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Abstract

We describe a new and simple method for constructing binary space partitions in
arbitrary dimensions. We also introduce the concept of uncluttered scenes, which are
scenes with a certain property that we suspect many realistic scenes exhibit, and we show
that our method constructs a BSP of size O(n) for an uncluttered scene consisting of n
objects. The construction time is O(n logn). Because any set of disjoint fat objects is
uncluttered, our result implies an e�cient method to construct a linear size BSP for fat
objects.

We use our BSP to develop a data structure for point location in uncluttered scenes.
The query time of our structure is O(logn), and the amount of storage is O(n). This
result can in turn be used to perform range queries with not-too-small ranges in scenes
consisting of disjoint fat objects or, more generally, in so-called low-density scenes.

1 Introduction

Many geometric problems can be solved more easily if a decomposition of the space of in-
terest into smaller subspaces, or cells, is given. Therefore decompositions of two-, three-, or
higher-dimensional scenes play an important role in areas like computer graphics, geographic
information systems, and robotics.

There is a variety of schemes available to construct decompositions. Quadtrees and oc-
trees, and kd-trees are among the most popular ones [19, 20]. Another popular decomposition
scheme is the binary space partition, or BSP. In this scheme the space is split into two sub-
spaces with a hyperplane, so in R2 it is split with a line and in R3 with a plane. These two
subspaces are again split with a hyperplane, and so on. The splitting process continues recur-
sively until the subspaces are intersected by only one of the objects in the scene. (We assume
that the objects in the scene don't intersect each other, otherwise we cannot require that
each terminal subspace contain only one object.) Figure 1 shows a BSP of a two-dimensional
scene; the line labelled ` is the �rst splitting line. Observe that the objects in the scene can
be fragmented by the splitting process.

A natural way to model the splitting process is with a binary tree. The root of this tree
stores the �rst splitting hyperplane, its right child stores the splitting hyperplane of the right
subspace and its left child stores the splitting hyperplane of the left subspace, and so on|see
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Figure 1: A BSP in the plane, and the corresponding tree.

Figure 1. (If the splitting hyperplane fully contains one or more objects, which must then be
(d � 1)-dimensional, it contains a list of these objects.) A leaf of the tree corresponds to a
cell in the �nal decomposition; it stores the (fragment of) the object that intersects the cell.
Such a tree is called a binary space partition tree, or BSP tree.

Binary space partitions are used for many purposes. For example, they are used for hidden
surface removal with the painter's algorithm [10], for shadow generation [8], for set operations
on polyhedra [14, 24], for visibility preprocessing for interactive walkthroughs [23], and for
cell decomposition methods in motion planning [3].

The e�ciency of algorithms based on BSPs depends crucially on the size of the BSP,
that is, on the number of cells of the decomposition. Notice that this number is exactly
the number of leaves in the corresponding BSP tree, which is related to the total number
of fragments created by the splitting process. Hence, when constructing a BSP of a given
scene, one should choose the splitting hyperplanes carefully, so that the fragmentation of the
objects is kept small. In two-dimensional space it is always possible to keep the fragmentation
reasonably small: Paterson and Yao[17] proved that any set of polygons in the plane with
n edges in total admits a BSP of size O(n logn) and that any set of axis-parallel polygons
admits a linear size BSP. It is still open whether it is possible to construct a linear size BSP
for any set of polygons in the plane. In three-dimensional space|the setting most relevant
to computer graphics|the situation is less rosy: the method of Paterson and Yao is only
guaranteed to produce a BSP of size O(n2). (For axis-parallel polyhedra one can obtain a
BSP of size O(n

p
n) [18].) They also gave an example of a three-dimensional scene such that

any BSP must have quadratic size, which shows that their method is optimal in the worst
case. A quadratic size BSP is, of course, useless in most practical applications. Nevertheless,
BSPs usually perform �ne in practice. Apparently realistic scenes have some property that
makes it possible to construct e�cient BSPs for them. Indeed, the example proving the 
(n2)
lower bound on the size of BSPs is a quite arti�cial construction, which uses long and thin
triangles in a grid-like pattern.

