

An Agent-Based Platform for the Management of
Dynamic Virtual Enterprises

Vorgelegt von

Dipl-Ing.

Evangelos K. Ouzounis

aus Drama, Griechenland

Von der Fakultät IV – Elektrotechnik und Informatik

der Technische Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

-Dr.-Ing.-

genehmigte Dissertation

Vorsitzender: Prof.Dr. K. Obermayer

Berichter: Prof.Dr. R. Popescu-Zeletin

Berichter: Prof.Dr. B. Mahr

Tag der wissenschaftlichen Aussprache: 26 April 2001

Berlin, 2001

D 83

 iii

Abstract
The penetration of Internet and the World Wide Web (Web) in accordance with new
technological advances urged companies to seize the opportunities offered by Electronic
Commerce and Electronic Business. Especial promising are the opportunities for co-operation
among companies in terms of Virtual Communities and Virtual Enterprises based on open
networks and innovative Information and Communication Technologies (ICT).

Virtual Enterprises provide, from one side, the possibility to share key business processes in a
profitable way and, from the other side, access to capabilities and resources offered by other
partners. This can lead to shorten development and manufacturing cycles, reduced time to
market and operational costs, global operation and reach, and rapid adaptation to new market
needs. Virtual Enterprises are goal- and purpose-oriented associations of companies and/or
department of companies that have limited duration, flexible configuration, dynamic
distribution of roles, and share key business processes using advanced ICTs.

In the literature, two broad, well-defined categories have been identified so far, namely the static
Virtual Enterprises and the Dynamic Virtual Enterprises. In Static Virtual Enterprises the
relationships among the partners are static, pre-configured and can not easily change. On the
contrary, Dynamic Virtual Enterprises use the IC Technologies to precipitate the best
configuration of processes and resources for a certain process, as well as, to incorporate the most
competent partner for that process. Dynamic Virtual Enterprises improve significantly the Static
VEs and take full advantage of the open, global opportunities offered by the Internet and the
global economy. Dynamic Virtual Enterprises feature very short lifetimes, dynamic business
relationships among partners and flexible and autonomous behaviour.

This thesis analyses, designs, develops, testes, and validates a platform for the management of
dynamic virtual enterprises that supports the whole life cycle model, namely the business
process specification and registration and business process execution and management.

The main contribution of this thesis is an agent-based virtual marketplace, a virtual marketplace
ontology, an agent-based inter-domain workflow management system, a business process
definition language for dynamic VEs, an intra- and inter-domain ontology for business process
management, a mechanism for dynamic selection of partners, and a negotiation ontology. The
proposed platform is based on emerging Internet standards, like XML, and agent standards, like
FIPA and OMG-MASIF.

The agent-based platform for the management of dynamic Virtual Enterprises has been fully
implemented and tested. The validation and assessment of the platform has been done by the
development of four independent business and application scenarios in the context of several
research projects. Based on the validation and assessment, the proposed platform reveals
openness due to the flexible ontologies used for the management of shared business processes,
dynamicity and flexibility due to the dynamic selection of partners and the automated
negotiations, asynchronous and loosely coupled coordination of processes due to the deployment
of standard autonomous intelligent agents and distribution and scalability due to the distributed
execution and management of shared business processes from different intelligent agents across
different administrative domains.

This thesis aims to provide a systematic, coherent and state of art solution for the management of
dynamic Virtual Enterprises based on standard, intelligent agent concepts and technologies. The
acceptance and penetration of solutions like this will depend on the success and adoption of the

 iv

intelligent agent paradigm As the Internet and the new digital economy urge companies to
collaborate and share critical business processes dynamically, solutions like this will become
more important, applicable and effective for day to day business operations.

 v

Zusammenfassung
Infolge der rapide zunehmenden Verbreitung des Internets, des WWW und der zugehörigen
Technologien bieten sich zukünftig für Unternehmen vielfältige Möglichkeiten im Bereich e-
Commerce und e-Business. Besonders vielversprechend sind die Chancen der Kooperation mit
anderen Unternehmen in Form von Virtuallen Gemeinschaften und Virtuellen Unternehmen, die
auf der Grundlage der weltweiten Netze und der innovativen Informations- und
Kommunikationstechniken (IuK) eingegangen werden können.

Solche Virtuellen Unternehmen bieten einerseits die Möglichkeit, eigene Kernkompetenzen in
kollaborativen Geschäftsprozessen gewinnbringend zu nutzen und andererseits von den
Kapazitäten und Ressourcen der Partnerunternehmen zu profitieren. Dies kann u.a. zur
Verkürzung von Entwicklungs- und Produktionsprozessen führen, Zeit und Kosten der
Markteinführung von Produkten und Diensten vermindern und zu neuen Marktpotentialen
führen. Virtuelle Unternehmen sind zielgerichtete, zweckbestimmte Vereinigungen von
Individuen, Unternehemen und/oder Teilen von Unternehmen, die typischerweise durch
begrenzte Lebensdauer, flexible Konfiguration, dynamische Rollenverteilung und IuK-
orientierte, vernetzte Geschäftsprozesse gekennzeichnet sind.

In der Literatur wird gewöhnlich zwischen zwei Arten Virtueller Unternehmen unterschieden,
nämlich zwischen den statischen und den dynamischen Virtuellen Unternehemen. Die statischen
virtuellen Unternehmensformen ähneln weitgehend den traditionellen Formen und unterscheiden
sich von diesen hauptsächlich durch die intensive Nutzung der IuK-Techniken in dem
Zusammenwirken der Geschäftsprozesse, die jedoch fest den Partnern zugewiesen sind und
nicht kurzzeitig mit Hilfe der IuK-Techniken im Unternehmensverbund verteilt und zugewiesen
werden. Die dynamischen Unternehmen nutzen dagegen die IuK-Techniken voll dafür aus, für
bestimmte Aufgaben die günstigste Konfiguration von Prozessen und Ressourcen dynamisch
herbeizuführen und den jeweils kompetentesten Partner für eine Aufgabe einzugliedern. Dabei
nutzen sie soweit als möglich die Vorteile des Internets und der globalen Geschäftsumgebung.

Die vorliegende Dissertation analysiert, entwickelt, prüft und bewertet ein Plattform für die
Verwaltung von dynamischen Virtuellen Unternehmen, welche Spezifikation, Registrierung,
Steuerung und Verwaltung von Geschäftsprozessen unterstützt und damit den gesamten
Lebenszyklus von Virtuelle Unternehmen abdeckt.

Der Hauptbeitrag dieser Dissertation ist ein agentenbasierter virtueller Marktplatz, eine
Ontologie zur Bestimmung und Ordnung von Begriffen des virtuellen Marktplatzes, ein
agentenbasiertes, domainübergreifendes System für die Verwaltung der Arbeitsvorgänge, eine
Sprache zur Definition von Geschäftsprozessen für dynamische virtuelle Unternehmen, eine
Ontologie für die Verwaltung von domänen-übergreifenden Geschäftsprozessen, ein
Mechanismus für die dynamische Auswahl von Partnern und eine Ontologie zur Unterstützung
von Verhandlungen. Die vorliegende Plattform gründet sich auf Internetstandards, wie XML,
und Agentenstandards, wie FIPA und OMG-MASIF.

Die agentenbasierte Plattform für die Verwaltung von dynamischen virtuellen Unternehmen
wurde vollständig implementiert und getestet. Die Einschätzung und Bewertung der Plattform
wurde durch vier eigenständigen Geschäfts- und Anwendungsszenarien im Zusammenhang mit
verschiedenen Forschungsprojekten vorgenommen. Die Ergebnisse dieser Arbeiten zeigen, daß
die vorliegene Plattform folgende Vorteile in sich vereinigt: Offenheit durch flexible Ontologien
für die Verwaltung von geteilten Geschäftsprozessen, Dynamik und Flexibilität durch
automatisierte Suchs -, Vergleichs- und Verhandlungsverfahren bei der Auswahl von Partnern,

 vi

asynchrone und lose gekoppelte Koordinierung von Prozessen durch den Gebrauch von
standardisierten, autonomen intelligenten Agenten, und die Verteilungs- und
Skalierungsfähigkeit durch die verteilte Ausführung und Verwaltung von geteilten
Geschäftsprozessen durch verschiedene intelligente Agenten über verschiedene administrative
Domänen hinweg.

Damit bietet die vorliegende Dissertation eine systematische Lösung für die Verwaltung von
dynamischen virtuellen Unternehmen, basierend auf den innovativen Konzepten und Techniken
der standardisierten intelligenten Agenten. Die Akzeptanz und Verbereitung solcher Lösungen
wird vom Erfolg und der Annahme des Paradigmas der intelligenten Agenten abhängen. Da das
Internet und die neue digitale Wirtschaft Unternehmen auffordert, zusammenzuarbeiten und
kritische Geschäftsprozesse dynamisch zu teilen, werden Lösungen wie diese immer wichtiger,
anwendbarer und effektiver für alltägliche Geschäftsabläufe.

 vii

Preface
Some years ago when I first came in contact with Computer Science I realised that it is a new
exciting world full of interesting subjects. I also realised that as a new science there are a lot of
possibilities for new developments, ideas, and research. At this point of time I decided that I
wanted personally to contribute to this exciting world by providing my own perception in terms
of research and development.

The area that I decided to continue my specialisation was the area of distributed systems, inter-
domain services and e-commerce. Four years before it was a brand new world full of excitement
and optimism. It was just the beginning, a unique chance to research and develop new concepts
and ideas, the right movement for me! Virtual enterprises were a very promising area of work
due to the lack of definitions, structure and previous research in the field. I worked hard to
research, analyse, and understand the field. In this difficult and complex process, not all the
moments were happy and successful. However, I kept going and going, trying to be innovative
and scientifically consistent. Suddenly, I realised that I could also put my own small “stone” in
the milestones of E-commerce and Virtual Enterprises.

A lot of people helped me during this complex and, sometimes, painful process and I am really
grateful to them. First of all, I would like to thank my supervisor Prof. Dr. Radu Popescu Zeletin
who gave me freedom in doing my own research. Prof. Dr. Zeletin taught me how to focus on
the small, core issues without missing the whole picture and how to put legitimate and
meaningful research questions. I would also like to thank Prof. Dr. Mahr for his prompt
suggestions and remarks during the last and most difficult phase of this dissertation.
Additionally, I would like to thank Dr. Volker Tschammer, head of ECCO in GMD-FOKUS and
my boss, for his continue support in both technical and psychological matters. Dr. Tschammer
taught me to put structure in my thoughts and to be patience and unsatisfied until I found
something really new and innovative. Further, I would like to thank all my colleagues in ECCO
at GMD-FOKUS for their good technical feedback in this subject. Finally, but definitely not
lastly, I would like to thank my girlfriend Elli Athanasiadou and my family for their support,
love and patience that has kept me sane. Without them, I could not accomplish this dissertation.

Berlin, April 2001

Evangelos K. Ouzounis

 viii

 ix

Table of Contents
CHAPTER 1: BACKGROUND AND MOTIV ATION .. 1

1.1 BACKGROUND AND MOTIVATION..1
1.2 OBJECTIVES ...7
1.3 OUTLINE OF THE THESIS...7

CHAPTER 2: VIRTUAL ENTERPRISES ..11
2.1 INTRODUCTION..11
2.2 CATEGORIES OF VIRTUAL ENTERPRISES...14

2.2.1 Static Virtual Enterprises..14
2.2.2 Dynamic Virtual Enterprises..15

2.3 EVALUATION OF VIRTUAL ENTERPRISE CATEGORIES...17
2.4 LIFE-CYCLE MODEL FOR DYNAMIC VIRTUAL ENTERPRISE...19
2.5 REQUIREMENTS FOR THE DEVELOPMENT OF DYNAMIC VE SYSTEMS..22
2.6 SUMMARY..23

CHAPTER 3: VIRTUAL ENTERPRISE INFRASTRUCTURE ..25
3.1 STATE OF THE ART IN VIRTUAL ENTERPRISES...25
3.2 TECHNOLOGIES AND STANDARDS FOR VIRTUAL ENTERPRISES...36

3.2.1 Electronic Document Interchange...36
3.2.2 Distributed Component-based Business Systems..38

3.2.2.1 OMG’s Business Objects... 39
3.2.2.2 Enterprise Java Beans... 40
3.2.2.3 San Francisco from IBM .. 42
3.2.2.4 Alliance from Extricity Software... 42
3.2.2.5 Distributed Component based Business Systems in the context of VEs 43

3.2.3 Messaging Systems...44
3.2.3.1 Web Interface Definition Language ... 45
3.2.3.2 Common Business Library ... 46
3.2.3.3 BizTalk Framework.. 48
3.2.3.4 Commerce XML... 48
3.2.3.5 Messaging Systems in the context of VE... 49

3.2.4 Intelligent Mobile Agents..50
3.2.4.1 Intelligent Agents ... 53
3.2.4.2 Mobile Agents.. 54
3.2.4.3 Intelligent Mobile Agent in the context of VEs ... 57

3.2.5 Workflow Management Systems...58
3.2.5.1 Workflow Management Coalition.. 61
3.2.5.2 OMG’s Workflow Management System.. 63
3.2.5.3 Simple Workflow Access Protocol .. 64
3.2.5.4 Workflow Management Systems in the context of VEs .. 65

3.2.6 Virtual Marketplaces ...66
3.2.6.1 Negotiation ... 67
3.2.6.2 Virtual Marketplaces in the Context of VE.. 70

3.3 LIMITATIONS OF EXISTING TECHNOLOGIES IN THE CONTEXT OF VES ..72
3.4 SUMMARY..79

CHAPTER 4: AN AGENT-BASED PLATFORM FOR THE MANAGEMENT OF DYNAMIC
VES ..81

4.1 INTRODUCTION..81
4.2 ANALYSIS AND SPECIFICATION APPROACH..83
4.3 BUSINESS DOMAIN ANALYSIS AND SPECIFICATION..84

4.3.1 Business Model and Relationships..84

 x

4.3.2 Roles and Responsibilities..86
4.4 ARCHITECTURE SPECIFICATION..87

4.4.1 Agent-based Virtual Marketplace..89
4.4.2 Agent-based Business Process Specification, Registration and Management.........................90
4.4.3 Mobile Agent Platform ..92
4.4.4 Supporting Services..94
4.4.5 Distributed Processing Environment..95

4.4.5.1 The Java Framework .. 96
4.4.5.2 The CORBA Framework.. 97

4.5 SUMMARY..98
CHAPTER 5: MOBILE AGENT PLATFORM ...99

5.1 INTRODUCTION..99
5.1.1 Distributed Agent Environment..100
5.1.2 Communication Concepts...101
5.1.3 Security Concepts...103
5.1.4 Agent Development..105

5.2 FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS...107
5.2.1 The Agent Communication Language...108
5.2.2 Content of ACL Messages...111
5.2.3 FIPA Protocols ...112
5.2.4 Agent Management System Agent..113
5.2.5 Directory Facilitator Agent ..114
5.2.6 Agent Communication Channel Agent..115

5.3 IMPLEMENTING FIPA AGENTS ON TOP OF GRASSHOPPER..117
5.4 SUMMARY..119

CHAPTER 6: VIRTUAL MARKETPLACES..121
6.1 INTRODUCTION..121
6.2 SERVICE TYPE MANAGEMENT ..124
6.3 SERVICE OFFER MANAGEMENT..130
6.4 SERVICE OFFER RETRIEVAL MANAGEMENT ..136
6.5 VIRTUAL MARKETPLACE ADMINISTRATION ..139
6.6 SUMMARY..140

CHAPTER 7: BUSINESS PROCESS SPECIFICATION AND REGIS TRATION141
7.1 INTRODUCTION..141
7.2 BUSINESS PROCESS SPECIFICATION...142

7.2.1 Business Process Definition Language...142
7.2.2 Business Process Repository..146

7.3 BUSINESS PROCESS REGISTRATION...149
7.3.1 Provider Negotiation Agent..152

7.4 SUMMARY..156
CHAPTER 8: BUSINESS PROCESS MANAGEMENT...157

8.1 INTRODUCTION..157
8.2 PERSONAL USER AGENT ..161
8.3 DOMAIN REPRESENTATIVE AGENT..166
8.4 WORKFLOW PROVIDER AGENT ..172
8.5 RESOURCE PROVIDER AGENT...184
8.6 REQUESTOR NEGOTIATION AGENT..188
8.7 SUMMARY..197

CHAPTER 9: IMPLEMENTATION, TESTING, VALIDATION, AND ASSESSMENT.........199

 xi

9.1 IMPLEMENTATION ...199
9.2 TESTING..205
9.3 VALIDATION ..206
9.4 ASSESSMENT..208

9.4.1 Assessment of Workflow Management Standards...208
9.4.2 Assessment of FIPA Standards...210
9.4.3 Assessment of the proposed solution...211

9.5 SUMMARY..214
CHAPTER 10: CONCLUSIONS ..215

10.1 CONCLUSIONS..215
10.2 FUTURE WORK..219
10.3 SUMMARY..220

CHAPTER 11: GLOSSARY...221

CHAPTER 12: ACRONYMS...229

CHAPTER 13: ANNEX ...233

CHAPTER 14: REFERENCES ...251

 xii

 1

Chapter 1: Background and Motivation

1.1 Background and Motivation
In a global marketplace, companies are continuously seeking for new ways to address
competitive pressure. Recognising the need to shorten development and manufacturing cycles,
reduce time to market and operational costs, increase customer satisfaction, operate on global
scale and reach, and rapid adapt to new market changes has historically led companies to
automation, collaboration and distribution (Applegate 96, Billington 94, Malone 91, Ouzounis
98a). As a result, the information systems in many of today’s mid to large size companies
reflect tremendous diversity.

Rapid advances in telecommunication, open networks like the Internet and the Web,
interoperable distributed object oriented technologies and platforms like CORBA (OMG 98,
Orfali 96) and Java (Java 98), component-based development and middleware like Enterprise
Java Beans (EJB, 98), flexible meta-languages like eXtensible Markup Language (XML 98)
have been opening and enabling new opportunities for electronically conducted business. But
doing business electronically means to shift critical business processes to open networks, like the
Internet, and enrich customer and supplier relationships (Malone 91, Ouzounis 98b,c).

The penetration of Internet and the web, in accordance with new technological advances, urged
companies to seize the opportunities offered by electronic commerce and to establish a strategic
position in the new global networked world. In order to do that, companies should co-operate in
different product development phases and share critical business processes, resources, core
competencies, skills and know how with each other (Christofer 93, Applegate96, Ouzounis 99a,
Camarinha-Matos 99). This new business model leaded to the concept of Virtual Enterprises
(VE) that is the foundation of the networked economy (Ouzounis 99a,b, Camarinha-Matos 99,
Fielding98).

The original goals for virtual enterprise business systems were to enable deployment of
distributed business processes among different partners, to increase the efficiency of existing

Evangelos K. Ouzounis

 2

provided services, to decrease the cost for these services, and to adapt to new market changes
(Banahan 99, Stricker 00, Davis 93). As companies introduced electronic business systems, they
started to see new possibilities enabled by them. By more closely coordinating the work of
suppliers and manufacturers, businesses see dramatic productivity and efficiency increases in
manufacturing processes. As communication barriers and costs drop, businesses are able to
engage them selves in many more kinds of relationships. These new relationships open
additional possibilities for distribution and participation in virtual trading communities or
dynamic virtual organisations and for extending classic value chains to value networks (Doz 98,
Adams 97, Malone 91).

Virtual enterprises are not a new concept in management studies (Malone 91, Adams 97,
Ouzounis 99b, 00a, Camarinha-Matos 99). Some of the big manufacturing companies, and
especially car manufactures, have already business relationships with their suppliers and
customers. These “virtual” business relationships enable the sharing of business processes and
resources among them. However, the level of integration and the Information and
Communication Technologies (ICT) used for enabling Virtual Enterprise concepts is varying.
Most of the activities are still performed manually, ad-hoc, and in a complex way, while the cost
to implement and integrate these solutions and the time required to deploy them is high (Lin 96a,
Lin 96b, Reichert 98).

The paradigm of virtual enterprise represents a prominent area of research and technological
development for today’s progressive industries. The research area is however a growing and
multidisciplinary one that still lacks a precise definition of the concepts and an agreement on the
used terminology (Camarinha-Matos 98, Applegate 98, Bolcer 99, Carr 96). So far, there is no
unified definition for this paradigm and a number of terms are even competing in the literature
while referring to different aspects and scopes of Virtual Enterprise (Ouzounis 99a, Filos and
Ouzounis 00a, 00b, Alonso 99). For instance, the US-based R&D project NIIP project defines
that “a VE is temporary consortium or alliance of companies formed to share costs and skills and
exploit fast-changing market opportunities”(NIIP 97, Zarli 99, Wognum 99 a and b). Byrne says
that “a VE is a temporary network of independent companies-suppliers, customers, even rivals-
linked by information technology to share costs, skills, and access to one another’s hierarchy, no
vertical integration” (Byrne 97). To Walton and Whicker “the VE consists of a series of co-
operating ‘nodes’ of core competencies which form into a supply chain in order to address a
specific opportunity in the market place (Walton 98).

The wide variety of different networked organisations and the emergence of new production and
provisioning paradigms have led to the generation of a number of related terms such as the
extended enterprise, virtual organisation, networked organisation, supply chain management, or
cluster of enterprises (Malone 98, NIIP 97, Ouzounis 98c). Some authors use some of these
terms indistinctly to virtual enterprises although there are differences between their detailed
meaning (Zarlin 99, Wognum 99).

In the context of this thesis the following definition is adopted (Ouzounis 98e, 99b): ”a VE is a
network of different administrative business domains that co-operate by sharing business
processes and resources to provide a value-added service to the customer. Each partner of the
virtual enterprise will contribute primarily what it regards as its core competencies, i.e. business
processes and resources. There is a time limit on the existence of the virtual enterprise caused by
fulfilment of its business purpose. From the viewpoint of an external observer, i.e. a customer,
the virtual enterprise appears as a unitary enterprise.”

Chapter 1: Background and Motivation

 3

Although there is no strict academic definition regarding VE, different VE models feature
common business and technical characteristics and attributes. The most important features of VE
are (Ouzounis 98c, Block 95, CIMOSA 98, Zarlin 99, Georgakopoulos 98, Geppert 98 a and b,
Goldman 95, Goldman 95, Gibon 99):

• more than one independent administrative domains are involved in the provision of the
service to the customer

• the service provision is performed by sharing business processes and resources, i.e. by
establishing business relationships among the different VE partners,

• the sharing of processes and resources lasts for a limited period of time even only for only
one service provision,

• the business process interfaces among the business domains, i.e. the way that one domain
deploys the processes and resources of the other, might be static, pre-defined, and fixed or
dynamic, based on a set of globally specified templates,

• the number of VE partners might be either, static, or dynamic according to the needs and
requirements of the partners involved,

• the partners are physically distributed and are connected with electronic means and systems,

• the provision of the services to the customer is done in a transparent way by one
representative partner.

Based on the above common features that VEs have, two well-defined categories can been
identified (Ouzounis 99b, Malone 97, Zarlin 99, Geppert 98 a and b, Gibon 99), namely the
static Virtual Enterprises (SVEs) and the Dynamic Virtual Enterprises (DVEs).

In Static Virtual Enterprises a set of business partners is linked together in a static and fixed
way, i.e. the shared business processes are tightly integrated. The business relationships among
the partners, i.e. the process interfaces are pre-defined, tightly coupled, fixed, and well integrated
and customised among the partners (NIIP 96, Malone 96, Afsarmanesh 99). The network is fixed
and pre-determined and thus, the structure of the VE is static and pre-determined.

In Dynamic Virtual Enterprises a set of business partners is linked dynamically, on-demand, and
according to the requirements of the customers, by deploying a virtual marketplace (Wognum
99, Ouzounis99b, Mitrovic 99). The business domains do not have fixed business relationships
and thus, the VE is not static and might change continuously based on market-driven criteria.
The marketplace provides services for the registration of business process offerings based on
some generic, well-known, globally specified process templates. Business domains that want to
form VE relationships can register offers on the marketplace in relation to the process templates.
Whenever a business domain wants to use a particular process, searches the marketplace, and
locates all the potential partners that can provide the process. As soon as the list of VE candidate
partners has been found, the partner selection process starts. The partner selection process
between the domains is usually performed through negotiation. The negotiation process might be
either, manual, or automatic, while the result of it is usually a short-term contract that regulates
the business relationships that have just established (Ouzounis 00b, Filos and Ouzounis 00,
Geppert 98).

By deploying virtual marketplaces, there are no explicit static business relationships among the
partners and thus no integration among the processes of the partners is required (Merz 96,
McCaffer 99, McCutcheon 94, Nwana 96, Nwana 99). Marketplaces are usually organised

Evangelos K. Ouzounis

 4

around certain globally specified service or product templates that can be offered by the different
vendors. The marketplace is a match making mechanism that brings potential process providers
together with potential users of these processes. The primary focus on marketplaces is on
efficiency of transactions and maximisation of value per cost of each vendor's offer (Camarinha-
Matos 98, Mohan 98, Frederix 98). Organisations may participate in the marketplace only
briefly or they may be long term members. Relationships between process users and process
providers tend to be short term. Thus, investment returns are gained over single transactions, as
well as, over the time span of the marketplace participation. The number of partners can easily
change and thus the structure of the VE can also change from one service provision to another
according to the specifics of the customers and the current needs of the partners. This is a
significant evolution mechanism that takes advantage the demand and supply, i.e. the process
offerings by the individual domains (Alonso 98, Schuldt 99).

Due to the open mechanisms of the Internet economy, dynamic, flexible, autonomous VEs that
take advantage of the market conditions are preferred. Although from business point of view
DVEs are the most promising business model, from technical point of view, the required
technical solutions and systems are more complex, sophisticated and distributed (Kalakota 96
and 98, Ducroux, 1998). However, the advent of Internet and open communication protocols,
like TCP/IP and HTTP (Gaedke 98, Berners-Lee 94), distributed object oriented middleware
systems, like Corba-IIOP (OMG 92-99) and Java-RMI (Java 98), and extensible meta-
languages, like eXtenible Markup Language (XML), provide the basic building blocks for the
development of management platforms that will realise the concept of DVEs (Ouzounis 98c,
Kligenmann 99 a and b, Reichert 97).

The first attempts to realise cross-organisational business systems have been done in the area of
Electronic Document Interchange (EDI), where a set of business domains integrate their
business processes only for electronic commerce purposes. In that case, different business
domains have static business relationships, the communication mechanisms used were message
passing, the business processes were internal modules or legacy systems maintained by the
different partners, the network protocols used were secure virtual private networks, and the
format of the EDI messages were proprietary following certain structure and regulations (Gibon
99, Ouzounis 99b, Lomet 93, Lee 98).

Though EDI was a significant progress towards the direction of cross-organisational business
automation, the resulted solutions were very expensive and rather closed to be adopted by small
firms (Snapp 90, Srinivasan 93). Certain problems regarding the standard format of EDI
messages, the insecure open transport networks, and the rather restricted context of EDI, i.e.
only focus on electronic commerce, made EDI not an attractive solution for VEs (Billington 94,
Christofer 93, Bolcer 99, Doz 98).

Whereas EDI supported electronic business by automating existing processes and enabling
electronic document exchange between separate organisations, a number of other technologies
approach inter-domain business relationships by trying to create a single virtual enterprise
(Stricker 00, Georgakopoulos 98, Fielding 98). These systems use middleware, a layer of
integration code and functionality, which allows multiple distributed systems to be deployed as
though they were a single system. Using these middleware services business applications can
transparently access the multiple, backend, distributed, legacy systems and applications (OMG
98, EJB 99, Orfali 96, Nissen 99).

Classic middleware systems typically involve tight binding between the systems and processes
at the various organisations (Ouzounis 98e, Thompson 99, Sheth 98). By closely coupling the

Chapter 1: Background and Motivation

 5

organisations, classic middleware systems are able to provide rich functionality, but require
expensive development and deployments, pre-agreement in the interfaces used, and carefully co-
ordinated, ongoing deployment management (Redlich 98, Hull 99). These systems result in
tightly coupled inter-domain systems and thus, these solutions are better suited for use in intra-
domain, distributed applications or long-term and closely co-ordinated business partnerships, i.e.
static VEs (Ouzounis 99a, Spinosa 98).

In contrast to classic component based systems, which seeks to closely bind the enterprise
systems and processes of several organisations into a single closely co-ordinated virtual
organisation, cross-organisational business systems can be built using exchange of documents,
usually described in XML, to bind together multiple organisations (Sheth 97 and 98, Tombros
99 and 00). Ideally, such an approach would combine the strengths of EDI with the rich
interaction, integration, and distribution supported by classic, distributed component-based
systems (Stricker 99, Reichert 98, Choy 99). The messaging approach of “fire and forget” seems
to be better in the area of cross-organisational communication and co-ordination in comparison
with the classical distributed object oriented concepts due to the loosely coupled approach
(Veloso 98, Wood 99, JMS 99). The specification, execution and management of internal
business processes can be still performed by conventional distributed technologies (Tombros 99
and 00). Different approaches have been proposed for the execution and automation of internal
business processes, namely business objects and components, workflow management systems,
and recently intelligent mobile agents (Eder 95 and 96, Crossflow, Borghoff 97, Barbuceabu 95,
Adams 97, Ciacarini 98).

