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Abstract

We present new approximation algorithms for several facility location prob-
lems. In each facility location problem that we study, there is a set of locations
at which we may build a facility (such as a warehouse), where the cost of build-
ing at location i is fi; furthermore, there is a set of client locations (such as
stores) that require to be serviced by a facility, and if a client at location j is
assigned to a facility at location i, a cost of cij is incurred. The objective is to
determine a set of locations at which to open facilities so as to minimize the
total facility and assignment costs. In the uncapacitated case, each facility
can service an unlimited number of clients, whereas in the capacitated case,
each facility can serve, for example, at most u clients. These models and a
number of closely related ones have been studied extensively in the Operations
Research literature.

We shall consider the case in which the assignment costs are symmetric
and satisfy the triangle inequality. For the uncapacitated facility location,
we give a polynomial-time algorithm that �nds a solution within a factor of
3.16 of the optimal. This is the �rst constant performance guarantee known
for this problem. We also present approximation algorithms with constant
performance guarantees for a number of capacitated models as well as a gen-
eralization in which there is a 2-level hierarchy of facilities. Our results are
based on the �ltering and rounding technique of Lin & Vitter. We also give a
randomized variant of this technique that can then be derandomized to yield
improved performance guarantees.

1 Introduction

We shall present approximation algorithms for a variety of facility location problems.
One of the most well-studied problems in the Operations Research literature is the
uncapacitated facility location problem, dating back to the work of Balinski [2],
Kuehn & Hamburger [16], Manne [20], and Stollsteimer [25, 26] in the early 60's.
In its simplest form, the problem is as follows: we wish to �nd optimal locations
at which to build facilities (such as warehouses) to serve a given set of n client
locations (such as stores); we are also given a set of locations at which facilities may
be built, where building a facility at location i incurs a cost of fi; each client j must

�shmoys@cs.cornell.edu. School of Operations Research & Industrial Engineering and Depart-
ment of Computer Science, Cornell University, Ithaca, NY 14853. Research partially supported
by NSF grants CCR-9307391 and DMS-9505155 and ONR grant N00014-96-1-0050O.

yeva@cs.cornell.edu. Department of Computer Science and School of Operations Research
& Industrial Engineering, Cornell University, Ithaca, NY 14853. Research partially supported by
NSF grants DMI-9157199 and DMS-9505155 and ONR grant N00014-96-1-0050O.

zaardal@cs.ruu.nl. Department of Computer Science, Utrecht University, Utrecht, The
Netherlands. Research partially supported by NSF grant CCR-9307391, and by ESPRIT Long
Term Research Project No. 20244 (Project ALCOM-IT: Algorithms and Complexity in Informa-

tion Technology).

1



be assigned to one facility, thereby incurring a cost of cij , the distance between
locations i and j; the objective is to �nd a solution of minimum total cost. The
main result of this paper is an approximation algorithm that �nds a solution of cost
within a factor of 3.16 of the optimum, provided the distances between the locations
are symmetric and satisfy the triangle inequality. This is the �rst approximation
algorithm for this problem with a constant performance guarantee.

This NP-hard problem has been studied from, among others, the perspective of
worst-case performance guarantees, probabilistic analysis of the average-case perfor-
mance, polyhedral characterizations, and the empirical investigation of heuristics.
Its prominence in the literature is due to the fact that there are a wide variety of ap-
plications as well as its appealing simplicity. For an extensive survey of work on this,
and closely related problems, the reader is referred to the textbook edited by Mir-
chandani & Francis [21], and in particular, the chapter by Corn�uejols, Nemhauser,
and Wolsey [6]. For a more in-depth explanation of results known for these models,
there is an extensive discussion in the textbook of Nemhauser & Wolsey [22].

We shall brie
y survey the results known on approximation algorithms for the
uncapacitated facility location problem. Throughout this paper, a �-approximation

algorithm is a polynomial-time algorithm that always �nds a feasible solution with
objective function value within a factor of � of optimal. Hochbaum [12] showed
that the greedy algorithm is an O(logn)-approximation algorithm for this problem,
and provided instances to verify that this analysis is asymptotically tight. This
provided a stark contrast to earlier results of Corn�uejols, Fisher, & Nemhauser [5],
who considered a problem that is equivalent from the perspective of optimization,
but not approximation: their objective was to �nd a solution so as to maximize the
di�erence between the assignment \costs" (which they interpreted as pro�ts) and
the facility costs. For this objective, Corn�uejols, Fisher, & Nemhauser showed that
the greedy algorithm, in e�ect, came within a constant factor of optimal. Although
they justi�ed their variant with an application for computing an optimal strategy
for gaining pro�t from interest accrued by delays in clearing checks, the original
objective is much more natural for the typical network design type of setting in
which the uncapacitated facility location problem usually arises.

Lin & Vitter [19] gave an elegant technique, called �ltering, for rounding frac-
tional solutions to linear programming relaxations, and as one application of this
technique for designing approximation algorithms, gave anotherO(logn)-approximation
algorithm for the uncapacitated facility location problem. Furthermore, Lin & Vit-
ter considered the k-median problem, where facility costs are replaced by a constraint
that limits the number of facilities to k; that is, there are n locations, and one is
allowed to build facilities at no more than k of them to serve all n locations; the
objective is to minimize the total assignment costs. They gave an algorithm that
�nds a solution for which the objective is within a factor of 1 + � of the optimum,
but is infeasible since it opens (1 + 1=�)(lnn+ 1)k facilities. Lin & Vitter [18] also
showed that in the special case of the k-median problem where the assignment costs
are symmetric and satisfy the triangle inequality, one can �nd a solution of cost no
more than 2(1 + �) times the optimum, while using at most (1 + 1=�)k facilities.

All of the problems discussed above are min-sum problems, in that the sum of the
assignment costs enters into the objective function. Much stronger approximation
results are known for min-max facility location problems. The k-center problem is
the min-max analogue of the k-median problem: one builds facilities at k locations
out of n, so as to minimize the maximum distance that an unselected location is
from its nearest facility. Hochbaum & Shmoys [13] and subsequently Dyer & Frieze
[7] gave 2-approximation algorithms for this problem, and also gave extensions for
weighted variants. Bar-Ilan, Kortsarz, & Peleg [3] considered a capacitated variant,
in which each facility can serve at most u locations, and gave a 10-approximation
algorithm for this problem. Khuller & Sussmann [15] recently improved this to give
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a 6-approximation algorithm. They also considered a variant in which one can build
multiple facilities of capacity u at a location, for which they gave a 5-approximation
algorithm.