The discrepancy between theory and practice lead de Berg et al. [5] to study BSPs for
scenes consisting of fat objects. Fat objects are objects that do not have long and skinny
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parts; a formal de�nition is given in Section 2.3. Recently, fat objects have attracted a lot
of attention in computational geometry [1, 9, 28, 13, 15, 26, 27]. De Berg et al. proved that
scenes of fat objects always admit a BSP of linear size. Their algorithm for constructing a
BSP runs in O(n logn log logn) time, where n is the number of objects. Unfortunately, their
method only works in the plane, so it is not very useful in computer graphics applications.
Moreover, it is rather complicated. We propose a new method for constructing BSPs. Our
method yields a linear size BSP for collections of fat objects in arbitrary dimensions, and it
is quite simple. The running time of the construction algorithm is O(n logn).

The method not only works for fat objects, it can be proved to produce a linear size BSP
for a more general class of scenes, namely scenes that are uncluttered. A �-cluttered scene
is a scene with the following property:1 any cube that is intersected by more than � objects
must contain a vertex of a bounding box of one or more of these objects. A scene is called
uncluttered if it is �-cluttered for a small constant �. Although this is a rather technical
condition, we believe it is usually satis�ed in practice. To obtain the result for fat objects,
we show that any set of fat objects is uncluttered. (In a recent paper by de Berg et al. [6] the
relation between various of these so-called realistic input models is studied extensively.)

BSP trees are often used to perform point location queries (report the objects in a scene
that contain a query point) and range searching queries (report the objects in a scene inter-
secting a query range). Because the depth of the BSP tree usually is not guaranteed to be
small, this approach leads to solutions with a high query time. We show that it is possible
to build an extra search structure on top of our BSP tree, which guarantees that point loca-
tion queries can be performed e�ciently: if the scene is uncluttered then the query time is
O(logn) and the amount of storage for the data structure is O(n). This improves and gener-
alizes a result of Overmars [15], who showed that point location queries in a set of n disjoint
fat objects can be done in O(logd�1 n) time with a structure using O(n logd�1 n) storage. If
the scene consists of disjoint fat objects (or, more generally, is a so-called low-density scene)
then our point location data structure can be used to perform range searching with ranges
that are not too small compared to the smallest object in S (see Section 3 for details). The
query time for range searching is then O(logn)|the assumptions imply that the number of
reported objects is O(1), so no extra term is needed for this|and the amount of storage is
still O(n). This improves results by Overmars and van der Stappen [16] and by Schwarzkopf
and Vleugels [22], who obtain O(logd�1 n) query time with a structure using O(n logd�1 n)
storage.

2 The BSP construction

Let S be a set of n non-intersecting objects in Rd , where d > 2. In Section 2.1 we describe our
strategy for constructing a BSP for S. How to implement this strategy e�ciently is described
in Section 2.2, and the analysis of the size of the resulting BSP will be given in Section 2.3.
Although the method works in arbitrary dimensions we shall mostly use three-dimensional
terminology from now on.

1In a preliminary version of this paper [4] and in Vleugels's thesis [30] the term "bounding-box �tness" was
used to express this condition.
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2.1 The Partitioning Strategy

Before we start we need a few de�nitions. The bounding box of an object o is the smallest
axis-aligned box that contains the object. Let V = V (S) denote the set of vertices of the
bounding boxes of the objects in S. For a set S in R3 , the set V contains at most 8n points;
in Rd , it contains at most 2dn points.

Our algorithm for constructing the BSP for S works in two stages. In the �rst stage we
construct an intermediate BSP using axis-parallel planes only. This stage is guided by the
set V of bounding-box vertices. The cells of the BSP that results from the �rst stage do
not contain points from V in their interior. They can still be intersected by a number of
objects, however. The remaining objects in each cell are separated in the second stage of the
algorithm, which uses splitting planes that are not necessarily axis-parallel.

During the �rst stage we try to ensure that the cells we create are cubes, rather than
arbitrary boxes. The reason for this is that a cell which is a thin box can easily be intersected
by many objects without containing many bounding-box vertices; for such a cell the bounding-
box vertices don't provide su�cient information to control the fragmentation of the objects.
Most objects that intersect a cube, however, will have a vertex of their bounding box inside it.
Indeed, an object that intersects a cube but whose bounding box does not have a vertex inside
a cube must be relatively big with respect to the cube|its diameter must be at least the
edge length of the cube|and it is unlikely that many big objects intersect the cube without
starting to intersect each other. (Such objects would have to be very long and thin. Indeed
we will show later that this cannot happen for fat objects|see Section 2.3 for details.) Hence,
we can use the bounding-box vertices to control the fragmentation. Observe that it is possible
for a small object to intersect a cube without having one of its own vertices inside the cube.
This is the reason that we cannot use the vertices of the objects themselves to control the
fragmentation.