Business objects and components are network accessible entities with standardised interfaces
deployed within a distributed object oriented platform (Orfali 96, OMG, EJB). These objects can
be easily bought, extended, customised and integrated into the information system of an
organisation. The main objective of business objects is actually the deployment for intra-domain
distributed applications (Ouzounis 98b, Choy 99, Chung 99). However, the business object
concept can also be used in the area of loosely coupled cross-domain business systems only if
additional gateways providing dynamic virtual enterprise functionalities are to be included
(Debenham 98, Cost 98).

Another approach proposed for the automation of business processes were workflow
management systems (WFMS) that execute, manage, co-ordinate and streamline business
processes (Adams 97, Alonso 95, Eder 96, Cai 96, Georgakopoulos 95). WFMS provide an easy
and generic way to specify business processes by deploying a business process definition
language. The WFMS actually interpret, execute and manage the business processes (Grefen 99,
Miller 98). Business processes can deploy legacy systems and components and integrate them
into the overall business process specification (Judge 98). However, WFMS have been
developed and deployed only for intra-domain business applications (Klingemann 99, Lee 93,
Georgakopoulos 98). Due to the needs and requirements of virtual organisations and emerging,
open, Internet services, certain ideas and concepts towards cross-organisational workflow
management systems have been recently emerged (Tombros 00, Filos 00, Khare 99, Martesson
98).

Finally, another emerging technical area for the development of business processes is the
concept of intelligent mobile agents (Magedanz 95 and 99, Krause 96 and 97, Lecihsering 98,
Maes 94, Nwana 96). The success story of agents started in the early nineties with the parallel
appearance of different agent concepts and technologies. These technologies can be roughly
separated into intelligent agents and mobile agents (Maes, 94). The interest in agents was coined

Evangelos K. Ouzounis

 6

by the increasing notion of Multi Agent Systems (MAS) in the early nineties, driven by the
Distributed Artificial Intelligence (DAI) research community (Wooldridge 95). The multi agent
system concept is largely conceived upon the idea that complex activities can be split into
smaller activities and every small activity can be split into smaller ones, until a primitive set of
activities can be found. Every primitive activity in this model can be provided by a special-
purpose entity called software agent. Each agent co-operates with other agents inside the
community to solve a particular complex problem. Therefore, a multi agent system may be
defined as a set of agents that interact with each other and with the environment to solve a
particular problem or to provide a service in a co-ordinated and distributed manner (Jennings 93,
94 and 95). If these agents are located in different business domains and execute certain business
processes on behalf of their domains then a multi-agent system for virtual enterprises can be
formed (Ouzounis 99b).

Intelligent mobile agents provide certain benefits in relation to traditional distributed object
oriented approaches. Some of the major benefits emerged from the usage of intelligent mobile
agents are autonomy and flexibility, due to the co-operation and co-ordination aspects,
scalability, due to the migration capabilities, adaptability, due to intelligent behaviour, and
integration with existing technologies, due to the object oriented concepts used to implement
agent platforms and agents (Breugst 98, Magedanz 95 and 97).

Additionally, intelligent mobile agents seem to combine all the benefits offered by the
messaging systems and distributed component-based systems. Agents communicate by
exchanging messages in a similar way like messaging systems (Chess 95 and 98, Bradshaw 97,
Byrne 99, ComACM 94). However, agents deploy the concept of globally specified ontologies
that make them more flexible and autonomous (Harold 98, Byrne 99, Etzioni 94). Agents are
deployed within a distributed object oriented platform, like CORBA or Java, and thus can access
any type of standard business component. Additionally, agents can migrate to the physical
location of business components preserving the network resources (Fugetta 98 a and b,
Fünfrocken 98). Furthermore, agents have the ability to execute and co-ordinate complex
business processes, in a similar way like workflow management systems. However, the
execution of the business process is not controlled in a centralised way, by a workflow engine,
but the agents themselves are co-operating in a flexible, autonomous, and distributed way
(Assiss-Silva 96, Bellifernine 99, Ambros-Ingenson 88, Fenster 95, Franklin 96). Finally, when
business logic is located in different remote business domains, mobile agents can migrate and
deploy it.

The acceptance of agents as an implementation and communication paradigm, the extra
capabilities that they offer, like mobility, autonomy, intelligence, adaptability, in conjunction
with emerging state of the art agent platforms, like FIPA (FIPA 98, 99) and OMG-MASIF
(MASIF 97) and standard distributed platforms like CORBA and Java RMI, flexible content
description languages for globally specified ontologies, like XML, emerging, XML-based
workflow standards, like WfMC, messaging standards like Java Messaging System (JMS 99)
and OMG’s Messaging Service (OMG 99), and platform independent programming language,
like Java, can provide the basis for the new generation of open, flexible, autonomous, and
distributed business process management systems for dynamic VEs.

Chapter 1: Background and Motivation

 7

1.2 Objectives
The main objective of this thesis is to research, analyse, design, develop, test, and validate a
platform for the management of dynamic virtual enterprises that will be based on FIPA
compliant intelligent mobile agent concepts, emerging, agent-based workflow management
concepts for cross-organisational business process execution and management, virtual
marketplaces with emphasis on OMG Trader integration, and automated negotiation for dynamic
partner selection.

More particularly, this thesis will define, specify, develop and validate the following entities:

• an agent-based, FIPA compliant, virtual marketplace and integration with the standard
OMG Trader,

• a XML-based virtual marketplace ontology for business process registration, management
of offers, and dynamic partner selection in virtual marketplaces,

• a negotiation ontology and protocol for dynamic partner selection based on FIPA compliant
FIPA-Contract Net protocol,

• an XML-based business process definition language for the specification of business
processes in the context of dynamic virtual enterprises and a business process repository for
the storage of business processes,

• a distributed, agent-based, FIPA compliant, workflow management system for the execution
and management of shared business processes across different organisationa l boundaries,

• an XML-based intra- and inter-domain ontology for cross-organisational, agent-based,
business process execution and management,

• provision of shared business processes to the web by integrating the agent based workflow
management system with standard web integration technologies,

1.3 Outline of the thesis
In addition to this chapter, the thesis is organised in 9 Chapters that present in detail the state of
the art in the area of dynamic VEs, the problem statement, the proposed architecture and the
different autonomous agents, the specification and design of each one of them, and the
validation and assessment of the proposed concept.

More specifically, in chapter 2 introduction and analysis of the Virtual Enterprise concept is
presented. The different terms and definitions of VEs that have been proposed in this area are
presented and further analysed. In the sequel, the two broad categories of VE, namely the static
and dynamic VEs, are presented and the main characteristics of them are extensively discussed.
Finally, a life-cycle model for the specification, registration and management of business
processes in the context of dynamic VEs is presented. As a result of this model, a set of key
technical and functional requirements that should be fulfilled by a management platform for
dynamic VEs are outlined.

Chapter 3 presents an exhaustive analysis of the state of the art in both, technical and functional
issues. The chapter starts with an analytical description and assessment of the current projects
and academic and scientific results in the area of VEs in relation to the requirements presented in
the previous chapter. In the sequel, an assessment of the different technologies and standards

Evangelos K. Ouzounis

 8

proposed and deployed so far in the area of VEs is given. For all these technologies, an extensive
individual assessment regarding their applicability to the dynamic VE concepts and requirements
is done. Based on the state of the art and the assessment of the proposed and deployed
technologies, the problem statement and the main objectives of the thesis in relation to the most
adequate technologies are described.

Chapter 4 presents an overall description of the layered architecture of the system under analysis
and identifies the key business domains and relationships, the human roles in each domain and
the responsibilities that they have. The architecture consists of three layers, namely the
Distributed Processing Environment (DPE), the Mobile Agent Platform layer (MAP) and
supporting services, and the virtual marketplace and business process specification, registration
and management layer. For the virtual marketplace and business process specification,
registration and management layer, which is the core work of this thesis, a set of autonomous
and intelligent agents and internal components are identified and presented. These agents will be
further analysed, designed and specified in subsequent chapters.

Chapter 5 presents extensively the Mobile Agent Platform layer. More specifically, this chapter
is split into two parts, namely the core services of the Mobile Agent Platform (MAP) and the
FIPA compliant add on services. In both cases, an analytical description of the provided services
is presented. Due to the fact that all the agents under design and analysis are FIPA compliant
agents, certain details concerning the design and implementation of FIPA compliant agents on
top of the MAP are presented and further discussed.

Chapter 6 presents detailed specification and design of the virtual marketplace agents and the
integration and deployment of the standard OMG-Trader service. More specifically, three agents
are proposed and analysed, namely the Service Type Agent (STA), the Service Offer Agent
(SOA) and the Service Retrieval Agent (SRA). For every agent, the internal architecture and the
key components are specified. Then, for every operation that the agent supports, a set of UML
sequence diagrams are provided and discussed. In addition to these three agents, the Virtual
Marketplace ontology is specified in ACL/XML format.

Chapter 7 presents the detailed specification and design of the business process specification and
registration phase. More specifically, the XML-based business process definition language for
shared business processes and the business process repository that stores and maintains the
business processes is introduced and specified. This phase is actually the phase that the different
providers are using to register offers regarding specific business processes in the virtual
marketplace.

Chapter 8 presents the detailed specification and design of the business process execution and
management phase. More specifically, five FIPA compliant agents are introduced and analysed,
namely the Personal User Agent (PUA), the Domain Representative (DR), the Workflow
Provider Agent (WPA), the Resource Provider Agent (RPA) and the Requestor Negotiation
Agent (RNA). For every agent, the internal architecture, the internal modules, the relationships
among them and a set of UML sequence diagrams are provided and discussed. Additionally, for
the execution and management of shared business process the inter- and intra-domain ontology
are specified and described. Finally, the negotiation protocol and the negotiation ontology used
for the automated negotiations are further explained and analysed.

Chapter 9 presents the implementation, testing, validation and assessment of the proposed
solution. More specifically, certain details regarding the implementation of the platform and the
proposed agents are provided. Furthermore, certain test cases have been developed in order to

Chapter 1: Background and Motivation

 9

test and validate the correctness of the functional specification and the proposed design. The
validation of the platform has been done by developing and testing four individually application
scenarios. Finally, the assessment of the system has been done in three phases, namely
assessment of the emerging XML-based workflow management systems, assessment of FIPA
standards, and assessment of the proposed approach.

Finally, chapter 10 presents the conclusions drawn from the analysis, design, development,
validation and assessment of the proposed approach. More specifically, an assessment of the
contribution of the thesis in relation to the initial objectives and requirements of the thesis and
the state of the art is provided. Finally, a set of open issues for future R&D work are presented
and discussed. This description can function as a motivation for future and more extensive
research in the area of dynamic VEs.

Evangelos K. Ouzounis

 10

 11

Chapter 2: Virtual Enterprises

2.1 Introduction
Virtual enterprises (VEs) are not just a new area of research and study. Many large industrial
companies, e.g. car manufacturers, used to maintain remote or "virtual" business relationships
with their suppliers and even with corporate customers. However, the level of integration and the
enabling ICTs used, are often not adequate. Many activities are still performed manually and in a
complicated way with associated high costs.

Typical examples of virtual enterprises include value added service providers. For example, a
telecommunication organisation that provides virtual private networks to its customers. In case
that one customer requires a private network connection between two physical locations that
belong to two different states, e.g. Germany and Australia, then the initial telecom organisation
should establish the appropriate international leased line connections by utilising the network
infrastructure of another telecom organisation. This means that Deutsche Telekom, that
represents the initial customer service company in Germany, should co-operate with MCI
WorldCom and Telecom Australia to provide the international leased line. All three companies
should jointly co-operate, share resources, and business processes in this complex activity so as
to provide a final end-service to the customer. The provided leased line is a service offered by
three companies that committed to serve this customer for the whole duration of the existence of
the leased line. The final service is provided in a transparent way to the user; the user does not
know the existence of the three telecommunication organisations.

With the broad advent of networked organisational forms and the emergence of new electronic
business paradigms, business terminology is becoming confusing and expressions such as the
"extended enterprise", the "virtual organisation", the "networked organisation", "supply chain
management", and “cluster of enterprises” sometimes used interchangeably and need further
clarification.

Evangelos K. Ouzounis

 12

The concept of extended enterprise is better applied to an organisation in which a dominant
enterprise “extends” its business boundaries to all or some of its suppliers, whilst the VE can be
seen as a more general concept of including other types or organisations, namely a more
democratic structure in which the co-operation is peer to peer (Afsarmanesh 99, Reichert 98). In
this sense, an extended enterprise can be considered as a particular case of virtual enterprises.

The concept of virtual organisation is similar to that of a VE, comprising a network of
organisations that share resources and skills to achieve its mission/goal, but no limited to an
alliance or enterprises (Doz 98, Adams 97). An example of virtual organisation could be a
virtual municipality, associating via computer networks, all the organisations of a municipality,
e.g. water distribution services, leisure services, etc. A Virtual Enterprise is, therefore, a
particular case of virtual organisation (Doz 98).

The term networked organisation is perhaps the most general one referring to any group of
organisations inter-linked together by a computer network, but without necessarily sharing skills,
resources, processes, or having a common goal (NIIP 96). Typically, networked organisations
correspond to a very loose type of organisation.

Networked
Organisatons

Virtual
OrganisatonVirtual

EnterpriseExtended
Enterprise

Figure 1: Virtual Enterprise Models

The supply chain management term refers to the policies and supporting mechanisms to manage
the flow of materials in a value chain, possibly covering several aspects from the raw material
suppliers to the consumers, and involving the product manufactures, distributors, retailers, etc.
and supported by the flow of information between the supply chain participants (Camarinha-
Matos 98, Zarlin 99). This concept is traditionally applied to organisations that are relatively
stable, i.e. where the core competencies remain the same for a large period of time, however
more dynamic supply chains are becoming current. The focus in this approach is on the logistics
for material and related business information (Georgakopoulos 98, Geppert 98).

Finally, cluster of enterprises is a group of enterprises that have the potential and the will to co-
operate and therefore, may become partners in a VE. These enterprises are normally registered
in a directory, where their core competencies are declared. Based on this information, a VE
initiator can select partners when a business opportunity is detected.

In the context of this work the following generic definition is adopted (Ouzounis 98c, Block 95,
CIMOSA 98): ”a VE is a network of different administrative business domains that co-operate
by sharing business processes and resources to provide a value -added service to the customer.
Each member of the virtual enterprise will contribute primarily what it regards as its core
competencies, i.e. business processes and resources. There is a time limit on the existence of the
virtual corporation caused by fulfilment of its business purpose. From the viewpoint of an

Chapter 2: Virtual Enterpris es

 13

external observer, i.e. a customer, the virtual enterprise appears as a unitary enterprise.” Figure 1
presents the relationships among the different types of virtual enterprises.

However, most of these business scenarios have specific, business sector related characteristics,
and they, in general, follow some generic principles and models. The most important features of
VE are (Ouzounis 98e, Block 95, CIMOSA 98, Zarlin 99, Carr 96):

• more than one independent administrative domain is involved in the provision of the service
to the customer

• the service provision is performed by sharing resources and business processes, i.e. by
establishing business relationships among the different VE partners,

• the sharing of processes and resources lasts for a limited period of time even only for only
one service provision,

• the business process interfaces among the business domains, i.e. the way that one domain
deploys the processes and resources of the other, might be static, pre-defined, and fixed or
dynamic, based on a set of globally specified templates,

• the number of VE partners might be static or dynamic according to the needs and
requirements of the partners,

• the partners are physically distributed and are connected with electronic means and systems,

• the provision of the service to the customer is done in a transparent way by one
representative partner.

The above mentioned features prescribe the key selection criteria that will be used to classify the
existing VE concepts and models. Some of the most important criteria are (Ouzounis 99a, Doz
98, Adams 97):

• Lifetime of the relationship: whether the time limit of business relationships among the
VE partners is short, medium, or long term. The relationship can last for only one service
provision up to some months or years,

• Number of VE Partners: whether the number of partners is static and pre-determined or it
is dynamic and flexible and can change any time leading to the evolution of the VE,

• Degree of Autonomy: whether the VE partners are tightly coupling their business
processes or they can change any internal process maintaining their autonomy within the
context of the partnership,

• Degree of Distribution: whether the network is controlled by a centralised entity, is
distributed or it is market oriented with the support of a virtual marketplace that provides
directory services for identification and selection of suitable partners,

• Degree of Evolution and Scalability: whether the VE can evolve in terms of new members
and relationships and if the business model is scalable,

• Degree of integration: whether a VE member has fully integrated their business processes
with other organisations following a tightly-coupled model or a loosely coupled model with
limited integration,

• Focus on process efficiency vs. focus on per-transaction efficiency and value: whether
the VE members are co-operating on process level or on transaction level with direct

Evangelos K. Ouzounis

 14

implications on integration and lifetime relationships.

The above key criteria will be used to classify the existing proposed models of VE. In the
following section a classification of different VE models is given and certain conclusions are
drawn regarding the applicability and complexity of each model.

2.2 Categories of Virtual Enterprises
Although there is no strict academic definition regarding VE, different VE models feature
common business and technical characteristics and attributes. Deploying the above specified
criteria as classification criteria, two well-defined categories of VE can been identified
(Ouzounis 00a, Malone 91, Banahan 99, Stricker 00). These are:

• Static Virtual Enterprises,

• Dynamic Virtual Enterprises.

In the following section, these two generic VE categories are further analysed and certain
examples are provided to better clarify the different models, concepts, and benefits and
drawbacks that both approaches share.

2.2.1 Static Virtual Enterprises

In Static Virtual Enterprises (SVE) a set of business partners is linked together in a static and
fixed way, i.e. the shared business processes are tightly integrated. The business relationships
among the partners, i.e. the process interfaces are pre-defined, tightly coupled, fixed, well-
integrated, and customised among the partners (NIIP 96, Malone 91, Afsarmanesh 99). The
network is fixed and pre-determined and thus, the structure of the VE is static and pre-
determined. Based on the distribution and management style of the network, two types of Static
VEs can be identified, namely centralised and decentralised (Ouzounis 99a, Stricker 00).

In the Centralised Static VEs (CSVEs) a dominant business domain co-ordinates the business
relationships among the members of the network, enforces the technical interfaces for business
integration among the partners, integrates the processes of the partners by creating shared
processes, and manages the underlying technical infrastructure and the shared business processes
of the partners in a static and centralised way (NIIP 96, Wognum 99 a and b). Partners and the
central organisation form long-term relationships and focus on investment returns over the
lifetime of that relationship. Finally, the establishment of the VE is performed manually, in a
customised way, and under the full control of the dominant organisation. The required
integration, development, and re-engineering costs are high for all members (McCaffer 99,
Nwana 99).

Typical examples for CSVEs are models that have been applied in the automotive manufacturing
business (Zarlin 99, Geppert 98). In that case, a big automotive manufacturer has a network of
suppliers, distributors, and re-sellers that are working together in different phases of the
production, distribution, and reselling process. The big manufacturer has specific needs and
requirements and enforces his requirements in order to increase the degree of automation and
decrease the production and distribution costs. The network of suppliers, resellers, and
distributors closely co-operate with the central dominant business domain by adopting and
integrating the pre-specified interfaces.

Chapter 2: Virtual Enterpris es

 15

In Decentralised Static Virtual Enterprises (DSVE) different business partners are linked
together in a rather autonomous and decentralised way. This type of network is similar to the
previous one except that there is no central, dominant, management organisation and each
member of the network may co-operate with many other domains (Malone 91, Ouzounis 98c).
None of the partners has full control over the network and the underlying infrastructure, while
integration among the business processes of the members is being performed in a jointly, co-
ordinated, and incremental way. Partners form long-term business relationships and gain
investment returns over the lifetime of those relationships (Mohan 98, Fredederix 98). Finally,
the establishment of the VE is performed manually and in a customised way addressing the
specific technical requirements of the partners. The development and integration costs are rather
high, while the evolution of the network is rather impossible (Zarlin 99, Wognum 99a).

High tech manufacturing today exemplifies this model. Organisations such as semiconductor
fabs and board assembly houses focus on one activity in a complete value chain and then partner
with multiple other organisations in order to play a role in multiple value chains. Every partner
plays a role in the VE and contributes primarily its own core competencies, i.e. business
processes and resources. In high Tech manufacturing the VE members can work on the
production and assembly of new products, as well as, on the distribution of products to different
re-sellers.

A more recent approach to automate the process of forming a static VE is to use a virtual
marketplace or a directory service where potential VE members register their resources and
business processes (CrossFlow99, Tombros 99 and 00, Ouzounis 98b). The virtual marketplace
provides matchmaking services to business domains that want to locate VE partners (Spinosa 98,
McCaffer 99). Human operators searching the marketplace and locate potential partners that can
provide specific processes. Then, a manual, human-driven negotiation process starts for the
selection of the most appropriate VE candidate partner. With this approach, the time required to
find partners and establish business relationships is improved. This approach takes advantage of
the new, open, Internet economy and significantly improves the formation process of the virtual
organisations. However, after the formation of a VE, the business relationships among the
partners, i.e. the interfaces among the shared business processes, remain static and fixed, while
the evolution of the VE in terms of new members, that might provide better processes with better
terms, is rather impossible (Hoffner 97, 98 and 99).

Marketplaces can be used in a more effective and dynamic way not only in the formation phase
of VEs but also in the execution phase (Ouzounis 99b). This means that the partners that are
involved in the provision of the shared process are changing continuously and dynamically
according to the requirements of the customer and the processes. In that case, for every business
process execution a new VE is being created in a dynamic way addressing the needs and
requirements of the customer and the individual partners. The deployment of marketplaces not
only for the establishment of VEs but also during the provision of shared processes can lead to
significant improvements (Ouzounis 99b).

In the following section, the benefits that virtual marketplaces introduce during the business
process management and execution are further explained.

2.2.2 Dynamic Virtual Enterprises

In Dynamic Virtual Enterprises (CSVE) a set of business partners is linked dynamically, on-
demand, and according to the requirements of the customers, by deploying a virtual marketplace.

Evangelos K. Ouzounis

 16

The business domains do not have fixed business relationships and thus the VE is not static and
might change continuously based on market driven criteria (Ouzounis 99b, Fielding 98, Doz 98).

The virtual marketplace provides services for the registration of partner process offerings based
on some generic, well-known, globally specified process templates. Business domains that want
to form VE relationships can register offers on the marketplace related to certain process
templates. Whenever a business domain wants to use a particular process, searches the
marketplace, and locates all the potential partners that can provide the service. As soon as the list
of VE candidate partners for one particular process has been found, the selection process starts.
The selection process between the domains is usually performed through negotiation. The
negotiation process might be either, manual, or automated, while the result of it is usually a short
term contract that regulates the business relationship among the involved domains (Gepert 98,
Grefen 98, Weitzel 99).

By deploying virtual marketplaces, there are no explicit static business relationships among the
partners and thus, no integration among the processes of the partners is required. Marketplaces
are usually organised around certain globally specified service or product templates that can be
offered by the different vendors. The marketplace is a match making mechanism that brings
potential process providers together with potential users of these processes. Although
marketplaces and matchmaking mechanisms have been used for some time for business to
consumer electronic commerce purposes (Kasban 98, Ebay 98, Yahoo 96) they have not been
actually deployed for dynamic VE purposes (Ouzounis 98e). The main reason was the lack of
technologies that enable the easy and flexible definitions of process templates, mechanisms for
automated negotiation, and autonomous interaction among different domains. Due to the advent
of eXtensible Markup Language (XML) (W3C) and its ultimate acceptance, as Internet meta-
language, concepts like virtual marketplaces have started to appear (Ouzounis 99a, Zarli 99,
Mitrovic 99).

The primary focus on virtual marketplaces is on efficiency of transactions and maximisation of
value per cost of each vendor's offer. Organisations may participate in the marketplace only
briefly or they may be long term members. Relationships between process users and process
providers tend to be short term. Thus, investment returns are gained over single transactions, as
well as, over the time span of the marketplace participation. The number of members of the
network can easily change and thus, the structure of the VE can change from one service
provision to another according to the specifics of the customers and the current needs of the
members. This is a significant evolution mechanism that takes advantage the demand and
supply, i.e. the process offerings by the individual domains.

Based on the distribution and management style of the network, two types of Dynamic VEs can
be identified (Malone 91, Alonso 98):

• Centralised, when the owner of the marketplace is a VE partner. This domain manages and
administers the virtual marketplace and enforces specific process templates. Although, from
technical point of view, it is possible to organise a VE in terms of a Centralised Dynamic
VEs (CDVEs), from business point of view is rather unusual. The main reason is that the
marketplace should be a trusted, third party provider that is not involved into the VEs.
Centralised dynamic VEs can be deployed by very big organisations that would like to
transit from the Centralised Static VEs into more dynamic cases (Zarli 99, Geppert 98 a).

• Decentralised, when the owner of the marketplace is a third party provider that has no
relationship to the registered partners. This is probably the most advanced and flexible

Chapter 2: Virtual Enterpris es

 17

model that features the most benefits. However, the required business systems and
technologies are far too complex and for the moment immature (Ouzounis 98c).

An interesting area where Decentralised Dynamic VE (DDVEs) concepts are applied is the area
of trading communities. A characteristic example is the area of logistic companies. In that case,
logistic companies can register their processes into a specialised marketplace. A potential
process might be the delivery of parcel where the properties of the process might be the reached
destinations, the price, the time needed to transfer the parcel, the offered guaranty, the
transformation media, etc. Then, business domains that want to use a logistic service, search
automatically on the trading community, select the best partner that exist at this moment on the
marketplace, based on certain requirements, and use the service. For the initial customer of the
VE the whole process is total transparent. As the offers in the marketplace change, i.e. new
companies register and deregister with better terms, conditions and prices, then the selection of
the best partner depends on negotiation practices. The VE might exist for only one service
invocation or for more. However, if companies want to take advantage of the market conditions
enabled by Internet-based commerce, they should frequent deploy the capabilities of the virtual
marketplace in order to get better prices and quality of service.

The above scenario illustrates the key elements of DDVE. The VE usually exists only for the
duration of a single service provision. Certain selection and negotiation requirements specify the
VE partner that will be selected each time (Billington 99). The evolution of the VE is granted
due to the loosely coupled relationships among the partners and the marketplace capabilities.
The registration of process offerings on the marketplace is based on globally specified service
templates (Tombros 99, Wognum 99). The marketplaces are becoming more specialised and
closely related to specific industrial sectors. In long term, special trading communities for
specific industry sectors will be created. The form and relationships among the partners of the
VE can change continuously. The process offerings registered in the marketplace can change
dynamically and on-demand according to the demand and supply (Ouzounis 99b).

It is obvious that dynamic VEs improve significantly the static ones and take full advantage of
the open, global, opportunities offered by the Internet and the global economy. In the following
section a more formal and focused assessment of the static and dynamic VEs is provided.

2.3 Evaluation of Virtual Enterprise Categories
The classification and assessment of the basic VE models, proposed so far, will be done with the
previous mentioned classification criteria (Camarinha-Matos 99, Malone 91, Mitrovic 99).
Therefore, a comparison of each model against the classification criteria leads to the following
conclusions:

• Lifetime of the relationship: DVEs feature very short lifetimes, while SVE feature longer
ones. In the former case, the relationships are static, well-integrated and thus, no flexible
enough for alterations, modifications, and evolution. This dimension also determines the
time period over which investment returns must be achieved,

• Degree of integration: Tightly coupled SVEs, which function essentially as a single virtual
organization, exhibit high process integration between partners. Loosely coupled DVES are
at the far end of the spectrum and show very low process integration between the partners,

• Number of VE Partners: In SVEs, the number of partners participating in the VE is static
and pre-determined due to the specialised integration activities required. In DVEs the

Evangelos K. Ouzounis

 18

number can change dynamically, upon demand and supply, and based on the requirements
of the individual members of the marketplace,

• Degree of Autonomy: SVEs require high degree of integration among the partners and
thus, the degree of autonomy is rather low. The business processes of one partner are highly
depend on the others. On the contrary, DVEs feature more autonomicity because the
relationships among the partners are not static and well-integrated. Thus, any changes to
business processes can easily be done.

• Degree of Distribution: All the above mentioned models have a good level of distribution
among the business processes of the partners. However, SVEs are based on a centralised
dominant model, while DVEs reveal, due to the nature of the model, the highest level of
distribution and autonomicity among the business processes and partners.

• Degree of Evolution and Scalability: In SVEs the relationships among the partners are
static and thus the level of scalability is low. It requires high development costs to re-design
the network and change the interfaces among the partners. On the contrary, on DVEs there
are no tightly coupled interfaces among the partners and thus, scalability and business
evolution is a key issue.

• Focus on process efficiency vs. focus on per-transaction efficiency and value: As we
saw above, partners that work as part of a larger virtual organisation focus on achieving
overall process efficiency. Partners that work on a per-transaction basis need to focus on
achieving efficiency and value within the individual transactions.

In the following Table 1, a summary of the above analysis and discussion is illustrated.

 Static Virtual Enterprises Dynamic Virtual Enterprises

Lifetime High Low

Integration High Low

Number of Partners Static Dynamic

Autonomy Low High

Distribution Medium High

Evolution/Scalability Low High

Process Efficiency High Medium

Transaction Efficiency Low High

Table 1: Comparison of VE Categories

Based on the above selection and categorisation criteria, it is obvious that DVEs are a more
promising business model with a lot of interesting features. Due to the open mechanisms of
Internet economy dynamic, flexible, autonomous VEs that take advantage of the market
conditions are preferred.

Although from business point of view DVEs are the most promising business model, from
technical point of view the required technical solutions and systems are more complex,
sophisticated and distributed (Ouzounis 98d, Alzaga 99, Carr 96). However, the advent of

Chapter 2: Virtual Enterpris es

 19

Internet and open communication protocols, like TCP/IP and HTTP, distributed middleware
systems, like CORBA-IIOP and Java RMI, and extensible meta languages, like XML, provide
the basic building blocks for the development of management platforms that will realise the
concept of DVEs.