Our results for min-sum facility location problems are �ltering and rounding
algorithms that build on the results of Lin and Vitter [18, 19]. In addition to our
algorithm for the uncapacitated facility location problem, we will give approxima-
tion algorithms for several capacitated variants of this problem. We shall assume
that each location has a given demand that must be serviced by some facility, and
each facility can service a total demand that is at most u. In assigning locations to
facilities, we can either require that each location have its entire demand serviced
by a unique facility, or else we can allow a client's demand to be split among several
open facilities. For both settings, we will give an algorithm that �nds a solution of
cost within a constant factor of optimal, but uses facilities that have a constant fac-
tor greater capacity than u (and are proportionately more expensive). Finally, we
also consider the variant of the problem in which we may build multiple facilities at
a location, each of capacity u, and give an approximation algorithm with constant
performance guarantee. All of the constants are relatively small (less than 10); for
example, in the setting in which we may build multiple facilities at a location and
may split a client's demand among several facilities, we give a 5.69-approximation
algorithm. Our strongest performance guarantees are based on a randomized vari-
ant of the �ltering technique of Lin & Vitter, which yields deterministic algorithms
with improved performance guarantees.

2 The uncapacitated facility location problem

In this section, we will consider the following problem: we are given a set of locations
N = f1; : : : ; ng, and distances between them, cij , i; j = 1; : : : ; n; there is a subset
F � N of locations at which we may open a facility, and a subset D � N of
locations that must be assigned to some open facility; for each location j 2 D,
there is a positive integral demand dj that must be shipped to its assigned location.
For each location i 2 F , the non-negative cost of opening a facility at i is fi.
The cost of assigning location i to an open facility at j is cij per unit of demand
shipped. We shall assume that these costs are non-negative, symmetric, and satisfy
the triangle inequality: that is, cij = cji for all i; j 2 N , and cij + cjk � cik for all
i; j; k 2 N . We wish to �nd a feasible assignment of each location in D to an open
facility so as to minimize the total cost incurred. This is the metric uncapacitated

facility location problem.
This problem can be stated as the following integer program, where the 0-1

variable yi, i 2 F indicates if a facility is opened at location i, and the 0-1 variable
xij , i 2 F , j 2 D, indicates if location j is assigned to a facility at i:

minimize
X
i2F

fiyi +
X
i2F

X
j2D

djcijxij (1)

subject to
X
i2F

xij = 1; for each j 2 D; (2)

xij � yi; for each i 2 F; j 2 D; (3)

xij 2 f0; 1g; for each i 2 F; j 2 D; (4)

yi 2 f0; 1g; for each i 2 F: (5)

The constraints (2) ensure that each location j 2 D is assigned to some location i 2
F , and the constraints (3) ensure that whenever a location j is assigned to location i,
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then a facility must have been opened at i (and paid for). For notational simplicity,
we shall refer to 0-1 variables xij for each i; j 2 N , with the understanding that if
i 62 F or j 62 D, then xij = 0; similarly, we shall refer to variables yi, for each i 62 F ,
with the understanding that yi = 0 in this case.

We will derive an approximation algorithm for the uncapacitated facility location
problem that is based on solving the linear relaxation of this integer program, and
rounding the fractional solution to an integer solution that increases its cost by a
relatively small constant factor. This rounding algorithm consists of two phases.
We apply the �ltering and rounding technique of Lin & Vitter [19] to obtain a new
fractional solution, where the new solution has the property that whenever a location
j is fractionally assigned to a (partially opened) facility i, the cost cij associated
with that assignment is not too big. We then show how a fractional solution with
this closeness property can be rounded to a near-optimal integer solution.

Consider the linear relaxation to the integer program (1)-(5), where the 0-1
constraints (4) and (5) are replaced, respectively, with

xij � 0; for each i 2 F; j 2 D; (6)

yi � 0; for each i 2 F: (7)

Given gj , for each j 2 D, we shall say that a feasible solution (x; y) to this linear
program is g-close if it satis�es the property

xij > 0) cij � gj : (8)

The following lemma is proved by applying the �ltering technique of Lin & Vitter
[19]. Given a feasible fractional solution (x; y), we shall de�ne the �-point, cj(�),
for each location j 2 D. Focus on a location j 2 D, and let � be a permutation
such that c�(1)j � c�(2)j � � � � � c�(n)j : Recall that if i 62 F , then xij = 0. We then

set cj(�) = c�(i�)j , where i
� = minfi0 :

Pi0

i=1 x�(i)j � �g:

Lemma 1 Let � be a �xed value in the interval (0; 1). Given a feasible fractional

solution (x; y), we can �nd a g-close feasible fractional solution (�x; �y) in polynomial

time, such that

1. gj � cj(�), for each j 2 D;

2.
P

i2F fi�yi � (1=�)
P

i2F fiyi:

Proof: The proof of this lemma is quite simple. For each j 2 D, let �j =P
i2F : cij�cj(�)

xij ; clearly, �j � �. We merely set

�xij =

�
xij=�j if cij < cj(�);

0 otherwise:

For each i 2 F , we set �yi = minf1; yi=�g. The de�nition of �x is set up exactly to
ensure that the �rst condition holds. Furthermore, since �yi � (1=�)yi, the second
condition hold as well. Finally, a straightforward calculation veri�es that (�x; �y) is
a feasible fractional solution.

If we let S = fi : cij � cj(�)g, then the de�nition of cj(�) implies thatP
i2S xij � 1� �. Hence,

X
i2F

cijxij �
X
i2S

cijxij � (1� �)cj(�);

or equivalently,

cj(�) �
1

1� �

X
i2F

cijxij (9)
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We will show how to exploit the closeness property in rounding fractional solu-
tions to near-optimal integer solutions. This result generalizes a similar claim used
by Lin & Vitter [18] to obtain their results for the metric k-median problem.

Lemma 2 Given a feasible fractional g-close solution (�x; �y), we can �nd a feasible

integer 3g-close solution (x̂; ŷ) such that

X
i2F

fiŷi �
X
i2F

fi�yi:

Proof: We shall �rst present the rounding algorithm, and then prove that it yields
the lemma. We are given gj , j 2 D, and a feasible fractional solution (�x; �y) that
is g-close. The algorithm iteratively converts this solution into a 3g-close integer
solution (x̂; ŷ), without increasing the total facility cost.

T

S

j

� gj

j0

� gj0

� gj0

i0

i

Figure 1: Rounding the solution near j0, where edges correspond to positive com-
ponents of x̂

The algorithm maintains a feasible fractional solution (x̂; ŷ); initially, we set
(x̂; ŷ) = (�x; �y). Throughout the execution of the algorithm, F̂ will denote the set of
partially opened facility locations for the current solution; that is, F̂ = fi 2 F : 0 <
ŷi < 1g: We shall also let D̂ denote the set of those locations j that are assigned
only to facilities in F̂ ; that is, x̂ij > 0 implies that i 2 F̂ . In each iteration, we �rst

�nd the location j 2 D̂ for which gj is smallest; let j
0 denote this location. Let S

be the set of facilities i 2 F for which x̂ij0 > 0 (see Figure 1); that is,

S = fi 2 F̂ : x̂ij0 > 0g:

We will assign j0 to the location i 2 S for which fi is smallest; let i
0 denote this

location. We round the values fŷigi2S by setting ŷi0 = 1, and ŷi = 0 for each
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i 2 S � fi0g. Let T denote the set of locations that are partially assigned by x̂ to
locations in S; that is,

T = fj : 9i 2 S such that x̂ij > 0g:

We assign each location j 2 T to the facility opened at i0; that is, we set x̂i0j = 1

and x̂ij = 0 for each i 6= i0. When D̂ becomes empty, then for each location j 2 D,
there exists i0 such that x̂i0j > 0 and ŷi0 = 1, and so j can be assigned to i0; that
is, we round x̂ by setting x̂i0j = 1 and x̂ij = 0 for each i 6= i0. We shall argue that
the algorithm maintains the following properties:

(P1) (x̂; ŷ) is a feasible fractional solution;

(P2)
P

i2F fiŷi �
P

i2F fi�yi;

(P3) x̂ij > 0 and i 2 F̂ ) cij � gj ;

(P4) x̂ij > 0 and i 62 F̂ ) cij � 3gj .