The �rst stage. To construct the intermediate BSP we proceed as follows. In a generic
partitioning step we have cell C, which is a cube, and a non-empty subset VC � V that
contains all points from V lying in the interior of C. Initially, C will be a minimal enclosing
cube of the set V , and VC will contain all vertices from V that do not lie on the boundary
of C.

We de�ne an octree split to be a split of C into 2d equal-sized sub-cubes. Thus an octree
split is performed by taking the planes that are the perpendicular bisectors of the edges of C.
We call an octree split useless if all the points in VC are in the interior of the same sub-cube;
otherwise it is called useful. The cube C is partitioned according to the following rules, which
are illustrated in Figure 2 for the two-dimensional case.

1. If an octree split of C is useful, it is performed.

2. Otherwise, let C1; : : : ; C2d be the sub-cubes that would result from an octree split of C.
Suppose that all points of VC lie in Cj , and let v be the vertex of C that is also a vertex
of Cj . Let C

0
j be the smallest cube with v as one of its vertices that contains all points

from VC in its closure. Intuitively, C 0
j is obtained by shrinking Cj, while keeping v as

one of its vertices, until a point from VC is hit. Now C is split using planes through the
facets of C 0

j; the order in which these planes are taken is arbitrary. We call such a split
a kd-split, because, like in a kd-tree, we split successively on each of the coordinates.
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octree split kd-split

Figure 2: Splitting a cube.

The split is not exactly the same as in a kd-tree, however: there one splits the set of
points into two equal halves, whereas we have an unbalanced split which guarantees the
subspace containing the points to be a cube.

The splitting process is repeated recursively for the resulting subcells that have points in their
interior. All subcells resulting from an octree split are cubes, but a kd-split can produce cells
that are not cubes. The only cell on which we have to recurse after performing a kd-split,
however, is a cube.

We now analyze the size of the intermediate decomposition.

Lemma 2.1 The �rst stage of the algorithm results in an intermediate BSP consisting of

O(n) cells that are boxes and do not contain a vertex from V in their interior.

Proof: The construction of the partitioning proceeds recursively until each cell is empty,
and only axis-parallel splitting planes are used, so the second part of the lemma is clearly
true. To see that there are O(n) cells we note that any split increases the number of cells by
a constant only. More precisely, an octree split results in 2d � 1 extra cells, and a kd-split
results in d extra cells. Furthermore, when a cell C is split either one or more points from the
current subset VC are on the splitting planes, or VC is partitioned into two or more subsets.
The �rst case can occur at most jV j times, and the second case at most jV j� 1 times. Hence,
the total number of cells is at most (2jV j � 1)(2d � 1) + 1 = O(n). �

The second stage. The second stage of the decomposition partitions the cells of the in-
termediate decomposition further, so that each cell in the �nal BSP is intersected by only
one object. This is done in the following standard way. For a cell C of the intermediate
decomposition, let SC be the set of object fragments inside C. If the objects are polygonal,
then C is partitioned further by taking planes through the facets of the objects in SC in an
arbitrary order, until there is only one object left in each cell. If the objects are curved but
convex, we use planes separating pairs of objects to further partition C.

2.2 An E�cient Algorithm to Construct the BSP

So far we have only speci�ed which splitting planes to use to construct the BSP. Next we
discuss how to �nd these planes e�ciently.
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The �rst stage. Let C be a cell that is split during the �rst stage of the algorithm, and let
VC be the set of bounding-box vertices in its interior. There are two tasks: we have to decide
whether to apply an octree split or a kd-split, and we have to perform the split. The latter
task involves distributing the bounding-box vertices over the subcells that we get. If these
tasks are done in a brute-force manner, then the construction time can be high, even though
the BSP that is produced may be small. The reason for this is that the splits need not be
balanced. In fact, a kd-split is always unbalanced. So if we spend linear time on each split
and the splits are very unbalanced, then the running time T (n) would satisfy a recurrence
like T (n) = O(n) + T (n� 1), leading to a quadratic running time. Vaidya [25] and Callahan
and Kosaraju [7] describe techniques for building an octree-like structure, where this problem
is solved. Both techniques are directly applicable in our situation and lead to a contruction
time of O(n logn).

