
Contour Trees and Small Seed Sets for Isosurface Traversal
�

Chandrajit Bajajy

bajaj@ticam.utexas.edu

Marc van Kreveldz

marc@cs.uu.nl

Ren�e van Oostrumz

rene@cs.uu.nl

Valerio Pascucciy

pascucci@ticam.utexas.edu

Daniel R. Schikorex

schikore@llnl.gov

Abstract

For 2D or 3D meshes that represent the domain of continuous function to the reals,
the contours|or isosurfaces|of a speci�ed value are an important way to visualize the
function. To �nd such contours, a seed set can be used for the starting points from which
the traversal of the contours can begin. This paper gives the �rst methods to obtain
seed sets that are provably small in size. They are based on a variant of the contour
tree (or topographic change tree). We give a new, simple algorithm to compute such a
tree in regular and irregular meshes that requires O(n logn) time in 2D for meshes with
n elements, and in O(n2) time in higher dimensions. The additional storage overhead is
proportial to the maximum size of any contour (linear in the worst case, but typically less).
Given the contour tree, a minimum size seed set can be computed in roughly quadratic
time. Since in practice this can be excessive, we develop a simple approximation algorithm
giving a seed set of size at most twice the size of the minimum. It requires O(n log2 n)
time and linear storage once the contour tree is known. We also give experimental results,
showing the size of the seed sets for several data sets.

1 Introduction

Scalar data de�ned over the plane or 3-space is quite common in �elds like medical imaging,
scienti�c visualization, and geographic information systems. Such data can be visualized
after interpolation by showing one or more contours or isosurfaces: the sets of points having a
speci�ed scalar value. For example, scalar data over the plane are used to model elevation in
the landscape, and a contour is just an isoline of elevation. In atmospheric pressure modelling,
a contour is a surface in the atmosphere where the air pressure is constant, an isobar. In
medical imaging, isosurfaces are used to show reconstructed scans of the brain or parts of the
body. The scalar data can be seen as a sample of some real-valued function, which is called
a terrain or elevation model in GIS, and a scalar �eld in imaging.

A real-valued function over 2D or 3D can be represented in a computer using a 2D or
3D mesh, which can be regular (all cells have the same size and shape) or irregular. A

�The research of the second and third authors was partially supported by the ESPRIT IV LTR Project
No. 21957 (CGAL). The research of the �rst, fourth and �fth authors was partially supported by AFOSR
grant F-49620-97-1-0278 and ONR grant N00014-97-1-0370. An extended abstract of this paper appeared at
the 13th ACM Symp. on Computational Geometry, 1997.

yDepartment of Computer Science, University of Texas, Austin, TX 78712, U.S.A.
zDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The Netherlands.
xLawrence Livermore National Lab, P.O. Box 808, L-561, Livermore, CA 94550, U.S.A.

1

terrain (mountain landscape) in GIS is commonly represented by regular square grid or an
irregular triangulation. The elements of the grid, or vertices of the triangulation, have a scalar
function value associated to them. The function value of non-vertex points in the 2D mesh
can be obtained by interpolation. An easy form of interpolation for irregular triangulations
is linear interpolation over each triangle. The resulting model is known as the TIN model for
terrains (Triangulated Irregular Network) in GIS. In computational geometry, it is known as
a polyhedral terrain. More on interpolation of spatial data and references to the literature
can be found in the book by Watson [23].

One can expect that the combinatorial complexity of the contours with a single function
value in a mesh with n elements is roughly proportional to

p
n in the 2D case and to n2=3

in the 3D case [14]. Therefore, it is worthwhile to have a search structure to �nd the mesh
elements through which the contours pass. This will be more e�cient than retrieving the
contours of a single function value by inspecting all mesh elements.

There are basically two approaches to �nd the contours more e�ciently. Firstly, one could
store the 2D or 3D domain of the mesh in a hierarchical structure and associate the minimum
and maximum occurring scalar values at the subdomains to prune the search. For example,
octrees have been used this way for regular 3D meshes [24].

The second approach is to store the scalar range, also called span, of each of the mesh
elements in a search structure. Kd-trees [14], segment trees [4], and interval trees [5, 22] have
been suggested as the search structure, leading to a contour retrieval time of O(

p
n + k) or

O(logn + k), where n is the number of mesh elements and k is the size of the output. The
latter bound is the optimal query time [3]. A problem with this approach is that the search
structure can be a serious storage overhead, even though an interval tree needs only linear
storage. One doesn't want to store a tree with a few hundred million intervals that would
arise from regular 3D meshes. It is possible to reduce the storage requirements of the search
structures by observing that a whole contour can be traced directly in the mesh if one mesh
element through which the contour passes is known. Such a starting element of the mesh
is also called a seed. Instead of storing the scalar range of all mesh elements, we need only
store the scalar range of the seeds as intervals in the tree, and a pointer into the mesh. Of
course, the seed set must be such that every possible contour of the function passes through
at least one seed. Otherwise, contours could be missed. There are a few papers that take
this approach [4, 12, 22]. The tracing algorithms to extract a contour from a given seed have
been developed before, and they require time linear in the size of the output [2, 11, 12].

The objective of this paper is to present new methods for seed set computation. Of a
seed set, we require that any possible contour in the mesh pass through at least one seed.
Otherwise we could miss a contour. To construct such a small size seed set, we use a variation
of the contour tree, a tree that captures the contour topology of the function represented by
the mesh. It has been used before in image processing and GIS research [8, 9, 13, 19, 20].
Another name in use is the topographic change tree, and it is related to the Reeb graph used
in Morse Theory [16, 17, 18, 20]. It can be computed in O(n logn) time for functions over
2D [7].

This paper includes the following results.

� We give a new, simple algorithm that constructs the contour tree. For 2D meshes with
n elements, it runs in O(n logn) time like a previous algorithm [7], but the new method
is much simpler and needs less additional storage. For meshes with n faces in d-space,
it runs in O(n2) time. In typical cases, less than linear temporary storage is needed

2

during the construction, which is important in practice. Also, the higher-dimensional
algorithm requires subquadratic time in typical cases.

� We show that
(n logn) is a lower bound for the construction of the contour tree.

� We show that the contour tree is the appropriate structure to use when selecting seed
sets. We give an O(n2 logn) time time algorithm for minimum size seed sets by using
minimum cost ow in a DAG [1].

� In practice one would like a close to linear time algorithm when computing seed sets.
We give a simple approximation algorithm that requires O(n log2 n) time and linear
storage after construction of the contour tree. It gives at most twice as many seeds as
the minimum size seed set.

� The approximation algorithm has been implemented, and we supply test results of
various kind.

Previous methods to �nd small size seed sets didn't give any guarantee on their size
[4, 12, 22]. Recently, Tarasov and Vyalyi [21] extended our contour tree construction algorithm
and obtained an O(n logn) time algorithm for 3D. Their algorithm consists of a preprocessing
step with two sweeps, after which our algorithm is used. They use our 3D algorithm but with
the idea of the 2D algorithm to obtain the e�ciency.