In the following section, a life-cycle model for the establishment and management of VE is
presented. This model prescribes the key phases, activities, and domains required for the
management of dynamic VEs.

2.4 Life-Cycle Model for Dynamic Virtual Enterprise
A life-cycle model usually describes the key phases and activities required during the existent of
an entity. According to ISO (ISO 91 and 94), a life cycle can be defined as “the finite steps a
system may go through over its entire life history. The different life cycle phases define types of
activities which are pertinent during the life cycle of the entity”. In our case, the VE life-cycle
model consists of two key phases that should be followed for the establishment and management
of a VE. Every phase consists of more specific steps that describe the main operations that
should be done by different human roles from technical point of view. It should be noted that the
following life-cycle model is best applied in the DVE model that is the core work of this thesis.

In order to better understand the life-cycle model, the following scenario is provided. A
Company called On-line-Books sells books to customers on-line. Part of the book-selling
business process is the distribution process, i.e. the delivery of the book to the customer. On-
line-Books has not a particular way to distribute the books and looks for a logistic partner to
outsource this process. The On-line Books company knows exactly the properties and attributes
of the distribution process. In order to find potential partners with logistic capabilities, On-Line
Books deploys a third party virtual marketplace that provides matchmaking services for logistic
companies.

The virtual marketplace specified several logistic process templates for different logistic
services. One of the logistic process templates is the book delivery process. This process
template has, for example, as properties the destination, the price for the delivery, the payment
method, when the payment should be done, delivery day, the guaranty in case of problems, etc.
Logistic companies, that can deliver books, use the standard book delivery process template and
register their process offerings into a particular marketplace by specifying their terms and
conditions.

When a customer orders a book from the On-line-Books, the company searches the marketplace,
locates the potential logistic partners, negotiate with them about the price, location, delivery day,
time, quantity, etc. and selects the most suitable one. The selection of the partner is highly
associated with the characteristics of the customer, i.e. his location and preferences. Then, the
Book-On-Line uses the logistic process provided by the selected partner and serves the
customer. When a new customer comes and places a book order into the shopping system of the
company, the company uses again the marketplace and locates, negotiates, and selects probably
another logistic company that can better satisfy the requirements of the new customer.

The above scenario is a very typical, though simplistic, one that reveals most of the
characteristics of the DVEs concept. In order to support a scenario like this, a management
platform for the management of DVEs is required (Ouzounis 98d, Stricker 00, Camaritha-Matos
99). In more general terms , the following definitions and concepts are provided in relation to the
life cycle model and this thesis specifically.

Evangelos K. Ouzounis

 20

In general, a VE is a set of business domains that jointly and dynamically co-operate to provide
value-added services to a customer in a transparent way, i.e. the customer does not know about
the existence of the different business domains involved in the service provision. A business
domain is a administrative domain that pose its own resources, infrastructure, and services and
impose its own restrictions and regulations on them in terms of access control and
authentication. Business domains jointly co-operate by sharing services, i.e. one business
domain deploys services provided by one or more other business domains in a consistent and
well-regulated way. Every request for a service deployment from one domain is checked for
permission by the requested domain. The access control and authorisation of requests before the
service provision is based on a temporary contract that has been agreed by both domains, i.e. by
both the requestor and supplier. The business domain that requests a service by one domain is
called the requestor while the domain that provides the service is called the supplier.

The technical representation of a service is a business process. The business process can be
either, local or remote. All the processes provided in self -contained manner by this domain are
called local processes. Therefore, a domain has full control of its own local processes and can
impose any type of access control constraints. On the contrary, when a process could not be
provided by one particular domain, but should be deployed by a remote one, is called remote. A
process that is considered remote for domain A, is local for the supplier of this process. This
means that local and remote processes can be represented technically in a similar way but they
differentiate to the way that domains “look at and interpret ” them.

The domain that provides a service, i.e. a business process, directly to a customer is called the
VE representative. The process that is provided by the VE representative to the customer is
called VE process. The VE representative domain represents the VE in the outside world in a
similar way like a normal company. The domains that participate in the provision of VE
processes in the context of the VE are called VE partners. Initially, when the different business
domains have no relationships among them, i.e. they do not share any processes, are called VE
candidate partners. A VE candidate partner is becoming VE partner after a negotiation process
that involves the potential requestor of the process and the potential supplier of the process.
When an agreement is reached then the potential supplier becomes a VE partner. This
negotiation process is done dynamically and during the provision of VE process to the customer.
The agreement might last for only one business process deployment or for several ones.

A normal business domain becomes potential VE partner when it registers the business
processes that can offer to a third party marketplace. In that case, the domain specifies which
local processes can be provided to other domains and under which terms and conditions these
processes will be provided, e.g. price. The virtual marketplace provider maintains for different
processes different service templates that describe the service. A service template has a name, a
set of named properties and can be associated with other existing service templates. When a VE
candidate partner declares that can offer a particular service, it always associates this offer with
an existing service template. When a service template is not available, a new one can be
generated by the marketplace administrator for consistency. When a service can be provided by
different VE candidate partners, then offers associated with this service are stored and managed
by the marketplace. Each individual VE candidate partner can change dynamically the context of
its own offer by updating or improving it.

Local and remote business processes are represented technically in the same way using for
example a business process definition language. In general, a process has a name, a set of input
parameters, a set of output parameters, a set of sub-processes, a set of tasks, and a set of

Chapter 2: Virtual Enterpris es

 21

conditions. The input parameters are the input values to the process, while the output parameters
are the output values of the process. A process might consist of sub-processes in a recursive
manner. For every subprocess, in a similar manner like the process, a name, input and output
parameters, sub-processes, sub-tasks and conditions can be specified. This leads to a directed
acyclic graph of processes, subprocesses and tasks. A task is considered the final, unique,
elementary piece of activity that can be included within a process. Actually, tasks are the
computational elements of the process while processes and sub-processes orchestrating and co-
ordinating the scenario of the process by scheduling the tasks based on conditions. With every
process, sub-process, and task conditions can be associated. Conditions are logical expressions
related to input, output, and external values with some logical operators. When a condition,
which is related to a process or task, is true, then the associated process or task should be
scheduled. By this decomposition of processes into sub-processes and tasks a complex service
can be easily described. The specification of a business process could be done by using a
business process definition language. This business process definition language provides all the
necessary syntactic means to specify processes, sub-processes, tasks, and conditions.

When a process consists of sub-processes and tasks belonging to the same administrative domain
and can be provided in an autonomous way by this domain, then the process is called local. If
there is one sub-process that cannot be provided by this domain, then this sub-process is called
remote and, in that case, a supplier domain should be found. If, for this remote process, one
static supplier has been found, then the VE relationship is called static. If, for every remote
process, a supplier is found dynamically during the process provision, then the VE relationship
is called dynamic. If the partners of a VE have not static relationships among them, but on the
contrary, they negotiate among each other during process execution then the VE is called
dynamic VE.

From the above description and definitions, it is obvious that different administrative domains
participate in the execution and management of dynamic VE services. These domains are the:

• Customer domain: this is the domain of the user that deploys the services of the VE. The
user in this domain can start a service, suspend, resume, or terminate it. When the service is
completed the results of the service are returned to the customer. Additionally, if, during the
execution of the service, a critical situation occurs, the service is aborted and the customer is
informed about the event.

• VE representative domain: this is the domain that the customer logs on and requests
certain services. This is actually the domain that represents the VE to the external world. It
executes and manages processes in a transparent to the customer way by deploying the
capabilities of the marketplace and the remote processes of other business domains. The VE
representative domain provides and manages the execution of the VE services by
conducting the marketplace, locating candidate partners, negotiating with them, and
selecting the best one for the execution of the remote processes,

• VE Candidate/Partner domain: this is the domain that offers a set of business processes to
the marketplace community and registers certain offers related to specific service templates
for potential co-operation with other domains. If this domain is finally selected after a
negotiation process it becomes the VE partner domain that will provide the agreed processes
to other domains,

• Virtual Marketplace domain: this is a third party domain that provides the service
templates that the VE candidate partners use to register their offers. This domain manages

Evangelos K. Ouzounis

 22

the service templates, the offers registered by the VE candidate domains, and provides
retrieval services for the selection of VE candidate partners. This domain does not actively
participate in the VE and thus does not provide any type of business process management
services.

Having defined the key domains and the roles taking part in dynamic VEs, the lifecycle model
finally consists of the following key phases:

• Business Process Specification and Registration Phase: during that phase the different
business domains should specify their local and remote business processes. The
specification of business process is performed by deploying a business process definition
language. In the sequel, every domain registers for every local process corresponding offers
to the virtual marketplace by declaring the terms and conditions under which these local
processes will be offered to other domains,

• Business Process Management Phase: during that phase, a business domain offers
services to customers by deploying the dynamic model of the marketplace. Whenever a
customer requests a service, the corresponding domain initially starts the provision of the
service. If the requested service consists of remote sub-processes, that should be provided
by other domains, then the business domain conducts the marketplace, locates all the
potential VE candidate partners, and negotiates with them dynamically in order to select the
best one that satisfies certain selection and negotiation criteria. When a VE partner has been
found, then the initial domain, that serves the customer, requests the remote process from
the newly selected VE partner. The provision of the whole process is totally transparent for
the customer. During the provision of the service, the customer can manage the service, i.e.
he can suspend, resume, or terminate the execution of it. Every management request from
the customer, e.g. suspend, is forwarded to all VE partners, i.e. the management of VE
services should be performed in a autonomous, distributed and cross-organisational way.

2.5 Requirements for the development of Dynamic VE
Systems

In order to support such dynamic business scenarios an open, flexible, underlying management
platform that supports easy integration and automation of business processes that span different
business domains in an effective and well managed way is required (Malone 91, Gibon 99,
Wognum 99).

The key functional and technical requirements for the development and deployment of such a
platform are:

• specification and storage of business processes that can be executed and managed in a
distributed, autonomous, and dynamic way in the context of dynamic virtual enterprises, i.e.
across-organisational boundaries,

• flexible and dynamic mechanisms for distributed, autonomous, and loosely coupled co-
operation and business process execution among different business domains (Tombros 99
and 00, Ouzounis 99b),

• registration and management of core business processes that can be offered to potential VE
partners in an open, third party, virtual marketplace (Ouzounis 98d),

Chapter 2: Virtual Enterpris es

 23

• dynamic selection of VE partners based on business process offerings stored in virtual
marketplaces and support for automated negotiations through simple selection criteria,

• access control and authentication of business process requests coming from remote business
domains based on electronic contracts that have been established during the automated
negotiation process (Carr 96, Borghoff 97),

• flexible mechanisms for business process template management and maintenance and
administration of process offers within virtual marketplaces,

• flexible and easy adaptable ontologies for business process execution and management
across organisational boundaries (Zarlin 99, Georgakopoulos 98),

• flexible and easy adaptable ontologies for virtual marketplace deployment from both
business process providers and requestors (Tombros 99),

• flexible and easy adaptable ontologies for automated partner selection and negotiation
(Ouzounis 99b),

• provision of shared business processes to customers through the web in a transparent and
flexible way by hiding the dynamic relationships among the different business domains
(Bolcer 99),

• integration of existing legacy systems and business components with business processes in
the context of dynamic VEs (Orfali 96, Choy 99, Breugst 98).

In the following chapter 3, the emerging state of art technologies that can be used for the
development of dynamic VEs systems are presented and analysed. These technologies vary from
the traditional EDI systems, to distributed, component-based business systems, to XML-based
messaging systems, to workflow management systems, to intelligent mobile agents, and to
virtual marketplaces. Analysis of each technology and the benefits and drawbacks that it has in
the context of dynamic VE is presented.

Additionally, an exhaustive analysis of the current state of the art in the area of dynamic VEs in
relation to certain research and development projects and technologies is presented. The
objective of this analysis is to evaluate and assess the existing solutions and proposals in the area
of VEs and identify the key open R&D issues that need to be solved. These key open issues, in
relation to the technologies selected in the previous chapter, and the above stated requirements
will be the basis for the analysis, design and development of the management platform for the
dynamic VEs.

2.6 Summary
In this chapter analysis of the Virtual Enterprise concept is provided. More specifically the
different terms and definitions of VEs that have been proposed in this area are presented and
analysed. Though a fully agreed term of VE has not been emerged in the academic world, this
thesis proposes and adopts one. In the sequel, the two broad categories of VE, namely the static
and dynamic ones, are presented and the main characteristics of them are extensively analysed.
Based on some classification criteria these two categories are evaluated and assessed and certain
conclusions are drawn. Furthermore, a life-cycle model for the creation and management of
dynamic VEs is presented. The life-cycle model specifies the main activities required for the
specification, deployment, and management of shared business processes in the context of

Evangelos K. Ouzounis

 24

dynamic VEs. Additionally, certain key definitions are provided and discussed. This model
actually determines the key administrative domains, the human roles, and the functional
activities involved in the establishment and management of dynamic VEs. As a result of this
model, a set of key technical and functional requirements that should be fulfilled by a
management platform for dynamic VEs, are presented.

 25

Chapter 3: Virtual Enterprise Infrastructure

3.1 State of the Art in Virtual Enterprises
A rapidly increasing number of projects and R&D activities worldwide are addressing different
technical and business aspects of virtual enterprise technologies and infrastructure.

The National Industrial Information Infrastructure Protocols (NIIP) project started at late 1995 in
the USA and it was perhaps the first biggest and most significant project in the area of VE. In
reality, NIIP is more a workprogram than one consistent project. NIIP intends to support the
formation of industrial VEs and to provide technologies that allow VE participants to collaborate
within a heterogeneous computing environment. In its general scope, NIIP addresses the
complete VE life-cycle, i.e. establishment, execution, and completion. The NIIP bases its
developments on open, standard, core technologies such as the Internet and CORBA (OMG 98),
related distributed object oriented technologies, product modelling and description techniques,
like the Exchange of Product Model Data standard (STEP 96), and information modelling
technologies, like workflow management systems (Georgakopoulos 98). Based on this reference
architecture, a number of pilot projects have been launched to develop prototypes, e.g. SMART,
Solutions for SME Adaptable Replicable Technology. NIIP is based on a very “harmonised”
view of the business world and it is too much focused on the US-based reality and interests.
According to NIIP’s concepts, all enterprises should work co-operatively by sharing all kinds of
services, and resources, including humans. This approach is rather too generic and optimistic
and probably, not in compliance with the current reality in most business sectors (NIIP 96).
Therefore, although NIIP can be considered as a Reference Architecture to be considered before
any new development in the VE area, it can not be easily adopted and deployed due to its
generality and high level of abstraction. More specifically, the NIIP project developed concepts
and prototypes for the static VEs. The selection of partners is performed manually, without using
any type of matchmaking mechanisms, and as a consequence, the evolution of the VE could not
be easily performed. The execution and management of shared business processes is done by

Evangelos K. Ouzounis

 26

shared, tightly coupled, business objects located in different physical and administrative
locations. The interfaces among these business objects are static, pre-defined and well-agreed by
the different partners. An alternative way for executing and managing business process es was
the deployment of workflow management systems. In that case, the workflow management
system is used for the management of internal business processes. The cross-organisational
business process management is performed by the exchange of events generated and consumed
by specialised gateways. In general, the NIIP project has not proposed so far a cons istent
approach for cross-organisational business process execution and management.

The X-CITTIC, Planning and Control Systems for Semiconductor Virtual Enterprises, is an
Esprit funded project focused on VEs for the semiconductor industry (X-CITTIC 97). In this
application domain, the manufacturing process is associated with sales order originated by a
customer that can be located anywhere in the world. The management of sales orders can be
accomplished through a globally distributed manufacturing network that can manufacture
different pieces of the product on-demand. X-CITTIC expected to raise, to the virtual enterprise
level, some of the techniques currently available in a modern shop floor (Veloso 98). Examples
of such techniques are event-driven planning, scheduling, dispatching, and order release. The
project also worked towards the direction of static VEs, where the establishment and
configuration of the VE is performed manually and in a centralised manner. The execution of the
shared business processes is done though special gateways that control the manufacturing
control units (Adams 97). The management of shared process is performed in terms of events
generated and consumed by the different partners. The semantic meaning of these events is
tightly coupled with the business process that will handle the events. Events generated from one
business process in one domain are forwarded in the domain’s gateway (Debenham 98). The
gateway locates the corresponding VE partner domain that will consume the event and forwards
it to its gateway. The receiving gateway is responsible for the management of it by forwarding it
to the internal process that will handle it. The relationships among the event consumers and
providers are static and are not regulated or controlled by market driven approaches, like virtual
marketplaces. The links between the different gateways are specified statically and could not be
changed easily. Every domain pre-defines the events that can handles (Grefen 99).

The goals of MARVELOUS, an end user driven ESPRIT funded project, are the identification
and harmonisation of generic requirements for use of advanced IT in manufacturing and
engineering across the maritime industry (MARVELOUS, 97). The project intended to
guarantee consensus on requirements across the whole range of maritime users and to work
closely with the technology providers in order to facilitate the formation of VEs. It also tried to
ensure that the end-user requirements are feasible and can be translated into product
developments. The project deployed open standards and distributed object-oriented technologies
for the execution of business processes. The execution of shared processes is performed by
specialised business objects, which are located in different partners (Cost 98). The relationships
and integration among these entities is static and pre-defined leading directly to the concept of
static VEs, while the business objects have tight coupled relationships among them. This means
that no direct market oriented mechanisms are involved for the selection of partners. The
integration of shared business processes is done in a manual and static way (Miller 98).

The VEGA project, Virtual Enterprise using Groupware tools and distributed Architecture, aims
to establish an information infrastructure to support the technical and business requirements and
operations of Virtual Enterprises (VEGA 98). Groupware tools and distributed architectures are
being developed in compliance with product data standardisation activities (STEP) and the
current trends adopted by the forthcoming international industrial groupware specifications, for

Chapter 3: Virtual Enterprise Infrastructure

 27

example the OMG (Zarli 99). The approaches and developments resulting from a number of
other ESPRIT projects were extended and the strategy for application integration by the
distribution of a concurrent access to STEP databases were explored (Zarli 99). A
complementary route involves the design of a CORBA Access to STEP models (COAST)
infrastructure to support the distribution of a product data by means of updated object broker
technology. The VE partners are sharing production data stored in distributed federated
databases managed by different domains. The main objective of VEGA was to provide a
mechanism for sharing STEP oriented product designs across different domains for the
manufacturing and production phase and thus, no major emphasis has been placed on the
business process specification, execution, and management (Zarli 99).

The PRODNET II project, Production Planning and Management in Virtual Enterprise, aimed at
the design and development of an open platform to support industrial manufacturing VEs with
special focus on the needs of Small and Medium Enterprises (SMEs) (PRODNET II 98). The
basic platform of PRODNET II includes, a Messaging System, for the exchanges of EDIFACT
and STEP messages, a Co-ordination Module, for the execution of shared VE processes based
on event management and CORBA remote requests, a Configurator, allowing the definition and
parameterisation of the VE and the behaviour of each node, a distributed business process
management system, that provides a proprietary first level coordination mechanism of business
process execution at the VE level by supporting monitoring mechanisms, and finally a user
driven partner search and selection mechanism without negotiation support based on public
virtual marketplaces (Camarinha -Matos 99a). The execution and management of shared business
processes is based on message passing among distributed CORBA objects (Camarinha-Matos
99b). The integration of shared business processes is pre-determined and based on user driven
matchmaking services. The VE partners exchange EDIFACT messages for only electronic
commerce purposes. The matchmaking service is a general-purpose directory service used to
store company profiles related to certain processes and products. In general, the project does not
address a generic mechanism for inter-domain business process execution and management.
Additionally, the selection of partners in the VE is done in a manual and add-hoc way without
negotiation process (Camarinha-Matos 99c). Finally, the co-ordination of business process is
done by the exchange of standard EDIFACT messages. The EDIFACT messages are only
adequate for electronic commerce purposes and could not be applied for generic business
processes (Pereira 99). Other similar projects working in the area of static virtual
organisations/enterprises, manufacturing and distributed business process execution based on
messages and events include Globeman21 (Globeman21 99), ELSEWISE (ELSEWISE 98),
INDEMAND (INDEMAND 98), and MISSION (MISSION, 97).

The VENTO project, A Virtual Enterprise Organiser-Development of Advanced Groupware
tools supporting synergy among enterprises in the emerging global market, aimed in the
adaptation and integration of groupware tools to an integrated, inter-domain system that will
operate in a distributed environment and will provide workgroups facilities and workflow
management (VENTO 98). VENTO consists of a Workgroup Engine, that offers document
management, history facilities and email functionality, Workflow Management System,
providing with functions for workflow administration, process definition and process tracking,
and Integration Engine, establishing an object-oriented communication between workgroups and
workflow and offering multilingual facilities (Miller 98). The VENTO platform is based on
conventional, client-server, communication interactions. The business processes are specified
using a business process definition language related to the workflow management system, while
the execution of them is performed internally to each business domain and in a centralised way

Evangelos K. Ouzounis

 28

(Grefen 99). The workflow management system actually supports not the execution and
management of shared business processes, but actually co-ordinates the execution of groupware
services and the sharing of documents (Georgakopoulos 98). The coordination and management
of shared groupware processes is performed by the exchange of proprietary messages based on
TCI/IP protocol. The project deals directly with closed and well-integrated group of companies,
i.e. static VEs that have static business relationships and tight coupling business processes.
Additionally, the project does not specify any generic mechanism for inter-domain business
process execution (Grefen 99). Finally, the project does not put emphasis on the dynamic
selection of partners. On the contrary, the partners participated in the VE constitute a closed
group of co-operating partners (Wognum 99).

The GENIAL project, Global Engineering Network (GEN) Intelligent Access Libraries, aims in
the establishment of a Common Semantic Infrastructure (CSI) (GENIAL 98). The CSI
infrastructure enables enterprises from different business sectors to combine internal knowledge
with engineering knowledge accessed on-line and world-wide via GEN services. The GENIAL
platform consists of a framework for the systematisation of engineering knowledge, i.e. a
generic software for the access, insertion, and administration of distributed engineering
information and knowledge, and an electronic marketplace, that enables different companies to
locate partners and establish co-operation with them. The project addresses only the
establishment phase of VEs, i.e. the selection of partners and thus, no business process
specification or execution mechanisms are provided (Fielding 98). The approach of the project is
related to the sharing of information, e.g. industrial designs and modules, among different
business domains. In general, it can be considered as a virtual marketplace or industry specific
portal system for industrial modules and designs accessed by different industrial companies
(Hunt 99). However, these domains neither share processes nor co-operate among each other,
i.e. they do not explicitly constitute a virtual enterprise (Fielding 98). The execution and
management of business processes is considered out of the scope of the project.

The VIVE project, Virtual Vertical Enterprises, aims at developing a general methodology that
enables SMEs to exploit the opportunities of higher competitiveness offered by co-operative
technologies (VIVE 98). The VIVE concept and its implementation is based on the development
of robust methods for selecting and adapting information and communication technology
solutions to enable the operation of such distributed business ventures and on the creation of a
new entity, the “Business Integrator”. This new entity is capable of identifying market
opportunities, specifying the required business process, and integrating the enterprise integration
infrastructure in terms of communication and information. The VIVE concept leads to the static
VE case where the integration of shared business processes is pre-determined and fixed, while
the execution and management of shared business processes is achieved in a centralised way, i.e.
the Business Integrator (Georgakopoulos 98, Zarli 99). The VIVE concept neither provides any
means of dynamic partner selection and negotiation nor loosely coupled business process
execution (Fielding 98). The Business Integrator is actually a centralised node that undertakes
the responsibility to co-ordinate and manage the relationships, i.e. the shared business processes
among the partners. The co-ordination mechanism is based on integration of distributed objects,
i.e. the Business Integrator plays the role of the information broker (Grefen 99).

The TEAM project, Technologies Enabling Agile Manufacturing, provides the critical enabling
technologies needed to implement agile manufacturing concepts (TEAM 97). The main goal of
the project is to design, develop, and test globally defined manufacturing business processes.
The shared manufacturing business processes are executed and managed by workflow
management systems that co-ordinate their execution through the exchange of events, i.e. the

Chapter 3: Virtual Enterprise Infrastructure

 29

management of shared business processes is event-driven. The business domains taking part in
the virtual enterprises have static and well-defined interfaces, while the integration among local
and remote processes has been performed manually and in a static way (Camarinha-Matos 99).
This project aims to deliver an event-driven workflow management system for the execution and
management of static and pre-determined shared business processes. The events are generated
by certain business entities within one domain and are forwarded to the corresponding partners.
The exchange of events is performed by using a general-purpose domain gateway, which
receives and forwards specialised events to other domains. The gateway on the receiving domain
analyses the event and starts the corresponding process that will handle it. In such a way the co-
ordination and management of shared processes is performed (Zarli 99). The project does not
deploy any dynamic concepts for the selection of partners and automated negotiation (Filos 00).
Additionally, the project does not use any type of virtual marketplace where different VE
partners can register process offerings (Spinosa 98).

Another project, related to some extent to the area of VEs, is CrossFlow (Crossflow 99). The
main aim of the CrossFlow project is to provide a mechanism for cross-organisational workflow
management system without explicitly mentioning VEs (Hoffner 98). The key technical
objectives of the project are to develop a detailed architecture that addresses the open issue
involved in cross-organisational workflow, to develop an integration tool for setting up the link
between the different workflow management systems of the co-operating organisations and
“harmonizing” semantically and syntactically the shared business processes, and monitoring of
out-sourced processes to regarding progress and resources consumed (Hoffner 99). The project
deals with both, the selection of partners, and the execution and management of shared business
processes across-domains. For the selection of VE partners, the project deployed the standard
OMG-Trader (OMG 98) as the key matchmaking mechanism. The VE candidate partners that
would like to offer services to other domains register their offerings in the Trader. VE partners
that would like to use specific business processes provided by other partners, conduct the OMG-
Trader using CORBA-IIOP (OMG 98), and get a list of potential partners that can provide the
service. The selection of the most appropriate partner is done by human-driven negotiation
process (Hoffner 98 and 99). After the partner has been selected, the integration process starts.
This process actually involves significant manual steps that both partners should take in order to
“adjust and harmonise” their business processes from both syntactically and semantically point
of view. As soon as the integration process finishes, management of shared processes can be
done. The internal business processes within each domain are executed and controlled by a
proprietary, workflow management system. Cross-organisational business process execution is
done through specialised gateways that have been previously configured. The communication
mechanism among these gateways is based on a well-defined CORBA-IIOP interface. The
project does not provide any generic mechanism for business process definition for cross-
domain business process execution (Zarli 99, Filos 00). Additionally, the result of the business
process integration is a set of closed domains that share business processes. The evolution of the
VE is rather impossible and the alteration of one domain requires the re-integration of the whole
network. It is clear that the CrosssFlow project aims at the establishment and provision phase of
only static VE, though the partner selection process is semi-automated with the support of
OMG-Trader. The project does not address dynamic aspects of virtual enterprises at all, but, on
the contrary, put major emphasis on the integration phase for the syntactic and semantic
“adjustment “ of shared business processes.

Other projects that work towards the direction of cross-organisational workflow management
systems without deploying directly mechanisms for dynamic negotiation and selection of

Evangelos K. Ouzounis

 30

partners during process execution are MARIFLOW (MARIFLOW 99), ACE-Flow (ACE-
FLOW 98) and WISE (WISE 98, Alonso 98). All these projects are trying to investigate ways
for distributed execution of business processes across organisational boundaries without
considering dynamic VE concepts, like virtual marketplaces and negotiation. In all projects the
shared business process are pre-determined and well-defined while the domains that provide the
different business processes have been pre-selected with or without automatic virtual
marketplace mechanisms.

Similar ideas and concepts like CrossFlow have also the ACE-Flow project, Deploying Agile
Customer-Supplier Chain and Efficient Process Management with Federated Workflow
Systems. The project aims to develop a solution for inter-organisational workflow management
and has as its objective to support the automation of enterprises’ business-to-business operations,
i.e., specification and execution of global workflows in a workflow federation formed by the
collection of distributed autonomous workflow systems (Miller 98). The specification of global
workflows will allow the "import" of workflows offered by other parties of the federation; it will
relay on an open database that maintain information about workflows that are offered/provided
by some party of the federation. Secondly, middleware will be developed that is required in
order to establish inter-operability among workflow systems of the federation in such a way that
the operational workflow management systems are not required to be extended. However, the
relationships between the “workflow provider” and “workflow consumers” are static and pre-
defined in the centralised database of federated workflows (Grefen 99). The project has not
provided a generic way for cross-organisational business process execution. Additionally, the
project does not address dynamic aspects of VE, i.e. the deployment of a matchmaking service
and the automated negotiation for the selection of partners on-demand and during business
process execution (Hoffner 99).

The WISE project, Workflow based Internet SErvices, aims at designing, building, and testing a
viable infrastructure for distributed workflow based applications over the Internet. Such
infrastructure will include an Internet based workflow engine, acting as the underlying
distributed operating system, that controls the execution of distributed applications, a set of
brokers enabling the interaction with already existing systems, that are to be used as building
blocks, and tools for programming in the large to allow final users to configure and develop
distributed applications. The project aims to solve the limitations of current workflow systems
and to extend their applicability to the Internet by providing a broker based platform for
interacting with heterogeneous, stand-alone applications and implementing transactional
mechanisms as a way to provide execution guarantees (Alonso 98). These solutions will be
integrated into a robust, reliable, and scalable execution engine able to control the execution of
distributed applications over the Internet in a distributed way. The WISE project mainly
concentrates on the provision of cross-organisational business processes without deploying
virtual marketplace mechanisms. The project follows a centralised approach where the Internet-
based workflow engine plays the role of the co-ordinator and manager of the shared business
processes. Extensive technical details regarding the coordination mechanisms for cross-
organisational process execution are not directly provided. In general, the project addresses the
area of cross-organisational workflow management systems but does not cover dynamic aspects
like virtual marketplaces, dynamic selection of partners and automated negotiation
(Georgakopoulos 98, Tombros 99).