The second stage. To carry out the second stage of the algorithm, we need to know for
each cell C in the intermediate decomposition (the decomposition resulting from the �rst
stage) the set SC of object fragments lying in it. In the plane a simple plane-sweep algorithm
can compute the sets SC e�ciently, but in three and higher dimensions we need a di�erent
approach. We can maintain the objects intersecting a cell during the recursive calls, but this
will take too much time for unbalanced splits. To get around this problem we could try to
use a technique similar to the technique of Vaidya [25] or Callahan and Kosaraju [7], like in
the �rst stage, but there are some di�culties with the approach when we deal with object
fragments. Therefore we take a di�erent approach: we preprocess the intermediate BSP for
the following type of range searching queries: given a constant-complexity query range, report
all cells in the BSP intersected by Q. This range searching problem is discussed in detail in
Section 3; we prove in Lemma 3.4 that the k cells intersecting a query range can be reported
in O(k logn) time, after O(n logn) preprocessing. In order to compute the sets SC we query
with each object in S to �nd the cells it intersects, and add the object to the set SC of every
intersected cell C. If we denote the number of cells intersecting an object o by ko, then the
total time for all queries is

X

o2S

O(ko logn) = O(
X

C

jSC j logn):

This leads to the following result.

Lemma 2.2 Let S be a set of n objects in Rd , each of constant complexity, and let S be the

intermediate BSP resulting from the �rst stage of the BSP construction algorithm. The sets

SC of object fragments for each cell C of S can be computed in O(
P

C2S jSC j logn) time in

total.

2.3 The Analysis

Uncluttered scenes. We now analyze the method of the previous section under the as-
sumption that the set S of objects is uncluttered, which is de�ned as follows.

De�nition 2.3 Let � be a positive integer. A set of objects in R
d is called a �-cluttered

scene if any cube whose interior does not containing a vertex of one of the bounding boxes of

the objects in S is intersected by at most � objects in S.
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should not be intersected by
more than � objects

Figure 3: An uncluttered scene.

Figure 3 illustrates this de�nition. If we don't want to specify the exact clutter factor � but
assume it is a small constant|as we do in the remainder of this section|we will simply say
that the scene is uncluttered.

It is essential that the de�nition only speaks of cubes without bounding-box vertices in
their interior. If the condition would speak of arbitrarily shaped boxes it would be a lot
stronger, but it would also be highly unrealistic. We believe that in many applications scenes
are indeed uncluttered, despite the rather technical avor of the condition.

The following lemma implies that our BSP strategy performs well for uncluttered scenes.

Lemma 2.4 If the set S forms an uncluttered scene, then any cell in the intermediate de-

composition is intersected by O(1) objects from S.

Proof: Let C be a cell of the intermediate decomposition. By construction, C does not
contain a vertex of any bounding box in its interior. Hence, if C is a cube then the lemma
follows from the unclutteredness condition. Now suppose that C is not a cube. Then C was
created as one of the empty cells when a kd-split was performed. In this case C can be covered
by a constant number of cubes that are contained in the union of all empty cells (that is, the
L-shape which is the complement of the cell containing all points) created at this step. This

C

C 0

cover for C cover for C 0a kd-split

Figure 4: The cells resulting from a kd-split, and the ways to cover them by cubes.

is illustrated for the planar case in Figure 4; for clarity, the squares that cover the cells C
and C 0 are shown slightly smaller than they actually are. Because the cubes that cover C are
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contained in the union of the empty cells forming the L-shape, they contain no bounding-box
vertices in their interior, so they are intersected by O(1) objects. Hence, C is intersected by
O(1) objects as well. �

So after the �rst stage of the algorithm we have an intermediate BSP of linear size such that
each cell is intersected by O(1) objects. By Lemma 2.2 this implies that the construction time
for the �rst phase will be O(n logn). Because the second stage is performed on a constant
number of objects inside each cell, it does not increase the asymptotic size or preprocessing
time of the BSP (provided that the objects are polygonal and of constant complexity, or are
convex.)

Theorem 2.5 Let S be a polygonal scene in R
d consisting of n non-intersecting polygonal

objects of constant complexity, which is uncluttered. Then there exists a linear size binary

space partition for the objects in S. This binary space partition can be constructed in

O(n logn) time.