2 Preliminaries on scalar functions and the contour tree

In this section we provide preliminary backgroud and de�nitions of terms used in the following.
On a continuous function F from d-space to the reals, the criticalities can be identi�ed.
These are the local maxima, the local minima, and the saddles (or passes). If we consider
all contours of a speci�ed function value, we have a collection of lower-dimensional regions in
d-space (typically, (d� 1)-dimensional surfaces of arbitrary topology). If we let the function
value take on the values from +1 to �1, a number of things may happen to the contours.
Contour shapes deform continuously, with changes in topology only when a criticality is met
(i.e., its function value is passed). A new contour component starts to form whenever the
function value is equivalent to a locally maximal value of F . An existing contour component
disappears whenever the function value is equivalent to a locally minimal value.

At saddle points, various di�erent things can happen. It may be that two (or more)
contour components adjoin, or one contour component splits into two (or more) components,
or that a contour component gets a di�erent topological structure (e.g., from a sphere to a
torus in 3D). The changes that can occur have been documented well in texts on Morse theory
or di�erential topology [10, 15]. They can be described by a structure called the contour tree,
which we describe shortly.

As an example, consider a function modelled by a 2D triangular mesh with linear inter-
polation and consider how the contour tree relates to such meshes. For simplicity, we assume
that all vertices have a di�erent function value. If we draw the contours of all vertices of
the mesh, then we get a subdivision of the 2D domain into regions. All saddle points, local
minima and maxima must be vertices of the mesh in our setting. The contour through a local
mimimum or maximum is simply the point itself. One can show that every region between
contours is bounded by exactly two contours [7]. We let every contour in this subdivision

3

15

18

13

19

8

16 4
14

20

5 11

10121721

21 20
19

18
17

15

13

45

8

10

Figure 1: 2D triangular mesh with the contours of the saddles, and the contour tree.

correspond to a node in a graph, and two nodes are connected if there is a region bounded
by their corresponding contours. This graph is a tree, which is easy to show [7, 22], and it is
called the contour tree. All nodes in the tree have degree 1 (corresponding to local extrema),
degree 2 (normal vertices), or at least 3 (saddles). In other words, every contour of a saddle
vertex splits the domain into at least three regions. For each vertex in the triangulation, one
can test locally whether it is a saddle. This is the case if and only if it has neighboring vertices
around it that are higher, lower, higher, and lower, in cyclic order around it. If one would
take the approach outlined above to construct the contour tree,
(n2) time may be necessary
in the worst case, because the total combinatorial complexity of all contours through saddles
may be quadratic. An O(n logn) time divide-and-conquer algorithm exists, however [7].

In a general framework, we de�ne the contour tree without assumptions on the type of
mesh, interpolant, and dimension of the space over which function F is de�ned. The input
data is assumed to be:

� a mesh M of size n embedded in IRd;

� a continuous real-valued function F de�ned over all cells of M .

A contour is de�ned to be a maximal connected piece of IRd where the function value is
the same. Usually, a contour is a (d � 1)-dimensional hypersurface, but it can also be lower
dimensional or d-dimensional. We de�ne the contour tree T as follows.

� Take each contour that contains a criticality.

� These contours correspond to the supernodes of T (the tree will be extended later with
additional nodes, hence we use the term supernodes here). Each supernode is labeled
with the function value of its contour.

� For each region bounded by two contours, we add a superarc between the corresponding
supernodes in T .

The contour tree is well de�ned, because each region is bounded by two and only two contours
which correspond to supernodes. In fact, it is easy to see that the contour tree is a special case
of the more general Reeb graph in the (d + 1)-dimensional space obtained from the domain
(the mesh) extended with the function image space [16, 17, 18, 20]. Furthermore, one can

4

show that the contour tree is indeed a tree: the proof for the two-dimensional case given in
[7] can easily be extended to d dimensions.

For 2D meshes, all criticalities correspond to supernodes of degree 1, or degree 3 or higher.
For higher-dimensional meshes there are also criticalities that correspond to a supernode of
degree 2. This occurs for instance in 3D when the genus of a surface changes, for instance
when the surface of a ball changes topologically to a torus (Figure 2(b)).

Superarcs are directed from higher scalar values to lower scalar values. Thus, supernodes
corresponding to the local maxima are the sources and the supernodes corresponding to the
local minima are the sinks.

To be able to compute the contour tree, we make the following assumptions:

� Inside any face of any dimension of M , all criticalities and their function values can be
determined.

� Inside any face of any dimension of M , the range (min;max) of the function values
taken inside the face can be determined.

� Inside any face of any dimension of M , the (piece of) contour of any value in that face
can be determined.

We assume that in facets and edges of 2D meshes, the items listed above can be computed
in O(1) time. For vertices, we assume that the �rst item takes time linear in its degree.
Similarly, in 3D meshes we assume that both items take O(1) to compute in cells and on
facets, and time linear in the degree on edges and at vertices.

In d-dimensional space, a saddle point p is a point such that for any su�ciently small
hypersphere around p, the contour of p's value intersects the surface of the hypersphere in
at least two separate connected components. Possible criticalities in the 3-dimensional case

(a) (b) (c)small sphere

of a saddle

Figure 2: Citicalities in 3D.

are shown in Figure 2. When sweeping the function value from 1 to �1, they correspond
to (a) two contours merging or splitting, but not containing the other, (b) an increment or
decrement of the genus of one contour surface, and (c) two contours merging or splitting,
and one containing the other. More cases can occur when a criticality causes several of these
changes at once, or when the contour ends at the boundary of the mesh.

3 Contour tree algorithms

In this section we assume for simplicity that the mesh M is a simplicial decomposition with
n cells, and linear interpolation is used. As a consequence, all critical points are vertices
of the mesh M . Instead of computing the contour tree as de�ned in the previous section,

5

we compute an extension that includes nodes for the contours of all vertices of M , also the
non-critical ones. So supernodes correspond to contours of critical vertices and regular nodes
correspond to contours of other vertices. Each superarc is now a sequence of arcs and nodes,
starting and ending at a supernode. The algorithm we'll describe next can easily be adapted
to determine the contour tree with only the supernodes. But we'll need this extended contour
tree for seed selection in the next section. From now on, we call the contour tree with nodes
for the contours of all vertices the contour tree T .

The supernodes of T that have in-degree 1 and out-degree greater than 1 are called bifurca-
tions, and the supernodes with in-degree greater than 1 and out-degree 1 are called junctions.
All normal nodes have in-degree 1 and out-degree 1. We'll assume that all bifurcations and
junctions have degree exactly 3, that is, out-degree 2 for bifurcations and in-degree 2 for
junctions. This assumption can be removed; one can represent all supernodes with higher
degrees as clusters of supernodes with degree 3. For example, a supernode with in-degree 2
and out-degree 2 can be treated as a junction and a bifurcation, with a directed arc from the
junction to the bifurcation. The assumption that all junctions and bifurcations have degree 3
facilitates the following descriptions considerably.

3.1 The general approach

To construct the contour tree T for a given mesh in d-space, we let the function value take
on the values from +1 to �1 and we keep track of the contours for these values. In other
words, we sweep the scalar value. For 2D meshes, one can image sweeping a polyhedral terrain
embedded in 3D and moving downward a horizontal plane. The sweep stops at certain event
points: the vertices of the mesh. During the sweep, we keep track of the contours in the mesh
at the value of the sweep function, and the set of cells of the mesh that cross these contours.
The cells that contain a point with value equivalent to the present function value are called
active. The tree T under construction during the sweep will be growing at the bottom at
several places simultaneously, see Figure 3. Each part of T that is still growing corresponds

15

18

13

19

8

16 4
14

20

5 11

10121721

active cells

regions already swept

21 20
19

18
17

pointers from active cells
to corresponding contour
component (superarc)

16

Figure 3: Situation of the sweep of a 2D mesh when the function value is 16.

to a unique contour at the current sweep value. We group the cells into contours by storing

6

a pointer at each active cell in the mesh to the corresponding superarc in T . The contours
can only change structurally at the event points, and the possible changes are the following:

� At a local maximum of the mesh (more correctly: of the function), a new contour
appears. This is reected in T by creating a new supernode and a new arc incident to
it. This arc is also the start of a new superarc, which will be represented. Each cell
incident to the maximum becomes active, and we set their pointer to the new superarc
of T . At this stage of the algorithm, the new superarc has no lower node attached to it
yet.