These properties certainly hold when the algorithm starts. Furthermore, if they
hold when the algorithm stops (and so property (P3) becomes vacuous), then we
have proved Lemma 2.

We shall show that these properties are maintained by the algorithm in each
iteration. Property (P1) is clearly maintained: the algorithm only assigns a location
j 2 D to an opened facility, and when we set any variable ŷi to 0, we also set each
variable x̂ij to 0. Property (P3) is trivially maintained, since the algorithm never

sets a variable x̂ij to be in the interval (0,1) nor adds a location to F̂ .
To show that property (P4) is maintained during an iteration, consider some

variable x̂i0j that is set to 1 during it. We examine the situation at the start of this
iteration as depicted in Figure 1. Since j must be in T , there must exist i 2 S such
that x̂ij > 0. Furthermore, both x̂ij0 > 0 and x̂i0j0 > 0, since i; i0 2 S. But S � F̂ ,
and hence by (P3), we have that cij � gj , cij0 � gj0 , and ci0j0 � gj0 . By the triangle
inequality, we have that ci0j � ci0j0 + cj0i + cij � 2gj0 + gj � 3gj ; where the last
inequality follows from our choice of j0. Hence, property (P4) is maintained by the
algorithm.

To show that (P2) is maintained, we note that

fi0 = min
i2S

fi �
X
i2S

fix̂ij ;

where the inequality follows from the fact that

X
i2S

x̂ij = 1;

and that the minimum of a set of numbers is never more than their weighted average.
Finally, x̂ij � ŷi, and so we have that fi0 �

P
i2S fiŷi: But this inequality implies

that the facility cost of ŷ never increases throughout the execution of the algorithm,
which proves that (P2) is maintained.

Finally, we note that the simple rounding performed when D̂ is empty also
maintains these four properties. This completes the proof of the lemma.

If we start with a feasible fractional solution (x; y) and apply Lemma 1 to get
(�x; �y), and then apply Lemma 2 to (�x; �y), the resulting feasible integer solution
(x̂; ŷ) has facility cost at most

X
i2F

fiŷi �
X
i2F

fi�yi � (1=�)
X
i2F

fiyi:

6



On the other hand, for each location j 2 D, its assignment cost in x̂ is at most
3gj � 3cj(�) �

3
1��

P
i2F cijxij . By combining these two bounds, we see that the

total cost of (x̂; ŷ)

=
X
i2F

fiŷi +
X
i2F

X
j2D

djcij x̂ij (10)

�
1

�

X
i2F

fiyi + 3
X
j2D

djcj(�) (11)

� maxf
1

�
;

3

1� �
g(
X
i2F

fiyi +
X
i2F

X
j2D

djcijxij): (12)

If we set � = 1=4, then we see that the total cost of (x̂; ŷ) is within a factor of 4 of
the cost of (x; y). By rounding an optimal solution (x; y) to the linear relaxation,
we get the following theorem.

Theorem 3 For the metric uncapacitated facility location problem, �ltering and

rounding yields a 4-approximation algorithm.

In Section 5, we will give an algorithm with a somewhat better performance
guarantee, by re�ning this analysis. Nonetheless, we do not know very much about
the extent to which there is an inherent gap between integer and fractional optimal
solutions to this formulation for the metric uncapacitated location problem.

3 The capacitated facility location problem

In this section, we consider the case in which each open facility can be assigned to
serve a total demand that is at most u, where u is a positive integer. We will show
how to adapt our algorithm for the uncapacitated case to this more general setting.

In the uncapacitated case, if we are given the optimal value of y, then it is
trivial to �nd the corresponding x: we simply assign each location j 2 D to the
location i for which cij is the minimum among all possibilities where yi = 1. In the
capacitated case, the situation is somewhat more complicated. First of all, there are
two variants of the problem, depending on whether each location's demand must be
assigned to only one facility, or the demand may be fractionally split among more
than one (completely) open facility.

We will �rst focus on the latter case. If we are given the optimal value of y, the
problem of �nding a minimum-cost assignment that satis�es each location's demand,
while assigning at most u to each open facility is an instance of the transportation
problem. (For a review of the basics for this problem see, e.g., the textbook of Lawler
[17].) Brie
y, the optimal solution to this problem can be found in polynomial time,
and if u and the demands dj , j 2 D, are integers, then the 
ow values djxij in the
solution found are also integral. For example, this implies that in the case that
the demands are all 1 and u is an integer, there is no distinction between the two
capacitated variants mentioned above: we always �nd an assignment that routes
each demand to a unique open facility.

Our algorithm is based on rounding an optimal solution to its linear program-
ming relaxation. This linear programming relaxation is identical to the one used in
the uncapacitated case, except we must explicitly require that

0 � yi � 1; for each i 2 F; (13)

and we must impose capacity constraintsX
j2D

djxij � uyi; for each i 2 F: (14)
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It is not possible to design an approximation algorithm for the capacitated problem
based solely on this linear programming relaxation, since the ratio between its
integer and fractional optimal is unbounded. To see this, consider an instance with
u+ 1 locations that are all distance 0 from each other with �xed costs f1 = 0 and
fi = 1, i = 2; : : : ; u + 1. There is the following fractional solution: set y1 = 1,
y2 = 1=u, x1j = u=(u+ 1) and x2j = 1=(u+ 1), j = 1; : : : ; u+ 1. The cost of this
solution is 1=u, whereas the optimal integer solution has cost 1. However, if we also
allow the near-optimal solution to slightly overuse any facility then clearly one can,
at least in this instance, �nd an integer solution of cost nearly equal to that for the
optimal fractional one.

Motivated by this discussion, we shall call an algorithm for the metric capaci-
tated facility location problem a (�; �0)-approximation algorithm if it �nds, in poly-
nomial time, a solution of total cost within a factor of � of the true optimum, but
each facility i 2 F is expanded to have capacity �0u at a cost of �0fi. In this section,
we present a (7; 7=2)-approximation algorithm. We will express the relaxation in
the capacity constraint by allowing 0 � yi � �0, for each i 2 F . If (x; y) is a feasible
fractional solution to this modi�ed linear program, then it is �0-relaxed. Further-
more, the analogue of an integer solution with this relaxation is that yi is either 0
or at least 1, for each i 2 F ; if (x; y) is a �0-relaxed solution with this additional
property, then we will call it a �0-relaxed integer solution (even though it is not
really integer at all).