Remark. The only place where we need that the objects are polygonal is in the second
stage of the algorithm, where we separate the objects using planes through the facets of the
objects. If the objects are curved we need a di�erent strategy for this. If there is such a
strategy|more precisely, if any pair of objects can be separated with a constant number of
planes|then our method still works. For example, a linear size BSP exists for any uncluttered
scene consisting of convex curved objects.

Fat objects. We now prove that fatness implies unclutteredness. Intuitively, an object is
called fat if it does not contain any long and skinny parts. Van der Stappen [26] gives an
extensive treatment of fatness in the context of motion planning. Fatness can be de�ned
formally in various ways, which are basically all equivalent. We follow the Van der Stappen's
de�nition.

De�nition 2.6 Let 0 6 � 6 1 be a constant. An object o in Rd is �-fat if, for any sphere �
whose center lies in o and whose boundary intersects o, the following holds

Volume(o \ �) > �Volume(�):

(If the objects in S are convex, then the de�nition is equivalent to the following, simpler
de�nition: an object is fat if its volume is at least � times the volume of its minimal enclosing
d-dimensional sphere for some constant �.)

If one doesn't want to specify the exact value of � but assumes � is a �xed, not-too-small,
positive constant, then an �-fat object is simply called fat. Van der Stappen [26] proves that
any set of disjoint fat objects has low density, which is de�ned as follows. Let �(�) denote
the radius of the hypersphere �, and let mes(o) denote the minimal enclosing hypersphere of
the object o.

De�nition 2.7 Let � > 0 be a constant. A set S is a �-low-density scene if any hypersphere

� intersects at most � objects o 2 S for which �(mes(o)) > �(�).

Next we prove that a low-density scene is uncluttered.

Lemma 2.8 A �-low-density scene is (bpdcd�)-cluttered.
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Proof: Let C be a cube that does not have bounding-box vertices of objects in S in its
interior. Consider an object o 2 S that intersects C. Because the bounding-box vertices of o
do not lie in the interior of C, the diameter of o, denoted diam(o), must be at least the edge
length of C. Hence,

�(mes(o)) >
diam(o)

2
>

(edge length of C)

2
=

(2=
p
d)�(mes(C))

2
=

�(mes(C))p
d

:

Now cover C by b
p
dcd smaller cubes of side length 1=b

p
dc times the side length of C.

Each subcube C 0 is only intersected by objects o such that �(mes(o)) > �(mes(C))=
p
d >

�(mes(C0)). Because S has �-low-density, this means that C 0 is intersected by at most �
objects, which proves that C is intersected by at most bpdcd� objects. �

Because of the result of Van der Stappen [26] that a scene consisting of disjoint fat objects has
low density, this lemma implies that such a scene is uncluttered. (Formulated more precisely:
Let � be a �xed positive constant, and consider the family of all sets of �-fat objects. Then
there is a constant �, depending only on �, such that any set from the family is �-cluttered.)

Although fatness implies the unclutteredness, the reverse is certainly not true. Consider
as an example an architectural model. The ceilings in such a model are very thin in the
z-direction, so they are not fat. A similar observation can be made for the walls. If, however,
the rooms have a reasonable shape (not extremely long and narrow) then an architectural
model will be uncluttered.

The following result immediately follows from Theorem 2.5 and Lemma 2.8.

Corollary 2.9 Let S be a polygonal scene in Rd consisting of n non-intersecting fat objects

of constant complexity. Then there exists a linear size binary space partition for the objects

in S. This binary space partition can be constructed in O(n logn) time.

3 Applications to Point Location and Range Searching

3.1 Point location in uncluttered scenes

The point location problem we consider is as follows. We are given a scene consisting of n
constant-complexity objects in R

d . We want to preprocess the scene into a data structure
such that, given a query point q, we can e�ciently determine which object (if any) in the
scene contains q. If the objects are not disjoint, then q may lie in more than one object and
all containing objects should be reported.

De�ne a rectilinear binary space partition to be a binary space partition that only uses
splitting planes that are orthogonal to one of the coordinate-axis. A rectilinear BSP tree is a
BSP tree whose underlying binary space partition is rectilinear. Recall that the intermediate
BSP resulting from the �rst stage of the algorithm of Section 2.1 is rectilinear.

