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Abstract

Decision making under uncertainty can be viewed as a planning task, because it

basically amounts to determining a sequence of actions that is optimal for a problem

under study. Many di�erent formalisms are used in decision making under uncer-

tainty, with many di�erent restrictions enforced. In this paper, a novel, general

decision-theoretic planning framework is proposed, and used to analyse various rep-

resentation formalisms for decision making. Several features of these formalisms are

highlighted in terms of the framework, using examples from the domain of cancer-

treatment planning in medicine.
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1 Introduction

Decision theory provides a mathematical foundation for rational decision making under un-
certainty by integrating notions of utility theory and probability theory. In brief, decision
theory assumes that a decision maker faces a choice among various alternatives, where
the e�ects of an alternative are described by a probability distribution over outcomes.
Given the decision maker's preferences among outcomes, the theory recommends the al-
ternative that optimises the yield related to the outcomes. The �eld of decision analysis is
concerned with the practical application of decision-theoretic techniques. The theory has
been successfully employed in many di�erent problem areas, ranging from medical patient
management to economic policy making. Representation formalisms for decision analysis
include decision trees, in
uence diagrams, and Markov decision processes.

In the �eld of arti�cial intelligence (AI), the task of generating ordered sequences of
actions in order to achieve some prede�ned objective is generally referred to as planning.
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XIV (Proceedings of Expert Systems '97), SGES Publications, pp. 147{157, 1997. The investigations were
(partly) supported by the Netherlands Computer Science Research Foundation with �nancial support from
the Netherlands Organization for Scienti�c Research (NWO).



A planning system usually starts from a problem speci�cation, the actions that may be
performed, their expected outcomes or e�ects, and a description of objectives. The system's
task is to yield a plan, i.e. a sequence of actions. Most classical AI planning systems
assume that the e�ects of actions are deterministic (though possibly hard to predict). In
many real-world situations, however, the e�ects of actions are essentially uncertain. The
�eld of planning under uncertainty is concerned with planning tasks taking the inherent
uncertainty in the e�ects of actions into account.

The term decision-theoretic planning [2, 1, 3] was recently introduced in AI to refer
to approaches to planning under uncertainty incorporating decision-theoretic techniques.
Compared to traditional applications of decision theory, these approaches do not so much
di�er in the type of problems addressed, but in the circumstance that notions like action,
plan, and plan synthesis and execution are made explicit in the representation and problem-
solving methods.

In this paper, several decision-theoretic representation formalisms will be analysed,
in view of a novel framework of decision-theoretic planning. Features of the formalisms
investigated are 
exibility, expressiveness, and computational expenses. The purpose of
this analysis is to obtain insight into the various trade-o�s in building decision-theoretic
expert systems. For decision support in uncertain domains, such systems are becoming
increasingly popular as a mathematically well-founded alternative to traditional rule-based
or hybrid rule-based and object-oriented systems. Planning of cancer treatment is used as
an example domain throughout the paper.

2 Example: Cancer Treatment Planning

Modern medical management of cancer is a complicated process, guided by a large variety
of clinical factors. Usually, more than one treatment modality is available to the clinician
to treat a patient with a speci�c form of cancer; often a patient receives two or more types
of treatment. Patient-speci�c information that is needed in the selection of appropriate
treatment is only partly known with certainty; another part of the information is uncertain.
Most of the information is gathered in the diagnostic process to assess the severity and
extent of the disease. After treatment has been instilled, its success or failure is determined
after a certain amount of time.

Rather than focusing on a single type of cancer, in this paper, a general scheme of cancer
therapy is considered, which is depicted in Fig. 1. Preceding treatment, patient-speci�c
information is collected, including the patient's age and the clinical stage of the disease.
Assessment of the clinical stage of the disease is based on the patient's age, information
obtained from taking biopsies at distant sites to show the presence of tumour cells, and
the extent of the primary tumour. The patient's general health status is in
uenced by
the clinical stage of the disease; when the clinical stage is unfavourable, the patient's
health status is usually bad. In a few patients, appropriate biopsy material con�rming
the presence or absence of tumour cells cannot be obtained. Similarly, it is not always
possible to determine the extent of the primary tumour. Nevertheless, even these patients
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Fig. 1. Cancer treatment.

will have to receive treatment, taking into account the clinical picture and the uncertainty
associated with the clinical evidence.