Once again, our algorithm is based on �rst �ltering, and then rounding. It is
quite straightforward to generalize Lemma 1 to obtain the following result.

Lemma 4 Let � be a �xed value in the interval (0; 1). Given a feasible fractional

solution (x; y), we can �nd a g-close fractional solution (�x; �y) in polynomial time,

such that

1. gj � cj(�), for each j 2 D;

2.
P

i2F fi�yi � (1=�)
P

i2F fiyi;

3. (�x; �y) is 1=�-relaxed.

On the other hand, the rounding algorithm becomes a bit more complicated,
since the uncapacitated algorithm takes great advantage of the fact that there are
no capacities: all demand fractionally routed to any location in S ends up being
assigned to j0 (using the notation in the proof of Lemma 2). We next prove the
following analogue of Lemma 2.

Lemma 5 Given a �0-relaxed fractional g-close solution (�x; �y), we can �nd a 2�0-
relaxed integer 3g-close solution (x̂; ŷ) in polynomial time, such that

X
i2F

fiŷi � 4
X
i2F

fi�yi:

Proof: We �rst describe the rounding algorithm in detail, and then prove that it
produces the claimed solution. As in the uncapacitated case, we maintain a solution
(x̂; ŷ) and the algorithm gradually rounds each 0 < ŷi < 1 to either 0 or 1; initially,
we set x̂ = �x, we set ŷi = 1 for each i such that �yi 2 [1=2; 1), and we set ŷi = �yi
otherwise. We also maintain a set F̂ � F of facilities i for which 0 < ŷi < 1 (but
due to the previous step, this will be equivalent to restricting 0 < ŷi < 1=2). For
each j 2 D, the algorithm keeps track of the fraction of the demand for location j
that is satis�ed by locations in F̂ : let �j =

P
i2F̂ x̂ij for each j 2 D. In this case,

we let D̂ � D be the set of locations j for which �j > 1=2. (In the uncapacitated

case, the restriction for D̂ was, in e�ect, that �j = 1.)
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In each iteration, we �rst select the location j 2 D̂ for which gj is minimum,
and let j0 denote this location. Again, we let

S = fi 2 F̂ : x̂ij0 > 0g

and
T = fj 2 D : 9i 2 S such that x̂ij > 0g:

We do not open just one facility in S, but open the cheapest d
P

i2S ŷie facilities in
S instead; let O denote this set of facilities. For each i 2 O, we update ŷi = 1, and
for each i 2 S � O, we update ŷi = 0. (Thus, F̂ will be reset to F̂ � S in the next
iteration.)

For each location j 2 T , there is a total demand d̂j currently assigned to locations
in S, where

d̂j = dj
X
i2S

x̂ij ;

this demand will be rerouted to go only to those facilities in O. The problem of
assigning the demand d̂j at each location j 2 T to facilities in O, each of which is
capable of handling total demand at most u, is an instance of the transportation
problem (analogous to the discussion at the beginning of this section). Our analysis
will show that any feasible solution su�ces; however, it is natural to exploit the fact
that a minimum-cost solution can be found in polynomial time. For each i 2 O,
j 2 T , let zij be the amount of j's demand that is assigned to i by an optimal
solution to this instance of the transportation problem. We update our solution by
resetting x̂ij = zij=d̂j for each i 2 O, j 2 T , and x̂ij = 0 for each i 2 S �O, j 2 D.
(All other components of x̂ remain unchanged.)

When D̂ becomes empty, we have satis�ed at least half of the demand for each
location j 2 D, by assigning it to locations for which the component of ŷ is at least
1. To compute the solution claimed by the lemma, we will simply ignore the �j
fraction of j's demand that is still assigned to the remaining facilities in F̂ , and
rescale the part of x̂ specifying the assignment to facilities not in F̂ . That is, for
each i 62 F̂ , we reset ŷi to be 2ŷi, and reset x̂ij to be x̂ij=(1� �j) for each j 2 D.

For each i 2 F̂ , we set ŷi = 0 and set x̂ij = 0, for each j 2 D.
The proof that this algorithm delivers a suitable solution follows the same outline

as the proof of Lemma 2. We show that until the point at which D̂ becomes empty,
the algorithm maintains invariants

(P10) (x̂; ŷ) is a �0-relaxed solution;

(P20)
P

i62F̂ fiŷi � 2
P

i62F̂ fi�yi;

as well as (P3) and (P4).
Of course, we must also show that the algorithm is well-de�ned. In each iter-

ation, we rely on an optimal solution to an auxilliary input to the transportation
problem, and so we must show that a feasible solution exists to this input. An
input to the transportation problem has a feasible solution provided that the total
demand is no more than the total supply. That is, we must show that the total
demand for T ,

P
j2T d̂j , is not more than the total supply for O, jOju. But since

the solution (x̂; ŷ) maintained by the algorithm is a �0-relaxed solution, we have
that (x̂; ŷ) satis�es the inequality

X
j2T

dj x̂ij �
X
j2D

dj x̂ij � uŷi; for each i 2 S;

and hence X
j2T

d̂j =
X
j2T

X
i2S

dj x̂ij �
X
i2S

uŷi � ujOj:

9



Hence, the algorithm is well-de�ned. Furthermore, it is clear that this solution of
the transportation problem is precisely what is required to maintain the fact that
(x̂; ŷ) remains a �0-relaxed solution. Hence, property (P10) is maintained.

As in the uncapacitated case, property (P3) is trivially maintained, since the
algorithm never sets x̂ij > 0 while maintaining i 2 F̂ . The proof for property
(P4) is identical to its proof in the uncapacitated case: for each i 2 S and j 2 T ,
cij � 3gj .