Schwarz et al. [21] show that a rectilinear BSP can be preprocessed in linear time such
that one can do point location in logarithmic time. To perform point location in an arbitrary
scene S we proceed as follows. We use the �rst stage of the BSP construction algorithm
of Section 2.1 to construct a rectilinear BSP on S. With each cell of the resulting BSP we
associate a list of all objects in S intersecting that cell. To perform a point location on S we
simply do point location on the rectilinear BSP and check all objects in the list associated
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with the cell containing the query point. It follows from Lemmas 2.1 and 2.4 that this gives
a good performance for uncluttered scenes.

Theorem 3.1 Let S be a set of n constant-complexity objects forming an uncluttered scene.

Then the set S can be preprocessed in O(n logn) time into a data structure that uses O(n)
storage, such that the objects containing a query point can be reported in O(logn) time.

3.2 Range searching in low-density scenes

The range searching problem on a set S of objects is de�ned as follows: given a query range Q,
report all objects from S that are intersected by Q. (Point location is a special case of range
searching, where the query range is a point.) The theorem above has an immediate application
to range searching with small ranges in low-density scenes. Recall that �(�) denotes the radius
of the sphere �, and that mes(o) denotes the minimal enclosing hypersphere of the object o.

Corollary 3.2 Let S be a set of objects in R
d forming a low-density scene, and let �min =

mino2S �(mes(o)). Then the set S can be preprocessed in O(n logn) time into a data structure

that uses O(n) storage, such that range queries with constant-complexity ranges Q for which

�(mes(Q)) 6 �min can be answered in O(logn) time.

Proof: Schwarzkopf and Vleugels [22] have shown that range searching queries on S can
be answered by performing a number of point location queries on a set S�, which is obtained
by taking the Minkowski sums of the objects in S with a hypercube of edge length �min. If
S is a low-density scene and the query range is small, then the number of point locations is
O(1) and the number of objects reported per query is O(1). Van der Stappen et al. [29] have
shown that if S has low density, then S� has low density as well. Since low density implies
unclutteredness (Lemma 2.8) it now follows from Theorem 3.1 that the point location queries
on S� can be performed in O(logn) time, from which the corollary follows. �

This result improves results by Overmars and Van der Stappen [16] and Schwarzkopf and
Vleugels [22] by a factor of O(logd�1 n) in storage and of O(logd�2 n) in query time.

3.3 Range searching in rectilinear BSPs

There is one issue that still needs attention: we have to show that we can �nd for each object
in the set S which cells it intersects in the rectilinear BSP resulting from the �rst stage of
the BSP construction. This is necessary for the second stage of the BSP construction, and
for the point location structure. In other words, we have to perform a range query on the
rectilinear BSP. Although the rectilinear BSP can be shown to have low density, we cannot
use Corollary 3.2 to do the range searching, because the ranges we are dealing with (the
objects in S) are not necessarily small compared to the smallest cell in the BSP. Hence, we
have to preprocess the rectilinear BSP in a di�erent manner for range searching.

Our structure to report which cells of the rectilinear BSP are intersected by a query range
has two components. The �rst is the structure of Schwarz et al. [21] to do point location in the
BSP subdivision. The second component of the structure is the BSP tree itself, preprocessed
for lowest-common-ancestor queries. Such queries can be answered in O(1) time after linear
preprocessing [12]. (In our application O(logm) query time would also be su�cient.)

The query algorithm works as follows: First we determine the highest node in the BSP
tree whose splitting plane cuts Q. (More precisely, we should restrict our attention to the
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part of the splitting plane lying inside the subspace associated with the node of the splitting
plane.) This is the �rst node where the search path of Q splits. However, we do not �nd this
node by walking down the BSP tree, but in a way described later. After we have found this
node, we split Q into two pieces with the splitting plane. Then we perform a range query with
both pieces separately, as if they were new query ranges. Notice that the pieces we query with
are always the intersection of the original range Q with some number of half-spaces. Since
the BSP is rectilinear, this means that the pieces are the intersection of Q with some box.
Hence, the pieces have constant complexity. The recursion stops when we have a piece not
cut by any splitting plane. Such a piece is contained in one cell of the BSP, which we can �nd
by performing a point location query with an arbitrary point in the piece. The collection of
cells found in the point locations is exactly the collection of cells intersecting the range Q.

