 mentioned in
the table denotes scaling combined with translation, both in two directions.
Table 4 contains test-statistics for both the one-way Hausdor� distance and
the absolute di�erence. This table is included only to give an indication of
the number of cells and the processing times. Comparing the statistics has
limited meaning since, in principle, the implementations solve two di�erent
problems. Even though some results obtained using the one-way function
di�erence took longer to compute, the results were accurate, while the one-
way Hausdor� distance produced "false" matches in these cases. Moreover,
for the examples involving scaling (tests �ve to ten), the transformation
space for the one-way Hausdor� distance is only half the size of that for the
absolute di�erence, because of the restriction of the scaling.

4.4 Implementation

Both the one-way Hausdor� version of our technique, described in [10] and
the one-way absolute function di�erence variant described in the current
paper were implemented in C++. The implementations use as many of the
same libraries and basic data-structures as possible. Both programs were
compiled using the the SGI Delta/C++ compiler. The tests were executed
on a Silicon Graphics Indy workstation having a MIPS R5000 processor and
64 MB of memory.
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method rotation scaling linear

one-way Hausdor� distance [0; 2�] [12 ; 1:0]
2 �1 � Lij � 1; 14 � det(L) � 1

one-way absolute di�erence [0; 2�] [0; 1:0]2 �1 � Lij � 1; 0 � det(L) � 1

Table 2: Initial parameters for linear transformation components.

test �gure group # features A # features B

1 T2 60 1084
2 T2 110 773
3 SM2 189 439
4 SM2 203 637
5 U2 175 122
6 U2 308 317
7 U2 717 740
8 A2 16 17
9 A2 23 29
10 A2 20 20

Table 3: Overview of the tests.

4.5 Discussion

Table 5 shows the determinants of the linear parts of the transformations
computed by both methods, for all tests involving scaling. The table shows
that the Hausdor� distance is inclined to select the transformation with a
relatively low determinant for the linear part, while the absolute di�erence
works well despite the fact that the determinant was allowed to reach zero.
Thus the one-way Hausdor� distance can be used only for groups containing
scaling when severe restrictions can be put on transformation space a pri-
ori. Things can be made better by using the (two-way) Hausdor� distance.
However, this distance does not work with outliers and missing parts. To
remedy this, the partial Hausdor� distance could be used. However, this
requires knowledge of the percentage of point which are expected to lie in
each other's neighbourhoods. For accurate matching, the absolute function
di�erence must be preferred over the partial Hausdor� distance.

5 Conclusion

Our pattern matching algorithm is not specialised or optimised for any spe-
ci�c application whatsoever and does not make any assumptions about opti-
mal transformations like matching on the centroid or other reference points.
The processing times given in Section 4 were obtained using a non-optimised
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test �gure # cells # seconds

Hausdor� absolute Hausdor� absolute

1 573 791 53.8 7.2
2 409 709 57.1 7.7
3 641 7275 127.4 233.1
4 961 29137 250.2 1020.0
5 3253 74487 294.9 867.2
6 975 76917 237.5 1884.4
7 641 8413 568.2 533.5
8 543679 23057 2449.7 24.6
9 375673 177997 2928.0 290.4
10 1167449 70321 7183.8 101.2

Table 4: Statistics for both tests.

test �gure determinant

Hausdor� absolute

5 0.35 0.42
6 0.34 0.56
7 0.44 0.61
8 0.34 0.63
9 0.44 0.55
10 0.43 0.50

Table 5: Determinants of the linear components of reported matches.
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Figure 1: B17 bomber with subimage.
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Figure 2: Device with a di�erent connector.
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Figure 3: Three-view drawing with subimage.
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Figure 4: Three-view drawing with subimage.
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Figure 5: Two di�erent planes of the same type.
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Figure 6: Di�erent side views of the same plane.
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Figure 7: Two di�erent front views of the same plane.
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Figure 8: Two di�erent view of the same F18 �ghter.
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Figure 9: Two di�erent views of the Mir station.
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Figure 10: Two di�erent views of the same reconnaissance plane.
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algorithm which uses 
oating-point arithmetic and arrays of 
oats for rep-
resenting vectors. Also, minimal restrictions on transformation space were
made beforehand. In contrast with many application-dependent heuristics,
our matching method uses a mathematically well-founded metric for com-
paring patterns. In addition, this pattern-metric behaves well with respect
to perturbation, outlying and absent parts and is invariant under a�ne
transformation. Our method also works for a very broad class of patterns,
namely the class of solid functions.

It must be emphasised that our method is not a heuristic: it guaran-
tees that the computed transformation matches the patterns to a distance
not further than any �xed constant from the actual minimum value of the
pattern-metric. Restriction of transformation space, as a result of assump-
tions that can be made in a speci�c application domain, can be incorporated
in the algorithm in an easy way, resulting in a fast optimised algorithm for
that purpose.

In Section 2, a new pattern-similarity measure called the absolute di�er-
ence, was introduced. Like the well-known Hausdor� distance, this mea-
sure satis�es the metric properties and is robust against small pattern-
deformations. Unlike the Hausdor� distance, the absolute di�erence is ro-
bust against outlying and absent parts, despite the fact that it satis�es
the metric properties. An important advantage of the absolute di�erence
over the partial Hausdor� distance is that it does not depend on a param-
eter. In contrast with the symmetric di�erence, the absolute di�erence is
a�ne-invariant, making it suitable for pattern matching under a�ne trans-
formations, without the need of restricting the search space.

In Section 3, the general pattern matching technique was introduced.
This method avoids having to process all local minima by subdividing trans-
formation space hierarchically. The method is very general. It can be applied
to the symmetric di�erence, the Hausdor� distance, the absolute di�erence,
and other metrics. In addition, it can be used on patterns in vector spaces
of any dimension, and various classes of transformations.

Section 4 described experiments using an implementation of our method
for both the Hausdor� distance and the absolute di�erence. The tests
showed that the absolute di�erence matches more reliable than the Haus-
dor� distance for transformation groups involving scaling. Considering the
high complexity of the minimisation problem (see Section 1), the execution
times listed in Section 4 seem reasonable.
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A De�nitions

A.1 Groups

A group is a set G together with a composition (denoted by juxtaposition)
such that:

(i) (gh)k = g(hk) for all g; h; k 2 G.

(ii) There exists an element e 2 G for which ge = g = eg.

(iii) Each element g 2 G has an inverse g�1 for which g�1g = e = gg�1.

The element e is unique and is called the identity of G. The mapping
a 7! a�1 is called the inversion mapping.

A.2 Topological Groups

A topological group is a topological space having a group structure with con-
tinuous composition and inversion mappings. A topological transformation
group is a topological group together with a space X such that:

(i) g(hx) = (gh)x for all g; h 2 G and x 2 X.

(ii) ex = x for all x 2 X.

The mapping (g; x) 7! gx is called the action of G on X. For more details
on topological transformation groups see Bredon [5].

A.3 Metric spaces

A metric space (X; d) is a set X with a function d that satis�es the following
properties:

(i) d(x; y) � 0.

(ii) d(x; y) = 0 if and only if x = y.

(iii) d(x; y) = d(y; x).

(iv) d(x; z) � d(x; y) + d(y; z).

The function d is called a metric. Property (iv) is called the triangle in-
equality.
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