� At a local minimum of the mesh, a contour disappears; a new supernode of T is created,
and the arc corresponding to the disappearing contour at the current value of the sweep
is attached to the new supernode. It is also the end of a superarc. The cells of the mesh
incident to the local minimum are no longer active.

� At a non-critical vertex of the mesh, a new node of T is created, the arc corresponding
to the contour containing the vertex is made incident to the node, and a new arc incident
to the node is created. There is no new superarc. Some cells incident to the vertex stop
being active, while others start being active. The pointers of the latter cells are set to
the current superarc of the contour. For the cells that remain active, nothing changes:
their pointer keeps pointing to the same superarc.

� At a saddle of the mesh, there is some change in topology in the collection of contours.
It may be that two or more contours merge into one, one contour splits into two or
more, or one contour changes its topological structure. A combination of these is also
possible in general. The �rst thing to do is to determine what type of saddle we are
dealing with. This can be decided by traversing the whole contour on which the saddle
lies.

If two contours merge, a new supernode (junction) is created in T for the saddle, and
the superarcs corresponding to the two merging contours are made incident to this
supernode. Furthermore, a new arc and superarc are created for the contour that
results from the merge. The new arc is attached to the new supernode. All cells that
are active in the contour after the merge set their pointer to the new superarc in T .
If a contour splits, then similar actions are taken. If the saddle is because of a change
in topology of one single contour, a new supernode is made for one existing superarc,
and a new arc and superarc are created in T . All active cells of the contour set their
pointers to the new superarc.

For the sweep algorithm, we need an event queue and a status structure. The event queue
is implemented with a standard heap structure so insertions and extractions take logarithmic
time per operation. The status structure is implicitly present in the mesh with the additional
pointers from the cells to the superarcs in the contour tree.

Theorem 1 Let M be a mesh in d-space with n faces in total, representing a continuous,

piecewise linear function over the mesh elements. The contour tree of M can be constructed

in O(n2) time and O(n) storage.

Proof: The algorithm clearly takes time O(n logn) for all heap operations. If the mesh is
given in an adjacency structure, then the traversal of any contour takes time linear in the

7

combinatorial complexity of the contour. Any saddle of the function is a vertex, and any
contour can pass through any mesh cell only once. Therefore, the total time for traversal is
O(n2) in the worst case, and the same amount of time is needed for setting the pointers of
the active cells. �

The quadratic running time shown above is somewhat pessimistic, since it applies only
when there is a linear number of saddles for which the contour through them has linear
complexity. We can also state that the running time as O(n logn+

Pm
i=1 jCij), where the m

saddles lie on contours C1; : : : ; Cm with complexities jC1j; : : : ; jCmj.
We claimed that the additional storage of the algorithm could be made sublinear. With

additional storage we mean the storage besides the mesh (input) and the contour tree (output),
and we show that O([no. maxima] + max1�i�m jCij) extra storage su�ces. We must reduce
the storage rquirements of both the event queue and the status structure. additional storage
required can be made linear in the maximum number of active cells and the number of local
maxima. So this is O([no. maxima] + max1�i�m jCij) additional storage.

Regarding the event queue, we initialize it with the values of the local maxima only.
During the sweep, we'll insert all vertices incident to active cells, as soon as the cell becomes
active. This guarantees that the event queue uses no more additional storage than claimed
above. Considering the status structure, we cannot a�ord using additional pointers with every
cell of the mesh to superarcs any more. However, we need these pointers only when the cell
is active. We'll make a copy of the active part of the mesh, and in this copy, we may use
the additional pointers. When a cell becomes inactive again, we delete it from the copy. The
asymptotic running time of the algorithm is not inuenced by these changes.

3.2 The two-dimensional case

In the 2D case, the time bound can be improved to O(n logn) time in the worst case by a
few simple adaptations. First, a crucial observation: for 2D meshes representing continuous
functions, all saddles correspond to nodes of degree at least 3 in T . Hence, at any saddle two
or more contours merge, or one contour splits into at least two contours, or both. This is
di�erent from the situation in 3D, where a saddle can cause a change in genus of a contour,
without causing a change in connectedness. The main idea is to implement a merge in time
linear in the complexity of the smaller of the two contours, and similarly, to implement a
split in time linear in the complexity of the smaller resulting contour.

In the structure, each active cell has a pointer to a name of a contour, and the name has
a pointer to the corresponding superarc in T . We consider the active cells and names as a
union-�nd like structure that allows the following operations:

� Merge: given two contours about to merge, combine them into a single one by renaming
the active cells to have a common name,

� Split: given one contour about to split, split it into two separate contours by renaming
the active cells for one of the contours in creation to a new name.

� Find: given one active cell, report the name of the contour it is in.

Like in the simplest union-�nd structure, a Find takes O(1) time since we have a pointer
to the name explicitly. A Merge is best implemented by changing the name of the cells in

8

smaller contour to the name of the larger contour. Let's say that contours Ci and Cj are
about to merge. Determining which of them is the smallest takes O(min(jCij; jCj j)) time if
we traverse both contours simultaneously. We alternatingly take one \step" in Ci and one
\step" in Cj. After a number of steps twice the combinatorial complexity of the smaller
contour, we have traversed the whole smaller contour. This technique is sometimes called
tandem search. To rename for a Merge, we traverse this smaller contour again and rename
the cells in it, again taking O(min(jCij; jCj j)) time.

The Split operation is analogous: if a contour Ck splits into Ci and Cj , the name of Ck

is preserved for the larger of Ci and Cj, and by tandem search starting at the saddle in two
opposite directions we �nd out which of Ci and Cj will be the smaller one. This will take
O(min(jCij; jCj j)) time. Note that we cannot keep track of the size in an integer for each
contour instead of doing tandem search, because a Split cannot be supported e�ciently.

Theorem 2 LetM be a mesh in 2D with n faces in total, representing a continuous, piecewise

linear scalar function. The contour tree of this function can be computed in O(n logn) time

and linear storage.

Proof: We can distinguish the following operations and their involved costs:

� Determining for each vertex of what type it is (min, max, saddle, normal) takes O(n)
in total.

� The operations on the event queue take O(n logn) in total.

� Creating the nodes and arcs of T , and setting the incidence relationships takes O(n)
time in total.

� When a cell becomes active for the �rst time, the name of the contour it belongs to is
stored with it; this can be done in O(1) time, and since there are O(n) such events, it
takes O(n) time in total.

� At the saddles of the mesh, contours merge or split. Updating the names of the contours
stored with the cells takes O(min(jCij; jCj j)) time, where Ci and Cj are the contours
merging into one, or resulting from a split, respectively. It remains to show that sum-
ming these costs over all saddles yields a total of O(n logn) time.