The crucial step in the query algorithm is the computation of the highest node in the
BSP tree whose splitting plane cuts the query range. This is done as follows. First, for each
coordinate we compute a point of Q with maximum value for that coordinate and a point of
Q with minimum value for that coordinate. In the plane, for instance, we compute a leftmost
and a rightmost point, and a topmost and a bottommost point. Let q1; q2 be one of the d
pairs of points obtained. We perform a point location query with both points. Let �1 and �2
be the two leaves whose associated cells contain q1 and q2, respectively. Next, we compute
the lowest common ancestor of �1 and �2 in the BSP tree. Figure 5 illustrates this in the
planar case with the pair of extreme points in the x-direction. The nodes �1 and �2 as well as
their lowest common ancestor are shown in dark grey. Of all the d lowest common ancestors

q2

q1

�1

�2

`1

`1

`2

`2

`3

`4

`3`4

`5

`5

Figure 5: Finding the highest splitting plane cutting a range via lowest common ancestors.

computed in this manner, we take the highest node, and we claim that this is the node we
seek.

Claim 3.3 The highest of the d lowest common ancestors that we have computed is the

highest node in the BSP tree whose splitting plane cuts Q.

Proof: Let � be the highest lowest common ancestor, and let q1; q2 be the pair of points
for which it was found. Since q1 and q2 lie in di�erent BSP subtrees of �, they must lie on
di�erent sides of the splitting plane of �, so the splitting plane must cut Q.

Conversely, suppose that the splitting plane of some node � that is higher than � cuts
Q. Then the points of Q that are extreme in the direction orthogonal to the splitting plane
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cannot lie in the same BSP subtree of �. Hence, the query with this pair would have reported
a node that is at least as high as �, contradicting the fact that � is the highest lowest common
ancestor. �

This leads to the following result.

Lemma 3.4 Let S be a subdivision of Rd that is induced by a rectilinear BSP tree T with

m nodes. It is possible to preprocess the BSP in O(m) time into a data structure that uses
O(m) storage, such that the k cells of S intersected by a constant-complexity query range Q
can be reported in O(k logm) time.

Proof: The bounds on the preprocessing time and the storage follow immediately from the
fact that the point location structure of Schwarz et al. [21] uses linear preprocessing, and
the fact that preprocessing a binary tree for lowest common ancestor queries takes linear
time [12].

It remains to prove the bound on the query time. There are three steps in querying with
some (piece of) a query range: we have to compute extreme points in d di�erent directions,
we have to perform point location with these points, and we have to perform d lowest common
ancestor queries in the BSP tree and then select the highest node thus found. After these
three steps, we may have to split the range, and perform two new queries with the resulting
pieces. The �rst and third step take only constant time, and the second takes O(logm) time.
So the query time follows if we can show that the total number of pieces that we query with
is O(k).

This can be seen as follows. Consider the recursion tree of the query process. The root of
this tree corresponds to the query with the original range Q, its two children to the queries
with the two pieces into which Q is split, and so on. The leaves of the tree are the pieces that
fall completely inside a cell. Hence, the number of leaves is exactly equal to the number of
reported cells. Because the recursion tree is a binary tree, its number of inner nodes is one
less than its number of leaves, so the total number of queries is 2k� 1. It remains to observe
that two leaves in the recursion tree cannot report the same cell of the subdivision, because
at some stage of the recursive process there was a node where the paths in the BSP tree to
(the BSP leaves of) these cells split. �

4 Concluding Remarks

We presented a new and simple method for constructing BSPs. For uncluttered scenes|and
we believe many realistic scenes are uncluttered|the method produces a linear size BSP in
O(n logn) time. We also proved that any scene consisting of disjoint fat objects in R

d is
uncluttered, which thus implies that any set of disjoint fat objects admits a linear size BSP.

By adding an extra structure on top of the BSP tree, it is possible to use it to perform
e�cient point location queries in uncluttered scenes. The point location structure can in turn
be used to perform e�cient range queries with small ranges in low-density scenes.

One direction of future research that suggests itself is an experimental one, namely to
implement and compare the various existing decomposition schemes (BSP methods, octrees,
kd-trees, and so on). It would also be interesting to experimentally verify our assumption that
in many applications the scenes are uncluttered. More precisely, one would like to compute
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the clutter factors of various typical architectural models, say, and see whether the clutter
factor is indeed a fairly small.

A theoretical problem that still remains wide open is whether the conjecture of Paterson
and Yao [17] (any set of line segments in the plane admits a linear size BSP) is true.
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