It remains only to prove that property (P20) is maintained by the algorithm.
This property is true initially, since the only locations i 62 F̂ either have ŷi = �yi, or
else �yi � 1=2 and ŷi = 1, and hence ŷi � 2�yi. Next consider the set of locations S
removed from F in some iteration. At the end of this iteration, we will set ŷi = 1
for each i 2 O, and ŷi = 0 for each i 2 S � O. Until this iteration, for each i 2 S,
we have not changed ŷi, and hence, ŷi = �yi. Thus, to prove that property (P20) is
maintained by this iteration, it su�ces to show that the inequality

X
i2O

fi � 2
X
i2S

fiŷi (15)

holds for the value of ŷ at the start of this iteration.
Observe that since O was selected in order of cheapest �xed costs, we have that

X
i2O

fi �
X
i2S

zifi; (16)

provided 0 � zi � 1, for each i 2 S, and
P

i2S zi = jOj. If we set

zi = ŷi �
jOjP
i2S ŷi

; for each i 2 S; (17)

then clearly
P

i2S zi = jOj. Since i 2 F̂ , ŷi < 1=2. Furthermore, j0 2 D̂ implies
that

1=2 < �j0 =
X
i2F̂

x̂ij0 =
X
i2Ŝ

x̂ij0 :

Since x̂ij0 � ŷi, we can conclude that

1=2 <
X
i2Ŝ

ŷi:

Hence,
jOjP
i2S ŷi

=
d
P

i2S ŷieP
i2S ŷi

< 2; (18)

and so zi < 1, for each i 2 S. By combining (16), (17), and (18), we see that

X
i2O

fi �
X
i2S

zifi <
X
i2S

ŷi � 2 � fi;

and so 15 holds; property (P20) is maintained.
Next consider the situation when when D̂ becomes empty. At this point, prop-

erty (P10) implies that ŷi � �0, for each i 2 F . Since we now multiply ŷ by at most
2, and we have ensured that there does not exist some ŷi 2 (0; 1), we see that the
solution is a 2�0-relaxed integer solution. Furthermore, since before ŷ is multiplied
by 2, we know that (P20) holds, then the �nal solution ŷ must have facility cost at
most 4 times the cost of �y, and this completes the proof of the lemma.

Next we show how to combine Lemmas 4 and 5 to obtain a (7; 7=2)-approximation
algorithm for the capacitated facility location problem. Let (x; y) denote an optimal
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solution to the linear relaxation of the capacitated facility location problem. We
apply Lemma 4 to (x; y), to obtain a 1=�-relaxed solution (�x; �y), and then apply
Lemma 5 to yield the 2=�-relaxed integer solution (x̂; ŷ). For each i 2 F with
ŷi > 0, we open a facility of capacity ŷiu and assign to it a fraction x̂ij of the
demand dj at location j. The facility cost of this solution is at most

X
i2F

fiŷi � 4
X
i2F

fi�yi �
4

�

X
i2F

fiyi: (19)

Furthermore, the assignment costs are at most

X
j2D

cijdj x̂ij � 3
X
j2D

djgj

� 3
X
j2D

djcj(�)

�
3

1� �

X
j2D

dj
X
i2F

cijxij : (20)

Hence, we have found a solution of total cost at most

4

�

X
i2F

fiyi +
3

1� �

X
j2D

dj
X
i2F

cijxij :

If we set � = 4=7, then we see that the total cost of the solution found is within
a factor of 7 of the cost of the optimal solution to the linear relaxation. Since the
solution is 2=�-relaxed, we obtain the following theorem.

Theorem 6 For the metric capacitated facility location problem, �ltering and round-

ing yields a (7; 7=2)-approximation algorithm.

Next we turn our attention to the model in which the entire demand of each
location must be assigned to the same facility. We shall call this problem the metric

capacitated location problem with unsplittable 
ows. We will show that the solution
found by algorithm of Theorem 6 can be adjusted to satisfy this more stringent
condition, while only slightly increasing the performance guarantees.

The extension to the model with unsplittable 
ows is based on a rounding theo-
rem of Shmoys & Tardos [24] for the generalized assignment problem. This theorem
can be explained as follows. Suppose that there is a collection of jobs J , each of
which is to be assigned to exactly one machine among the set M ; if job j 2 J is
assigned to machine i 2 M , then it requires pij units of processing, and incurs a
cost rij . Each machine i 2 M can be assigned jobs that require a total of at most
Pi units of processing on it, and the total cost of the assignment must be at most
R, where R and Pi, for each i 2 M , are given as part of the input. The aim is to
decide if there is a feasible assignment. If there is such an assignment, then there
must also be a feasible solution to the following linear program, where xij is the
relaxation of a 0-1 variable that indicates whether job j is assigned to machine i:

X
i2M

xij = 1; for each j 2 J ; (21)

X
j2J

pijxij � Pi; for each i 2M ; (22)

X
i2M

X
j2J

rijxij � R; (23)

xij � 0; for each i 2M; j 2 J: (24)

11



Shmoys and Tardos [24] show that any feasible solution x can be rounded, in poly-
nomial time, to an integer solution that is feasible if the right-hand side of (22) is
relaxed to Pi +maxj2J pij .

We show next how to apply this rounding theorem to produce a solution for the
capacitated version with unsplittable 
ows. Consider the algorithm of Theorem 6
without specifying the choice of �. Suppose that we apply the algorithm starting
with an optimal solution (x; y) to the linear relaxation of the capacitated facility
location problem (that is, the linear program given by (1), (2), (3), (6), (13), and
(14).) The algorithm delivers a 2=�-relaxed integer solution (x̂; ŷ), where the facility
cost and the assignment cost are, respectively, within a factor of 4=� and 3=(1��)
of the analogous costs for (x; y). Let O denote the set of facilities opened by the
solution (x̂; ŷ); that is,

O = fi 2 F : ŷi � 1g:

We can view each facility i 2 O as a machine of processing capacity ŷiu, and each
location j 2 D as a job that requires a total of dj units of processing (independent
of the machine to which it is assigned) and incurs a cost djcij when assigned to
machine (facility) i. Therefore, if we set M = O, J = D, Pi = ŷiu for each i 2M ,

R =
X
i2F

X
j2D

djcij x̂ij ;

as well as pij = dj and rij = djcij for each i 2 M , j 2 D, then x̂ is a feasible
solution to the linear program (21)-(24).

The rounding theorem for the generalized assignment problem implies that we
can round x̂ into an integer solution ~x such that each facility i 2 O is assigned a
total demand at most Pi +maxj2D dj and the assignment cost of this solution is

X
i2O

X
j2D

djcij ~xij �
X
i2F

X
j2D

djcij x̂ij �
3

1� �

X
i2F

X
j2D

djcijxij ;

where the last inequality follows from (20). Note that, in order for there to exist a
feasible solution with unsplittable 
ows, the demand dj must be at most u, for each
j 2 D; hence, we assume that our instance has this property. We can conclude that
the rounded solution ~x assigns a total demand to each facility i 2 O that is at most

max
j2D

dj + ŷiu � (1 + ŷi)u:

Hence, if we consider the solution (~x; ~y) where ~yi = ŷi + 1, for each i 2 O and
~yi = ŷi otherwise, then we see that it is a 1 + 2=�-relaxed integer solution. Finally,
since ŷi � 2 for each i 2 O (due to the �nal doubling when D̂ becomes empty), we
see that ~yi � (3=2)ŷi, for each i 2 D. This implies that the facility cost of (~x; ~y) is

X
i2F

fi~yi � (3=2)
X
i2F

fiŷi �
6

�

X
i2F

fiyi;

where the last inequality follows from (19). Thus, if we compare the solution (~x; ~y)
to the optimal fractional solution (x; y) from which we started, we have shown
that the facility cost increases by at most a factor of 6=�, and the assignment cost
increases by at most a factor of 3=(1 � �). If we set � = 2=3, then both of these
bounds are equal to 9, and so we obtain the following theorem.