We prove the bound on the summed cost for renaming by transforming T in two steps
into another tree T 0 for which the construction is at least as time-expensive as for T , and
showing that the cost at the saddles in T 0 are O(n logn) in total.

Consider the cells to be additional segments in T as follows. Any cell becomes active at a
vertex and stops being active at another vertex. These vertices are nodes in T , and the cell is
represented by a segment connecting these nodes. Note that any segment connects two nodes
one of which is ancestor of the other. A segment can be seen as a shortcut of a directed path
in T , where it may pass over several nodes and supernodes.

The number of cells involved in a merge or split at a saddle is equivalent to the number
segments that pass over the corresponding supernode in T ; the size of the smallest set at this
node determines the costs for processing the saddle (since we do tandem search).

The �rst transformation step is to stretch all segments (see Figure 4); we simply assume
that a segment starts at some source node that is an ancestor of the original start node, and

9

Figure 4: Stretching two segments (dotted) in T .

ends at a sink that is a descendant of the original end node. It is easy to see that the number
of segments passing any saddle can only increase by the stretch.

The second transformation step is to repeatedly swap superarcs, until no supernode arising
from a split (bifurcation) is an ancestor of a supernode arising from a merge (junction).
Swapping a superarc s from a bifurcation v to a junction u is de�ned as follows (see Figure 5):

a b c

b+ c

a+ b

a
b+ c

a+ b c

a+ b+ c
s0

s s00

u

v

Figure 5: Swapping a superarc.

let s0 6= s be the superarc that has u as its lower supernode, and let s00 6= s be the superarc
that has v as its upper supernode. The number of segments passing the superarcs s0, s and
s00 is denoted by a, b and c, respectively, as is illustrated in Figure 5. These numbers are
well-de�ned, since after stretching, any segment passes a superarc either completely or not at
all. Now shift s0 upward along s, such that v becomes its new lower supernode, and shift s00

downward along s, such that u becomes its new upper supernode. Note that all edges passing
s0 and all edges passing s00 before the swap now also pass s.

Before the swap, the time spent in the merge at u and the split at v, is O(min(a; b) +
min(b; c)) where a; b; c denote the number of segments passing these superarcs. After the
swap, this becomes O(min(a; b + c) + min(a + b; c)), which is at least as much. No segment
ends, because all of them were stretched.

It can easily be veri�ed that the T 0, with no bifurcation as an ancestor of a junction, can
be derived from any tree T by swaps of this type only.

Now, every segment can pass O(n) junctions and bifurcations, but no segment can be
more than O(logn) times in the smaller set. Each time it is in the smaller set, it will be
in a set of at least twice the size. Summing over the O(n) segments, this results in a total
of O(n logn) time for all renamings of cells. This argument is standard in the analysis of
union-�nd structures, for instance [6]. �

10

As we noted before, Tarasov and Vyalyi [21] recently succeeded in extending the ideas
above and obtain an O(n logn) time algorithm to construct the contour tree for 3D meshes.

The O(n logn) bounds for the contour tree construction are tight: Given a set S of
n numbers s1; : : : ; sn, we can construct in O(n) time a triangular mesh with n saddles at
heights s1; : : : ; sn, such that in the corresponding contour tree all the saddles lie in sorted
order along the path from the global minimum to the global maximum.

v1

v2

v3

w1

w2

w3

u1

u2

u3

fu1; : : : ; ung

c
wi above vi

v1; : : : ; vn

sorted

Figure 6: Unstructured mesh of which the contour tree contains the sorted sequence of the
input values. The contour through v1 is shown; we must have v2 < v1 < v3.

The mesh is constructed as follows (see Figure 6): We place n vertices v1; : : : ; vn equally
spaced on a circle C in the (x; y)-plane with radius 2 and center at a point c. Now we elevate
each vi such that its z-coordinate is si. These vertices will be the saddles in the terrain. Next,
we place n vertices w1; : : : ; wn at a circle C 0 with radius 3 and also centered at c, such that
each wi is collinear with c and vi. We elevate each wi to height max(S)+1; these vertices will
be the local maxima. At the center c of C and C 0, we place one vertex at height max(S) + 2:
the global maximum. Finally, we place a third set of vertices u1; : : : ; un at a circle C 00 with
radius 4 and centered at c, such that each vertex ui is radially interleaved with the vertices vi
and vi+1. The height of all these vertices ui is min(S)� 1; all these vertices lie on the global
minimum. Edges in the terrain are as shown in Figure 6, and the corresponding contour tree
is shown in the same Figure.

4 Seed set selection

A seed set is a subset of the cells of the mesh. Such a set serves as a set of starting points
from which contours can be traced, for instance for visualization. A seed set is complete if
every possible contour passes through at least one seed. Since we assume linear interpolation
over the cells, the function values occurring in one cell is exactly the range between the lowest

11

and the highest valued vertices. Any cell is represented as a segment between two nodes of
the contour tree T , as in the proof of Theorem 2. Segments can only connect two nodes of
which one in an ancestor of the other. Like the arcs of T , the segments are are directed from
the higher to the lower values. So each segment is in fact a shortcut of a directed path in
T . We say that the segment passes, or covers, these arcs of T . Let G denote the directed
acyclic graph consisting of the contour tree extended with the segments of all mesh elements.
The small seed set problem now is the following graph problem: �nd a small subset of the
segments such that every arc of T is passed by some segment of the subset.

In this section we give two methods to obtain complete and provably small seed sets.
The �rst gives a seed set of minimum size possible, but it requires O(n2 logn) time for its
computations. The second method requires O(n log2 n) time and linear storage (given the
contour tree and the segments), and gives a seed set at most twice the size of the minimum
possible.

4.1 Minimum size seed sets in polynomial time

We can �nd a minimum size seed set in polynomial time by reducing the seed set selection
problem to a minimum cost ow problem. The ow network G0 derived from G is de�ned as
follows: we augment G with two additional nodes, a source � and a sink �0. The source � is
connected to all maxima and bifurcations by additional segments, and the sink is connected to
all minima and junctions with additional segments. This is illustrated in Figure 7, left. In the
same �gure (right) a shorthand for the same ow network has been drawn: for readability, �
and �0 have been left out, and the additional segments incident to � and �0 have been replaced
by \+" and \�" signs, respectively. From now on we will use this shorthand notation in the
�gures.

Costs and capacities for the segments and arcs are assigned as follows: nodes in G are
ordered on the height of the corresponding vertices in the mesh, and segments and arcs are
considered to be directed: segments (dotted) go downward from higher to lower nodes, arcs
(solid) go upward from lower to higher nodes. The source � is considered to be the highest
node, and �0 the lowest. Segments in G have capacity 1 and cost 1, and arcs have capacity
1 and cost 0. The additional segments in G0 incident to � and �0 also have capacity 1, but
zero cost.

From graph theory we have the following lemma:

Lemma 1 For any tree, the number of maxima plus the number of bifurcations equals the

number of minima plus the number of junctions.