Generally spoken, the clinician can choose among the following treatment modalities:
surgery, chemotherapy and radiotherapy. One or more of these treatment modalities can be
applied to the patient in some order, depending on the patient's condition, and expected
treatment outcome. The main factor used in optimising treatment outcome is 5-year
survival, i.e. expected survival or death following treatment. Thus, cancer treatment can
be essentially viewed as a form of planning under uncertainty, in which the following
aspects are of importance: (i) a subcollection of treatment modalities is selected out of a
collection of possibilities; (ii) treatment modalities are carried out in a particular order; (iii)
during the therapeutic process, information may become available, in
uencing treatment
decisions.

3 Decision-theoretic Planning

In this section, we develop a framework that combines notions from decision theory and AI
planning systems. Subsequently, this framework will be used to analyse various decision-
theoretic representation formalisms.

Consider the class of domains that can be represented by a set of discrete, �nite random
variables X = fx1; : : : ; xng, n � 1, and a set of actions A = fa1; : : : ; amg, m � 1. Random
variables are taken to describe domain elements beyond the direct control of the decision
maker. To express the joint assignment of values to random variables from a set X 0 � X,
the notion of a con�guration of X 0 is introduced, which is denoted by cX0 . The set of all
possible con�gurations of X 0 is denoted by CX0 . The decision maker has the opportunity
to perform actions from the set A in order to in
uence the actual con�guration of the set of
random variables X. It is assumed that actions are performed one by one, in a particular
order. This sequencing of actions, for example a1 followed by a2, is denoted by ha1; a2i.
The sequencing operator `;' is assumed to be associative; consequently, ha1; : : : ; aki, k � 0,
is an action sequence of length k. We do not require that all actions in a sequence are
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distinct (i.e. actions may be repeated), but action sequences are required to be �nite. The
action sequence of length k = 0 is called the null sequence. The set of all action sequences
over A is denoted by SA.

Random variables and actions for a given problem domain are taken to interact in two
ways. First, performing an action may a�ect the con�guration of the random variables. Let
p(c0X j cX; s) denote the probability that we arrive at con�guration c0X 2 CX after perform-
ing the action sequence s 2 SA, given the initial con�guration cX 2 CX . If p(c

0
X j cX; s) > 0,

then we say that c0X is a possible outcome of cX and s. Since spontaneous changes are
excluded, we have that p(c0X j cX; h i) = 0 if c0X 6= cX . Second, performing an action may
yield information on the actual con�guration of random variables. This is laid down in
an observation function ! : A ! 2X , where !(a) � X indicates the subset of random
variables whose actual con�guration can be observed when action a 2 A is performed. The
set of random variables that are observable at any time, independent of action choice, is
denoted by X0. The decision process starts with a given con�guration cX0

of X0, called a
problem instance.

A plan is a partially ordered sequence of actions, where di�erent subsequences are
selected on the basis of observations. More formally, the set of all plans over the random
variables X and action variables A, consistent with an observation function !, is the
smallest set �(X;A; !), such that

1. for all s 2 SA, we have that s 2 �(X;A; !),

2. if a 2 A and X 0 � X0 [ !(a), then ha; �X0i 2 �(X;A; !), where �X0 is a function
�X0 : CX0 ! �(X;A; !), called a switch, and

3. if �1; �2 2 �(X;A; !) then h�1; �2i 2 �(X;A; !).

The �rst condition says that any action sequence in A is also a plan overX and A consistent
with !; for such plans, the sequence of actions to be performed will be the same in all
situations. The second condition introduces additional 
exibility: the possibility to choose
a subplan on the basis of an observed con�guration of random variables. The subplan
resulting from applying the switch �X0(cX0), cX0 2 CX0, is called a branch of �X0 ; the
con�guration cX0 is called the case corresponding to the branch. Actions occurring in some,
but not all, branches of a switch are said to be contingent. Finally, the third condition
expresses that plans can be concatenated; h�1; �2i denotes the plan in which subplan �1 is
(unconditionally) followed by �2.