The main objective of the WIDE project, Workflow on Intelligent Distributed database
Environment (Grefen 99), is to extend the technology of distributed and active databases, in
order to provide added value to advanced, application-oriented software products implementing

Chapter 3: Virtual Enterprise Infrastructure

 31

workflow techniques. Specifically, the main goals of WIDE are to define an advanced
conceptual model for describing both, the flow of activities, and the organizational environment
in which these activities are performed. Particular emphasis has been put on specifying
exceptions in the normal flow of activities, and on supporting different types of exceptions and
abnormal situations. Additionally, special mechanisms have been developed to provide flexible
workflow management through advanced database systems including active database technology
and advanced transaction management in a distributed environment with long running
transactions (Grefen 98). WIDE is inspired by a coherent, component-oriented vision; modern
software systems will be built by compos ing, enhancing, and integrating software components.
Thus, flexible and extensible active rules and enhanced transactional models will be developed
on top of existing database kernels, with a kernel-independent approach that warrants maximum
portability and inter-operability. In particular, compliance towards the CORBA standard will be
enforced. From a technical standpoint, WIDE will provide tightly integrated features concerned
with advanced transactions, by supporting distributed and asynchronous processing in the
context of long-running and co-operative activities, and with reactive processing, by supporting
a rich event language, as well as, enhanced, flexible coupling to transactions (Grefen 99). The
WIDE project has a very clear focus towards distributed, intra-domain workflow management
systems and deployment and integration of conventional distributed components. The project
does not address, as such, the area of inter-domain workflow management and dynamic selection
of partners.

Another project, related to WIDE, is TRAMS, Transactions and Active Database Mechanisms
for Workflow Management (TRAMS 98). The aim of TRAMS project is to develop a workflow
management system supporting the modelling and enactment of business processes. The project
interprets as process a timely or logically ordered sequence of activities. The project
distinguishes between two types of activities namely, the manual and the automatic ones
(Geppert 98, Tombros 99). The activities are carried out by humans, possibly supported by
software tools, while the automatic one are carried out by software systems without human
intervention. In TRAMs, the main focus is on the modelling of workflows. The objective of the
project is to come up with a holistic approach that integrates all relevant aspects of process
modelling, like modelling the process itself, including its structure and constraints like ordering
constraints, data dependencies, and time dependencies, modelling the behaviour of the
participating entities, modelling the services offered by and within the environment, and
modelling related and required transactional properties of workflows and activities, i.e. agent-
specific semantic concurrency control, recoverability and compensation, etc. A second focus of
TRAMS project is on enactment of workflows using advanced database technology, i.e. the
controlled execution of workflow specifications (Geppert 98, Tombros 00). Currently, the
project uses only the broker/services architecture model for designing the software architecture
of process-oriented environments. This model in turn is implemented on top of an object-
oriented database management system. Furthermore, the third area where the project will put
emphasis is on advanced database technology for WFMSs. TRAMS, like WIDE, is trying to
improve the functionality of workflow management systems and business process definition
languages for intra-domain purposes and applications with the integration of distributed business
object concepts and technologies. The project does not address neither, cross-organisational
workflow business process execution, nor dynamic selection and negotiation of workflow
providers (Zarli 99, Ouzounis 99b).

The objective of the C3DS project, Control and Coordination of Complex Distributed Services,
is to exploit distributed object technology in order to create a framework for complex service

Evangelos K. Ouzounis

 32

provisioning (C3DS 99). By complex service provisioning the project primarily mean the ability
to compose a given service out of existing ones, as well as, the ability to exercise dynamic
control over the execution of the service. Mechanisms will be needed to dynamically add,
extend, remove, or move component services in a dependable and predictable manner. At the
same time, end users, most of whom will not be programmers, must be able to specify, create,
configure and manage services easily. The C3DS approach to building a framework for complex
service provisioning, unlike other approaches, will be based on unifying three technologies:
software architecture based development environments, software agents and transactional
workflow management systems. According to the C3DS project, an agent may be defined as a
software entity, e.g. a process, an active object, that performs operations on behalf of a user or
another software entity in order to achieve an assigned goal. Workflows are rule based
management software that direct, coordinate, and monitor execution of multiple tasks arranged
to form complex organisational functions. Workflow management systems are ideally suited to
meeting service level requirements. Software architecture specifications, expressed in a high-
level Architecture Description Language (ADL) describe the structure of the components of a
software system, their interrelationships, principles, and guidelines governing their design and
evolution. The C3DS will achieve its objective by developing ADL-based tools and techniques
for the specification of the software architecture of complex services and for the specification
and usage of services through combination of components and integrating agent and workflow
technologies for the development of a distributed Task Control and Coordination Service
(TCCS) platform that will provide the basic infrastructure for the deployment of software agents
and control and coordination of service provisioning activities. The features of the ADL will be
expressive enough to permit descriptions of inter-task dependencies and coordination as
expressed in workflow scripts and agent programs thereby providing a unified way to build
agent and workflow based systems. To achieve interoperability in a heterogeneous environment,
the TCCS platform will make use of the object request broker (ORB) middleware and CORBA
services, such as, object transaction service, to support a novel dependable workflow execution
environment using flexible transactions composed of transactional and non-transactional
activities. The main result will be the C3DS framework, software toolkit for specifying,
controlling, and coordinating complex, distributed services that will be easy to manage and
customise. Whilst the Framework will be the most identifiable way of demonstrating the
effectiveness of the project results, the concepts and techniques that underpin these results will
be of generic value, capable of being incorporated in proprietary systems. The C3DS project’s
objectives lie in the area of intra-domain distributed applications and automation of processes by
deploying distributed middleware technologies (Filos 00, Camarinha-Matos 99). Therefore, the
project addresses slightly cross-organisational workflow management issues or dynamic
selection and negotiation of VE partners.

The EvE project, EVent Engine, has as its objective to investigate event-driven workflow
execution (EvE 98). In EvE, every interesting situation is expressed as a possibly, complex event
and the operations of all the components in EvE, including processing entities, are defined by
generating and reacting to event occurrences. For that matter, EvE combines the technology of
active database management systems and event-based systems, e.g., event-based software
architectures. The major, but not exclusive, purpose of EvE is to provide a runtime system for
the Broker/Services Model, which is well-suited to define the software architecture of workflow
systems and cooperative process-oriented environments. EvE has a multi-server architecture,
where each server typically serves all processing entities in a local-area network (Geppert 98).
Distributed workflow enactment is accomplished through multiple EvE-servers connected by a
wide-area network. The main objective of EvE project lies in the area of intra-domain workflow

Chapter 3: Virtual Enterprise Infrastructure

 33

management systems. The co-ordination and management of business processes is done by the
exchange of events (Tombros 99). The project emphasis on loosely coupled, distributed
execution of processes but does not focus on inter-domain process management. Additionally,
the project does not propose any type of cross-organisational mechanism not dynamic selection
of partners (Geppert 99).

The MOBILE project takes a general and application independent approach to workflow
management and covers aspects reaching from business process modelling to the
implementation prototype of a high performance, reliable, distributed workflow management
system (MOBILE 98). The basis of the project is the Mobile workflow model. The main
characteristic of this model is to perceive a workflow as a collection of independent
perspectives, hence Mobile is a perspective oriented workflow model. The overall project can be
divided into several subjects, namely integration of business process modelling and workflow
management, mobile workflow model and language, ad hoc workflows and dialogs, application
integration based on transactional and non-transactional base services, like CORBA, Encina,
Remote Procedure Calls (RPC), and architecture development for scalable, reliable, and
distributed system design of the Mobile WfMS prototype. MOBILE project is directly related to
large-scale workflow management systems for intra-domain purposes and deploys middleware
services and emerging standards for workflow management systems, like OMG’s-JointFlow
(OMG 98). Though the approach of the project towards the integration of business processes
with workflow management systems is interesting, the project as such does not propose or
covers the area of cross-organisational workflow management (Zarli 99, Filos 00).

The ProcessLink project conducted in Stanford University is developing an agent-based
framework consisting of generic agents and a message protocol for integrating multidisciplinary
engineering software and managing distributed design projects (ProcessLink 98). This
framework allows to "wrap" legacy software with backend code that will disturb the existing
software interface, as little as possible, while providing useful co-ordination functions. The main
emphasis is on open process management. This differs from workflow and process re-
engineering because a distributed collaborative process does not impose a process definition on
it. Though the project did not provide a generic business process definition language and a
workflow management system, it can offer a set of coordination mechanism using autonomous
agents. The project uses a "weak" agent approach, in which every agent is first wrapped with
specialised software entities, like components, and becomes ready to send and receive messages
corresponding to interaction semantics (ProcessLink 98). However, the agents do not necessarily
have to be "smart" or conform to any particular theory of agent construction and language. The
only commitment is to send and receive messages conforming to a defined set of interactions,
protocols, and ontologies. The ProcessLink project takes a very simplistic view of distributed,
co-operated agents towards process automation and execution. The major emphasis is on
coordination mechanisms and integration of agents with legacy systems. Finally, the project
does not address neither multi-domain process execution nor dynamic selection and negotiation
of task providers (Cost 98, Ciacarini 98).

The MIAMI project, Mobile Intelligent Agents for Managing the Information Infrastructure, is
one of the first projects worldwide dealing directly with standard compliant intelligent mobile
agents and virtual enterprises (ACTS-MIAMI 98). The major objective of MIAMI is to develop
a complete framework for the establishment and management of virtual enterprises based on
intelligent mobile agents based on a unified OMG-MASIF (OMG 98) and FIPA (FIPA 98 and
99) compliant mobile agent platform. MIAMI introduced the concept of virtual marketplaces for
the selection and negotiation among VE partners in order to enable dynamic VEs concepts. The

Evangelos K. Ouzounis

 34

specification of business processes is done based on an open, state of the art, business process
definition language specified in XML, while the execution of the shared business processes is
done by an agent-based workflow management system. Specialised workflow agents, located in
different business domains, co-operatively and in a distributed manner execute and control
different instances of the shared VE business process by conducting the virtual marketplace for
the selection and negotiation of VE partners on-demand and during business process execution
(Ouzounis 00a). Additionally, MIAMI introduced special agent-based mechanisms for the
management of the VE network layer. The network links between the domains are controlled
and managed by a new third party network provider, the Active Virtual Pipe, that monitors the
network and takes certain actions when the performance of the network connections is not the
adequate one. MIAMI was one of the first projects that introduced, developed, validated, and
demonstrated dynamic virtual enterprise concepts based on standard unified mobile agent
platforms (Ouzounis 00b). MIAMI is considered as one of the most influential projects in the
area of dynamic virtual enterprises (Filos 00). The work proposed in this thesis is directly related
to the MIAMI project. More specifically, the MIAMI project fully adopted, developed, and
successfully demonstrated the proposed concepts.

Finally, the EURESCOM P815 Project, aimed in the development of an open, distributed,
adaptable agent-based workflow management system for cross-organisational business domains
(P815 Project 98). The main contribution and innovation of the P815 project is the development
of an inter-domain ontology for cross-organisational business process execution specified in
XML (XML 98, Harold 98), an open and adaptable XML-based business process definition
language for the specification of business processes, an intelligent workflow engine for the
execution and management of distributed business processes, and a set of specialised workflow
intelligent agents that execute, manage, control and co-ordinate shared business processes in co-
operatively and distributed manner (Ouzounis 99b). The project did not directly address dynamic
VE concepts like virtual marketplaces and dynamic selection of partners, however provides a
very good conception regarding the execution of shared business processes provided by different
business domains. The key contribution of the project is the open and adaptable approach
towards cross-organisational execution and management of business processes based on
standard mobile agent concepts like OMG-MASIF and FIPA. Actually, P815 project
significantly contributed to the standardisation committees towards the specification of open
ontologies for cross-organisational agent-based workflow management systems. The work
proposed in this thesis is directly related to the P815 project. More specifically, the P815 project
fully adopted, developed, and successfully demonstrated the proposed concepts related to
autonomous, distributed, inter-domain execution and management of business processes.

Virtual Enterprises is a rather new technology research area where a rapidly increasing number
of projects and R&D activities are starting to consider it (Zarli 99, Ouzounis 98e, Malone 91,
Georgakopoulos 98). From the above description and ana lysis of the most influential projects in
the area of Virtual Enterprises, certain conclusions can be drawn:

• Most of the emerging R&D projects and scientific activities have different conception,
definition and interpretation of the term virtual enterprise. A clear definition and distinction
of the VE model in comparison with supply chain management, virtual organisation and
extended enterprise concept is still missing. Most of the projects did not even consider the
major distinction among static and dynamic VEs,

• Most of the projects are analysing, designing, and developing solutions for static VEs, i.e
for pre-defined number of partners with fixed business process interfaces among them and

Chapter 3: Virtual Enterprise Infrastructure

 35

static proprietary co-ordination mechanisms,

• Most of the projects have as a selected business sector the manufacturing area where the co-
ordination and management of processes is tight coupling, while the customisation and
integration of shared business processes is static, manual and pre-defined. Therefore, the
business relationships among the partners are rather medium to long term and consequently,
the static VE model is more suitable,

• Most of the projects use Electronic Document Interchange (EDI) as a preferred solution for
cross-organisation business process execution. However, EDI is restricted only in the area
of simple electronic commerce business processes and has certain drawbacks (see analysis
below). A more generic, flexible, and adaptive mechanism for cross-organisational business
process execution and management is required,

• Some of the projects, in order to overcome the problems introduced by EDI, deployed
distributed component-based technologies, like business objects and components. These
technologies impose tightly coupling mechanisms among the distributed inter-domain
components and thus, produce solutions for static VEs (see analysis below). Although some
projects, like Crossflow, introduced matchmaking approaches for the semi-automatic
selection of VE partners, still the execution and management of shared business processes is
achieved through static interfaces among the domains. In general, business object concepts
have been proposed and deployed for intra-domain distributed application and are
inadequate for cross-organisational business process execution,

• In order to solve the problem of tight coupling among domains, specialised messaging
systems have been recently introduced. The execution of shared processes across domains is
done though the exchange of specialised messages usually specified in XML. A new
generation of XML-based messaging systems and protocols has been evolved, like BizTalk
(Biztalk 98), CXML (CXML 99), etc. that try to provide solutions for dynamic and loosely
coupled inter-domain business process execution and management (see analysis below).
These solutions are restricted only in the area of electronic commerce, as EDI did, and thus,
can not be used for any type of business process management,

• Recently, some projects started investigating the deployment of workflow management
systems for cross-organisational business process execution and management. Although
most of the projects are not directly related with dynamic virtual enterprise concepts, they
aim to provide a complete and generic framework towards inter-domain business process
management. The basic coordination mechanism used is CORBA based communication
among specialised gateways, e.g. Crossflow, that in the sequel deploy internal workflow
management system. Very recently message-based approaches have been also proposed for
the co-ordination and execution of processes based on Internet based transport protocols
like the SWAP protocol (SWAP 98, Bolcer 99). Workflow management standardisation
organisations, realising the benefits and potential of XML-based, message-based, cross-
organisational workflow execution and management, started to work towards standard
interfaces like the Workflow Management Coalition (WfMC) (see below analysis).

• Finally, the most emerging and new concept towards the management of dynamic VEs is
the intelligent mobile agent approach. Agents feature some very important attributes, like
autonomy, adaptability, distribution, mobility, and intelligence and are best suited to solve
certain problems in this area. Especially, the execution and management of business
processes through autonomous intelligent agents that have workflow management

Evangelos K. Ouzounis

 36

capabilities and co-operate among each other is a very interesting and promising approach
since it combines the benefits of workflow management systems, the benefits of agents, the
deployment of open and flexible ontologies and the interoperation and integration of
conventional distributed object oriented technologies. This research area is considered very
new and a lot of issues remain open and under investigation (see analys is below).

In the next section an exhaustive description, analysis, and comparison of the above stated
influential technologies and concepts deployed in the area of virtual enterprises is presented.

3.2 Technologies and Standards for Virtual Enterprises
The development of virtual enterprise concepts, models, and technologies has been based on
different, emerging technologies. The most influential ones where:

• Electronic Document Interchange (EDI)

• Distributed Component based Business Systems (DCBS)

• Messaging Systems (MS)

• Intelligent Mobile Agents (IMA)

• Workflow Management Systems (WfMS)

• Virtual marketplaces, partner selection, and automated negotiation (VMP)

In the following section the above-mentioned technologies and emerging standards related to
these technologies are analytically discussed and compared for their suitability in the dynamic
VE concept.

3.2.1 Electronic Document Interchange

Electronic Document Interchange (EDI) was the first approach to be widely adopted for inter-
domain business process management. Many implementations of EDI have shown impressive
returns, although EDI deployment has required sufficient high levels of investment and
integration work to limit it to only the largest enterprises. In recent years, EDI deployment costs
have dropped and enabled more organisations to take advantage of it, but EDI implementations
still tend to be expensive and require significant integration and customisation work with the
back-end information systems (Gibon 99, Ouzounis 98d).

The development of EDI was motivated by the realisation that simple cross-organisation
business processes such as purchasing, shipment tracking, and inventory queries were
tremendously inefficient (Lomet 93). Therefore, EDI focused initially on producing electronic
versions of traditional business documents, such as purchase orders and invoices, and then
enabling automated processing and transmission of those documents.

In a typical EDI application to support purchasing, an EDI system is integrated with the existing
purchasing system at the buying company. When a buyer enters a new purchase request into the
purchasing system, a corresponding request is sent to the EDI system. The EDI system then
constructs an electronic purchase order document and transmits that to the selling company.
Originally, EDI transactions were all sent over dedicated communications channels, which
meant that such channels had to be set up between any pair of organisations wishing to use EDI

Chapter 3: Virtual Enterprise Infrastructure

 37

between themselves. To alleviate this bottleneck, 3rd party organisations have emerged offering
Value Added Networks, or VANs. These VANs take care of the transmission details between
subscribers. Thus, a company can subscribe to a single VAN and require all its partners to
subscribe to that VAN. In this way, the company does not need to set up dedicated networking
connections to each of its partners. Currently, work is underway to enable the delivery of EDI
transactions over the Internet.

When the purchase order is received at the selling company, over a dedicated connection, via a
VAN, or via the Internet, it is processed by the receiver's EDI system. This system transforms
the message as required and inputs it into the receiver's enterprise system. Once in that system,
the new order is handled just as any other order would be.

This process is illustrated in Figure 2, EDI Architecture, below.

Purchasing APP

ERP System

EDI System

VAP

EDI System
EDI
Doc

Direct Network
Connect ion

Buying Organisation
Buying Organisation

Sell ing Organisation
Buying Organisation

ERP System

Figure 2: EDI Architecture

This example illustrates the source for the costs of an EDI implementation. First, the two partner
organisations need to agree on the exact formats of the documents exchanged between them. The
EDI standards provide initial definitions of common business documents, but historically, these
have been inadequate for actual use. Instead, each EDI deployment has involved manual
negotiations on and agreement to a set of Implementation Conventions describing the extensions
to the standard documents and the actual formats that will be exchanged. This negotiation and
agreement process represents a significant cost for EDI deployments (Lee 98).

To address this issue, the EDI standard organisations, EDIFACT (EDIFACT 98) and ANSI
X.12, have undertaken an effort to standardise sets of documents for various industries. For
example, ANSI X.12 has recently released a set of standard EDI document definitions for the
health care industry. Using these industry standard document definitions, the customisation
required per relationship can be reduced, although in general, per-relationship integration and
customisation work is still required.

Due to the fact that EDI is based on document interchange, one significant integration cost is
avoided. The EDI and enterprise systems at the two partner organisations do not need to directly
reference each other. Instead all interactions are accomplished via document exchange. But,
because the set of documents supported by EDI is relatively limited and extending this set is
expensive, it is difficult to use EDI as the basis for a closely coupled relationship (Billington 94,
Christofer 93). EDI transactions, as currently defined, simply don't support a rich enough set of

Evangelos K. Ouzounis

 38

possible business interactions. Current work in EDI is addressing this issue, extending EDI to
support more fine-grained and transactional interactions.

Given the set of tradeoffs involved in the use of EDI, it is best suited for long-term and stable
business relationships between organisations that can make significant investments in mechanics
to support their relationship. Work that requires tight coupling and co-ordination, such as supply
chain optimisation, or product design, is best done outside the EDI context (Srinivasan 93).
Straightforward business transactions, such as purchase orders, can be well supported using EDI.
In general, each new EDI relationship requires new customisation and integration work. These
relationships are thus not entered into lightly and return on EDI investment is gained over long
periods of time, not over short term transactions (Bolcer 99, Doz 98).

3.2.2 Distributed Component-based Business Systems

Whereas EDI supports electronic business by automating existing processes and enabling
electronic document exchange between separate organisations, a number of other systems
approach electronic business by trying to create a single virtual organisation (Stricker 00,
Fielding 98). These systems use middleware, a layer of integration code and functionality that
allows multiple diverse and distributed systems to be used as though they were a single system.
Using these middleware tools, business applications can be transparently accessed the multiple
backend systems (Georgakopoulos 98).

The first approach used in developing such enterprise systems was proprietary custom-
engineered solutions on top of Internet’s TCP/IP protocol. These systems were traditional
client/server applications with proprietary message formats and customised integration of third
party purchasing management systems. The provided solutions were in general closed and
tailored to company’s needs and requirements. The development time and the cost were rather
high, while the maintenance and re-engineering was also difficult and ineffective (Orfali 96,
Nissen 99). These solutions adopted mostly by big companies due to the high development and
integration costs and are characterised by inflexibility, limited degree of interoperability and
security. The main reason of low acceptance of such solutions was the high re-engineering time.
This means that as the business processes and activities of the company were changing in order
to respond to market needs, the systems could not respond to these changes effectively (Bolcer
99).

Due to the rapid development and acceptance of distributed object oriented platforms, a new
generation of enterprise systems started appearing. The concept of re-usability and middleware
has been introduced in the development and integration phase. These concepts resulted in the
creation of Distributed Component-based Business Systems (DCBS). The DCBS composed of
basic building blocks or components, mostly based on object-oriented technologies, that can be
bought “off the self”, reused or extended, customised, configured, and integrated into the
overall, distributed business information system (Orfali 96, Doz 99). This approach enables the
development of solutions faster, in a cost-effective way, with easy maintenance and accepted
level of interoperability and distribution. These technologies are actually integrated development
and run time environments that isolate much of the conceptual and technical complexity
involved in building business applications. Due to the advent of Java and open distributed
platforms, like CORBA, object-oriented middleware business systems gain strong momentum
and support (OMG 98, EJB 98, Ouzounis 98c). However, these systems have been initially
designed and developed for intra-domain distributed applications and not for dynamic inter-

Chapter 3: Virtual Enterprise Infrastructure

 39

domain business process execution (Carr 96). Even when they are used for inter-domain
business process execution and management, their goal is to create a single unified view of a
virtual enterprise (Camarinha-Matos 99).

Classic middleware systems typically involve tight binding between the systems and processes
at the various domains. By closely coupling the different domains, classic middleware systems
are able to provide rich functionality, but require expensive initial development and
deployments, pre-agreement in the interfaces used by the different components and carefully
coordinated ongoing deployment management (Thompson 99, Sheth 98). These systems are thus
most appropriate for use in intra-domain, distributed applications or long-term and closely co-
ordinated business partnerships (Redlich 98, Hull 99).

In the following sections the most influential DCBS frameworks are discussed and analysed in
relation to their applicability to the dynamic VE concept.

3.2.2.1 OMG’s Business Objects

OMG’s Business Object was an industrial activity towards standardised DCBS based on a set of
well-defined middleware CORBA services (OMG 98). The activity started mid 97 by OMG
members and failed to produce a common framework due to technical and political differences
among the members.

The main idea behind the proposed framework was the business object, i.e. “specialised CORBA
objects that they are network accessible through an object request broker. A CORBA “object
reference” uniquely identifies an active business object within the distributed object environment
for purposes of communication through an object request broker.” A business object also has a
unique identity that associates it with the entity it represents in the business domain. This
identity, or key, uniquely identifies a business object within its type and is always associated
with a corresponding entity in the real business world.

The main attributes and characteristics of business objects are the following:

• transactional: due to the fact that business objects are sharable in a distributed, multi-user,
transactional environment, there must be concurrency control and transaction serialisation to
maintain the integrity of the model they represent,

• persistent : persistence is necessary to maintain the state of objects, i.e., the data, when the
system is shut down or fails. Persistence is not required for all business objects, but if they
have state and represent current information about the business, they will be persistent,

• relationships: business objects will have relationships with other business objects that
represent associations between their business-world counterparts. Relationships may be
one-to-one or one-to-many, and they may be bi-directional or one-way,

• ad-hoc Notification: Most business objects also support ad hoc event notification. A
message can be sent to a business object requesting notification of certain events be sent to
a designated consumer. Notices will be sent whenever any specified event occurs until the
request is terminated.

Two type of business object have been identified:

Evangelos K. Ouzounis

 40

• common business objects : objects that represent the key elements of a business domain,
like an employee. These objects are persistent and are used for building high level business
objects.

• business process objects : objects that perform a business operation or a process within a
business domain or context. Usually, these objects are not persistent and utilise existing
common business objects.

The layered architecture of the Business Object concept is depicted in the following figure:

E J B / C O R B A c l i e n t s

E J B / O M G
Bus ines s P roces ses

E J B / O M G
C o m m o n B u s i n e s s O b j e c t s

I I O P R M I

L e g a c y
S y s t e m s ,

D a t a B a s e s

(O D B C ,
J D B C) ,

M i d d l e w a r e

S e r v i c e s I I O P M i d d l e w a r e Serv ices R M I M i d d l e w a r e S e r v i c e s

Figure 3: Distributed Component-Based Business Framework Architecture

The Business Objects were one of the first activities in the area of standardised DCBS and
introduced a set of innovative ideas. One of the main benefits was the shorten development and
deployment costs, as well as, lower costs in integration and distribution (Orfali 96). However,
the differences among the OMG members did not allow a concrete, stable, and well-defined
framework for business objects.

3.2.2.2 Enterprise Java Beans

Enterprise Java Beans (EJB) was a competitive to the OMGs Business Objects proposal from
Sun Microsystems that has been proposed in late 98 (EJB 98). The main goal of EJB was to
propose an architecture for building distributed object-oriented business applications in Java by
combining, not only basic middleware services, but also existing business components. In that
respect, EJBs, as well as OMG Business Objects, share the same goals and principles, i.e.
reusability and fast development and integration.

An EJB runtime environment is composed of a server and a set of containers. The server is not
an application server; instead, it routes method calls to the enterprise beans deployed under its
containers and provides services to these containers and their components. The services provided
are defined by electronic contracts between the various parts of the EJB architecture like the
contract that exists between the container and the beans in it. These electronic contracts provide
interfaces that decouple parts of the architecture into roles (Nissen 99).

The EJB specification defines a number of roles necessary in implementing the EJB component
architecture. The roles are logical in nature, so multiple roles may in fact be performed by the
same party or human operators. EJB defines the following roles:

Chapter 3: Virtual Enterprise Infrastructure

 41

• server provider: the server provider provides the EJB server, which handles distributed
object, distributed transactions management, and other services for enterprise beans in
containers,

• container provider: the container provider produces a container, which is the context that
interfaces with enterprise beans at runtime. The container can implement the session bean
contract or the entity bean contract,

• enterprise bean provider: the Enterprise bean provider writes enterprise beans to make up
specific applications.

• deployer: the deployer takes beans produced by the enterprise bean provider and deploys
them in the backend runtime environment. This process may involve mapping the security
roles set by the beans to the security roles required by the organization,

• application assembler: the application assembler uses the client view contract of the
enterprise beans deployed at the backend to assemble client applications. The application
assembler may also produce new beans by combining existing beans.

Two key types of EJBs have been currently proposed, namely the:

• session Bean: a session enterprise bean models a connection or session with a single client.
Session beans persist only for the life of the connection with the client. If the EJB server
crashes, the session bean dies. When a new client references a session bean from the server,
the container creates a new instance of the session bean, which is tied to the client that made
the reference request through a bean object provided by the container,

• entity Bean: entity beans model business objects that need to persist beyond the life of a
client instance. Each instance of an entity bean can be accessed simultaneously by multiple
clients. Entity beans survive crashes of the server.

One of the main benefits for using EJBs is the simplicity and ease of integration, due to the
usage of Java programming language and its accompanying services, web-integration,
distribution (RMI), security etc (Ouzounis 98b). Another main benefit is the life-cycle
operations for the creation and management of Beans. By implementing or extending only a set
of well-defined interfaces and following certain instructions a bean can be easily deployed in
different, native distributed platforms, like Java-RMI, CORBA-IIOP, and DCOM, due to the
concept of containers. This approach enabled programmers to rapidly develop DCBS.

From the above description, it is clear that there are a lot of synergies among the OMGs
Business Objects and EJBs. Particularly, the entity beans have similar concept to the common
business objects while the session beans have similar ideas and mission like the process objects.
In addition to that, the container model in EJBs is actually, the same concept of infobus provided
by CORBA-IIOP for interoperability reasons. Actually, EJBs are considered not more than a
well-specified, realistic , and standard version of OMG’s Business Objects specification based on
Java Framework and RMI protocol (Chung 98). Due to the industrial support of EJBs and the
tools provided for developing and deploying this technology, EJBs are better positioned in the
world of DCBS.