Hence, the number of pluses in G balances the number of minuses. Let this number be f .
Consider the following two related problems, the ow problem (given the ow network G0

as de�ned above and a value f , �nd a ow of size f from � to �0), and the minimum cost ow

problem (�nd such a ow f with minimum cost). For both problems, a solution consists of an
assignment of ow for each segment and arc in G0. For such a solution, let the corresponding
segment set S be the set of segments in G that have a non-zero ow assigned to them (the
additional segments in G0 from � to the maxima and bifurcations and from the minima and
junctions to �0 are not in S). Hence, the cost of an integral solution, where all ow values
are integer, equals the number of segments in S. We will show that for any integral solution
to the minimum cost ow problem on G0, the corresponding segment set S is a minimum size
seed set for G.

12

�

+ +

+

+

+

� �

�

�

�0

�

Figure 7: Flow network G0 derived from G, and shorthand for G0.

Lemma 2 For any integral solution to the ow problem on G0, the corresponding segment set

S is a seed set for G.

Proof: Suppose that there is a a ow of size f from � to �0 in G0 such that the correspond-
ing segment set S is not a seed set for G. In other words: there is an arc a in G0 such that
none of the segments in G0 covering a has a non-zero ow assigned to it. We claim that the
number of pluses in the subtree incident to and `above' the highest incident node of a exceeds
the number of minuses by one, and, analogously, that the number of minuses in the subtree
incident to and `below' the lowest incident node of a exceeds the number of pluses by one.
This claim can easily be veri�ed by lemma 1. Since there is no downward ow via a or any
of its covering segments, the ow from � to �0 can be at most f � 1. �

A seed set is minimal if the removal of any segment yields a set that is not a seed set. A
minimum seed set is a seed set of smallest size.

Lemma 3 For any minimal seed set S for G, there is a solution to the ow problem on G0

such that the corresponding segment set S for that solution equals S.

Proof: We show this by induction on n, the number of nodes of G. It is straightforward
to verify that the lemma holds for n � 3. For n > 3, we observe that for any minimal seed
set S there is at least one arc a in G that is covered by precisely one segment s 2 S (and
possibly by some segments in G that are not in S); otherwise, removing an arbitrary segment
from S would yield a smaller seed set, contradicting the minimality of S. If this arc a is not
incident to a leaf node of G, then we can split G into two subgraphs G1 and G2 by cutting a

and the segment s covering it. This introduces a new minimum for one of the subgraphs, and
a new maximum for the other (Figure 8). Let S1 be the set of segments from S that cover
G1, with s 2 S replaced by the appropriate segment resulting from cutting s into two parts,
and de�ne S2 in a similar way. S1 and S2 are minimal seeds sets for G1 and G2, respectively,

13

and both subgraphs have fewer than n nodes. Hence, by induction, there is a solution for the
ow problem on G0

1 such that the corresponding segment set S1 for that solution equals S1,
and there is a solution for the ow problem on G0

2 such that the corresponding segment set
S2 for that solution equals S2. Note that the sum of the sizes of the ows for both subgraphs
is f + 1, since we added a plus and a minus in the splitting process. Given the solutions to
the ow problems for both subgraphs, it is straightforward to contruct a ow that solves the
ow problem for G: simply remove the plus and minus that were added in the split, and undo
the cutting of a and s.

+

�
G

G1

G2

s

Figure 8: Splitting G at an internal arc.

This only works if a is not incident to a leaf node of G, otherwise the split operation results
in two subtrees, one with 2 nodes and one with n nodes, and we cannot apply induction. As
noted before, there is at least one arc a that is covered by precisely one segment s 2 S, and
by zero or more segments that are in G but not in S. So suppose that all arcs covered by
only one segment are incident to a minimum or maximum. Let a be one of those arcs, and
assume that a is incident to a maximum � of G (the case that a is incident to a minimum is
analogous). Let the other endpoint of s be �. As stated before, we can not apply induction
directly. Instead, we tranform G by shortening some of its edges, such that S remains a
minimal seed set and G can be split into two subgraphs G1 and G2 with with fewer than n

nodes and with corresponding minimal seed sets S1 and S2. By induction, there is a ow of
size jS1j for G0

1 and a ow of size jS2j for G0
2. Because the simplicity of the reduction from G

to G1 and G2, it is straightforward to construct a ow for G0 corresponding to S, given the
ows for G0

1 and G0
2.

We distinguish four cases:

� � and � lie on the same superarc of G (see Figure 9). In that case, we transform G by
retracting all segments that pass � (i.e., � is made their highest incident node), and by
removing s and all arcs between � and �. Now S n fsg is a minimal seed set for the
resulting graph G1, which has fewer than n nodes, so now we can apply induction. In
this case, G2 is the empty graph. It is straightforward to construct a solution to the
ow problem for G0, given a solution to the ow problem for G0

1.

� � is not a minimum of G for which s is the only segment in S incident to it, and the

14

G
G1

� �

� � �

+

�

+

�

+

�

s s

Figure 9: Retracting segments to the lower endpoint � of s.

�rst supernode on the path from � to � is a bifurcation (see Figure 10). The segments
passing that bifurcation that go into the same subtree as s remain as they are; the
ones that go into the other subtree are retracted to the bifurcation. G is split into two
subgraphs G1 and G2 by cutting o� the latter subtree. Si and Sj are minimal seed sets
for the two resulting subgraphs, both of which have fewer than n nodes. Again we can
apply induction, and �nd a solution to the ow problem for G0, given the solutions for
G0
1 and G0

2.

G

G2

G1

� � �

� � �

s s s

+

+

+

+

+

+

Figure 10: Retracting segments to a bifurcation.

� � is not a minimum of G for which s is the only segment in S incident to it, and the
�rst supernode on the path from � to � is a junction (see Figure 11). This is almost
the same as the previous case; the transformations are shown in the �gure. As before,
induction can be applied to both subtrees, and a solutions for the ow problem for G0

can easily be derived from the solutions for the subproblems.

� � is a minimum of G for which s is the only segment in S incident to it. The �rst
supernode on the path from � to � can be a junction or a bifurcation, and the same
holds for the last supernode on this path, which gives us four subcases. Each subcase is
solved by a combination of the previous two cases; one example is shown in Figure 12.

�

Combining Lemmas 2 and 3 gives the following result:

Theorem 3 The minimum seed set selection problem for G can be solved by applying a min-

imum cost ow algorithm to G0 that gives an integral solution. Such a solution is guaranteed

to exist, and the corresponding segment set for that solution is an optimal seed set for G.

15

G

G1

G2

+

�

+

�
s s

s
� �

�

�

+

�

Figure 11: Retracting segments to a junction.

+

�

�

+

+

�

G

G1

G2

s

s

�

�

�

�

Figure 12: Combining the previous splits.

The minimum cost ow problem can be solved with a successive shortest path algorithm[1]
(pp. 320{324). Starting with a zero ow, this algorithm determines at every step the shortest
path � from � to �0, where the length of an arc or segment is derived from its cost. The arc
or segment with the lowest capacity c on this shortest path � determines the ow that is sent
from � to �0 along �. Then the residual network is calculated (costs and capacities along �

are updated), and the algorithm iterates.
In our case, c is always 1 and the algorithm terminates after f iterations. If we use Dijk-

stra's algorithm to �nd the shortest path in each iteration, the algorithm runs in O(n2 logn)
time on our graph G0, and uses O(n) memory.

Corollary 1 An optimal seed set for G can be found in O(n2 logn) time, using O(n) memory.

4.2 E�cient approximation of small seed sets

The roughly quadratic time requirements for optimal seed sets makes it rather time consuming
in practical applications. We therefore developed an approximation algorithm to compute a
seed set that, after constructing the contour tree T , uses linear storage and O(n log2 n) time
in any dimension. It yields a seed set of size no more than twice the size of the smallest seed
set.