It is said that a plan � 2 �(X;A; !) is executed if a branch is chosen recursively for
each switch � in �. The result is an action sequence, called a ground instance of �. The set
of all possible ground instances of a plan � is denoted by g(�); the cardinality of g(�), i.e.
the number of possible ground instances, is called the complexity of plan �. Given a plan
� and a problem instance cX0

, let q(s j cX0
; �) denote the probability of arriving at ground

instance s 2 g(�) of �; this probability depends on the likelihoods of cases corresponding
to the branches chosen which in turn depend on the problem instance cX0

and actions
performed in due course. Since we cannot arrive at an action sequence s 2 SA that is not
a ground instance of �, we will take q(s j cX0

; �) = 0 if s 62 g(�), for each cX0
2 CX0

.
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In classical AI planning systems, the objective is to achieve some prede�ned proposi-
tional goal. When the e�ects of actions are uncertain, however, such a result is unattain-
able. In decision-theoretic planning, the objective is to optimise a utility function u :
CX � SA ! R that describes the decision maker's preferences for possible outcomes,
i.e. outcome cX is preferred to outcome c0X after performing action sequence s 2 SA, if
u(cX ; s) � u(c0X ; s). In most applications, these preferences depend only on a part of the
variables involved. The expected utility eu(� j cX0

) of a plan � given problem instance cX0

equals

eu(� j cX0
) =

X
c
X
2C
X

X
s2g(�)

u(cX ; s) � p(cX j cX0
; s) � q(s j cX0

; �) (1)

Many decision-theoretic representation formalisms provide a means to restrict the set
of plans to consider for a given problem domain. Usually, restriction is accomplished by
employing a grouping of actions in a partially ordered set (D;�) of decision variables. Each
decision variable d 2 D can take a value a 2 Dom(d), notation d a, where Dom(d) � A.
The partial order � on D will be used to express the temporal order in which decision
variables should be given a value. Consequently, � serves as a set of constraints on the
order of actions in action sequences: we will say that an action sequence ha1; : : : ; aki 2 SA
adheres to (D;�) if there is a chain d1; : : : ; dk in (D;�) such that for each i, 1 � i � k,
we have that ai 2 Dom(di). Likewise, � serves as a set of constraints on plans over A:
we say that a plan � 2 �(X;A; !) adheres to (D;�) if any ground instance s 2 g(�) of �
adheres to (D;�).

Now, let P� � �(X;A; !) be the subset of plans adhering to (D;�), and let cX0
be a

problem instance. A plan � 2 P� is called optimal with respect to P� given cX0
, notation

� = ��(P�; cX0
), if we have that eu(� j cX0

) � eu(�0 j cX0
) for any �0 2 P�. Finding

an optimal plan for a given problem instance usually proceeds by employing dynamic
programming methods, optimising the last action �rst. The computational complexity of
�nding an optimal plan depends on the number of plans to consider as well as on average
plan complexity.

We now return to the cancer-treatment example described in the previous section to
illustrate the above framework. In this example, we distinguish six random variables, rep-
resenting age of the patient, health status, clinical stage, extent of the primary tumour,
result of biopsy, and 5-year survival, respectively, and four actions representing the perfor-
mance of surgery, the application of chemotherapy and radiotherapy, and the refrainment
of treatment, respectively. These variables are summarised in Fig. 2a. Fig. 2b shows the
graphical part of a Bayesian belief network [9] comprising the random variables distin-
guished; the network describes a joint probability distribution on these variables. There
are two types of interaction between the random variables and the actions. First, per-
forming any of the three therapeutic actions may a�ect the clinical stage and the extent
of the primary tumour. Second, performing an action may yield new information on the
con�guration of some of the random variables. In our example, we assume that the age
and health status of the patient are always known or observable (i.e. X0 = fage; hlthg),
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Name Interpretation Domain

Random age age of the patient < 50, � 50
variables hlth health status good, bad

stage clinical stage fav, unfav
ext extent of primary tumour small, large
biop result of biopsy pos, neg
surv 5-year survival true, false

Actions surg perform surgery
chem perform chemotherapy
radio perform radiotherapy
skip do nothing

ext age

stage hlth

biopsurv

(a) (b)

Fig. 2. Variables and belief network for the example domain.

and that surgery yields biopsy material (!(surg) = fbiopg), which is otherwise unavailable.
The other random variables are unobservable.