Although EJBs gained momentum in the open market, the model that is being used is the tight
integration of distributed components, and thus the integration of EJBs business components
across different domains can only be performed by tight integration and object binding (Hoffner
98 and 99). This is the favoured and applicable model for static Virtual Enterprises, where the

Evangelos K. Ouzounis

 42

business relationships among the business partners are static, pre-determined, and fixed. This
approach positions the EJB as a promising technology for intra-domain distributed component
based business applications and not for dynamic VEs (Zarli 99, Tombros 00, Geppert 98).

3.2.2.3 San Francisco from IBM

IBM's SanFrancisco framework, proposed in mid 97, as OMG Business Objects and Sun’s EJB,
is a multi-tier Java development framework for building distributed business applications
(SanFran 98). The SanFrancisco framework specifies and deploys standard business components
and easy integration and customisation services with backend legacy systems. Using this
framework, developers can build systems, such as order management systems, that span multiple
physical nodes, integrate with the backend legacy systems at those nodes, and provide unified
functionality across the diversity of different nodes and systems.

San Francisco was one of the first serious commercial attempts in the area of DCBS. The main
design principles of San Francisco was the same like EJBs and business objects, i.e. to specify a
set of common, persistent, objects that represent real entities in a business environment and a set
of objects that deploy these “middleware” business objects to provide business processes. In that
respect, San Francisco was actually IBM’s view of DCBS based on the different concept
emerged in OMG.

Although the framework was based on open, standard, distributed technologies like CORBA and
Java, the acceptance of it was rather low (Zarli 99, Filos 00). The main reason was the
deployment of non-standard and in most cases, proprietary middleware services provided only
by IBM. The evolution and thus, maturity of San Francisco framework stopped when IBM
announced full support of Java 2 Framework and consequently, the full adoption of EJB
approach and concept.

3.2.2.4 Alliance from Extricity Software

Another related framework for inter-domain business process management is Alliance, a suite of
products, aimed at business-to-business process integration (Allinace 98). Similar to the other
middleware systems, Alliance provides a distributed framework that can access multiple
enterprise systems and supports unified and transparent access to those systems.

However, unlike Enterprise Java Beans or SanFrancisco, which focus on data integration
between systems, Alliance focuses on process integration between distributed business partners.
Alliance is thus, designed from the beginning to support inter-domain business process
management.

A set of business partners deploys and integrates Alliance by determining the processes that they
will engage in together. The partners use the Alliance process implementation environment to
model their common processes. Each partner then uses additional Alliance tools to model its
private processes as they support the shared processes. Separating the definition of shared and
private processes allows partners to update their private processes independently. Coordination
is only needed when changing the shared portion of a cross-organization process.

At the same time, as the inter-domain shared business processes are specified, partners model
the data they exchange during those processes. Alliance uses a document exchange model,

Chapter 3: Virtual Enterprise Infrastructure

 43

which decreases coupling of the partner information systems. The documents exchanged are
defined starting from templates provided with Alliance and using information modelling tools
included with Alliance. This customisation is analogous to the implementation conventions
required to implement EDI solutions.

Because Alliance uses document exchange between organizations, it avoids many of the security
issues that limit the applicability of Enterprise Java Beans and SanFrancisco in inter-domain
deployments (Filos 00, Bolcer 99). However, other design choices in Alliance increase
deployment costs and make it most appropriate for long-term, stable, closed, and closely coupled
business relationships, i.e. static VEs. For example, because cross-organization business
processes must be modelled across all the participating partners and then implemented in
concert, partners must coordinate manually their deployments (Stricker 00). And during
deployment, significant customisation and integration work is required so the system can
interoperate with each of the partners' enterprise systems. This means that each new relationship
takes significant work to support and thus, evolution of the VE is very difficult and time
consuming task.

Alliance is thus most applicable to static VE model where business partnerships function
essentially as long term partnerships of a larger virtual enterprise. These virtual enterprises can
afford the deployment cost of an Alliance solution and can look for returns over long periods of
time.

3.2.2.5 Distributed Component based Business Systems in
the context of VEs

Distributed Component based Business Systems gained momentum in the R&D activities, as
well as, in commercial systems due to the simplicity, ease of integration and deployment, high
degree of distribution, standard underlying distributed protocols, like CORBA-IIOP and RMI
and middleware services. However, most of these systems are inadequate for usage in a dynamic
VE environment (Filos 00, Zarli 99, Tombros 00).

DCBS assume a tight coupling model (Orfali 96). This applies both to the integration with
backend legacy systems and to the client applications. Backend systems and clients integrate
with the distributed framework using the APIs and object models exposed by the underlying
levels of the architecture. While clients are insulated from the APIs of the backend systems, they
are tightly bound to the provided APIs. This design choice has two implications (Ouzounis 99b).
First, by using object binding as the interaction technique, as opposed to document exchange
used in EDI, DCBS applications must be adopted at once by all participants in the cross-
organization relationship. And upgrades to backend systems, the component framework, and the
business application must be coordinated across all participants (Spinosa 98, Hull 99). Second,
because of the tight binding, security issues are a major factor. Objects running in the business
components-applications at one company must be able to communicate directly with objects
running in the same component model, either EJB or San-Francisco at a partner company
(Thompson 99, Sheth 98). For good reason, the IT staff is reluctant to allow object access across
corporate firewalls. This poses a significant barrier to adoption in cross-organization
environments.

Additionally, the DCBS frameworks do not provide a complete solution, but instead serve as the
starting point for developers to build applications (Orfali 96, Carr 96). By building on the

Evangelos K. Ouzounis

 44

framework, developers can more quickly complete applications and leverage the code in the
framework that takes care of many of the mechanical details needed for a successful distributed
application. This is ideal for corporate developers who are already accustomed to doing
significant custom programming.

Finally, these choices make the DCBS frameworks most appropriate for deployment inside a
single company that needs to link multiple distributed divisions or sites (Redlich 98). Such a
company can plan for a unified deployment and can afford the integration and customisation
work. A single company can deal with the security and firewall issues internally without opening
potential security hazards to the outside world (Nissen 99). Indeed, as it is stated above, the
majority of DCBS deployments are taking place inside single enterprises and for intra-domain
applications.

3.2.3 Messaging Systems

In contrast to classic DCBS, which seek to closely bind the enterprise systems and processes of
several organizations into a single closely coordinated virtual organization, inter-domain
business process management and execution systems can be built using exchange of documents,
usually described in XML, to bind together multiple organizations (Ouzounis 98e, Geppert98,
Hoffner 98). Ideally, such an approach would combine the strengths of EDI with the rich
interactions, integration, and distribution supported by classic DCBS.

In order to support exchange of messages among different business systems and components, a
distributed messaging system is needed (Sheth 98). Messaging systems have been initially
deployed for interoperability reasons and easy integration among distributed, intra-domain
applications. However, due to the success of the distributed object-oriented systems, messaging
systems gained initially low acceptance. Recently, the new, emerging concepts of dynamic
Virtual Enterprises, loosely coupled business systems, and federated business to business trading
systems, brought messaging systems into light and attention again (Redlich 98, Hull 99).

In general a messaging system usually provides the following features (Ouzounis 99b, Nissen
99):

• one-one and one-many exchange of messages among different, distributed entities or
clients,

• persistent storage of messages in queues for reliable and fault tolerant communication,

• store and forward operations,

• synchronous and/or asynchronous message passing to different distributed entities or
clients,

• execution and communication autonomy between the senders and receivers,

• support for several open standard transport protocols like IIOP, RMI, HTTP, and TCP/IP,

• interworking among different messaging systems.

The key elements of a message are the envelope and the content (Bolcer 99). The envelop
contains information like the identity of the sender and receiver, the time sent, the transport and
content protocol used, the mode of communication, like synchronous or asynchronous, etc. The

Chapter 3: Virtual Enterprise Infrastructure

 45

content of the message describes, in a well-formatted way following a common ontology, the
information that the sender sends to the receiver and the type of request or reply it sends to him.

Most of the messaging systems provide their own specialised message description language.
However, due to the advent of XML, a new category of messaging systems started to appear.
These systems utilise the power of XML for the description of both the envelope and content.
Activities towards this direction are the proposed CORBA 3 messaging service (OMG 98), the
Java Messaging System (JMS 98), the successful MQSeries from IBM (IBMMQS 98), the
messaging system from BEA (BEA 99), and others.

Messaging systems are needed only for the physical transmission of messages among domains
and are thus, application independent. The content of the message, the business context that is
related to, and the semantic meaning of it do not influence the behaviour and functionality of the
messaging system. Only the envelope of the message is necessary for the successful
transmission of the message to the corresponding receiver. The business applications are
responsible for specifying the ontologies, the business context, the set of legitimate messages
that will be exchanged, and the applications protocols. This means that certain content
description ontologies and protocols are required for the description and specification of
business relationships and interactions among different, distributed, inter-domain entities
(Spinosa 98, Doz 98).

In the following sections, a set of new, emerging, content specification protocols for simple
electronic commerce transactions are presented. These protocols are considered the first step
towards globally specified ontologies for dynamic business relationships and dynamic virtual
enterprises.

3.2.3.1 Web Interface Definition Language

The Web Interface Definition Language (WIDL) has been proposed by WebMethods Inc at end
of 97. WebMethods started its developments after observing that many electronic commerce
websites function essentially as web-based interfaces to company business services. The
websites are intended for use by humans, rather than for automated access. But if a way could be
found to automatically access the services behind the website, then the site itself could be used
as the basis for automated electronic business.

WebMethods's approach is called the B2B Integration Server and Web Automation Server.
Developers can examine the websites of the business's partners and create WIDL descriptions of
the interfaces and business functionality available on those sites (Merrick 97). After creating
those descriptions, the developers use the WIDL to produce client proxies and special rules. The
client proxies are callable routines that applications can use to access the services available at the
remote website. The rules work in concert with the client proxies and inform the server how to
process application calls to the proxies.

The developers, then, create a client application that issues calls to the client proxies generated
from the WIDL description. The proxies in turn send the requests on to the Web Automation
Server. The server, using the rules generated from the WIDL description, makes the appropriate
web requests directly to the website in order to implement the requested operation. In this way,
remote websites become available from applications, rather than requiring a human to manually
interact with the site.

Evangelos K. Ouzounis

 46

While the Web Automation Server enables easy access to the functionality that partners expose
on their websites, it does not enable more complicated and rich interactions (Walles 99). For
example, if a website does not provide an easy way to check on inventory stock, there is no way
to use the web automation server to do such a check. However, because the server relied on
document exchange between partners, it avoids many of the security issues and lets partners
work in a loosely coupled fashion (Merrick 97). Partner system upgrades and process changes do
not need to be coordinated and managed together. In fact, a business can create an application
that accesses another business's services without needing any support from that business
(Thompson 99).

The next step was to address the functionality limitations of the web automation server while
building on the document exchange concept (Walles 99). To do this, the WIDL concept has been
extended so that it could describe any available business service. Organizations can now write
WIDL descriptions of the business services they provide, describing how a service is accessed,
what kind of data it returns, and what parameters are needed to access the service

Despite the fact that the system uses document exchange to integrate the partner organizations,
this exchange is essentially carrying object level API calls wrapped inside XML documents
(Doz 98, Wognum 99). Clients at the originating site are programmed to an API generated from
the definitions in the WIDL at the receiving site. And servers at the receiving site are integrated
with a server API generated from the same WIDL. By using XML documents to pass
information between organizations, the proposed approach avoids the security issues associated
with DCBS systems. But, because the two business partners are tied together at an API level, the
system does not avoid the integration and deployment costs associated with object level
electronic business systems. In essence, the WIDL approach has enabled the use of XML
document interchange as the distributed object system by deploying http as a transport protocol
and not CORBA-IIOP or RMI (Stricker 99).

Because WIDL approach addressed the security issues and lets organizations partner in a loosely
coupled manner, the system is appropriate to use in inter-domain business process management
(Veloso 98, Wood 99). WIDL approach is wrapping object level API calls inside XML
documents, and thus, the system can support much richer interactions than a conventional EDI-
based system. At the same time, these rich capabilities mean that partner organizations must
coordinate system deployment and evolution (Ciacarini 98).

Finally, WIDL remains a proprietary technology foundation (Walles 98). The founder of the
approach, WebMethods, has submitted WIDL to the World Wide Web Consortium (W3C) for
standardization, but the W3C has undertaken no certain activity related to WIDL (Merrick 97).
Additionally, there are no other commercial solutions available from third party vendors besides
the WebMethods that make use of WIDL concept. The WIDL approach is thus, appropriate for
the same kinds of relationships as EDI, i.e. long-term, coordinated, closed and fixed business
partnerships (Spinosa 98). It offers more extensibility and potentially lower integration costs
than EDI but it lacks the business process oriented focus of Alliance (Wood 99). However, it is
not appropriate for supporting more dynamic business relationships.

3.2.3.2 Common Business Library

Commerce One has taken a fundamentally different approach from EDI or the DCBS with its
Common Business Library (CBL) proposed in mid 98 (CBL 98). CBL was originally developed
by the non-for-profit standardisation organisation CommerceNet (CommerceNet 98). CBL uses

Chapter 3: Virtual Enterprise Infrastructure

 47

document exchange as the inter-domain interaction mechanism, like EDI. But instead of
producing a comprehensive set of complete documents, as EDI does, or wrapping business
service calls in documents, as WIDL does, CBL defines a set of basic building blocks specified
in XML (Bolcer 99). These building blocks are then pulled together to make the actual
documents describing the interactions between two organizations.

CBL is an application of XML. The building blocks are XML fragments and are then assembled
to create complete XML documents representing an interaction, such as a purchase order, a
shipping status inquiry, or an inventory stock query. The building blocks include constructs like
catalogue entries, descriptions of business processes, terms of shipment and payment, etc. Where
possible, the building blocks take advantage of other standards using, for example, the relevant
ISO standards for dates, currencies, and names (CBL 98).

To use CBL, an organization starts by creating a CBL document describing its offer and its
terms for doing business, i.e. its internal business processes and a set of interfaces for deploying
these services in terms of CBL documents (Harold 98). These documents are then made
available on the organization's website. Similar to WIDL, the documents describe the kinds of
messages that the organization expects to receive and potential to reply with. However, these
messages represent requests and responses for certain business processes, rather than
encapsulating object level API calls to the services like WIDL does. This provides an additional
layer of independence from the underlying services, allowing the organization to change and
update its backend legacy systems without having to change the set of requests and responses
that it supports (Hunt 99). After describing its offer and business processes in terms of CBL
documents, the organization needs to integrate a CBL system with its backend system. This
involves writing custom code that processes the expected CBL requests and makes the
appropriate calls to the backend legacy systems.

Users, at other organizations, can now access the service descriptions available on the public
website. This description has enough information that those users can select from among the
available processes and begin sending requests to them. The requests are made by constructing
appropriate CBL documents using the specified CBL building blocks, and then sending them
over the Internet to the receiving organizations. The receiver's CBL system accepts the request,
decomposes it, based on the contained building blocks, and processes the request. The requested
domain can then return another CBL document describing when the request will be processed,
how product will be shipped, etc.

CBL shares several characteristics with EDI and WIDL. Like those approaches, CBL uses
document exchange as the interaction mechanism for business partners. This greatly reduces
some of the integration and security costs (Veloso 98). However, document exchange can limit
the kinds of interactions supported between partners (Wood 99). WIDL addresses this issue by
reintroducing the tight-coupling costs associated with object-level interactions. Additionally,
CBL takes a different approach to supporting rich interactions. Any CBL document is created
from assembling a set of basic building blocks. These blocks are provided from the CBL
framework. This gives organizations two ways to support rich interactions with their partners.
First, by combining multiple building blocks, new types of documents not previously envisioned
can be created. Second, because CBL is based on XML, the building blocks themselves can be
extended in a safe way (Khare 99).

Since extension of CBL is straightforward, multiple competing vocabularies can be created and
experimented with. Over time, the best vocabularies for various industries will be settled on and
industry specific registries defining the vocabularies can be created. This lightweight and

Evangelos K. Ouzounis

 48

evolutionary process will make the development of these vocabularies much easier than the
corresponding EDI industry specific implementation conventions (Filos 00).

Industry specific electronic commerce protocols are similar to industry specific commerce
vocabularies. CBL is also appropriate to use in defining and experimenting with these protocols.
This reduces the amount of effort spent on mechanics during protocol definition and instead
allows the protocol designers and developers to focus on the capabilities of the protocol
(Ciacarini 98).

3.2.3.3 BizTalk Framework

The BizTalk Framework, in a similar way like WIDL and CBL, is designed to foster application
integration and electronic commerce through data interchange standards based on XML
(BizTalk 99). The BizTalk framework is a rather new initiative started in mid 99.

BizTalk assumes that application programs are distinct entities and application integration takes
place using a loosely coupled, message-passing mechanism. There is no need for a common
object model, programming language, network protocol, database, or operating system for two
applications to exchange XML messages formatted using the BizTalk Framework. The two
applications simply need to be able to format, transmit, receive, and consume a standardized
XML message (Stricker 99).

Messages are the basis for the most significant contributions of the BizTalk Framework. A
message flow between two or more applications is a means to integrate applications at the
business-process level by defining a loosely coupled, request-response based, communication
process. Since many business processes involve one party performing a service at the request of
another party, the mapping of messages to requests is natural. Approaches making tighter
integration demands, such as those based on special programming languages or shared
distributed computing "platforms," are highly appropriate to tightly connected applications on
single machines or in controlled environments, but they do not adequately support distributed,
loosely coupled, extensible business process integration (Hamilton 98). An XML-based
messaging system with open, extensible, wire formats captures the essentials of a business
communication while allowing flexible internal implementations (Khare 99).

Until applications have native support for XML, these types of BizTalk Framework interchanges
will require layered software that transforms native data types into XML and then performs the
XML document routing. The BizTalk Framework will also provide support for schemas
describing more complex interchanges involving multiple documents exchanged in a sequence.
End-user companies have built these types of XML document transformers and routers in-house.
Microsoft is developing a BizTalk Server that automates many of the functions required in a
BizTalk Framework interchange.

3.2.3.4 Commerce XML

Commerce XML (CXML) is an industrial proposed standard for business to business systems
proposed by Ariba Inc. with a set of industrial partners at early 99 (CXML 99). CXML, like
WIDL, CBL and BizTalk, is an application of XML and specifies a set of messages for
electronic commerce purposes. CXML shares the same design principles like the others but in a
rather different way.

Chapter 3: Virtual Enterprise Infrastructure

 49

CXML specifies the envelope, as well as, the content of the message in XML. Both entities of
the message are specified in XML. Transportation of CXML messages from one domain to
another is done based on different transport protocols, like Http and TCP/IP, though the
proposed CXML standard does not identify a particular one (CXML 99).

Two types of interactions between business domains identified, namely the request-response
model and the one-way message. In the Request-Response, the requestor, that might be a
business application, creates a legitimate 1 CXML message and sends it to another domain
through the Internet. The receiver, upon request, translates the message, parses the content of the
request, understands the context of the request, and invokes the corresponding back-end system
or component. The back end-end system or component, that might be a DCBS, serves the
request and delivers the results to the receiver. In the sequel, the receiver formulates the results
in terms of a legitimate CXML message and sends it back to the original sender of the message.

In the one-way model, the sender sends a CXML message to a receiver by describing the type of
message. The receiver, on the other business domain, parsers and understands the message, and
invokes the corresponding service on a back end system. However, no response is generated and
send back to the sender.

For the time being, only specific electronic commerce related request and response messages
have been specified. In contrast to BizTalk, CXML proposed standard does not require any type
of messaging system or specific transport protocol.

3.2.3.5 Messaging Systems in the context of VE

Messaging systems is an alternative technology option for dynamic VEs and inter-domain
business process management. The main strengths of this approach is the differentiation among
the specification of the services and the corresponding entities that provide these services
(Redlich 98, Hull 99, Ouzounis 99a). This means that message based middleware systems are
not based on the strong and tight integration of components, like in DCBS, and they do not
require compatible middleware services, like EJBs (Spinosa 98). Additionally, messaging
systems hide all the complexities of the underlying components or systems and enable true,
loosely coupled, asynchronous relationships among different business domains (Thompson 99).

However, they do pose certain problems. One of the main problems is the different proposals for
a message specification language (Stricker 99, Reichert 98). The previously presented protocols
actually specify their own envelope in XML and their own underlying content description
approach. This means that one domain that specifies its internal business processes in CBL can
not interoperate with a domain that has specified its processes in CXML. In order to address this
problem, certain harmonisation activities started to emerge. One of these activities is the
unification and integration of CXML and BizTalk messages and specifications. It is anticipated
that similar harmonisation activities will follow in order to enable semantic interoperability on
different ontologies for different protocols and business sectors based on different frameworks
(Wood 99, Ciacarini 98).

Another critical problem is the lack of application-independent messaging standards (Filos and
Ouzounis 00b). The incompatibilities among different systems increase the problem and make

1 Legitimate means that the message is compliant with the standard, in that case with the CXML proposed standard

Evangelos K. Ouzounis

 50

the integration of business processes among different domains difficult. However, emerging
standardisation activities are trying to solve the problem. These activities are the CORBA
Messaging Service proposal (OMG 98) and the Java Messaging System (JMS 99) approach will
probably solve, in the near future, these problems.

In addition to that, certain problems do exist on the transport protocol to be used for the
exchange of messages. The existing frameworks require and deploy different transport protocols.
For example CORBA message service assumes IIOP, while JMS proposes RMI and TCP/IP,
BizTalk deploys the HTTP and MQSeries and BEA’s system uses the TCP/IP. As the popularity
and penetration of HTTP increases most of the developers and researcher agree to deploy open,
Internet standards like TCP/IP and HTTP since existing middleware protocols like IIOP and
RMI are natively based on TCP/IP. However, no certain adoption has been made so far.

Finally, one of the biggest problems in this area is the specification of certain ontologies or
standard business entities for different business processes and sectors (Ciacarini 98, Spinosa 98,
Stricker 99, Nissen 99). Standard ontologies and globally specified business process templates
will enable the rapid integration and deployment of loosely coupled messaging systems for
dynamic VEs. In order to achieve this, a standard open content description language is needed
(Georgakopoulos 98, Fielding 98). XML seems to be the preferred option that will enable the
solution to problem. However, XML is a generic meta -language that can be used for the
specification of any type of ontologies and thus business sector activities are required towards
this direction. The previously described frameworks, which are strictly related to business to
business electronic commerce transactions, are the beginning towards this direction.

In general, messaging systems pose certain benefits over existing DCBS in the context of
dynamic VEs due to the loosely coupled approach, the global ontologies, and independency
among the interfaces of the components and the implementation of the components. However,
before full deployment of messaging systems is done, critical issues, dealing basically with
standardisation and XML acceptance, need to be solved.

3.2.4 Intelligent Mobile Agents

The success story of agents started in the early nineties with the parallel appearance of different
agent concepts and technologies. These technologies can be roughly separated into intelligent
agents and mobile agents (Guilfoyle and Warner 94, ComACM 94, Maes 94). In fact the term
agent was used as a buzzword in these days, since not everything what was labelled as an agent,
was based on agent concepts and agent technologies as we understand it today. The term “agent”
has also been used for many years in the field of distributed computing, where it refers to
specific client or server entities used in solving specific tasks in a distributed computing system,
e.g. directory system agents, mail user agents, management agents, etc.

The interest in intelligent agents was coined by the increasing notion of Multi Agent Systems
(MAS) and Interface Agents in the early nineties, driven by the Distributed Artificial
Intelligence (DAI) research community (Wooldridge and Jennings 95). The multi agent system
concept is largely conceived upon the idea that complex activities can be split into smaller
activities and every small activity can split into smaller ones, until a primitive set of activities
can be found. Every primitive activity can be provided from a special purpose software agent.
Each agent co-operates with other agents inside the community to solve a particular complex
problem. Therefore, a multi agent system may be defined as a set of agents that interact with
each other and with the environment to solve a particular problem in a co-ordinated, i.e.,

Chapter 3: Virtual Enterprise Infrastructure

 51

behaviourally coherent, manner (Breugst 98, Choy 99, Magedanz 97). Therefore, agent
communication and co-operation represents a major issue for this type of agents.

Another type of agents proposed so far was the Personal Assistants that support human users
during their daily work. The major goal of these agents is to collaborate with the user, and hence
the main emphasis of investigations clearly lies in the field of user/agent interaction. Some of
these agents “locate” the behaviour of the user during his daily operation and can reveal
intelligent behaviour. Agents of this type were the "smart mailboxes" and the "smart search
engines". These agents do not only provide an intelligent interface to the user, but also make
extensive use of the various services available in the network. In contrast to smart mailboxes,
that perform advanced mail filtering based on users preferences, search engines collect
knowledge available in the network on the user's behalf. This type of agent has also been called
"KnowBots" or "Softbots" (Etioni 94).

Probably the most important boost in creating and establishing awareness for the term “agent”,
was the appearance of the mobile agent concept, coined mainly by a new technology called
TeleScript developed by General Magic in 1994 (White 94). It was the time, where scripting
languages, such as the Tool Command Language (TCL) and its derivative SafeTcl (Borenstein
94) gained much attention, since they enabled rapid prototyping and generation of portable code.
The concept of smart messaging (Reinhardt 94), based on the encapsulation of SafeTcl scripts
within emails (Borenstein 92), made new mail-enabled applications possible. The concept of
mobile computing has gained increasing importance, enabled through mobile agent technology
(Chess 95). Furthermore, the telecommunications domain has been considered as a main
application area for mobile agents (Magedanz, 1996a). Last but not least, it was the beginning of
the Java-age. Java is today the basis for most of the mobile agent platforms and systems.

TeleScript (General Magic 94), introduced as the “PostScript language for the network”, was
more than just a language, as it provided a complete mobile agent execution environment. This
environment was designed to enable the implementation of the concept of remote programming,
which was proposed as an alternative approach to the Remote Procedure Call (RPC).2 The main
idea was to ship small piece of code to the data and not the large amount of data to the code.
Whereas at this time Safe-TCL and Java are primarily used to enable asynchronous operation
and remote execution of "mail-enabled" and "WWW-enabled" applications within the Internet,
the metaphor used within Telescript was the "electronic market place". Within this market,
agents asynchronously perform tasks on behalf of users. They may communicate with the user,
the services available in the network and other agents. In order to perform specific tasks, the
agents migrate through a network to visit remote sites. This means that during its execution, a
mobile agent may move from node to node in order to progressively accomplish its task. In other
words, agents are capable of suspending their execution, transporting themselves, i.e., program
code, data, and execution state, to another node, and resuming execution from the point at which
they were suspended. However, due to its closed architecture and the coincident increasing
acceptance of Java as the universal programming language, TeleScript has been abandoned in
1998 and has been replaced by a Java-based agent platform, called Odyssey, with less impact
and success. Nevertheless, a lot of the concepts originating from TeleScript are still present in
existing mobile agent systems and standards.

2 The PostScript language can be considered a rudimentary form of the more general idea of sending programs to and
executing them at a remote site as it involves sending a print programs to a remote processor in a printer.

Evangelos K. Ouzounis

 52

Today there has been a lot of developments and general excitement in the area of mobile agent
technology, much of which has evolved from the platform independence of the Java language
with its inbuilt object serialisation and network communications support (Bellifernine 99).

Due to the mobility aspects, the intelligent capabilities and the autonomicy characteristics,
agents become a fashionable and promising technology for the research and development
community. However, this created also confusion, since there was a lack of common definitions
and standards, resulting in various concepts, languages, architectures, technologies and
terminologies. But this situation has changed a little with the establishment of common agent
platform standards like OMG-MASIF (OMG 98), FIPA (FIPA 98), and Agent Communication
Languages (ACL) like FIPA-ACL (FIPA 98) and KQML (Finin 94 and 95).

The term “Software Agent” (Bradshaw 97) has been adopted as the most general phrase to
describe the concept of an autonomous software entity that automates some of the tasks of a
human or another software process that have been delegated to it. An agent is an encapsulated
software entity with its own state, behaviour, thread of control, and an ability to interact and
communicate with other entities - including people, other agents, and legacy systems3, in an
autonomous, intelligent and proactive way. This definition puts an agent in the same family, but
distinct4 from, objects, functions, processes, and daemons. The agent paradigm is different to the
traditional client-server approach. Agents can interact on a peer-to-peer level, mediating,
collaborating, and co-operating to achieve their goals and objectives.

However, there is no unique definition of a Software Agent (Franklin 96) This reflects the
diversity of theories, languages, architectures, technologies and standards. Nevertheless, today
we can simplify our considerations on agents by reducing the whole spectrum of available
concepts to two main categories, namely mobile agents and intelligent agents (Fuggetta 98,
Choy 99, Zhang 98).

Mobile agents embody the ability to migrate seamlessly from one platform to another whilst
retaining state information, typically with limited intelligence. By contrast, an intelligent agent is
an agent that exhibits 'smart' behaviour. ‘Smart behaviour' can range from very primitive
operations achieved through following user-defined scripts, to adaptive behaviour of neural
networks or other heuristic techniques. In general, intelligent agents are not mobile since the
larger an agent is the less desirable it is to move it (Fünfrocken 98). By incorporating intelligent
behaviour into autonomous agent requires usage of artificial intelligence techniques that result
into an entity with undoubtedly bigger size.