Theorem 7 For the metric capacitated facility location problem with unsplittable


ows, �ltering and rounding yields a (9; 4)-approximation algorithm.
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Khuller & Sussmann [15] have introduced the notion that one can open multiple
facilities of capacity u at each location (in the context of the capacitated k-center
problem). We can also obtain analogues of Theorems 6 and 7 for this variant of
the capacitated facility location problem. In other words, we are now interested in
obtaining solutions in which each yi is an integer. We start by solving the linear
relaxation, which is identical to the one used above, except that we replace (13)
with just yi � 0, for each i 2 F . Lemma 4 must now be modi�ed to re
ect that we
obtain a solution (�x; �y) that is feasible for the new linear relaxation, but still has the
property that �yi � (1=�)yi, for each i 2 F ; otherwise Lemma 4 remains una�ected.
The statement of Lemma 5 must also be modi�ed; we no longer require (�x; �y) to be
a �0-relaxed integer solution, but now require that the solution (x̂; ŷ) be such that
each ŷi, i 2 F , is an integer. This apparently stronger claim can be obtained by
essentially the same proof. The only modi�cation needed is in the initialization of
ŷ: at the start of the algorithm, we set ŷi = d�yie for each i such that �yi � 1=2, and
as before, we set ŷi = �yi for each i such that �yi < 1=2, This also maintains property
(P20), since this initial rounding increases the cost incurred for each facility location
i 62 F̂ by at most a factor of 2. Of course, we no longer need to maintain property
(P10). By using these modi�ed lemmas, we can obtain the following analogue of
Theorems 6 and 7.

Theorem 8 For the metric capacitated facility location problem with multiple facil-

ities allowed, �ltering and rounding yields a 7-approximation algorithm with split-

table 
ows, and a 9-approximation algorithm with unsplittable 
ows.

Since the performance guarantees have not become worse by imposing this ad-
ditional restriction that the capacity used for each location is an integer multiple of
u, one might wonder why we have not stated Theorems 6 and 7 in this stronger way.
The reason is that by maintaining this integerized capacity, we do need to introduce
a greater relaxation of the capacity bound. For example, in Theorem 6 we would
produce a 2d�0e-relaxed solution, rather than simply a 2�0-relaxed solution.

4 The 2-level uncapacitated facility location prob-

lem

Another more general version of the facility location problems that we consider is the
setting in which there is a 2-level hierarchy of facilities. Such 2-level facility location
problems have been considered extensively in the literature (see, for example, [1,
14, 27, 28]).

We shall only consider the 2-level version of the uncapacitated problem, but it
is possible to obtain similar extensions for the capacitated models as well. In the
2-level uncapacitated facility location problem, there is, as before, a set of demand
points D, and a set of locations F where hub facilities can be built. However, each
unit of demand at a point in D must now be shipped from a hub facility via an
intermediate transit station; let E denote the set of locations at which one of these
transit stations may be built. We shall consider the metric case in which the unit
cost of shipping between two locations i; j 2 D[E [F is equal to cij ; that is, these
costs are non-negative, symmetric, and satisfy the triangle inequality, and so for
any i; j; k 2 D[E [F , cij + cjk � cik. Each location k 2 D has a speci�ed demand
dk. For each i 2 F , the cost of building a hub facility at location i is fi and for each
j 2 E, the cost of building a transit station at location j is ej . Each unit of demand
at location k 2 D must be shipped from some location i 2 F at which a hub is
built via a location j 2 E at which a transit station is built, incurring a shipping
cost of cij + cjk . We shall let cijk denote the shipping cost cij + cjk . The aim is to
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determine which hubs and transit stations to build so that the total building and
shipping cost is minimized. We will show how to extend Theorem 3 to obtain a
4-approximation algorithm for this more general model.

First, we give a linear programming relaxation of the 2-level uncapacitated fa-
cility location problem. All of the variables in this linear program are relaxations
of 0-1 decision variables, and there are three types of variables: the variables xijk ,
i 2 F , j 2 E, k 2 D, indicate whether the demand at location k is routed through a
transit station at location j from a hub facility at location i; the variables yi, i 2 F ,
indicate if a hub facility is opened at location i; and the variables zj , j 2 E indicate
if a transit station is opened at location j.

minimize
X
i2F

fiyi +
X
j2E

ejzj +
X
i2F

X
j2E

X
k2D

dkcijkxijk (25)

subject to X
i2F

X
j2E

xijk = 1; for each k 2 D; (26)

X
j2E

xijk � yi; for each i 2 F; k 2 D; (27)

X
i2F

xijk � zj ; for each j 2 E; k 2 D; (28)

xijk � 0; for each i 2 F; j 2 E; k 2 D; (29)

yi � 0; for each i 2 F; (30)

zj � 0; for each j 2 E: (31)

As in the single-level setting, we will show that any feasible solution to the
linear relaxation of this integer program can be rounded to an integer solution that
has objective function value at most 4 times as much. This rounding algorithm
will closely resemble the algorithm used to prove Theorem 3. We �rst modify the
de�nition of g-close. A feasible solution (x; y; z) to this linear relaxation is said to
be g-close if it satis�es the property

xijk > 0) cijk � gk: (32)

We shall also modify the notion of an �-point. For each location k 2 D, we sort
the costs cijk over all pairs i 2 F , j 2 E, in nondecreasing order; if we add the
associated values xijk in this sorted order, then we let ck(�) be the cost associated
with the �rst pair for which this running sum is at least �. It is straightforward to
obtain the following extension of Lemma 1.

Lemma 9 Let � be a �xed value in the interval (0; 1). Given a feasible fractional

solution (x; y; z), we can �nd a g-close feasible fractional solution (�x; �y; �z) in poly-

nomial time, such that

1. gk � ck(�), for each k 2 D;

2.
P

i2F fi�yi � (1=�)
P

i2F fiyi;

3.
P

j2E ej�zj � (1=�)
P

j2E ejzj :

Analogous to (9), it is easy to derive that, for each k 2 D,

ck(�) �
1

1� �

X
i2F

X
j2E

cijkxijk : (33)

Next we prove the following analogue of Lemma 2.
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Lemma 10 Given a feasible fractional g-close solution (�x; �y; �z), we can �nd a fea-

sible integer 3g-close solution (x̂; ŷ; ẑ) such that

X
i2F

fiŷi +
X
j2E

ej ẑj �
X
i2F

fi�yi ++
X
j2E

ej �zj :

Proof: We shall �rst give the rounding algorithm, and then prove that the solution
found has the properties claimed by the lemma. The algorithm is quite similar to
the one used in the single-level uncapacitated case. We maintain a feasible fractional
solution (x̂; ŷ; ẑ) that is initialized to (�x; �y; �z). We will maintain a collection R of
triples (i; j; k), i 2 F , j 2 E, k 2 D, that have been rounded to have x̂ijk = 1 (and
hence ŷi = ẑj = 1). Initially, R = ; (even if some components of x̂ are equal to 1).