We will use three binary decision variables, dsurg, dchem, and dradio, representing the
separate decisions to apply each of the three treatment modalities, e.g. Dom(dsurg) =
fsurg; skipg. Now suppose that we impose the constraint dsurg � dchem. A simple treatment
plan for a given patient is to perform surgery and, depending on the biopsy material found,
to subsequently apply chemotherapy:

� = hsurg ; �fbiopgi

where

�
�fbiopg(biop = pos) = hchemi
�fbiopg(biop = neg) = h i

(2)

The set of ground instances of the plan � equals fhsurg ; chemi; hsurgig. Finally, a utility
function is de�ned, based only on 5-year survival, where a maximum utility of 100 is
assigned to survival, and a minimum utility of 0 to death.

4 Decision-theoretic Representations

The most popular representation formalisms for decision analysis are decision trees, in-

uence diagrams and Markov decision processes. These formalisms will now be analysed
in terms of the framework presented in the previous section, using examples from the
cancer-treatment domain.

4.1 Decision Trees

A decision tree [11] is a rooted tree, where each internal node is either a decision node,
denoting a point in time where the decision maker faces a choice among several actions,
or a chance node, denoting a point in time where the decision maker can observe the
actual value of a random variable. The root of the tree, which is usually a decision node,

6



represents the start of the decision process. An external node, or leaf, of the tree represents
the outcome of the scenario associated with the sequence of events and actions along the
unique path to that node starting at the root. A numerical utility value is associated with
each leaf in the tree. Fig. 3 shows a decision tree for a simpli�ed version of the cancer-
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Fig. 3. Decision tree for cancer treatment.

treatment example, addressing only the decisions whether or not to perform surgery and
to subsequently apply chemotherapy. Decision nodes, representing decision variables, are
depicted by square boxes; chance nodes, representing random variables, are depicted by
circles; outcomes are depicted by rectangular boxes labelled with the corresponding utility
value. The branches emanating from an internal node correspond to the respective values
that the associated variable may take. With each branch emanating from a chance node
is associated a numerical value expressing the probability that the value will be observed
in the given situation. The probabilities in a tree correspond to a single problem instance
cX0
2 CX0

, and are typically obtained from an external probability model, for instance
a belief network. Furthermore, note that there may be multiple nodes in a decision tree
representing the same variable, if the variable occurs in multiple scenarios. The tree is
asymmetrical, since �nding biopsy material is contingent on the decision to operate.

In terms of the decision-theoretic planning framework, a decision tree provides an ex-
plicit, graphical enumeration of the collection of plans P� � �(X;A; !) adhering to the
partial order� on decision variables provided by the tree. A plan � 2 P� is selected from
the collection by choosing a value for each decision node in the tree; chance nodes act as
switches in the selected plan. For instance, by selecting the actions surg and chem for the
decision nodes in Fig. 3, we select the plan of Eq. (2). The evaluation of a decision tree
is the process of �nding an optimal plan from the tree, consistent with Eq. (1). Since a
decision tree is case-speci�c, it only provides an optimal plan for a single problem instance
cX0
2 CX0

. The number of computational steps needed for evaluation is proportional to
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the number of nodes in the tree. Since a decision tree is an explicit enumeration of plans
for a decision-theoretic problem, the size of the tree will typically grow exponentially in
the number of actions and uncertain events modelled.

4.2 In
uence Diagrams

An in
uence diagram [5] is a concise represen-
ext age

stage

hlth

biop

dsurg

dchem

dradiosurv

U

Fig. 4. Example in
uence diagram.