Until recently, there has been a distinct line drawn between these paradigms and the two
research domains have been focussing on quite different problems. However, the two research
areas have been relying on a similar conceptualisation, i.e. that of utilising separate software
processes. However, these processes may be implemented as procedure calls, a thread or several
threads, but look and behave conceptually as autonomous processes for dealing with automating
control tasks. It is also evident that the more specific attributes of these entities are merging
towards a unified approach. This means that Mobile Intelligent Agent platforms, that enable and
support agents with both characteristics, are starting to emerge.

3 Not necessarily all of these for any one instance of an agent.
4 An agent is at a higher level of abstraction.

Chapter 3: Virtual Enterprise Infrastructure

 53

In the following section the main characteristics of both types of agents will be discussed in
order to clearly identify their major characteristics and features.

3.2.4.1 Intelligent Agents

Probably the most important attribute that distinguishes this type of software agents from other
types of software processes is their ability to co-operate in some manner with other agents,
human or software, either to gain a local advantage themselves or to add to the global ‘good’ of
the system in which they operate via collaboration and coordination. This type of agents is
sometimes called Intelligent Co-operative Agents (Barbuceanu 95, Bellifernine 99).

The abilities of software agents have been described eloquently by Wooldridge and Jennings
(Wooldridge 95) and can be classified into the possession of Social Ability, Autonomy,
Reactivity, Adaptability. Wooldridge and Jennings (Wooldridge 95) provide a diverse review of
intelligent software agent research the interested reader is directed to. In the following, only the
aspects of agent communication and cooperation will be discussed and presented. 5

Communication enables agents in a multi-agent environment to exchange information on the
basis of which they originate their action sequences and co-operate with each other. For
example, to allow an agent to inform another agent about its current beliefs, amount of resources
available, additional information about its environment, etc. Software agents generally
communicate with other agents in order to work more flexibly. In order to achieve this level of
co-ordination, the agents should interact and exchange information. This is done by means of an
Agent Communication Language (ACL), which is a language with precisely defined syntax,
semantics and pragmatics.

Agent communication is accomplished through the use of three components: the ACL, content
language, and ontology. An ontology enumerates the terms comprising the application domain
and is not unlike a data dictionary in a traditional information system. The content language is
used to combine terms in the ontology into sentences, which are meaningful to agents who have
committed to this ontology. Sometimes the ontology and content language are so tightly
integrated that they become the same thing i.e., a list of sentences is the content language, which
represent the ontology. Finally the ACL acts as a protocol, enabling the development of
dialogues containing sentences of the content language between agents and defining certain
semantics for the behaviour of agents participating in such dialogues.

Agent
Communication

Language

Content Language/
Ontology

Communication
Language

Content
Layer

Message
Layer Intelligent

Agent

Intelligent
Agent

Figure 4: Agent Communication Entities

5 A comprehensive definition and introduction to intelligent agent technology and the related AI, DAI background is beyond the
scope of this chapter and this thesis. Therefore the interested readers should refer to (Wooldridge 95) for aspects of Intelligent Agent
theory, languages and architectures and (Nwana 96) for a detailed discussion on background and the application domains of software
agents.

Evangelos K. Ouzounis

 54

Most ACLs derive their inspiration from speech act theory (Searle 69), which was developed by
linguists in an attempt to understand how humans use language in every day situations, to
achieve everyday tasks, such as requests, orders, promises, etc. It is based on the idea that with
language the speaker not only makes statements, but also performs actions. A speech act can be
put in a stylised form that begins "I hereby request …" or "I hereby declare …". In this form the
verb is called the performative.

The probably most prominent ACL, representing the defacto standard before FIPA ACL (FIPA
98b) became available, was the Knowledge Query and Manipulation Language (KQML) (Finin
94 and 95) which defines a framework for knowledge exchange. KQML focuses on an
extensible set of performatives or message types, which define the permissible operations that
agents may execute on each other's knowledge and goal stores. As the content of the messages
was not part of the standard, the Knowledge Interchange Format (KIF), a formal language was
defined based on first-order predicate calculus for interchanging knowledge among disparate
computer programs (Ginsberg 91). KQML and FIF have been developed in the context of the
DARPA Knowledge Sharing Effort (Ginsberg 91).

Some of the benefits cited in the literature for intelligent agents, i.e., multi agent systems, can be
summarised as to:

• address problems that are too large for a centralised single entity due to resource limitations,
robustness concerns, or fault recovery,

• enable the reduction of processing costs. It is less expensive, in hardware terms, to use a
large number of inexpensive processors than a single processor having equivalent
processing power,

• improve scalability and adaptability. The organisational structure of the agents can
dynamically change to reflect the dynamic environment, i.e., as the network grows in size
the agent organisation can re-structure by agents altering their roles, beliefs, and actions that
they perform;

• provide solutions to inherently distributed problems, i.e. where the expertise is distributed.

At a high level, the multi-agent systems approach is intuitively simple. Developers can draw on
their experience in solving problems in real world co-operation with others. Therefore, the MAS
paradigm is inherently scalable due to modularity, loose coupling between interacting elements,
and higher levels of design abstraction because the level of abstraction is greater than that of the
object level.

3.2.4.2 Mobile Agents

Mobile agents, also referred to as transportable agents or itinerant agents, are based on the
principle of code mobility. Mobile code enhances the traditional client/server or Remote
Procedure Calls (RPC) paradigm6 by performing changes along two orthogonal axes:

6 In the client/server paradigm the server is defined as a computational entity that provides a set of services. The client
requests the execution of these services by interacting with the server. After the service is executed the result is
delivered back to the client. The server therefore provides the knowledge of how to handle the request, as well as, the
necessary resources.

Chapter 3: Virtual Enterprise Infrastructure

 55

• Where is the know-how of the service located?

• Who provides the computational resources?

Three main paradigms for mobile computations have been identified (Fugetta 98). These are:
Remote Evaluation, Code On Demand, and Mobile agents. These paradigms differ in how the
know-how, the processor, and the resources are distributed among the components of a
distributed system. The know-how represents the code necessary to accomplish the computation.
The resources are located at the physical node that will execute the specific computation.

In the Remote Evaluation (REV) paradigm (Stamos 70) a component A sends instructions
specifying how to perform a service to a component B. The instructions can, for instance, be
expressed in Java bytecode. B then executes the request using its resources. Java Servlets are an
example of remote evaluation.

In the Code on Demand (CoD) paradigm the same interactions take place as in remote
evaluation. However, the difference is that the component A has the resources collocated with
itself but lacks the knowledge of how to access and process these resources. It gets this
information from the component B. As soon as A has the necessary know-how, it can start
performing its operations. Java Applets fall under this paradigm.

The Mobile Agent (MA) paradigm is an extension of the remote evaluation paradigm (White 94
and 97). Whereas the latter focuses primarily on the transfer of code, the mobile agent paradigm
involves the mobility of an entire computational entity along with its code, state, and potentially,
the resources required to solve a problem to fulfil a goal.

Figure 5: Mobile Agent Approach

By adopting the Mobile agent paradigm, the component A has the know-how capabilities and a
processor, but lacks the resources. The computation associated with the interaction takes place
on the component B, which has a processor and the required resources. For example, a client
owns the code to perform a service, but does not own the resources necessary to provide the
service. Therefore, the client delegates the know-how to the server where the know-how will
gain access to the required resources and the service will be provided. An entity encompassing
the know-how is a mobile agent. It has the ability to migrate autonomously to a different
computing node where the required resources are available.

This means that a mobile agent is not bound to the system where it begins execution. It has the
unique ability to transport itself from one system in a network to another. The ability to travel
permits a mobile agent to move to a destination agent system that contains an object with which
the agent wants to interact. Moreover, the agent may utilize the services of the destination agent
system. When an agent travels, its state and code are transported with it. In this context, the

Agent
System A

Agent
System C

Agent
System B

Code
& State

Code
& State

Evangelos K. Ouzounis

 56

agent state can be either it’s execution state, or the agent attribute values that determine what to
do when execution is resumed at the destination agent system. The agent attribute values include
the agent system state associated with the agent.

The mobile agent paradigm provides two alternative programming approaches, namely:

• remote execution: an agent is sent to a remote location before its activation. The agent
remains in this location during its entire life-cycle

• migration: an agent is able to change its location during its execution. A mobile agent can
start its execution in location A then moved into location B invoke a service in this domain
and return back to the original location.

The Mobile agent paradigm is important for network-centric systems because it represents an
alternate, or at least, a complementary solution to traditional client/server approaches (Chess 95).
Such solutions may contribute to a reduction of the overall communication traffic in network.

Mobile agents are typically developed by means of machine-independent programming
languages. The initial pioneering machine-independent languages, such as Save-Tcl and
Telescript, are today mostly replaced by Java, due to its inherent portability and platform
support. Nevertheless, the native capabilities of Java are not yet sufficient for implementing right
away mobile agents. Extra functionality has to be implemented for realising a mobile agent that
support agent transport, mobility management, and security. For that reason, mobile agent
platforms have been developed in order to provide the required functionality for implementing
mobile agents. These platforms provide value added services for migration of agents and thus,
enable rapid development of applications with mobile agent features.

The following benefits have been most often cited (Harrison 95, Chess 98):

• asynchronous/autonomous task execution: after the injection of an agent into the network
environment the user can perform other tasks,

• reduction of network traffic and client processing power: since massive data exchanges are
handled locally at the nodes hosting the data and client computers could concentrate on
performing only limited local tasks,

• increased robustness and reduction of dependence of network availability and client/server
availability: once the agent arrived at a target system the client may crash or the network
may become unavailable without any drawbacks on the task processing,

• automation of distributed task processing: agents have itineraries that determine what tasks
they have to perform where without any user interaction,

• decentralised and local task processing: agent cloning enables the automated distribution of
formerly centralised programmes,

• flexibility: On-demand software distribution / service provisioning – service software within
mobile agents can be instantly downloaded to client and server nodes.

The mobile agent paradigm provides flexibility by re-distributing intelligence inside a
distributed network environment, particularly for reducing network load and optimising service
performance. Due to the above stated benefits, various problems and inefficiencies of today’s
client/server architectures can be handled by means of this new paradigm.

Chapter 3: Virtual Enterprise Infrastructure

 57

The down side of this technology is in fact the security risks introduced. An agent may be
attacked, modified or deleted by a hostile agent platform. Another obvious concern related to
mobile agents is the question, if agent migration is always of advantage in contrast to message
passing. For example, it is probably better to interact for small information exchanges by
message passing in case the agent code is bigger than the expected data volume to be exchanged.

In summary, agent technologies have a lot of appealing advantages compared to traditional
technologies for solving specific problems. But they imply the introduction of new agent
platforms enabling mobility and/or advanced inter-agent communic ation in the target
environment and require the adaptation of existing interfaces to that new agent environment.
Adopting a more general view, legacy technologies, including distributed object technologies,
have also advantages in specific environments and more importantly a big installed base. For
several applications, Remote Procedure Calls still represent a powerful and efficient solution.
Thus, an integrated approach is desirable, combining the benefits of both client/server and agent
technology and on the other hand, minimizing the problems that rise if one of these techniques is
used as “stand-alone“ solution (Guilfoyle 94). Therefore, an integration of agent technologies
with existing technologies represents the best solution to combine their advantages (Choy 99,
Harrison 95, Karmouch 98).

3.2.4.3 Intelligent Mobile Agent in the context of VEs

Intelligent Mobile agents provide significant benefits in relation to traditional distributed object
oriented approaches. Some of the major benefits emerged from the usage of intelligent, mobile
agents are: autonomy and flexibility due to the co-operation aspects among agents, scalability
due to the migration capabilities, adaptability due to intelligent behaviour, and integration with
existing technologies due to the object oriented concepts used to implement agent platforms and
agents (Krause 96 and 97, Fuggetta 98).

Agents seem to provide certain benefits for the development of dynamic VEs. Taking under
consideration the key requirements of VE in relation to agent characteristics, it becomes evident
that this technology might offer significant benefits to the development of inter-domain business
process management. However, this area is totally unexplored and further research is needed
(Choy 99, Martesson 98).

Intelligent mobile agents can be used in different ways to solve effectively VE problems. One
way is to use an agent based business process management systems that control and co-ordinate
in a distributed, autonomous, and flexible way the execution of VE business processes (Filos
00). Another way is to use agents is the negotiation and partner selection phase among different
VE partners prior to contract establishment. The autonomy and intelligent characteristics of
agents can significantly automate the negotiation process (Kraus 98). Agents can also be used to
manage and co-ordinate the provision of matchmaking services, like virtual marketplace services
(White 94, Ouzounis 98e). Potential supplier agents can migrate to the marketplace and register
their capabilities by communicating with the marketplace agents. In the sequel, consumer of
services can visit the virtual marketplace, locate the best suppliers, negotiate about certain
attributes, and select the best ones. Additionally, agents can migrate to different physical
locations, where business logic exists, and deploy business services by reducing the network
load and traffic (Ouzounis 99b).

Although intelligent mobile agents are a very good and promising technology and paradigm for
the development of dynamic VE systems, they do introduce some problems as well (Lange 96,

Evangelos K. Ouzounis

 58

Lin 96). One of the key issues is the requirement for a mobile agent platform that will enable
agent life-cycle operations and migration services. Certain mobile intelligent agent platforms
have been developed so far and a lot of standardisation activities have been emerged, like OMG-
MASIF and FIPA that try to deal with all these problems (Ciacarini 98). Another issue was the
lack of a standard Agent Communication Language (Bellifernine 99, Borghoff 97). In that
respect, FIPA-ACL, and its predecessor KQML, is an emerging proposed standard that can be
used to enable inter-operation and communication among different MAS prototypes and systems
(FIPA 98 and Finin 94).

In addition to the benefits coming from the usage of agent concepts, agents seem to combine all
the benefits offered by the messaging systems and DCBS (Choy 99, Breugst 98). Agents
communicate by exchanging ACL messages in an asynchronous and loosely coupled way using
underlying messaging systems. However, agents deploy the concept of ontologies that make
them more flexible, pro-active, intelligent, and autonomous. Agents are deployed within a
distributed object oriented platform, like CORBA or Java Framework, and thus can access any
type of standard business component. Additionally, agents can migrate to different physical
locations where business components exist and thus preserve the network resources. Finally,
agents have the ability to execute, manage, and co-ordinate complex business processes, in a
similar way like workflow management systems (Barbuceanu 95, Cai 96). Due to the high
degree of distribution, autonomy, co-operation and coordination mechanisms, intelligent,
autonomous agents are perfectly positioned to manage and execute complex business process in
a dynamic manner, across-domain boundaries. The execution of the process is not controlled in
centralised and static way, like in conventional workflow management systems, but on the
contrary, the agents themselves are co-operating in a flexible, autonomous, and dynamic way to
execute the process (Chess 95).

It seems that intelligent mobile agents satisfy most of the key requirements of VEs (Camarinha-
Matos 99, Filos and Ouzounis 00a). However, due to the fact that this technology is rather new,
no significant research efforts have been done so far in the area of agents, business process
execution and management across-domain boundaries and dynamic VEs. One of the key
objectives of this thesis is to explore the way that intelligent mobile agents can be used in the
context of dynamic VEs.

3.2.5 Workflow Management Systems

Workflow management is one of the areas that, in recent years, has attracted the attention of
many researchers, developers and users. Concepts and systems such as computer supported
cooperative work, paperless office, form processing, cooperative systems, and office automation,
have been delayed decades, in some cases, for the technology and know-how required to
implement real systems.

Workflow management systems (WFMS) are used to coordinate and streamline business
processes (Adams 97, Georgakopoulos 95 and 98). Typical business processes are loan
approvals, insurance claims processing, and billing. These business processes are represented as
workflows, i.e., computerized models of the business process, which specify all the parameters
involved in the completion of these processes. Such parameters range from defining the
individual steps, to establishing the order and conditions in which the steps must be executed,
including aspects such as data flow between steps, who is responsible for each step, and the
applications to use within each activity.

Chapter 3: Virtual Enterprise Infrastructure

 59

A Workflow Management System is (WfMC 98, Grefen 99, Miller 98, Lee 93) the:

• set of tools used to design, define, and specify business processes utilising a business
process definition language, widely known as business process modelling tools,

• environment or workflow engine in which these processes are executed and managed,
widely known as workflow engine, and

• set of interfaces to the users and applications involved in the workflow process, widely
known as application interfaces and tasklists.

There are many parameters involved in the specification of a workflow system. In spite of the
efforts of different standardisation bodies, the term workflow is still very fuzzy and used in
many different contexts. Workflows usually associated with the concept of business processes,
which is also not very precise. The reference model of Workflow Management Coalition
(WfMC) (WfMC 98) defines a business process as “a procedure where documents, information,
or tasks are passed between entities of the workflow according to defined sets of rules to
achieve, or contribute to, an overall business goal”. In general, a workflow is a representation of
the business process in a machine-readable format. Hence, a workflow management system is “a
system that completely defines, manages and executes workflows through the execution of
software whose order of execution is driven by a computer representation of the workflow logic”
(WfMC 96).

Workflow systems can be categorised based upon the way that they execute and manage
business processes. Two approaches have been proposed so far, namely the centralised and
distributed one (Khare 99, Martesson 98). In the centralised approach, there is only one
workflow engine. This engine controls the execution of different business process instances and
has full control upon each instance. The external applications can be located either on the same
system or on different systems. It is obvious that centralised systems have several drawbacks
like load balancing and scalability problems in comparison to distributed ones (Grefen 99).

In the distributed approach, there are more than one workflow engines that partially execute
instances of a business process instance. One process instance can start in one engine and parts
of it can be executed in another one (Eder 95). This is a more flexible and distributed solution.
However, due to the distributed execution of business processes from different workflow
engines, some synchronisation problems might be created.

Workflow Systems can also be categorised based on the underlying communication mechanisms
used to support the interfaces between the process engine and the external applications
(Georgakopoulos 95). Four key categorise have been emerged so far.

The conventional client/server workflow management systems or 2-tier systems were the first
approach widely adopted. In that case, the process engine and the external applications and
instances use conventional client/server concepts like TCP/IP and relational databases. The
interfaces among the entities are static, programming language dependent, and network protocol
specific. These systems are in general closed, not adaptable, and infle xible. One of the major
drawbacks of these systems is the low degree of distribution and autonomy (Miller 98). These
systems deployed for intra-domain business process execution and management where the
interfaces of the external applications are well known, centrally specified, and static. These
systems are considered the first generation of the workflow management systems (Filos 00).

The object-oriented workflow management systems or n-tier systems were the second approach
used. In that case, there are more than one workflow engines that co-operate with the external

Evangelos K. Ouzounis

 60

entities by deploying distributed object-oriented platforms, like CORBA, RMI, or DCOM
(Adams 97). The communication approach among the involved entities is remote procedure
calls. These systems characterised by adequate degree of flexibility and distribution. There are
static and well-defined interfaces for the integration of legacy applications and systems.
However, these systems do not provide the appropriate degree of autonomy, intelligence, and
dynamic behaviour (Alonso 95). The business process execution and management is static, pre-
defined and no alterations during process execution can be easily done. Additionally, external
applications and services need to implement special, static, and pre-defined interfaces,
something that it is not always feasible especially in the case of different administrative domains
(Bolcer 99). Finally, as in the first case, most of the OO-workflow systems are deployed for
intra-domain business processes, the semantic of activities and sub-processes is well known, pre-
defined, and centrally specified (Georgakopoulos 95).

The message-based workflow management systems, or n-tier message clients, were another
approach proposed (Eder 95 and 96). According to this method, the workflow engine and the
external entities co-operate by the exchange of messages with well-defined format, syntax, and
semantic. Every activity within the workflow system is considered a message client that can
send and receive messages from others. The underlying communication system is a messaging
system that undertakes the responsibility to forward the messages to the corresponding receivers
(Alonso 95). The communication model can be either synchronous or asynchronous, and point-
to-point and/or multi-point. A special category of message -based workflow management
systems is the event-driven ones. In these systems the different entities of the workflow system
co-ordinate their activities with the exchange of events that have specific format (Geppert 98,
Grefen 98, Tombros 99). These systems depend on the underlying event management system
and the syntax and semantic of event description language. Initially, message-based workflow
systems used proprietary content description languages usually specified in ASCII format. For
that reason, these systems can be characterised as closed. These systems are suffering by the
same problems as the previous ones, i.e. limited degree of autonomy and flexibility and low
level of adaptability. More specifically, event driven systems can be not explicitly used for data
passing among workflow entities. On the contrary, they are mostly used for notification of
process status, i.e. events can be used as a coordination mechanism (Grefen 98). Finally,
message-based workflow systems have been basically deployed for intra-domain purposes. With
the advent of XML, the syntax and semantic of the exchanged messages among the entities of
the workflow system can be described in a flexible and open way. Recently, different emerging
workflow management standardisation committees are trying to integrate XML semantics into
their specifications (WfMC 98).

The agent-based workflow management systems are rather new category of systems. According
to these systems, the execution and management of business processes is performed by a set of
autonomous, intelligent agents that co-operate, in a distributed manner, to execute the process
and thus, to reach a business goal (Barbuceanu 95, Borghoff 97, Bellifernine 99). The
autonomous agents can execute and manage either parts of processes or tasks of processes. In
any case, the autonomous agents communicate through special message exchanges utilising
special co-ordination protocols, like FIPA-ACL or KQML. The content and semantic of the
messages are being described in open, globally-specified ontologies that the agents can
understand. The agent-based workflow management systems are more adaptable and dynamic
due to the open ontologies used and the autonomous and adaptive characteristics of agents. This
category is considered new scientifically and not so much research has been conducted due to
the rather new concept of agent technology. The main reason for this delay was the lack of

Chapter 3: Virtual Enterprise Infrastructure

 61

mobile agent platforms, standard agent communication languages, and globally-specified
ontology specification frameworks.

From the above categorisation and discussion, it is clear that all of the approaches proposed so
far have significant benefits and drawbacks regarding their deployment in the context of inter-
domain business process execution and management (Filos 00). However, the acceptance of
agents, as an implementation and communication paradigm, the extra capabilities that they offer,
like mobility, autonomy, intelligence, adaptability, in conjunction with emerging state of the art
agent platforms, like FIPA and OMG-MASIF, standard distributed platforms, like CORBA and
RMI, flexible content description languages for globally specified ontologies, like XML,
emerging XML-based workflow standards, like WfMC, and platform independent programming
language, like Java, can provide the basic technological building blocks for the new generation
of open, flexible, autonomous, adaptive, and distributed workflow management systems for
dynamic VEs.

In the following sections, the basic standardisation activities in the area of WFMS are presented
and further analysed. In the sequel, the applicability of the workflow management concept in
relationship to intelligent agents and dynamic VE concepts is presented.

3.2.5.1 Workflow Management Coalition

The Workflow Management Coalition (WfMC) was founded in August 1993 by workflow
vendors, users, and analysts with the aim of promoting the use of workflow technology through
the establishment of standards for terminology, interoperability, and connectivity between
different vendor products (WfMC 98).

Initially, the WfMC specified a set of definitions for the workflow management systems, namely
terminology and glossary document. Most of these definitions are used now days by most of the
workflow vendors and researchers. These definitions established consensus among the
developers and clarified a lot of open issues and fuzzy terms. The evolution of these definitions
is necessary for the development of future workflow systems.

Another key contribution of WfMC was the identification of key modules of a workflow
management system and to propose a Reference Architecture for interoperable workflow
management systems. The main objective of WfMC was not to standardise the functionality of
the different modules of the architecture but the interfaces among them. To enable
interoperability, the WfMC proposes standardisation of five major interfaces and certain data
interchange formats.

The interface around the workflow enactment service is called the WAPI - Workflow APIs and
Interchange formats, and is seen as a unified service interface to support the five types of
workflow interfaces7. The WAPI is defined as a common set of API calls and interchange
formats with specific extensions, where necessary, to cater for the specifics of the five interfaces.
For every interface a working group has been created. The WAPI enables services of the
workflow system to be accessed and can control the interaction of the workflow system
components. More detail about the use of WAPI within the Workflow Enactment Service and
over each of the five interfaces can be found in (WfMC 94-98).

7 A number of the functions within each of the five interfaces are common.

Evangelos K. Ouzounis

 62

Based on this concept the WfMC proposed the following key interfaces:

• Interface 1 The Process Definition Tools Interface, a standard interface between business
process definition tools and workflow engines.

• Interface 2 The Workflow Application Client Interface, a standard interface for
communication between a workflow engine and a client interface, that is the interface
through which work items are presented to the user.

• Interface 3 The Invoked Application Interface, a standard interface that allow a workflow
engine to invoke a variety of external applications.

• Interface 4 The Workflow Interoperability Interface, standards that will allow workflow
systems produced by different vendors to inter-operate by pass work items between each
another.

• Interface 5 The Process Auditing & Administration Interface, a standard interface between
monitoring applications and workflow engines thus allowing one vendors monitoring
application to work with another's workflow engine.

To date the WfMC has published standards for all interfaces. It has also published an OMG IDL
binding for its Client Application Programming Interface (Interface 2) and is has been
developing a similar binding for the Interoperability Interface. These standard APIs should
ensure openness between various workflow products and indeed the WfMC has already
demonstrated interoperability between workflow products.

Independent of the success of the WfMC and the conceptual framework and interfaces that have
been proposed, most of the commercial workflow systems do not offer open interfaces between
the different functional components. Systems often combine several functional components as a
single logical entity with the embedded interfaces and they utilise different underlying
technologies like messaging systems, TCP/IP, or object oriented middleware platforms like
CORBA.

In September 1999 the Workflow Management Coalition (WfMC) launched a draft specification
of Wf-XML, which seeks to provide XML-based workflow standards. The specification builds
on the foundation of WfMC’s earlier work, providing an evolution of the existing workflow
standards into XML-based exchanges between workflow systems.

The WfMC initiative has brought together the work originated in the OMG jointFlow
submission (see next section) and the initial proposals from the IETF sponsored Simple
Workflow Access Protocol (Bolcer 99) (see next section). Wf-XML is an XML-based variant of
the WfMC Interoperability Interface that can work with HTTP or a number of other transport
mechanisms email, direct TCP/IP connection, or messaging systems.

The specification, currently at draft level, includes a definition of the basic DTDs defining the
XML encoding of workflow messages to support interoperability. The intention is to extend the
specification to include workflow operations from other WfMC interfaces and to form a
complete XML-based specification for all workflow functions. As part of this work, the
interoperability specification has been implemented as a prototype on two different workflow
systems and has been successfully tested in different interoperability trials. During the second
quarter of 2000, the WfMC intends to refine and release the WF-XML specification, as a full
standard and continue to invite input and comment from other industry groups including the
IETF and W3C.

Chapter 3: Virtual Enterprise Infrastructure

 63

The intentions of Wf-XML were not towards the specification of a inter-domain workflow
management standard. This version does not bring any new concepts, but it is actually a direct
translation of the existing interfaces to XML format with some minor improvements, like
session management. Critical open issues, like inter-domain workflow execution and
management, business process specification for inter-domain business processes, dynamic
selection of workflow providers during process execution, autonomous and intelligent behaviour
with emerging agent concepts and ideas, are not discussed at all.

3.2.5.2 OMG’s Workflow Management System

The Object Management Group initiated a similar activity to standardise workflow systems in
late 1997 (OMG 98). The standardisation activity was in the context of business objects activity
and the main emphasis was the CORBA-based communication and interoperation among
different workflow modules.

The OMG has issued a Request For Proposal (RFP) for its Workflow Management Facility in
mid 1998. Four initial submissions were made. The accepted submission was the jFlow that has
been made by a consortium influenced by WfMC members. The accepted proposal is based on
the WfMC concepts and standards and thus, WfMC backs the standardisation activities. It is the
intention of this consortium and the WfMC to have one workflow management Facility
specification endorsed by both WfMC and OMG.

The currently accepted standard addresses the following interfaces:

• WfRequester, WfProcessMgr, for workflow execution control, monitoring and
interoperability in a similar context as WfMC. This interface corresponds to the Interface
2,3, and 4 of the WfMC.

• WfProcess, WfActivity, WfExecutionObject, for business process definition and execution.
This interface corresponds to the Interface 1 and 2 of the WfMC.

• WfAssignment, for worklist management. This interface corresponds to the Interface 3 of
the WfMC.

In addition to that, OMG recently announced an RFP for Resource Management and Assignment
Facilities to allow facilities that perform the assignment of resources to be interfaced to multiple
workflow management systems. The RFP cove rs issues like resource assignment management,
resource selection based on criteria and policies, and resource specification and it is due to April
2000.

OMG Workflow Management Facility is aligned to some degree with the standards of the
WfMC. In this case a set of IDL interfaces have been emerged corresponding to the interfaces
defined in the WfMC reference model. This would mean that applications could be workflow
enabled by augmenting them with the appropriate IDL interface. The application could then be
used with any workflow component compliant with the standard.

The current proposed OMG standard are not directly dealing with cross-organisational business
process execution and management. As in the case of WfMC, critical open issues, like inter-
domain workflow execution and management, business process specification for inter-domain
business processes and dynamic selection of workflow providers during process execution are
not discussed at all. Additionally, as has been explained in the DCBS section, the deployment of
CORBA as a mechanism for autonomous inter-domain business process execution and

Evangelos K. Ouzounis

 64

management is rather problematic and in general, inflexible due to the tight coupling approach.
Therefore, it is anticipated that a message-based approach with corresponding XML message
requests and responses would have been better since the degree of autonomy and flexibility is
increasing.