16

As before we will describe the algorithm in the simpli�ed situation that each critical vertex
of the mesh is either a minimum, maximum, junction, or bifurcation. In the case of a junction
or bifurcation, we assume that the degree is exactly three. These simplifying assumptions
make it easier the explain the algorithm, but they can be removed as before.

Our approximation algorithm is a simple greedy method that operates quite similarly to
the contour tree construction algorithm. We �rst construct the contour tree T as before.
We store with each node of T two integers that will help determine fast if any two nodes of
T have an ancestor/descendant relation. The two integers are assigned as follows. Give T
some �xed, left-to-right order of the children and parents of each supernode. Then perform
a left-to-right topological sort to number all nodes. Then perform a right-to-left topological
sort to give each node a second number. The numbers are such that one node u is an ancestor
of another node v if and only if the �rst number and the second number of u is smaller than
the corresponding numbers of v (see Figure 13). This preprocessing of the contour tree takes

(1,5)

(2,6)

(6,7)

(3,1)

(4,2)

(5,3)

(11,4)

(7,8)

(8,10)

(9,11) (10,9)

Figure 13: The numbering of T .

O(n) time, and afterwards, we can determine in O(1) time for any two nodes whether one is
a descendant or ancestor of the other.

Next we add the segments, one for each cell of the mesh, to the contour tree T to form
the graph G. Then we sweep again, now in the mesh and in the graph G simultaneously. At
each event point of the sweep algorithm (the nodes of T), we test whether the arc incident to
and below the current node is covered by at least one of the already selected seeds. If this is
not the case, then we select a new seed. The new seed will always be the greedy choice, that
is, the segment (or cell) for which the function value of the lower endpoint is minimal. To
determine if a new seed must be chosen, and to be able to make a greedy choice, a few data
structures are needed that maintain the currently chosen seed set and the candidate seeds
that may be chosen next. As before, we call the cells that contain the current sweep value
active. The segments and seeds of currently active cells are also called active. Similarly, the
superarcs for which the higher supernode has been passed, but the lower one not yet, are
called active. We maintain the following sets during the sweep:

� A set S of currently chosen seeds.

Initially, this set is empty; at the end of the algorithm, S contains a complete set of
seeds.

� For an active superarc a, let Ŝa be the set of active seeds (already chosen) that cover a
or part of it. We store a subset Sa � Ŝa that only contains the \deepest going" seeds
of Ŝa. More precisely, for all s; s0 2 Ŝa, if s is an ancestor of s0, then s is not in Sa.

17

� For each active superarc a, a set Ĉa of active candidate seeds that cover a or part of it.
We store a subset Ca � Ĉa that only contains the deepest going candidates of Ĉa, and
only if they go deeper than seeds of Sa. More precisely, for all c; c0 2 Ĉa and s 2 Sa, if
c is an ancestor of c0 or s, then c is not in Ca.

The algorithm to be described needs the chosen seeds to be able to determine if the next
arc to be swept of superarc a is covered by some chosen seed. The subset Sa is exactly the
subset of nonredundant seeds of Ŝa. Similarly, the algorithm needs to maintain candidates
that can be chosen if the next arc to be swept is not covered. The set Ĉa contains the active
candidates, but the subset Ca contains only those candidates that could possibly be chosen.
We'll show next that Sa and Ca can simply be stored in balanced binary trees.

(2,16)

(5,12)

(6,10)

(9,3) (10,1)

(3,17)

v

(7,13)

5 10

5

10

15

(3,17)

(6,10)

(7,13)

(10,1)

5 10

5

10

15

(3,17)

(6,10)

(9,3)

(5,12)

(2,16)

Sa Ca

Figure 14: Just before the sweep reaches node v, the staircases of the active, chosen seeds in
Sa (dashed) and of the active candidates in Ca (dotted).

The sets Sa and Ca correspond to a set of points in the plane whose coordinates are the
two numbers assigned to the lower endpoints of the segments in Sa and Ca, see Figure 14.
Since there are no ancestor/predecessor relationships between the endpoints of the segments
in one set, none of the corresponding points lies to the right and above (or to the left and
below) any other point in the same set; the points form a so-called staircase. This means
that Sa and Ca can each be maintained as a binary search tree, ordered on the �rst number
assigned to the lower endpoints of the segments alone. An ancestor query with a point (x; y)
asks if the set contains a point (i; j) for which x � i and y � j. Answering such a query is
done by �nding the point with maximum �rst number � x, and testing if this point has its
second number � y. Similarly, we can determine easily whether a query point (x; y) has both
numbers smaller than some point in the tree|a descendant query. Since the sorted order on
the �rst number su�ces, queries, insertions, and deletions in Sa and Ca can be done in time
logarithmic in the size of the set.

We also maintain a heap on the set Ca, or rather, on the lower endpoints of the candidates
in Ca, with cross-pointers between corresponding nodes in the heap and the binary tree for
Ca. The heap allows us to extract e�ciently the candidate segment with the lowest lower
endpoint from Ca.

We will now describe the sweep algorithm that computes a small seed set, and analyze
the total running time. We initialize the global set S of seeds to be empty. Then we sweep
the nodes in T from high to low values. The following events can occur:

18

� Source: Initialize empty sets Sa and Ca for the superarc a starting at this node. This
takes O(1) time. Next, proceed as if the current node were a normal node.

� Normal node v: First, update the set Ca of candidate seeds for the superarc a on which
the current node v lies. For each segment s that starts at v, we determine how it a�ects
the set Ca. Let u be the lower endpoint of segment s. Perform an ancestor query on
the tree storing Sa; if u is ancestor of the lower endpoint of any seed in Sa, we don't
need the segment as a candidate seed. In Figure 14, the queries are performed with
the segments that have lower endpoints at (3; 17) and (6; 10). Otherwise, perform an
ancestor query with u on Ca. If u is an ancestor of the lower endpoint of any of the
candidates in Ca, we also don't need the segment as a candidate. Otherwise, perform a
descendant query with u. If u is the descendant of the lower endpoint of some candidate
in Ca (there is at most one such candidate), then replace this candidate seed with the
segment s. If u has no ancestor or descendant relation, then the query segment becomes
a candidate seed; it is inserted in the binary tree and the heap for Ca. Note that we
never have to worry about candidate seeds no longer being active; they will be replaced
by newer candidates before this happens.

Next, test whether the arc of T starting at v is covered by any of the active seeds in
Sa. This is surprisingly easy: if jSaj > 1, the lower endpoints of the segments in Sa lie
in di�erent subtrees rooted at one or more bifurcations below the current node, since
there are no ancestor/descendant relations between the endpoints of the segments in Sa.
This means that the arc incident to and and below the current node is surely covered.
On the other hand, if jSaj = 1, we check in constant time whether the segment in Sa
ends at the current node. If that is the case, we have to remove the only segment from
Sa and choose a new seed, otherwise we are done. Choosing a new seed is also easy:
Extract the candidate with the lowest lower endpoint using the heap on Ca, and remove
this candidate from the binary tree on CA as well, using the cross-pointers between the
nodes in the heap and the binary tree. Next, insert this candidate as a seed in Sa and
in the global set of seeds S.