We also maintain a set D̂ of locations k 2 D that do not participate in any triple
in R; that is,

D̂ = f�k 2 D : (i; j; k) 2 R) �k 6= kg:

In each iteration, we �rst �nd the location k 2 D̂ for which gk is smallest; let k
0

denote this location. Let S denote the set of pairs (i; j) that are used to supply k0

in the current solution; that is,

S = f(i; j) : x̂ijk0 > 0g:

We also introduce notation for those locations that occur in some pair in S; let

SF = fi 2 F : 9j such that xijk0 > 0g

and
SE = fj 2 E : 9i such that xijk0 > 0g:

We will assign k0 to be served by the facility-transit station pair (i; j) 2 S for which
fi + ej is smallest; let (i0; j0) denote this pair. We round the values fŷigi2SF by
setting ŷi0 = 1, and ŷi = 0 for each i 2 SF � fi0g. Similarly, we set fẑjgj2SE by
setting ẑj0 = 1, and ẑj = 0 for each j 2 SE �fj0g. Let T denote the set of locations
that are partially assigned by x̂ to use locations in either SE or SF ; that is,

T = fk 2 D̂ : 9x̂ijk > 0 such that i 2 SF or j 2 SEg:

We assign each location k 2 T to the facility opened at i0 through the transit
station located at j0; that is, for each k 2 T , we reset x̂i0j0k = 1 and x̂ijk = 0 for

each (i; j) 6= (i0; j0); furthermore, we add (i0; j0; k) to R. When D̂ becomes empty,
then for each location k 2 D, there exists (i0; j0) such that x̂i0j0k = 1, and so we
have computed an integer solution.

We shall argue that the algorithm maintains the following properties:

(P1) (x̂; ŷ; ẑ) is a feasible fractional solution;

(P2)
P

i2F fiŷi +
P

j2E ej ẑj �
P

i2F fi�yi +
P

j2E ej�zj ;

(P3) x̂ijk > 0 and (i; j; k) 62 R) cijk � gk;

(P4) x̂ijk > 0 and (i; j; k) 2 R) cijk � 3gk;

(P5) (i; j; k) 2 R and x̂ij�k > 0) (i; j; �k) 2 R;

(P6) (i; j; k) 2 R) (x̂i�|�k = 0 for each �| 6= j; �k 2 D and

x̂�{j�k = 0 for each �{ 6= i; �k 2 D:)
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These properties certainly hold when the algorithm starts. Furthermore, if they
hold when the algorithm stops (and so property (P3) becomes vacuous), then we
have proved Lemma 10. The proof that (P1) is maintained is similar to the proof
of property (P1) in Lemma 2: the main observation is that whenever some ŷi or ẑj
is set to 0, we also set all corresponding variables x̂ijk to 0.

The new properties (P5) and (P6) are straightforward consequences of the way
in which the rounding algorithm proceeds. To prove (P5), consider two triples
(i; j; k) and (i; j; �k) for which x̂ijk > 0 and x̂ij�k > 0 at the start of the algorithm. If
either triple is placed in R, then in the same iteration, the algorithm will put the
other one in R as well. Since the algorithm never changes a component of x̂ from
being 0 to being positive, this implies that property (P5) holds.

To prove (P6), consider two triples (i; j; k) and (i; �|; �k) , where �| 6= j, for which
intially we have that x̂ijk > 0 and x̂i�|�k > 0. If either of these triples is added to
R, then in the same iteration, we must also set the variable corresponding to the
other triple to 0; in other words, if (i; j; k) 2 R, then x̂i�|�k = 0, and so the �rst half
of (P6) has been proved. The proof of the second half is exactly analogous.

The proof that property (P4) is maintained is similar to the proof given for
for (P4) in Lemma 2. Consider some variable x̂i0j0k that is set to 1 during some
iteration of the algorithm. However, this implies that k 2 T , since the algorithm
only sets to 1 those components of x̂ for which the last index is in T . For the location
k0 used in this iteration (that is, the location in D̂ with minimum gk value), we have
that x̂i0j0k0 > 0; furthermore, (i0; j0; k) was not in R at the start of this iteration,
and hence, by (P3), ci0j0k0 � gk0 . Since k 2 T , we know that there exists x̂ijk > 0
such that i 2 SF or j 2 SE . We shall consider these two cases separately.

Case 1: i 2 SF . It follows from i 2 SF that there exists �| 2 E such that that
x̂i�|k0 > 0. Since k0 2 D̂, this implies that (i; �|; k0) 62 R, and so ci�|k0 � gk0 .

We will show next that (i; j; k) 62 R, and hence cijk � gk. Suppose that �| 6= j.
Since x̂i�|k0 > 0, it follows from (P5) that (i; j; k) 62 R. On the other hand, suppose

that j = �|. Since k0 2 D̂, we know that (i; �|; k0) 62 R, and hence, by (P6), (i; �|; k) =
(i; j; k) 62 R.

We wish to show that ci0j0k � 3gk. However, by the triangle inequality, we can
bound ci0j0k by the total cost of the path from i0 to j0 to k0, followed by the path
from k0 to �| to i, followed by the path from i to j to k. Hence,

ci0j0k � ci0j0k0 + ci�|k0 + cijk � gk0 + gk0 + gk � 3gk:

Case 2: j 2 SE . Since j 2 SE , there exists �{ such that x̂�{jk0 > 0. Again, since

k0 2 D̂, we know that (�{; j; k0) 62 R, and hence c�{jk0 � gk0 .
We will show next that (i; j; k) 62 R, and hence cijk � gk. Suppose that �{ 6= i.

Since x̂�{jk0 > 0, it follows from (P5) that (i; j; k) 62 R. On the other hand, suppose

that i = �{. Since k0 2 D̂, we know that (i; j; k0) = (�{; j; k0) 62 R, and hence, by (P6),
(i; j; k) 62 R. Finally, we can bound ci0j0k by the cost of the path from i0 to j0 to k0

followed by the edge from k0 to j, followed by the edge from j to k. Hence,

ci0j0k � ci0j0k0 + c�{jk0 + cijk � gk0 + gk0 + gk � 3gk;

and we have shown that property (P4) is maintained.
To show that (P2) is maintained, we note that

fi0 + ej0 = min
(i;j)2S

fi + ej �
X

(i;j)2S

(fi + ej)x̂ijk ;

where the inequality follows from the fact that the minimum of a set is no more
than any convex combination of it. Finally,

P
j2E x̂ijk � ŷi, and

P
i2F x̂ijk � ẑj ;
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these imply that

X
(i;j)2S

fix̂ijk =
X
i2SF

fi
X

j:(i;j)2S

x̂ijk �
X
i2SF

fiŷi

and X
(i;j)2S

ejx̂ijk =
X
j2SE

ej
X

i:(i;j)2S

x̂ijk �
X
j2SE

ej ẑj :

Hence
fi0 + ej0 �

X
i2SF

fiŷi +
X
j2SE

ej ẑj :

But this inequality implies that the total of the facility cost and transit station cost
of (ŷ; ẑ) never increases throughout the execution of the algorithm, which proves
that (P2) is maintained. This completes the proof of the lemma.