3.2.5.3 Simple Workflow Access Protocol

The Simple Workflow Access Protocol (SWAP) is a simple, lightweight proposed protocol for
communicating information about long-lived workflow activities and processes over the Internet
and especially though the HTTP (Bolcer 99). The main motivation behind the proposal was the
ability to integrate workflow providers and workflow performers to support asynchronous
services across Internet, intranet, and extranet. In that way, multiple clients can use business
processes from different business domains utilising standard Internet protocols.

The proposal has been submitted in IETF by Netscape, HP, and Sun in August 98 and it is under
public discussion and debate. SWAP uses, as underlying Internet protocol, the HTTP and, as
content description language, the XML. The SWAP protocol uses a simple, though extensive
request-response model. Every workflow related request is a HTTP packet-request, while the
requested process, the input parameters and the values for these parameters are XML content.
Every response is an HTTP packet-response that contains results formatted in XML. This
approach is very strong one, since it is dependent only on the transport protocol used, the XML
content used to describe the requests and responses, and the protocol used, i.e. the SWAP.
However, how these requests will be serviced on intra-domain level is left open for the
workflow management providers and developers.

The main operations that SWAP supports are:

• initiate: create remotely set-up and invoke a business process,

• monitor: check the business process instance current status, get a history of the execution,
or find out the current and possible states of a running process,

• manage: read and set the running state of remote, generic, asynchronous workflow services,
pause or resume and executing one or terminating it when no longer needed,

• notify : send appropriate notifications of status changes to interested observers during
normal execution or when exception occur.

SWAP is not a complete workflow standard. It addresses only the interface 4 of WfMC, i.e. the
workflow to workflow interoperation with major emphasis on Internet based business process
execution and management. It uses HTTP as transport protocol and XML as a content language
and has a set of different semantics for methods and data structures, as WfMC and OMG’s
jointFlow have. In that respect, SWAP has not clear relationship to existing workflow standard
community, however, it addresses a serious problem, i.e. the deployment and usage of workflow
management systems through Internet standards, something that the other two standardisation
committees failed to do consistently (Bolcer 99). OMG and WfMC have strong interests to
incorporate XML technology and solve problems related to asynchronous execution and
management of business process across the Internet. In that respect, SWAP is a good possibility
towards this direction. However, explicit steps towards harmonisation of SWAP ideas in
interface 4 of WfMC and OMG standards have not been published.

Chapter 3: Virtual Enterprise Infrastructure

 65

3.2.5.4 Workflow Management Systems in the context of VEs

Workflow management systems are used to specify, execute, manage, co-ordinate, and
streamline business processes. However, most of the workflow concepts have been used only on
an inrta-domain level, i.e. for business processes that are totally controlled by only one
organisation. Due to the emerging models of dynamic VEs, a clear need for distributed, inter-
domain workflow management systems, has been emerged (Grefen 99, Miller 98).

Workflow management systems feature a set of good attributes for deployment within the
context of a VE. The shared business processes among the VE members can be described by
deploying a business process specification language. In that way, shared business processes can
be easily developed. For example a shared process can start in one domain and then, can be
continued in another domain-partner, by utilising remotely a sub-process. The WFMS will
undertake the responsibility to control and manage the execution of the shared business process
in a distributed and systematic way (Hoffner 98, Ouzounis 99b).

Although traditional WFMS systems have significant benefits, they do have certain drawbacks
in relation to the VE concept. One of the main issues is the limited autonomy and flexibility that
they have. WFMS execute upon well-defined business processes specified in a specification
language that the system could understand. So far there are no certain extensions to the existing
business process specification languages towards the direction of cross-organisational business
processes (Filos 00). Additionally, remote invocation of business processes, provided by
different business domains, should follow access control, authorisation and contract checks.
Current workflow systems do not provide such mechanisms (Klingemann 99). Finally, in current
prototypical workflow systems, shared business processes are being specified statically in
relation to remote processes, i.e. the VE partners that will provide them specified statically
(Tombros 99, Geppert 98). This approach is suitable for static VEs and not for dynamic ones,
where the partners that can provide parts of the shared business process are not known in
advance. On the contrary, the remote domains are being selected dynamically after negotiation
and during the business process execution. This means that for the same business process
specification different instances might exist. For every instance a set of different partners might
be selected according to the needs and requirements of the process (Ouzounis 99b).

Current proposed standards are not directly dealing with cross-organisational business process
execution and management. Critical open issues, like inter-domain workflow execution and
management, business process specification languages for inter-domain business processes, and
dynamic selection of workflow providers during process execution are not discussed at all
(Bolcer 99). Additionally, as has been explained in the DCBS section, the deployment of tight-
couple communication mechanisms, like CORBA, as a mechanism for autonomous inter-domain
business process execution and management is rather problematic and in general, inflexible.
Therefore, it is anticipated that a message-based approach with corresponding XML message
requests and responses would have been better since the degree of autonomy and flexibility is
increased (Georgakopoulos 98, Miller 98).

Agent-based workflow management systems seem to be in position to solve some of these
problems. For example, the execution of the shared business processes could be controlled by
agents that can migrate to the remote business domain, invoke the required business processes,
by identifying themselves, and return back to continue their normal execution. The physical
location of the remote domain should not be known in advance, but can be found after selection
and negotiation with potential providers in a virtual marketplace. The remote domain can also

Evangelos K. Ouzounis

 66

authenticate and authorise the requesting agents based on electronic contracts that have been
established during the negotiation phase.

However, most of the issues related to agent-based workflow management systems, cross-
organisational business process execution, and dynamic selection of partners are under
investigation and certain solutions and concepts are required (Tombros 00).

One of the key issues of this thesis is to investigate and explore how intelligent mobile agents
and workflow management systems can be used in an effective, flexible, and dynamic way to
provide a complete solution for dynamic VEs.

3.2.6 Virtual Marketplaces

Virtual marketplaces are a third-party virtual environment where buyers and sellers can meet and
engage themselves in electronic commerce activities, like buying and selling of products and
services. Due to the advent of electronic commerce, several types of virtual marketplaces have
been proposed and developed so far with emphasis on different aspects (Bichler 98, Guttman
98). However, the general features of the virtual marketplace remain the same.

When a seller is in position to provide a service or a product, he registers his service offerings in
a virtual marketplace in relation to a generic service or product template. The service or product
template actually determines the characteristics and properties that the service or product has.
When a buyer would like to buy a service or a product, he conducts the marketplace and
retrieves all the potential sellers that can provide the service or product. The selection process is
done based on some criteria or constraints that the buyer specifies. After the potential buyer has
identified a set of potential sellers, a negotiation process might occur. However, the negotiation
process is an activity related to the buyers and sellers and not directly with the virtual
marketplace functionality as such (Beam 96, Parsons 99). In that respect, a virtual marketplace is
a matchmaking service and resembles a directory service with some additional customised
services for electronic commerce purposes.

In general, virtual marketplaces offer three types of services:

• administration of service or product templates, like creation, deletion, and modification of
servic e types,

• management of registration of service/product providers, like register, deregister, modify
service offers related to specific service types,

• management of seller selection requests based on some constraints, like select all offers
related to a specific service type and satisfy some constraints.

Different approaches have been proposed so far for the realisation of such services. The most
influential ones are, the Open Distributed Processing (ODP) Trader and the subsequent
compatible standard of Object Management Group (OMG) Trader, the ISO’s X.500 directory
service, the Internet directory services like Domain Name System (DNS), and Lightweight
Directory Application Service (LDAP), and the recently proposed de facto standard Java
Naming and Directory Interface (JNDI). Each one of these services has gained success and
penetration in different technical areas. The OMG-Trader is deployed in the area of distributed
object oriented platforms, LDAP and DNS in Internet related services, and JDNI is an emerging
de facto standard in Java based applications.

Chapter 3: Virtual Enterprise Infrastructure

 67

Though these services are being used in different platforms and for different purposes, they do
have the same techniques for the definition of service templates. In general, a service template
has a name and a set of named properties, which are actually (name, value) pairs. A service
template can extend other existing templates by using the concept of inheritance. All the above-
mentioned standard directories or matchmaking services are providing all three key types of
services required for the realisation of a virtual marketplace or a matchmaking service (Filos and
Ouzounis 00).

However, most of the above services have been used for the dynamic location and utilisation of
resources, objects, and services within a distributed, homogeneous and intra-domain
environment and not for electronic commerce purposes. An emerging number of research
activities are concentrating now on the development of third-party marketplaces for electronic
commerce purposes (Sierra 97, Wurman 99). The main emphasis on these activities is not only
on the development of matchmaking mechanisms but also on the provision of mechanism that
will enable negotiation between the buyers and sellers (Sandholm 95).

In the following section, an analysis and assessment of the currently proposed methods and
techniques regarding negotiation are presented.

3.2.6.1 Negotiation

Negotiation is a process by which a joint decision is made by two or more parties. The parties
first verbalize contradictory demands and then move towards agreement by a process of
concession making or search for new alternatives (Bichler 98). Negotiation in electronic
commerce can be defined as the process by which two or more parties multilaterally bargain
resources for mutual intended gain using tools and techniques of electronic commerce (Beam 96,
Zeng 96). In general, the negotiation process can be categorised in two major areas, namely the
cooperative negotiations and the competitive negotiations (Bichler 98). In cooperative
negotiations, different entities are negotiating to achieve mutual gains, i.e. this is a win-win
scenario. In competitive negotiations the involved parties are totally autonomous, non
cooperative, and they are trying to maximise their individual gain, i.e. this is a win-lose scenario
(Milgrom 82). In the context of this thesis, the competitive negotiations will be considered and
further analysed (Ouzounis 99a).

The negotiation process can be either automatic, semi-automatic, and human based (Beam 96,
Sierra 97, Wurman 99). Automated negotiations take place when the whole negotiation function
is performed by autonomous software entities without human intervention (Beam 96). On the
contrary, in human based negotiations humans are taking decisions and influence the whole
process. Finally, in semi-automated negotiations, the whole process of negotiation is supported
by autonomous entities and when an agreement should be reached, human operators intervene.
In the context of this thesis, only the automated negotiation will be considered and further
analysed8.

Furthermore, the negotiation process can be either, single -issued, or multi-issued. In the single
issued case, only one issue or property is the context of the negotiation. All the efforts and
interactions among the involved entities are concentrated in the maximisation or minimisation of

8 Interesting readers about semi-automatic and human based negotiations should refer to [Beam97, Perkins96,
Raiffa82, Sycara96]

Evangelos K. Ouzounis

 68

this issue. Most of the research prototypes and systems today are concentrated on the single-
issue negotiation. Especially in the electronic commerce field, the price of the product or service
is usually the issue under negotiation (Sandholm 95). In multi-issued negotiation, more than one
issues or properties are the context of the negotiation. Multi-issued negotiations are more
complex, require more advanced decision and strategy techniques, and negotiation protocols.
Multi-issued negotiations are a very active research field especially for business to business
electronic commerce (Bichler 98).

Several forms of negotiations have been proposed so far. However, “the basic finding of the
negotiation science is that there is no single negotiation protocol and schema for all possible
negotiation situations” (Sandholm 95). Automated negotiations are still an open research field
due to the fact that several critical issues should be taken under consideration. Some of the most
critical issues involved are the:

• number of participants involved in the negotiation, i.e. buyers and sellers. The different
possibilities are one seller and multiple buyers, or multiple sellers and one buyer, or
multiple buyers and sellers,

• type of interaction, i.e. whether the interaction among the entities are private and committed
bids, like in Sealed-bid auction, or publicly available to all involved entities, like in English
and Dutch auction,

• number of negotiation rounds, i.e. whether the entities can improve their bids by counter-
proposing, like in bargaining model, or it is one round negotiation, like in bidding,

• negotiation protocol used, i.e. the set of messages that can be exchanged and the different
states that the involved entities can be during the negotiation process. Different protocols
have been proposed, like Contract-Net protocol, English, Dutch, and Sealed-bid auction
protocols,

• message description language, i.e. the language used for the description of messages
exchanged among the involved entities, like KQML, FIPA-ACL for intelligent mobile
agents, or any other proprietary one,

• ontology used, i.e. the way to categorise objects and entities so that they are semantically
meaningful to software modules, like knowledge Interchange Format (KIF), XML, etc.

• strategy used during the negotiation for the counter proposals and decision making.

The most simple and utilised negotiation models proposed so far are the bidding, bargaining and
auctioning methods.

In the bidding approach, the buyer specifies the product or service that wants to buy and
generates a Call For Proposals (CFPs) related to that request. Potential sellers, check the CFP,
generate corresponding proposals, and send them privately to the buyer. After all the proposals
have been received or a timeout has passed, the buyer selects the best proposal based on some
selection criteria, i.e. applies it own strategy. No counter proposals can be resubmitted. This type
of negotiation model resembles to some extent the Sealed-bid where the same steps occurred.
The negotiation protocol used in that case is the Contract-Net specified by Davis and Smith
(Davis 80).

The bargaining model is similar to the bidding one except that there is not only one negotiation
round but several ones until a selection can be done. During this process, the different sellers
improve their proposals based on different strategies in order to be selected by the seller. The

Chapter 3: Virtual Enterprise Infrastructure

 69

protocol used in that case is the iterated Contract Net protocol (Davis 80, Kraus 98), i.e.
modified versions of the original version of the Contract Net protocol. The bidding and
bargaining model has been applied in both single, as well as, in multi issued negotiations.
However, most of the prototypes and commercial systems developed so far provide only single
issue negotiations.

In the auction model, a seller starts the negotiation process and requests bids or proposals from
potential buyers. A potential buyer generates a proposal and announces it publicly to the whole
group of buyers. The seller usually continues the negotiation process until certain criteria will be
satisfied. Different models have been proposed so far, like the English and the Dutch auction. In
the case of English auction model, the winner buyer is the remaining participant bidding the
highest price. In the Dutch model, the price at which an item is offered for sale starts from a high
level and declines steadily until one of the buyers stops the clock and buys the good at that price.
The auction model has been applied only in single issued negotiations. However, there is a clear
need to extend the model for multi issued negotiations, e.g. for procurement auctions (Bichler
98, Wurman 99).

Although negotiations have the purpose of restricting the possible courses of negotiation, they
must obviously leave the alternatives for participating parties to choose from. In choosing
between or proposing protocol-compliant alternatives, each participant follows its own
negotiation strategy, which is normally not disclosed to other parties (Beam 96). Thus, in order
to enable automated negotiations using autonomous entities, it is necessary to equip each entity
with a formalised strategy to compute actions and offers corresponding to the role it takes in the
negotiation. In general, two major schools of thought have been proposed and deployed so far,
namely the analytical and the evolutionary approach.

In the analytical approach, the negotiation participant should be initially created with its
complete set of strategies in place. In other words, the participant should have a large memory
containing detailed instructions for each possible situation. The complete set of instructions, that
determine the behaviour of the entity during negotiation, are based on static mathematical
models and equations. Several analytical strategies have been proposed so far. Sandholm
(Sandholm 82) discuss a so-called self-interest agent to design an optimised evaluation/decision
function and suggests several elements that should be considered in negotiation: commitment
level, local deliberation, and linking negotiation elements. Using ideas borrowed from game
theory, Zlotkin (Zlotkin 97) treat negotiation as a type of interaction among distributed systems.
In order to make the overall sys tem more efficient, interaction rules, called negotiation
mechanisms, are followed by each component system. Koistinen () uses a service constraint
satisfaction technique and a worth-based evaluation function to determine the final deal in a
quality-of-service negotiation. Guttman and Maes have created Kasbah (Maes 94, Guttman 98),
a marketplace for negotiating the purchase and sale of goods using intelligent software agents.
The agents, in their words, are “not tremendously smart”, nor do the agents use any machine
learning technique or AI techniques, nor do agents attempt to encompass abstractions, such as
user goals or preferences. Rather, the Kasbah software agents receive their complete strategies
through the Web from the users, who specify the way in which the acceptable price can change
over time, and retain final control over the agents at all times.

In the evolutionary approach, the negotiation participants should be able to learn. Rather than
having a large memory, they should have the ability to acquire experience from previous
negotiations they have conducted. The evolutionary approach makes use of very dynamic
computing techniques, which are based on evolution principles such as selection, recombination,

Evangelos K. Ouzounis

 70

and mutation. With evolutionary approaches, the learning effect is generally greater and also has
a different dimension, since not only the data basis can evolve, but also the algorithms operating
on these data themselves. Thus, evolutionary strategies are principally much more creative and
self-adaptable than those based on analytical models. However, there only exist a few
implementations of simple, data oriented, evolutionary negotiation strategies (Oliver 96). The
main disadvantage of the evolutionary approach is that the resulting mechanisms always need
certain initial phase to adapt so they are not immediately ready for effective operation. On the
contrary, Oliver shows that any pre-programmed negotiation strategy will not be effective in real
negotiation cases and shows that a system of artificial adaptive agents using a genetic algorithm
can learn strategies that enable the system to effectively participate in business negotiations.
However, Beam et. al. point out that genetic programming requires too many trials to obtain the
good negotiation strategies. Zeng and Sycara (Zeng 96) present Bazaar, an experimental system
for updating negotiation offers between two intelligent agents during bilateral negotiations. It
explicitly models negotiation as a sequence decision-making task and user Bayesian probability
as the underlying learning mechanism (Zeng 96). This technique demonstrates that although the
computing model is static, a learning effect can be achieved by using some knowledge base that
is updated dynamically during negotiation, so that every negotiation can take a different course.

Several prototypes of agent-based marketplaces have been developed and proposed the last
years. PersonalLogic, Firefly (Firefly homepage), and Tete-a-Tete are agent based shopping
assistants that help customers to narrow down the products that best meet their needs by guiding
them through a large feature space. Andersen Consulting’s BargainFinder (BargainFinder
homepage) and Jango (Jango homepage) were the first shopping agents for online price
comparisons. All of these systems do not provide any type of negotiation feature. They only
enable customers to find and assess products and services that exist on different merchant sites.
Agent-based marketplace systems with extra negotiation features based on auction model are
actually the commercial sites of OnSale (Onsale homepage), Ebay (Ebay homepage), Cathay
Pacifc, and Koll-Dove. However, the negotiation process is fully human-driven, i.e. the user
needs to make the decisions and determine the strategy that he should follow. More advanced
auction-based marketplaces are the Kasbah system from MIT and the AuctionBot from
Michigan University. For a extensive analysis on these systems, the interesting reader should
refer to (Maes 99, Beam 96).

3.2.6.2 Virtual Marketplaces in the Context of VE

Virtual marketplaces are a central part for electronic commerce transactions and especially for
dynamic VEs. Virtual marketplaces provide third party matchmaking services that enable
service providers and service users to find each other (Filos 00, Camarinha-Matos 99). Though
the main objective of virtual marketplaces is on provision of matchmaking services, several
additional services can be considered, like negotiation.

In automated matchmaking and negotiation process the involved entitie s should be autonomous,
software modules that can locate potential suppliers and start negotiate without human
intervention by exchanging messages that follow specific communication and negotiation
protocols (Maes 94, Wurman 99). Intelligent mobile agents seem to be an ideal technical
solution for such kind of problems due to the autonomy, adaptability, and learning
characteristics that they reveal (Sierra 97). Actually, the mobile intelligent agent area has been

Chapter 3: Virtual Enterprise Infrastructure

 71

emerged as a technology to solve such kind of problems and has been ever since deployed in
different other scientific areas (Maes 94).

The above described virtual marketplaces concepts and systems, especially the ones that are
focusing on the negotiation aspects, do not clarify the way that different autonomous negotiation
agents initially find them selves (Wurman 99). Existing matchmaking services, like the ones that
previously described, can be deployed in that case. However, how the integration and
deployment of these services is done is not clearly provided in most of the current proposals. In
a multi-agent environment, where autonomous agents communicate with other agents by
exchanging messages, the matchmaking services should be provided by dedicated agents that
wrap the functionality of standard component or services and provide generic ontologies and
standard messages for interaction with other agents (Guttman 98). Additionally, most of the
current approaches are not taking under consideration the emerging agent communication
standards, like FIPA, FIPA-ACL, and FIPA protocols, and how existing standard matchmaking
services can be used in a multi-agent environment (Ouzounis 98e). This is an issue that current
agent-based virtual marketplace systems do not extensively address.

Furthermore, the above described negotiation approaches, techniques and models have basically
concentrated in the area of business to consumer and consumer to consumer electronic
commerce and they are not addressing the needs of business to business marketplaces and
especially, the needs of dynamic VEs (Filos and Ouzounis 00). Though some of the above
techniques can be extended for the dynamic selection of partners in VEs, this area is considered
new and further research is needed. Certain key issues like the agent communication language,
the ontology, the negotiation protocol, and the internal strategy need to be clarified and extended
for the case of dynamic VEs. Existing results of other research areas in negotiation, like
consumer to consumer and business to consumer negotiation methods, can be deployed and
extended (Beam 96, Guttman 98, Wurman 99).

Though different negotiation models have been proposed so far, not all of them are adequate for
dynamic VEs. In that case, one business domain called the business process requestor, that
would like to find another domain that can provide a specific business process, conducts the
virtual marketplace and locates all the potential partners called the business process providers.
Then, the business process requestor starts a negotiation process by issuing a CFP message. The
potential business process providers respond with different proposals and the negotiation process
continues accordingly. From this scenario, it is obvious that the bidding and bargaining model
are the most favourable ones. In the auction models, not the requestors but the providers start the
negotiation process and different requestors are responding with proposals. The existing,
publicly available, research activities in the area of dynamic VEs are not covering this issue
using open standard agent standards and techniques (Ouzounis 99b, Zarli 99).

Another interesting area that has been not covered significantly is the combination of negotiation
interaction with the mobility aspect of agents (Choy 99). All of the above systems consider only
persistent autonomous agents that interact with the exchange of messages. However, the benefits
or drawbacks that mobile agents bring to the negotiation process are an unexplored field
(Ciacarini 98). This is mainly because the intelligent autonomous agents, that take part in
negotiation process, are rather “big” software entities and the migration of them across different
physical location will probably take more time and will waste more network resource than to
send simple FIPA-ACL messages. However, this is a quantitative remark that has not been
proved yet nor certain alternatives heuristic mechanisms have been proposed.

Evangelos K. Ouzounis

 72

Additionally, the usage of negotiation mechanisms during business process execution and
management for the dynamic selection of partners is an very active research field (Tombros 99,
Geppert 98). Most of the current workflow management systems use a static and pre-defined
mechanism to relate business processes with different business domains. The deployment of
negotiation mechanisms for the dynamic and automated selection of business process providers
during process execution is a key issue for dynamic VEs (Grefen 98). This means that certain
techniques for the integration of workflow management systems with autonomous, intelligent,
agents and virtual marketplaces is an unexplored scientific area. Critical issues that should be
taken under consideration are the integration of workflow management systems with negotiation
agents, the suitable communication mechanisms, protocols, and ontologies used among the
negotiation agents, the usage of virtual marketplaces by the negotiation agents, and the execution
and management of inter-domain business processes (Ouzounis 99b, Filos and Ouzounis 00).
Enabling the dynamic selection of business process providers based on automated negotiation is
a key requirement for dynamic VEs and a significant improvement for inter-domain workflow
management systems. As has been already stated, current workflow management systems and
standards do not effectively address or solve these issues.

Finally, most of the above presented negotiation systems and models are concentrating on the
provision of a coherent and generic strategy for automated negotiations from theoretical point of
view and not on the provision of the communication and negotiation protocols and ontologies
based on emerging agent standards (Sierra 97). Actually, the above presented systems, though
they claim that they deploy intelligent agent concepts, they are not using emerging agent
communication languages like FIPA-ACL, open flexible ontologies based on XML, and
standard negotiation protocols like FIPA-Contract Net.

Autonomous intelligent agents that automate the process of matchmaking and negotiation for
dynamic VEs are a very important and rational technological choice. Existing approaches and
technologies for the matchmaking and negotiation process can be investigated, adopted, or
extended for deployment in the case of dynamic VEs.

3.3 Limitations of existing Technologies in the context of
VEs

A rapidly increasing number of projects and R&D activities worldwide are addressing different
technical and business aspects of virtual enterprise technologies and infrastructures. Several
technologies have been proposed so far, like Electronic Document Interchange (EDI),
Distributed Component-based Business Systems (DCBS), Messaging Systems (MS), Workflow
Management Systems (WFMS), Intelligent Mobile Agents (IMA), and Virtual Marketplaces
(VMP) and Negotiation. In this section, a summary of the limitations that these systems and
technologies have in relation to the dynamic VE requirements are discussed and presented.

In the case of EDI, the enterprise systems at the different partner organisations do not need to
directly tightly couple their internal systems. Instead, all interactions between inter-domain
business processes are accomplished via standard document exchange and message passing
mechanisms. Though this method is very suitable for autonomous, asynchronous, and loosely
coupled execution of shared business process across different domains, the currently provided
format and syntax of EDI messages is static and rather limited (Gibon 99). Due to the fact that
the scope and context of EDI documents is relatively restricted to a well-defined set of E-
commerce transactions, it is difficult to use EDI as the basis for general purpose, inter-domain

Chapter 3: Virtual Enterprise Infrastructure

 73

business process execution and management approach (Lomet 93). The EDI standards provide
initial definitions of common business documents, but historically, these have been inadequate
for actual use. To address this issue, the EDI standard organisations, like EDIFACT and ANSI
X.12, have undertaken an effort to standardise sets of documents for various industries and
business sectors. Using these industry specific document definitions, the customisation required
per business relationship can be reduced, though in general, per-relationship integration and
customisation work is still required. Given the set of tradeoffs involved in the usage and
deployment of EDI, it is best suited for long-term and stable business relationships between
organisations that can make significant investments to support their relationship (Lee 98,
Srinivasan 93). Business processes that do not related to electronic commerce, such as supply
chain optimisation or product design, are best done outside the EDI context. In general, each
new EDI relationship requires new customisation and integration work. These relationships are
thus not entered into easily and return on EDI investment is gained over long periods of time and
not over short-term relationships (Bolcer 99, Doz 98).

Distributed Component based Business Systems gained momentum in the R&D community due
to the simplicity, ease of integration and deployment, high degree of distribution, standard
underlying distributed protocols, like CORBA-IIOP and RMI, and middleware services. In
principle, most of these systems are inadequate for usage in a dynamic VE environment mainly
due to the fact that DCBS assume a tight coupling model (Zarli 99, Tombros 00). Backend
systems and clients integrate with the distributed framework using the APIs and object models
exposed by the underlying levels of the architecture. While clients are insulated from the APIs of
the backend systems, they are tightly bound to the provided APIs (Orfali 96, Spinosa 98). This
design choice has two implications. First, by using object binding as the interaction technique,
DCBS applications must be adopted at once by all participants in the cross-organization
relationship. Upgrades to backend systems, the component framework, and the business
application, must be coordinated across all participants. Second, because of the tight binding,
security issues are a major factor. Objects running in the business components-applications at
one company must be able to communicate directly with objects running in the same component
model at a partner company. This poses a significant barrier to adoption in cross-organization
environments (Redlich 98). Additionally, the DCBS frameworks do not provide a complete
solution, but instead serve as the starting point for developers to build applications (Carr 96,
Nissen 99). By building on the framework, developers can more quickly complete applications
and leverage the code in the framework that takes care of many of the mechanical details needed
for a successful distributed application. Finally, these choices make the DCBS frameworks most
appropriate for deployment inside a single company that needs to link multiple distributed
divisions or sites. Such a company can plan for a unified deployment and can afford the
integration and customisation work. Indeed the majority of DCBS deployments are taking place
inside single enterprises and for intra-domain applications (Sheth 98).

Messaging systems is an alternative technology option for dynamic VEs. The main strengths of
this approach are the differentiation among the interface of the services and the corresponding
modules that provide these services. This means that messaging systems are not based on the
static and tight couple model of components, like in DCBS, and they do not require compatible
middleware services, like EJBs (Filos 00, Stricker 00). Additionally, messaging systems hide all
the complexities of the underlying components or systems and enable true autonomous,
asynchronous, and loosely coupled relationships among different business domains. This is very
important issue for dynamic VEs, where the management of business processes is done by
different domains that have been selected during the process execution (Reichert 98). However,

Evangelos K. Ouzounis

 74

messaging systems do have certain problems. One of the key problems is the different proposals
for a message specification language, i.e. envelope and content of the message. The previously
presented protocols actually specify their own envelope in XML and their own underlying
content description approach. Another critical problem is the lack of generic messaging
standards. The incompatibilities among different systems increase the problem and make the
integration of business processes among different domains difficult (Georgakopoulos 98). In
addition to that, certain problems do exist on the transport protocol deployed for the exchange of
messages. The existing protocols and frameworks specify different transport protocol like
CORBA-IIOP, TCP/IP, or HTTP. Finally, one of the biggest problems in this area is the
specification of certain ontologies for different business sectors (Spinosa 98). Standard
ontologies will enable the rapid integration and deployment of messaging systems for dynamic
VEs. In order to achieve this, standard, open, content description meta-languages are needed.
XML seems to be the preferred option that will solve the problem (Ouzounis 99a). However,
XML is a newly adopted standard and it will take some time to establish acceptance before such
activities will start. In general, messaging systems pose certain benefits over existing DCBS in
the context of dynamic VEs due to the asynchronous and loosely coupled approach, the global
ontologies, and the independency among the interfaces of the components and the components.