The total time needed for all queries, replacements, and insertions at node v is O(d logn),
where d is the degree of v in G.

� Sink: Remove the sets Sa and Ca.

� Junction: First, for the two incoming arcs a and b at the junction, we determine which
of the two values is smaller: jSaj+ jCaj or jSbj + jCbj. This takes O(1) time if we keep
track of the size of the sets. Suppose without loss of generality that the �rst of the two
sums is the smallest. Then, for each seed s in Sa, we do the following. Let u be the
lower endpoint of s. Perform an ancestor and descendant query on Sb with u. If u is
ancestor, we do nothing; if u is descendant of the lower endpoint of some s0 2 Sb, we
replace s0 by s in the tree on Sb. Otherwise, there are no ancestor/descendant relations
and we insert s in the tree on Sb. If s is stored in Sb, it may be that s renders at most
one of the candidates in Cb redundant: we perform a descendant query with u on Cb

to discover this, and if there is a candidate whose lower endpoint is ancestor of s, we
remove this candidate from Cb. The time needed for this step of the merge is O(k logn),
where k = min(jSaj+ jCaj; jSbj+ jCbj). The merged set of active seeds is denoted Sa;b.

Next, we do something similar for the two sets of candidate seeds. For each candidate

19

c in Ca, let u be the lower endpoint of c. Perform an ancestor query with u on the set
Sa;b to test if c still is a valid candidate. If u is ancestor of the lower endpoint of some
seed, then we discard c. Otherwise, we query Cb to see if u is an ancestor or descendant
of the lower endpoint of a candidate c0 in Cb. If u is the ancestor, we discard c; if u
is the descendant, we replace c0 by c. Otherwise, if there are no ancestor/descendant
relations and we insert c in Cb.

Finally, we proceed as if the current node were a normal node.

Note that we cannot independently insert the seeds of the smaller set of Sa and Sb in
the larger, and the candidates of the smaller set of Ca and Cb in the larger; we have
to compare the seeds in Sa with the candidates in Cb, and the seeds in Sb with the
candidates in Ca.

� Bifurcation: We have to split the set of active seeds Sa in two sets Sb and Sb0 , the sets
of active seeds for the left arc b and the right arc b0 below the bifurcation, respectively.
Note that the lower endpoint of any segment in Sb has a smaller �rst number assigned
in the left-to-right topological sort of T than the lower endpoint of any segment in Sb0 .
Also note that we can test in O(1) time in which subtree below the bifurcation a lower
endpoint of a segment in Sa lies, by comparing it with the highest nodes in the subtrees.
So, if we test the segments in Sa simultaneously from low to high and from high to low
values of their lower endpoints, we can determine in O(min(jSbj; jSb0 j)) time which of
the two resulting sets will be the smaller one. Once we know this, we can split the tree
for Sa into trees for Sb and Sb0 in O(min(jSbj; jSb0 j) log n) time, by extracting the seeds
that will go in the smaller set from Sa and inserting them in a new set. For the set Ca

of candidates, we do exactly the same to obtain the sets Cb and Cb0 .

Next, we process the current node twice as a normal node, once for the arc and the
segments that go into the left subtree of the current node, and once for the right subtree.

It is easy to verify that the total time needed to process all sources, sinks and normal
nodes is O(n logn); the time needed for the junctions and bifurcations can be analyzed much
the same way as in Section 3.2, where we analyzed the running time for the construction of
T for a 2D-mesh. In this case we get a bound of O(n log2 n), which is also a bound on the
overall running time.

At any stage of the sweep, the memory requirements are proportional to the size of the
binary trees of all active superarcs, which is O(n) worst-case.

Lemma 4 The approximation algorithm yields a seed set with at most b more seeds than an

optimum seed set, where b is the number of bifurcations.

Proof: First, consider a contour tree that only has maxima, junctions, and one single
minimum. Then a greedy approach as described �nds a smallest seed set, which is easy to
prove by a standard replacement argument: Let Sopt be an optimal seed set, let S be the
chosen seed set, and assume S 6= Sopt. Let s 2 Sopt � S be the segment that ends highest.
Let a be the highest arc of T such that s covers a but no other seed of Sopt does so. Such
an a must exist otherwise Sopt n fsg also covers all of T , contradicting the optimality of Sopt.
Since S and Sopt are the same for the subtree above a, the greedy algorithm makes its choice
only when it reaches the upper node of a. Suppose the greedy choice is s0 6= s. Then s0 has its
lower node on or below the lower node of s, since T doesn't have bifurcations. It follows that

20

fs0g [Sopt n fsg is also an optimal seed set, but one which has one more segment in common
with S. Also observe that a tree with only junctions is covered by at least as many segments

v v v0

s s

Figure 15: The way in which a branch is cut loose when segment s is the deepest one among
the four segments.

as any subtree of it, using the greedy strategy. Proof is the same as above.
Consider the greedy choice strategy, and at any bifurcation, consider the chosen segment

that starts at an ancestor and goes deepest in either of the subtrees. For every bifurcation
v, imagine cutting loose the branch of T starting at v that does not contain the deepest
choice. Cutting loose a branch means that one of the resulting subtrees gets a copy v0 of v as
a new source node of the branch, see Figure 15. This new source is called a fake source. Any
segment that starts at an ancestor of v and leads into the branch that was cut loose is cut
into two segments, one from the upper node to v and one from v0 to the lower node. After
imagining these actions performed for each bifurcation, a contour tree T with b bifurcations
has fallen apart into b+ 1 subtrees without any bifurcations.

segments possible

in S00

opt

Figure 16: A contour tree with 5 bifurcations broken up into 6 subtrees with 5 fake sources
in total. To the right, illustration of the proof that jSseparj � jSoptj+ b.

If all subtrees were solved separately by the greedy strategy, we get the optimum solution
for the separate subtrees. Let Ssepar be the set of segments that would be chosen this way,
from the set of all segments that appear in the subtrees. Let Sgreedy be the segments chosen
by the greedy algorithm described before, and let Sopt be a smallest solution. We'll show that
jSgreedyj � jSseparj and jSseparj � jSoptj + b, where b is the number of bifurcations of T (or,

21

similarly, the number of fake sources). We'll count any segment at its upper node.
To prove that jSseparj � jSoptj+b, consider one subtree T 0 with f fake sources in isolation.

Let S0
separ � xsepar be an optimal, greedy solution for T 0. Let S0

opt � Sopt be segments that
start at a node of T 0, and let S00

opt � Sopt be the segments that cover parts of T 0 but start at an
ancestor of a fake node of T 0. The optimal solution may contain many segments in S00

opt, but
all arcs of T 0 covered by them are also covered by at most f segments in S0

separ, namely, for
each fake source the deepest going segment from it (see Figure 16). Since segments were cut
when this subtree was cut loose, all segments in S00

opt can also be chosen|as segments starting
from fake sources|for S0

separ The above holds for each subtree, so we get jSseparj � jSoptj+ b

for the whole tree T .
To prove that jSgreedyj � jSseparj, again consider subtree T 0, and de�ne S0

greedy � Sgreedy as
the segments that start start in T 0, and let S00

greedy � Sgreedy be the segments that don't start
in T 0 but cover some arcs of T 0. We argue that S0

greedy � S0
separ. The segments from S00

greedy

can only make S0
greedy smaller, so we can assume that S00

greedy is empty. The greedy algorithm
may have chosen segments for Sgreedy that are greedy for T but not for T 0. This can occur
when the greedy choice in T goes outside T 0 at a bifurcation of T that has become a normal
node in T 0. However, by the choice which branch was cut loose, we know that Sgreedy must
also contain a segment that is the greedy choice in T 0. �

Theorem 4 Let M be a 2D mesh with n cells representing a real function. A seed set of size

at most twice the optimum can be determined in O(n log2 n) time and linear storage. For a

mesh in d-space, the running time is O(n2).