tation of a decision problem under uncertainty
in a directed, acyclic graph. Fig. 4 shows an in-

uence diagram graph for the cancer treatment
example. Decision variables are represented by
decision nodes in the graph, denoted by square
boxes, and random variables by chance nodes,
denoted by circles. Furthermore, there is a sin-
gle, diamond-shaped node valuating the vari-
ous outcomes of the decision process; this node,
called the value node, may not have successors
in the graph. We note that, in contrast with
decision trees, any decision or random variable
considered relevant for the decision problem at
hand occurs only once in the representation.
Arcs in the graph pointing to a decision node,
called informational arcs, specify which infor-
mation is available at the point in time when
an action value is chosen for the node; it is as-
sumed that a value is known for each of its parents in the graph at that point in time.
Furthermore, it is required that there exists a directed path in the graph containing all
the decision nodes, de�ning the order in which decisions are taken. The arcs pointing to a
chance node, called conditioning arcs, determine which nodes have a direct in
uential or
causal e�ect on the node. A chance node comes equipped with a conditional probability
table, specifying a conditional probability distribution on its values given a value assign-
ment to each of its parents in the graph. The value node is supplied with a utility function,
de�ned over the con�gurations of the node's parents in the graph.

In terms of the decision-theoretic planning framework, an in
uence diagram provides a
concise enumeration of a collection of plans P� � �(X;A), where � is the total order on
decisions variables provided by the graph. A plan � 2 P� is selected from the collection by
providing a conditional action speci�cation for each decision node given the values of the
node's parents in the graph; chance nodes directly preceding decision nodes in the graph
act as switches in the selected plan. The possibility to represent complex plans is limited
by the total order on decision variables: in
uence diagrams cannot represent plans with
contingent decisions. It is also not possible to represent contingent data gathering; for
instance, in the example diagram, the value of the biopsy variable is assumed to be known
before deciding on chemotherapy, even if the decision on surgery was negative.
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In contrast with decision trees, an in
uence diagram models all the information needed
for problem solving in a given decision-theoretic planning domain, including the relevant
probabilities. Therefore, no external probability model is needed; a single in
uence dia-
gram can be used to �nd optimal plans for all problem instances cX0

2 CX0
. Furthermore,

the representation exploits conditional independences holding between random variables,
and the fact that an action often a�ects only a small subset random variables directly,
whereas other random variables are a�ected only indirectly, or not a�ected at all. Evaluat-
ing an in
uence diagram, i.e. �nding an optimal plan, is possible by performing a sequence
of transformations on the graph [12]. The general problem is combinatoric, but evaluation
is feasible in polynomial time for sparse, bounded, graphs.

4.3 Markov Decision Processes

In a Markov decision process [10], or MDP for short, the dynamics of a planning problem
under uncertainty are modelled as a discrete-time stochastic process over the set CX of
con�gurations of the random variables involved. The probability distributions governing
transitions depend on action choice. That is, with each action a 2 A is associated a
transition probability function �a : CX � CX ! [0; 1], where �a(c

0
X j cX) expresses the

probability of arriving at con�guration c0X 2 CX after performing action a in con�guration
cX 2 CX . The process is Markovian in the sense that the current con�guration of the
random variables depends on the past only through the previous con�guration and the
action choice:

p(c0X j cX; hs; ai) =
X

c00
X
2C
X

�a(c
0
X j c

00
X) � p(c

00
X j cX; s) (3)

At each step in the process, the decision maker receives an immediate reward re
ecting
the desirability of the actual con�guration as compared to other con�gurations; the objec-
tive is to optimise some function of the overall reward sequence that expresses the decision
maker's intertemporal trade-o�s. Fig. 5 o�ers a schematic depiction of an MDP for the
cancer-treatment example.

In MDPs, it is assumed that the decision maker can observe the actual con�guration of
all random variables at each point in time. Partially observable Markov decision processes
(POMDPs) [8] are a generalisation of MDPs which permit uncertainty regarding the actual
con�gurations and allow for observations depending on action choice. Formally, a POMDP
model is an MDP model extended with an observation function ! : A! 2X .

Using Eq. 3, we can compute the expected consequences of any possible action se-
quence s 2 SA for a given (PO)MDP problem. Therefore, the formalism provides for a
very powerful environment for decision-theoretic planning. A (PO)MDP model does not
enumerate plans using partially ordered decision variables like decision trees and in
uence
diagrams: any potential plan from the set �(X;A; !) is considered for evaluation. Gener-
ally speaking, the complexity of constructing an optimal plan for a given POMDP problem
depends on the number of possible con�gurations, jCX j, the number of available actions,
jAj, and the ability to observe con�gurations in due course. For fully observable MDP
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Fig. 5. Markov decision process for cancer treatment.

problems, e�cient solution methods exist, based on the principle of dynamic program-
ming [10]. Straightforward application of dynamic programming techniques to partially
observable problems is not possible, and algorithms tend to be complicated and limited
[7].