By combining Lemmas 9 and 10 in a manner identical to the way in which
Lemmas 1 and 2 were used to prove Theorem 3, we obtain the following theorem.

Theorem 11 For the 2-level uncapacitated facility location problem, �ltering and

rounding yields a 4-approximation algorithm.

5 A randomized �ltering algorithm

In this section, we will show that by choosing the threshold � at random, we are
able to obtain improved performance guarantees. In fact, it will also be straight-
forward to derandomize these algorithms. This use of randomization is very much
in the same spirit as the randomization used in scheduling algorithms by Chekuri,
Motwani, Natarajan, & Stein [4] and Goemans [9].

For each of the facility location models that we have discussed in the previous
three sections, we have given an approximation algorithm based on a particular
choice of �, but it is evident that we can also consider the algorithm for any choice
of � 2 (0; 1). For each model, the randomized algorithm is quite easy to state: we
choose � uniformly in the interval (�; 1), where � will be �xed later to optimize
the algorithm's performance; then we apply the deterministic algorithm with that
value of �. The intuition for cutting o� the uniform distribution at some point � is
that the �ltering step increases the facility cost by a factor of 1=�, and so we will
need to bound E[1=�].

We �rst analyze this approach for the uncapacitated (single-level) facility loca-
tion problem. At the core of our analyses is the following simple lemma about the
�-point of a cost function, which was �rst observed by Goemans [8]. Goemans used
this observation to show that if one implements the �-point 1-machine scheduling
algorithm of Hall, Shmoys, & Wein [11] where � 2 (0; 1) is chosen with probabil-
ity density function f(�) = 2�, then its performance guarantee improves from 4
to 2 (which had already been shown in [10] by a less direct approach). Indepen-
dent of our work, Schulz & Skutella [23] also used this observation for improved
performance guarantees for other scheduling models.

Lemma 12 For each j 2 D,
R 1
0 cj(�)d� =

Pn
i=1 cijxij .

Proof: For simplicity of notation, let us assume that

c1j � c2j � � � � � cnj ;

that is, the permutation � is the identity. The function cj(�) is a step function,
which can be described as follows. Let i1 < i2 < � � � < i` be the indices i for
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which xij > 0. The function cj(�) is equal to cikj for each � in the interval

(
Pk�1

s=1 xisj ;
Pk

s=1 xisj ]. We wish to compute the area under this curve; for the

interval from
Pk�1

s=1 xisj to
Pk

s=1 xisj , this area is exactly cikj �xikj . Hence the total
area is exactly X̀

k=1

cikj � xikj =
nX
i=1

cijxij ;

which proves the lemma.

We show next how to apply this lemma. In fact, we have already proved that
the �ltering and rounding algorithm of Theorem 3 �nds a solution of cost at most
1
�

P
i2F fiyi + 3

P
j2D djcj(�) for any given � (see equation (11)). Hence, we see

that the expected cost of the solution found by the randomized algorithm is

� E[
1

�

X
i2F

fiyi + 3
X
j2D

djcj(�)]

= E[
1

�
]
X
i2F

fiyi + 3
X
j2D

djE[cj(�)]

= (

Z 1

�

1

1� �

1

�
d�)

X
i2F

fiyi + 3
X
j2D

dj(

Z 1

�

1

1� �
cj(�)d�)

�
ln(1=�)

1� �

X
i2F

fiyi +
3

1� �

X
j2D

dj

Z 1

0

cj(�)d�

=
ln(1=�)

1� �

X
i2F

fiyi +
3

1� �

X
j2D

dj
X
i2F

cijxij :

Hence, we wish to choose � so as to minimize maxf ln(1=�)1�� ; 3
1��g; that is, we set

� = 1=e3, to yield the following theorem.

Theorem 13 For the metric uncapacitated facility location problem, randomized

�ltering and rounding yields an algorithm that �nds a solution whose expected total

cost is within a factor of 3=(1� e�3) < 3:16 of the optimum.

One reinterpretation of the proof of this theorem is that for � selected at random
in this manner, we have

E[
1

�

X
i2F

fiyi + 3
X
j2D

djcj(�)] � �(
X
i2F

fiyi +
X
i2F

X
j2D

djcijxij);

where � = 3
(1�e�3) . Of course, a consequence of this is that there must exist a choice

for � for which this function is not greater than its expectation. Thus, if we can �nd
the � = �� for which 1

�

P
i2F fiyi +3

P
j2D djcj(�) is minimized, then by running

the deterministic �ltering and rounding algorithm with � = ��, we are assured of
�nding a solution within the expected performance guarantee. Fortunately, the step
function nature of cj(�) makes this a particularly simple function to minimize; we
need only check all breakpoints of all of the step functions cj(�), j 2 D. This yields
the following theorem.

Theorem 14 For the metric uncapacitated facility location problem, �ltering and

rounding yields a 3.16-approximation algorithm.

The same randomization and derandomization technique can be applied to each
of the theorems in this paper, yielding somewhat improved constants for each of the
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performance guarantees. In the capacitated case, for example, if we again choose
� uniformly within the interval between [�; 1] (where � will be chosen later), then
the expected total cost of the solution found by the algorithm is at most

4 ln(1=�)

1� �

X
i2F

fiyi +
3

1� �

X
j2D

dj
X
i2F

cijxij ;

where (x; y) is the optimal solution to the linear relaxation of the capacitated facility
location problem. If we set � = e�3=4, then we see that the expected cost is within
a factor of 3=(1� e�3=4) < 5:69 of the cost of the linear relaxation optimum (x; y).
The solution (x̂; ŷ) found by the algorithm is also guaranteed to be 2=�-relaxed,
and so the expectation of the maximum capacity used at any facility is at most
2uE[1=�] � 3

2(1�e�3=4)
u � 2:85u:When we derandomize this algorithm, by focusing

on the optimal choice of � with respect to the bound on the cost of the solution,
we cannot simultaneously keep the guarantee for the maximum capacity used close
to its expectation, 2:85u. However, we are choosing � within the interval [e�3=4; 1],
and the bound 2=� is at most 2e3=4 � 4:24 throughout this interval. Hence, we
obtain the following theorem.

Theorem 15 For the metric capacitated facility location problem, �ltering and

rounding yields a (5:69; 4:24)-approximation algorithm.

The same approach can be applied to each of the theorems in this paper. In
particular, for Theorem 7, the performance guarantee of (9; 4) can be improved to
(3=(1�e�1=2); 1+2e1=2) � (7:62; 4:29); for Theorem 8, the performance guarantees
of 7 and 9 can be improved to 5.69 and 7.62, respectively; and for Theorem 11, the
performance guarantee of 4 can be improved to 3.16.

Acknowledgments We are grateful to Michel Goemans for sharing with us his
randomized analysis of the 1-machine scheduling algorithm of [11], since this ulti-
mately led to the results in Section 5.
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