Proof: Note that a seed set must have at least as many seeds as there are sinks. Also
note that the number of bifurcations is exactly one smaller than the number of sinks. So the
approximation factor of two follows immediately from the lemma above. �

5 Test results

In this section we present empirical results for generation of seed sets within bounds of
optimality. Given in Table 5 results are collected from seven data sets from various domains,
both 2D and 3D. The data used for testing include:

� Heart: a 2D regular grid of MRI data from a human chest;

� Function: a smooth synthetic function sampled over a 2D domain;

� Bullet: a 3D regular grid from a structural dynamics simulation;

� HIPIP: a 3D regular grid of the wave function for the high potential iron protein;

� LAMP: a 3D regular grid of pressure from a climate simulation;

� LAMP 2d: a 2D slice of the 3D data which has been coarsened by an adaptive triangu-
lation method;

� Terrain: a 2D triangle mesh of a height �eld.

22

Data total # seeds storage time (s) # seeds by storage time (s)
cells method of [4] req of [4]

Structured data sets

Heart 256x256 5631 30651 32.68 12214 255 0.87

Function 64x64 80 664 1.23 230 63 0.15

Bullet 21x21x51 8 964 2.74 47 1000 0.30

HIPIP 64x64x64 529 8729 121.58 2212 3969 3.24

LAMP 3d 35x40x15 172 9267 6.82 576 1360 0.33

Simplicial data sets

LAMP 2d 2720 73 473 0.69 n/a n/a n/a

Terrain 95911 188 2078 13.67 n/a n/a n/a

Table 1: Test results and comparison with previous techniques.

Presented are the total number of cells in the mesh, in addition to seed extraction statistics
and comparisons to previously known e�cient seed set generation methods. The methods
presented here, shown to be within a factor of 2 of optimal, represent an improvement of 2
to 6 times over the method of [4], which had no claim on the seed set size. the presented
storage statistics account only for the number of items, and not the size of each storage item
(a constant). Note that the bounded seed set method presented here has, in general, greater
storage demands, though storage remains sublinear in practice. Such tradeo�s are considered
acceptable for the bene�t of small seed sets.

6 Further research

This paper presented the �rst methods to obtain seed sets for contour retrieval that are
provably small in size. We gave an O(n2 logn) time algorithm to determine the smallest
seed set, and we also gave a factor We gave a factor two approximation algorithm that takes
O(n log2 n) time for functions over 2D and O(n2) time for functions over higher-dimensional
domains. In typical cases, the worst case quadratic time bound seems too pessimistic. The
algorithms make use of new methods to compute the so-called contour tree.

Test results indicate that seed sets resulting from the methods described here improve on
previous methods by a signi�cant factor with respect to previous methods. Storage require-
ments in the seed set computation remain sublinear, as evidenced by the test results.

Our work can be extended in the following directions. Firstly, it may be possible to give
worst case subquadratic time algorithms for four and higher-dimensional meshes; the 3D case
was solved recently [21]. Secondly, it is important to study what properties an interpolation
scheme on the mesh should have to allow for e�cient contour tree construction and seed set
selection.

Acknowledgements. The authors thank Hans Bodlaender, G�unter Rote, and Dirk Siersma
for their helpful comments.

23

Figure 17: Example of a seed set for a 3-dimensional scalar �eld (HIPIP).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Englewood Cli�s, NJ, 1993.

[2] E. Artzy, G. Frieder, and G. T. Herman. The theory, design, implementation, and
evaluation of 3-d surface detection algorithms. Comput. Graph. Image Process., 15:1{24,
1981.

[3] C. Bajaj, V. Pascucci, and D. Schikore. Seed sets and search structures for isocontouring.
Submitted, 1998.

[4] C.L. Bajaj, V. Pascucci, and D.R. Schikore. Fast isocontouring for improved interactivity.
In Proc. IEEE Visualization, 1996.

24

[5] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface extraction from
irregular volume data. In Proc. IEEE Volume Visualization, 1996.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[7] M. de Berg and M. van Kreveld. Trekking in the Alps without freezing or getting tired.
Algorithmica, 18:306{323, 1997.

[8] H. Freeman and S.P. Morse. On searching a contour map for a given terrain pro�le.
Journal of the Franklin Institute, 248:1{25, 1967.

[9] C. Gold and S. Cormack. Spatially ordered networks and topographic reconstructions.
In Proc. 2nd Internat. Sympos. Spatial Data Handling, pages 74{85, 1986.

[10] M. W. Hirsch. Di�erential Topology. Springer-Verlag, New York, NY, 1976.

[11] C.T. Howie and E.H. Blake. The mesh propagation algorithm for isosurface construction.
Computer Graphics Forum, 13:65{74, 1994.

[12] T. Itoh and K. Koyamada. Automatic isosurface propagation using an extrema graph
and sorted boundary cell lists. IEEE Trans. on Visualization and Computer Graphics,
1:319{327, 1995.

[13] I.S. Kweon and T. Kanade. Extracting topographic terrain features from elevation maps.
CVGIP: Image Understanding, 59:171{182, 1994.

[14] Y. Livnat, H.-W. Shen, and C.R. Johnson. A near optimal isosurface extraction algorithm
using the span space. IEEE Transactions on Visualization and Computer Graphics, 2:73{
84, 1996.

[15] John W. Milnor. Morse Theory. Princeton University Press, Princeton, NJ, 1963.

[16] G. Reeb. Sur les points singuliers d'une forme de Pfa� completement integrable ou d'une
fonction numerique. Comptes Rendus Acad. Sciences Paris, 222:847{849, 1946.

[17] Y. Shinagawa and T.L. Kunii. Constructing a Reeb graph automatically from cross
sections. IEEE Computer Graphics and Applications, 11:44{51, November 1991.

[18] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien. Surface coding based on morse theory.
IEEE Computer Graphics and Applications, 11:66{78, September 1991.

[19] J.K. Sircar and J.A. Cerbrian. Application of image processing techniques to the auto-
mated labelling of raster digitized contours. In Proc. 2nd Int. Symp. on Spatial Data

Handling, pages 171{184, 1986.

[20] S. Takahashi, T. Ikeda, Y. Shinagawa, T.L. Kunii, and M. Ueda. Algorithms for extract-
ing correct critical points and constructing topological graphs from discrete geographical
elevation data. Eurographics '95, 14:C{181{C{192, 1995.

[21] Sergey P. Tarasov and Michael N. Vyalyi. Contour tree construction in o(n logn) time.
In Proc. 14th Annu. ACM Symp. Comp. Geometry, pages 68{75, 1998.

25

[22] M. van Kreveld. E�cient methods for isoline extraction from a TIN. Int. J. of GIS,
10:523{540, 1996.

[23] David F. Watson. Contouring: A Guide to the Analysis and Display of Spatial Data.
Pergamon, 1992.

[24] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM Trans-

actions on Graphics, 11:201{227, 1992.

26