5 Comparison

In this section, we compare the three formalisms discussed in the previous section with
respect to their 
exibility and expressiveness as a knowledge-representation method. In
particular, we will consider the possibilities to represent decision-theoretic plans, the ability
to encode generic e�ects of actions, and the compactness of the representation.

In a decision tree, a decision-theoretic planning problem is represented by explicitly
enumerating the possible plans to solve the problem. In the process of constructing a deci-
sion tree, a designer can decide on constraints on possible plans: any plan or subplan that
is deemed unrealistic or irrelevant is simply left out. There are also no restrictions on the
e�ects that actions may have on random variables. However, a decision tree is case-speci�c
and does not encode such e�ects for a class of problems. Although the structure of a de-
cision tree might be reused to deal with similar problems, for cases not represented in the
tree, an external probability model is needed to compute the relevant probabilities. Hence,
the decision-tree formalism yields a rather weak knowledge-representation formalism: al-
though plans and constraints on plans can be represented explicitly, knowledge concerning
probabilistic independences and in
uences among variables is always lacking.

An in
uence diagram is a Bayesian belief network augmented with decision nodes and
a utility node. It provides a compact way to encode both decision-theoretic plans and
probabilistic domain knowledge, by exploiting conditional independences between random
variables and limitations in the e�ects of actions. However, all plans have the same basic
structure with limited complexity, stemming from the fact that in
uence diagrams corre-
spond to symmetrical decision trees. The order in which decision variables are considered
is always �xed, and neither contingent decisions nor contingent data gathering can be
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represented.
Markov decision processes o�er a very general formalism of decision-theoretic planning,

based on a generic speci�cation of the e�ects of actions on random variables. The only
underlying assumption is that these e�ects are Markovian: the present depends on the past
only through the last step. We note that this assumption is not made in decision trees
and in
uence diagrams. The generality of the formalism may hamper straightforward
application in practice. Problems of considerable size require the speci�cation of a massive
amount probabilities, and �nding an optimal plan becomes intractable. Furthermore, the
notion of plan is left implicit in the formalism, implying that knowledge about irrelevant,
or even nonsensical plans cannot be represented explicitly.

6 Discussion

Decision theory is becoming increasingly popular as a mathematical foundation for build-
ing planning systems in uncertain domains. A knowledge-representation formalism for
decision-theoretic planning, applicable to, for example, medical treatment planning, should
provide su�cient expressive power to represent the most important features and nuances of
a problem domain. In this paper, we have proposed a new, general framework for decision-
theoretic planning based on two types of variables and a high-level description of plans.
Existing representation formalisms from decision analysis have been analysed in terms of
this framework, revealing their underlying degrees of expressiveness. It appears that each
of these formalisms leaves some of the notions related to decision-theoretic planning im-
plicit. In this sense, these formalisms are either too restrictive, or o�er too much freedom,
lacking the features of an appropriate knowledge-representation formalism.

In recent years, some research has been devoted to developing extensions to the repre-
sentations discussed above, either to enhance their expressiveness as a knowledge-representation
formalism (e.g. [13]), or to improve the computational e�ciency of their evaluation (e.g.
[3, 6]). Being the most general representation method, Markov decision processes are
becoming increasingly popular in AI as a basis for decision-theoretic planning. For in-
stance, Boutilier and colleagues [1] have developed an alternative framework for decision-
theoretic planning, taking Markov decision processes as a starting-point. The generality
of their framework ensures that many more restricted decision-theoretic formalisms can
be represented, which they accomplish by switching to di�erent representations. How-
ever, switching to di�erent representations, although mathematically sound, yields little
insight in terms of expressive power, whereas de�ning a formalism in terms of a number of
framework parameters, as is done in our analysis, reveals underlying assumptions.

In the near future, the notions of time and external event will be added to our frame-
work, in order to incorporate reasoning about time and spontaneous change in decision-
theoretic planning.

Acknowledgement. The authors wish to thank Linda van der Gaag for valuable com-
ments on an earlier draft of this paper.
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