Intelligent Mobile Agents provide significant benefits in relation to traditional distributed object
oriented approaches. Some of the major benefits emerged from the usage of intelligent, mobile
agents are autonomy and flexibility, due to the communication and co-operation models among
agents, scalability, due to the migration capabilities, adaptability, due to the intelligent
behaviour, and integration with existing technologies, due to the object oriented concepts used to
implement agent platforms and agents (Krause 96 and 97, Lecihsering 98). Intelligent agents
seem to provide certain benefits for the development of dynamic VEs. Intelligent mobile agents
can be used in different ways to solve effectively VE problems (Kraus 98). One way is to use an
agent based business process management system that control and co-ordinate in a distributed,
autonomous, and flexible way the execution of VE business processes (Bellifernine 99). Another
way is to use agents for the dynamic selection of partners and the negotiation phase among
different VE partners. The autonomy and intelligent characteristics of agents can significantly
improve and automate the selection and negotiation process (Borghoff 97). Agents can also be
used to manage and co-ordinate the provision of matchmaking services, like virtual marketplace
services. Additionally, agents can migrate to different physical locations where business logic
exists and deploy business services by reducing the network load and traffic (Choy 99).

Although intelligent, mobile agents seem to a very good candidate for the development of
dynamic VE systems, they do have some problems as well. One of the key issues is the
requirement for a mobile agent platform for the provision of agent life-cycle and migration
management services (Martesson 98). Certain mobile, intelligent agent platforms have been
developed so far and a lot of standardisation activities have been emerged, like OMG-MASIF
and FIPA, which try to deal with these problems. Another issue is the lack of standard Agent
Communication Languages (ACLs). In that respect, FIPA-ACL (FIPA 98), and its predecessor
KQML (Finin 95), is a proposed standard that has been used by many Multi Agent System
(MAS) prototypes.

In addition to the benefits coming from the usage of agent concepts, agents seem to combine all
the benefits offered by the messaging systems and DCBS. Agents communicate by exchanging
ACL messages in an asynchronous and loosely coupled way using underlying messaging
systems (Breugst 98). However, agents deploy the concept of ontologies that make them more
flexible and autonomous (Kraus 98). Agents are deployed within a distributed object oriented

Chapter 3: Virtual Enterprise Infrastructure

 75

platform, like Corba or Java Framework, and thus can access any type of standard business
component. Additionally, agents can migrate to the physical location of business components
preserving the network resources. Finally, agents have the ability to execute and co-ordinate
complex business processes, in a similar way like workflow management systems. However, the
execution of the process is not controlled in a centralised way by the workflow engine, but the
agents themselves are co-operating in a flexible and autonomous way.

Workflow management systems are used to specify, execute, manage, co-ordinate, and
streamline business processes. Workflow management systems feature a set of good attributes
for deployment within the context of a VE (Grefen 99). The shared business processes among
the VE members can be described by deploying a business process specification language
(Hoffner 98, Georgakopoulos 98). For example a shared process can start in one domain and
then, can be continued in another domain-partner, by utilising remotely a sub-process (Miller
98). The workflow management system will undertake the responsibility to execute and manage
the execution of the shared business process in a distributed and systematic way (Geppert 98).

Although traditional WFMS systems have significant benefits, they do have certain drawbacks
in relation to the VE concept. One of the main issues is the limited autonomy and flexibility that
they have (Miller 98). WFMS execute upon well-defined business processes specified in a
specification language that the system understands. So far there are no certain extensions to the
existing business process specification languages towards the direction of cross-organisational
business processes (Bolcer 99). Additionally, remote invocation of business processes, provided
by different business domains, should follow access control, authorisation and contract checks.
Current workflow systems do not provide such mechanisms (Klingemann 99). Finally, in current
prototypical workflow systems, shared business processes are being specified statically in
relation to remote processes, i.e. the VE partners that will provide them are being specified
statically. This approach is suitable for static VEs and not for dynamic ones, where the partners,
that can provide parts of the shared business process, are not known in advance. On the contrary,
the remote domains can be selected dynamically, after negotiation and during the business
process execution (Ouzounis 98d, Tombros 00). This means that for the same business process
specification different instances might exist and thus, different constellations of VEs. For every
instance a set of different partners might be selected according to the needs and requirements of
the various partners.

Current proposed standards are not directly dealing with cross-organisational business process
execution and management (Bolcer 99). Critical open issues, like inter-domain workflow
execution and management, business process specification languages for inter-domain business
processes, and dynamic selection of workflow providers during process execution are not
discussed at all. Additionally, as has been explained in the DCBS section, the deployment of
tight-couple communication mechanisms, like CORBA, as a mechanism for autonomous inter-
domain business process execution and management is rather problematic and in general,
inflexible (Miller 98). Therefore, it is anticipated that a message-based approach with
corresponding XML message requests and responses would have been better since the degree of
autonomy and flexibility is increased (Ouzounis 98c, Geppert 98, Grefen 98).

Agent-based workflow management systems seem to be in position to solve some of these
problems. For example the execution of the shared business processes can be controlled by
agents that can deploy them remotely or migrate to the remote business domain, invoke the
required business process by identifying themselves, and return back to continue the normal
execution of the process (Ouzounis 98b, Tombros 99). The physical location of the remote

Evangelos K. Ouzounis

 76

domain should not be known in advance, but can be found after selection and negotiation with
potential providers in a virtual marketplace. The remote domain can also authenticate and
authorise the requesting agents based on electronic contracts that have been established during
the negotiation phase. However, most of the issues related to agent-based workflow management
systems, cross-organisational business process execution, and dynamic selection of partners are
under investigation and certain solutions and concepts are required (Tombros 00, Ouzounis 99b,
Georgakopoulos 98).

Finally, virtual marketplaces are a central part for dynamic VEs because they provide
dynamicity, flexibility, and evolution to the VE models (Camarinha-Matos 99). Though the main
objective of virtual marketplaces is on provision of matchmaking services, several additional
services can be considered like negotiation. Intelligent mobile agents seem to be an ideal
technical solution for such kind of problems due to the autonomy, adaptability, and learning
characteristics that they reveal (Magedanz 99). The previous described virtual marketplaces
concepts and systems, especially the ones that are focusing on the negotiation aspects, do not
clarify the way that different autonomous negotia tion agents initially find them selves. Existing
matchmaking services, like the ones that previously described, can be deployed in that case.
However, how the integration and deployment of these services can be done is not clearly
provided in most of the current proposals (Zarli 99, Hoffner 98). In reality, most of the
approaches are not taking under consideration the emerging agent standards like FIPA-ACL and
FIPA protocols, and how existing standard matchmaking services can be used in a multi-agent
environment. Furthermore, the above described negotiation approaches, techniques, and models
have basically concentrated in the area of business to consumer and consumer to consumer
electronic commerce and they are not addressing the needs of business to business marketplaces
and especially the needs of dynamic VEs. Although some of the above techniques can be
extended for the dynamic selection of partners in VEs based on service templates, this area is
considered new and further research is needed (Guttman 98). Certain key issues like the agent
communication language, the ontology, the negotiation protocol, and the internal strategy need
to be clarified and extended for the case of dynamic VEs (Wurman 99). Additionally, though
different negotiation models have been proposed so far, not all of them are adequate for dynamic
VEs. The bidding model and bargaining model are the most favourable ones in comparison with
the auction models (Bichler 98). In general, autonomous intelligent agents that automate the
process of matchmaking and negotiation for dynamic VEs is a very important area of work that
needs significant research and development work (Zarli 99, Filos 00, Ciacarnini 98).

Additionally, the usage of negotiation mechanisms during business process execution and
management for the dynamic selection of process providers is also a very active research field.
Most of the current workflow management systems use a static and pre-defined mechanism to
relate business processes with different business domains (Tombros 99, Grefen 99). The
deployment of negotiation mechanisms for the dynamic and automated selection of business
process providers during process execution is a key issue for dynamic VEs. This means that
certain techniques for the integration of workflow management systems with autonomous,
intelligent agents and virtual marketplaces are required. Critical issues that should be taken
under consideration are the integration of workflow management systems with negotiation
agents, the suitable communication mechanisms, protocols, and ontologies used among the
negotiation agents, the usage of virtual marketplaces by the negotiation agents, and the execution
and management of inter-domain business processes. Enabling the dynamic selection of business
process providers based on automated negotiation is a key requirement for dynamic VEs and a
significant improvement for inter-domain workflow management systems. As has been already

Chapter 3: Virtual Enterprise Infrastructure

 77

stated, current workflow management systems and standards do not effectively address or solve
these issues.

In Table 2, a summary of the limitations that the existing technologies have in relation to the
dynamic VE concepts is presented. In principle, The acceptance of intelligent and mobile agents,
as an implementation and communication paradigm, the extra capabilities that they offer, like
mobility, autonomy, and intelligence in conjunction with emerging state of the art agent
platforms and standards, like FIPA and OMG-MASIF, and standard distributed platforms, like
Corba and Java-RMI, flexible content description languages for globally specified ontologies,
like XML, emerging XML-based workflow standards, like WfMC and SWAP, and platform
independent programming language, like Java, can provide the basis for the new generation of
open, flexible, autonomous, and distributed systems for the management and execution of shared
business processes in the context of dynamic VEs.

 EDI DCBS MS WFMS IMA

Communication
Model and
Synchronous vs
Asynchronous
Communication

Message
exchanges,
asynchronous

Tight couple,
basically
synchronous

Message
exchanges,
asynchronous

Both Message
and Tight
couple, both
synchronous
and
asynchronous

Both Message and
Tight couple

Transport
Protocol

VPNs,
recently
secure
TCP/IP

Corba-IIOP,
Java-RMI

Corba-IIOP,
Java-RMI,
TCP/IP,
recently Http

Corba-IIOP,
Java-RMI,
TCP/IP,

Standards: Corba-
IIOP and FIPA-
ACC, non-standard
Java-RMI

Autonomy High, limited
set of
messages

Medium to
low,
dependency on
standard
interfaces

High, generic
set of
messages

Medium,
workflow
management
specific
messages

High, general
messages related to
ontologies

Mobility No No No No Yes

Abstraction
Level

EDI-message Object Message Message/Object Agent

Application
Specific

Yes, E-
commerce

No No No No

Flexibility No, due to
pre-specified
messages

Yes but on
intra-domain
level

Yes, on both
intra- and
inter-domain

Yes, but mostly
on intra-domain
level

Yes, but mostly on
the intra-domain
level

Customisation
and Integration

Rather high Medium Medium Medium Medium

Openess and
Standards

Low due to
different EDI
specification
and standards

Medium due to
the
dependencies
on the
interfaces, the
programming
language and
the tight couple
model

Medium due to
the lack of
standards in
Message
Descriptions
and
deployment of
different
transport
protocols

Medium due to
the lack of
well-accepted
standards for
Internet-based
workflow
systems and
business
process
definition
languages

Medium due to the
lack of well-
accepted standard in
the Mobile Agent
Platforms and
differences in Agent
Communication
Languages

Evangelos K. Ouzounis

 78

Limitations for
deployment in
the Context if
VEs

restricted to
E-commerce,
impossible to
extend, high
integration
and
customisation
costs, no
access
control and
authorisation
mechanisms

synchronous
communication
model, tight
couple,
security and
access control
problems,
enforcement of
certain
technologies

interoperability
in message
specification,
security and
authorisation
problems,
business
oriented
ontologies,
enforcement of
certain
technologies

lack of business
process
definition
languages for
shared
processes,
inter-domain
workflow
management,
access control
and contracting
issues,

enforcement of a
mobile agent
platform, lack of
standard
communication
languages, lack of
certain ontologies
for inter-domain
business process
execution

Suitable for Static VEs Static VEs As basis for
both static and
dynamic VEs

Static VEs. If
they address
inter-domain
workflow
management
are suitable for
DVEs

Dynamic VEs if
they address
workflow and
virtual marketplace
concepts

Table 2: Limitation of Existing Technologies

The main objective of this thesis is to analyse, design, develop, test, validate and assess a
platform for the management of dynamic virtual enterprises that will support the whole life cycle
model (see 2.4 section) and will be based on standard FIPA intelligent mobile agent concepts,
emerging agent-based workflow management concepts for cross-organisational business process
execution and management, and virtual marketplaces with emphasis on OMG Trader integration
and automated negotiation for dynamic partner selection.

More particularly, this thesis will define, develop and validate the following entities:

• a XML-based virtual marketplace ontology for business process registration, management
of offers, and dynamic partner selection in virtual marketplaces,

• an agent-based FIPA compliant virtual marketplace and integration with the standard OMG
Trader,

• a negotiation ontology and protocol for dynamic partner selection based on FIPA-Contract
Net protocol,

• an XML-based business process definition language for the specification of business
processes in the context of dynamic virtual enterprises and a business process repository for
the storage of business processes,

• a distributed, agent-based, FIPA compliant, workflow management system for the execution
and management of shared business processes across different organisational boundaries,

• an XML-based intra- and inter-domain ontology for cross-organisational agent-based
business process execution and management,

• provision of shared business processes to the web by integrating the agent-based workflow
management system with standard web integration technologies,

In the following chapters the above-mentioned entities are further analysed, designed, tested and
validated.

Chapter 3: Virtual Enterprise Infrastructure

 79

3.4 Summary
This chapter presents an exhaustive analysis of the state of the art in both technical and
functional issues. The chapter starts with an analytical description and assessment of the current
projects and academic and scientific results in the area of VEs in relation to the requirements
presented in the previous chapter. The presented analysis concludes with a set of open technical
issues that needs to be addressed and solved. In the sequel, an assessment of the technologies
proposed and deployed so far in the area of VEs is given. The traditional Electronic Document
Interchange (EDI), the Distributed Component Business Frameworks (DCBS), the Messaging
Systems (MS), the emerging Intelligent Mobile Agents (IMA), the Workflow Management
Systems (WFMS), and Virtual Marketplaces and Negotiation (VMP) are assessed and evaluated.
For all these technologies, an extensive individual assessment regarding their applicability to the
dynamic VE concepts and requirements is done. Based on the academic state of the art and the
assessment of the proposed and deployed technologies, the problem statement follows, which is
an agent-based platform for the management of dynamic Virtual Enterprises. In the problem
statement, the main objectives of the thesis in relation to the most adequate technologies are
described.

Evangelos K. Ouzounis

 80

 81

Chapter 4: An Agent-based Platform for the
Management of Dynamic VEs

4.1 Introduction
A platform for the management of dynamic VEs should provide all the basic services required
for both phases of the life-cycle model (see section 2.4), namely the Business Process
Specification and Registration and Business Process Management.

During the Business Process Specification and Registration Phase a VE candidate partner
specifies his local and remote business processes. The specification of local business processes is
done using a business process definition language. For every business process, the input
parameters, the output parameters, the sub-processes, the tasks and the conditions among the
sub-processes and tasks are being specified. Additionally, every sub-process is specified as local
or remote process. Local processes are the processes that can be fully provided by this domain
while remote processes are the processes that can be provided only by remote domains.
Furthermore, for every specified task the associated business objects, that will be deployed, are
also specified. In this way, autonomous agents can easily deploy legacy services provided by
existing distributed objects that physically located in different network locations within the
domain.

In the sequel, every administrative domain that would like to participate in dynamic VE
relationships registers its processes in the virtual marketpla ce. The business process registration
performed by deploying the existing service types provided by the marketplace. If there is no
associated service type for a particular process, a new one is being created by possibly inheriting
existing service types. This process can be done either automatically or manually through the
virtual marketplace administrator. During the registration process, certain values for certain
attributes related to the service type, like location, quantity, etc., are specified. These attributes
are usually related to the provision of the process to remote administrative domains. In addition

Evangelos K. Ouzounis

 82

to the service provision related attributes, a set of attributes that will influence the negotiation
process is also specified e.g. price. These attributes might include the low price that can be
negotiated upon, the maximum quantity that can be offered, the best and worst delivery dates,
etc.

During the Business Process Management Phase a VE partner provides business processes to
customers or other VE partners by deploying the dynamic model of the virtual marketplace.
Initially, when a customer requests a business process by a VE Representative a process instance
is being created, i.e. the process description for this process is retrieved, interpreted, and the
execution of the process is started. The instantiation, interpretation, and execution of the
business process are done by a set of autonomous agents that co-operate to provide the requested
business process. The initial request of the customer for a business process execution is served
from these autonomous agents. The co-ordination of the autonomous agents during the execution
of a business process is performed by deploying the intra-domain ontology. The intra-domain
ontology is the set of messages that the different agents exchange during the execution and
management of the local business processes. If one of the sub-processes of the main process has
been specified as remote, then a suitable partner for this sub-process should be located. For that
reason, the virtual marketplace is conducted and several potential VE candidate partners are
being selected. Upon request, the virtual marketplace informs the initial domain about all the
registered domains that can provide this sub-process, i.e. all the potential VE candidate partners.
In the sequel, the negotiation process is initiated by conducting all the VE candidate partners.
The negotiation process is performed by using a specialised negotiation protocol and ontology.
The result of this negotiation process is the selection of the best VE candidate domain that
satisfies certain classification criteria. This agreement is being described in terms of a
“technical”, electronic contract that regulates the agreement.

As soon as a VE partner has been sele cted for a particular remote process, the VE representative
conducts the selected VE partner domain and requests the execution of the business process by
referring to the contract id that has been signed during the negotiation process. The VE partner
domain checks the list of existing contracts and starts the execution of the requested process if a
legitimate contract has been found.

During the execution of the main process, the customer can manage the execution of the main
business process. The main operations that can be performed are suspension, resumption, or
termination of the execution of the process. Every customer request is served initially from the
VE representative domain. All the agents related to the execution of this business process
instance are suspended, resumed, or terminated accordingly. In addition to that, all the remote
processes that have been previously requested should also be suspended, resumed or terminated.
Therefore, similar requests are issued and sent from the VE representative to the corresponding
VE partners. Whenever a request to suspend, resume or terminate an existing local business
process arrives, the agents check the contract id and serve it accordingly. In that way,
unauthorised requests for process suspension, resumption, or termination are not served. The co-
ordination among the different autonomous agents during the execution of remote business
processes is performed by deploying the inter-domain ontology. The inter-domain ontology is
actually the set of messages that the agents exchange during the execution and management of
remote business processes. Additionally, the customer can always ask about the current status of
the business process. In a similar way, the VE representative requests from all involved
autonomous agents associated with this process, local or remote, to declare their current status.
When a process finally completes its operation, the VE representative partner informs the

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 83

customer by posting to him the output results of the process and other statistical information like
the time of completion.

Furthermore, if during the execution of a process a fatal problem occurs, then the corresponding
agent, responsible for this process instance, informs the system that the execution of this process
can not be continued and thus, the agent needs to abort himself. The agent informs on-demand,
either the customer or the associated VE partner about this event and stops the execution of the
business process.

In the following sections the analysis approach used for designing a complex system like this,
the business domains and roles involved, the operations that they perform, a layered architecture
of the system, and finally details about the agents and the services they offer are presented and
further discussed.

4.2 Analysis and Specification Approach
In order to analyse and specify a complex system, like the one that has been previously
described, a consistent and coherent methodology is needed. The approach that will be used for
the analysis and design phase in this thesis is the Unified Modelling Language (UML) approach.
UML is a standard, consistent methodology for analysing, specifying, and developing complex
distributed systems. The methodology consists of the following phases (UML 98):

• Business Domain Analysis and Spe cification: In this phase the identification of the
different administrative domains and the specification of the relationships that these
domains have among each other is performed. In principle, an administrative domain has a
relationship with another domain when a user, agent, or service deploys or communicates
with a user, agent or service provided by another domain. Additionally, in each business
domain the identification of the key human roles, the responsibilities that they have, and the
basic operations that they perform is done. A human role normally deploys a service or an
agent in a certain way by deploying certain operations provided by the agent or service. All
the ways that a human user deploys one service constitute a use case. These requirements on
the usage of an agent or service are the key requirements for the design of each individual
entity that will be performed in the next phases,

• Architecture Specification: In this phase the specification of the basic layered architecture
of the system, the sub-layers, and the underlying supporting middleware services within
each layer is performed. Additionally, the services or the agents that will be deployed, as
such, and the services or agents that will be further specified, designed, and developed is
done. These agents or services are the key entities for further analysis and specification that
will be performed in the next phase,

• Agent Specification: In this phase, every agent or service that has been identified in the
previous phase, is being specified. The specification of the agent includes the external
interface, i.e. the services provided to other agents, the internal architecture, and the internal
entities of the agent in terms of UML class diagrams. Additionally, for all the internal
components of an agent the specification of the interface and the relationships that they
have is done. In the sequel, the external operations of an agent are specified in terms of
UML sequence diagrams involving all the internal modules of the agent. These sequence
diagrams determine the way that the internal modules of the agent are being deployed for
the provision of the key operations of the agent.

Evangelos K. Ouzounis

 84

In the following sections, the first 2 phases are presented analytically and certain decisions are
being taken. The agent specification phase is primary concerned with the specification of
individual agents involved into the system and will be provided analytically in subsequent
chapters.

4.3 Business Domain Analysis and Specification
Business domain analysis and specification is concerned with the identification and specification
of the different administrative domains, the relationships, the human roles involved and the
responsibilities that they have. This phase consists of the following key steps:

• Business model and relationships specification,

• Role and responsibilities specification.

In the following sub-sections the previous mentioned steps are further discussed and analysed.

4.3.1 Business Model and Relationships

The business model is specified as a set of different administrative domains having specific
relationships. The business model for the agent-based platform for the management of dynamic
VE consists of the following administrative domains:

• Customer, is the domain that has subscribed to the services provided by the VE and is
allowed to use them,

• VE representative, is the domain that represents the VE to the outside world, i.e. to the
customers, and provides the VE services to them. The VE representative is the responsible
domain where the end-users are logged in, deploy and manage the provided services, i.e. the
business processes,

• VE Candidate/Partner is the domain that registers its service offerings into the
marketplace and negotiates with other VE partners on-demand to establish business
relationships. When a successful negotiation has been achieved between a VE partner and a
VE candidate partner, then this domain acquires the status of the VE partner. The VE
partner authorises and authenticates business process requests, based on the negotiated
contracts, and executes and manages the business processes on behalf of other domains,

• Virtual Marketplace , is the domain that provides registration and selection services for VE
candidate partners. This domain is responsible for administrating service types and service
offers and for managing the daily operations of the marketplace.

The logical relationships among these domains are depicted in the following picture.

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 85

C u s t o m e r
D o m a i n

V i r t u a l
E n t e r p r i s e

R e p r e s e n t a t i v e
1

V i r t u a l
M a r k e t P l a c e

P r o v i d e r
2

V i r t u a l E n t e r p r i s e P a r t n e r

34

V i r t u a l E n t e r p r i s e P a r t n e r

34

5

Figure 6: Business Model and Relationships

It should be noted that the VE representative domain and the VE Candidate/Partner provide
similar services to each other and they deploy the same mechanisms. The main different is that
the VE representative actually represents the VE to the external world, i.e. to the customers.
Otherwise, the services, roles, responsibilities and internal components of both domains are
identical from technical point of view. This means also that one domain can be VE
representative for one VE and a normal VE partner for another VE, i.e. the roles of the VE
representative and VE partner are symmetrical and independent of the underlying services.

Based on the previous business model, the following logical relationships among the domains
can be specified:

• Customer - VE representative (1): the customer domain deploys all the provided services
from the VE representative in a transparent way, i.e. the customer does not know the
existence of the VE partners. The customer can log in into the system using a standard web
browser and can start a business process, get a status report about a running processes, and
manage existing processes, i.e. suspend, resume or terminate a process. Finally, when a
running process completes, the result of the process is returned to the customer.

• VE representative - Virtual marketplace (2): the VE domain uses the marketplace to
register local business processes and to search for potential VE candidate partners that can
provide a service. More specifically, the VE representative can register, de-register or
modify an existing business process offer stored in the virtual marketplaces. Additionally,
the VE representative can search the virtual marketplace based on some constraints and get
a list of potential VE candidate partners that can provide a specific service. The
requirements imposed by this relationship are reflected into the specifications of the virtual
marketplace ontology .

• VE partner - Virtual marketplace (3): the meaning of this relationship is the same like
the previous one except the fact that the VE partner performs these operations. Additionally,
in this relationship only the registration and administration of business process offers into
the virtual marketplace is provided and not the searching operations. The requirements
imposed by this relationship are reflected into the specifications of the virtual marketplace
ontology.

Evangelos K. Ouzounis

 86

• VE representative – VE Candidate/Partner (4): the VE representative starts a negotiation
process with a VE candidate partner. This negotiation process results into an electronic
contract that regulates the co-operation among the domains. As soon as the contract has
been established, the VE representative can start the agreed remote process, resume,
suspend, or terminate it upon request of a customer. The requirements imposed by this
relationship are reflected into the specifications of the inter-domain and negotiation
ontology.

• VE Partner – VE Candidate/Partner (5): the meaning of this relationship is the same like
the previous one. In that case, the VE partner negotiates with one or more VE Candidate
providers and selects one as VE partner. Then, the execution and management of remote
business processes can be done. This relationships enables the dynamic creation of complex
VEs where the partner outsource some of their business processes on-demand to other
capable providers. The requirements imposed by this relationship are reflected into the
specifications of the inter-domain and negotiation ontology .

It should be noted that the relationships 2 and 3 are similar in the sense that the technical
realization and the required specification is the same. However, in the case of relationship 2, the
domain that deploys this relationship is the VE Representative, while in the case of relationship
3, the domain that deploys this relationship is the VE Partner.

In the same way, the relationships 4 and 5 are also similar in the sense that the technical
requirements imposed by them are the same. However, the difference is only semantically and it
is related with the names and business position of the domains that deploy these relationships,
namely the VE Representative and VE Partner.

4.3.2 Roles and Responsibilities

Having specifying the key business domains of the platform and the key relationships that they
have, the individual human roles that exist in every domain can be specified.

In the VE representative and VE Candidate/Partner domain the role of the Business Process
Analyst exists. This person is responsible for the specification of the business processes of this
domain by deploying the business process definition language. The analyst also specifies which
processes will be provided by this domain, i.e. local processes and which processes will be
deployed remotely and dynamically by other partners, i.e. remote processes. Additionally, the
analyst specifies the terms and conditions concerning the offering of local processes to potential
partners. Based on these terms and conditions, the registration of local business processes to the
virtual marketplace is done. The terms and conditions are actually logical constraints that relate
process properties with certain min or max values. More specifically, this role performs the
following operations:

• creation, modification, and deletion of business processes using the business process
definition language,

• specification, modification, and deletion of certain terms and conditions related to the
provision of local business processes to potential partners. These terms and conditions will
be used during the negotiation process with potential partners,

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 87

In the Virtual Marketplace domain the role of the administrator exists. This person is
responsible for specifying and managing the service types that have been created in the virtual
marketplace. The main operations that this role performs are:

• creation, modification, list, and deletion of a service type,

In the Customer domain the role of the end-user exists. This person initially subscribes to the
services provided by this domain and gains access to them. This person has no particular
responsibility except to log in and use the provided services. The main operations that this role
performs are:

• log into the system by using a standard web browser,

• initiation of a business process and monitor the status of an existing business process,

• suspension, resumption, or termination of a running business process provided by different
VE partners.

Recalling the life-cycle model of dynamic VEs, the distribution of the above roles in each phase
is the following:

• In Business Process specification and Registration phase, the Business Process Analysts for
both the VE representative and the VE partner participates in the specification of the
business processes, administration of the registration of local processes into the
marketplace, and specification of the terms and conditions of the negotiation process for
each local process.

• In Business Process management phase, no human role is involved. On the contrary, the
different autonomous agents undertake the responsibility to execute business processes, to
search for potential partners dynamically, to negotiate for the selection of the best partner,
and to authorise the usage of processes based on the established electronic contracts. The
only human role involved is the end-user, from the customer domain, that can query the
status of a process, suspend, resume, or terminate a running process.

4.4 Architecture Specification
In general an architecture expresses a fundamental structure of the system under analysis and
design. The architecture defines a set of functional components, sub-systems or modules
described in terms of their behaviour and interfaces into which the system is divided. It defines
also how these components interact or interconnect to fulfil the goals of the system. Thus, an
architectural description is primarily concerned with the structure of the system provided by the
specification of the functions and the responsibilities of the functional components. In principle,
the term component includes functional components that can be either distributed objects or
autonomous agents. This is strongly influenced by the object-oriented paradigm where data and
behaviour are not separated entities. This is shown in the specifications of the different entities
in the following sections and chapters by identifying specific operations. Taking these
definitions into account, the architecture is described, according to the UML approach, with
interfaces, operations, use case diagrams, and sequence diagrams. The interfaces can be defined
either in Java programming language or in XML (XML 98, Harold 98).

By specifying and using a layered architecture for the development of a complex, distributed,
autonomous system provides a number of benefits (Barry 98, Ceri 96):

Evangelos K. Ouzounis

 88

• Understanding of System Structure. Architecture and architectural descriptions
characterise a system’s structure in terms of high-level computational elements and their
interactions. That is, the architecture frames its design solution as a configuration of
interacting components,

• Rich abstractions for interaction. Interactions between architectural components provide
a rich vocabulary for system designers. It also separates the functionality of components
from the concerns of interaction between them. This allows a modularisation of the system
components that facilitates the evolution of the functionality of the each component,

• Software development economics. Software architectures support and facilitate the re-use
of itself from system to system and of its sub-components whenever these are clearly
defined and documented.

The layered architecture of the agent-based platform for the management of dynamic virtual
enterprises consists of three respective layers. These are:

• Agent-based Business Process Specification, Registration and Management System and
Agent-based Virtual Marketplace System that provide the basic operations for the
specification of inter-domain business processes, the registration of them in the virtual
marketplace, the selection and negotiation of partners, the access control and authorisation
of process requests, and the execution and management of business processes.

• Mobile Agent Platform (MAP) and Supporting Services that provide the basic agent life-
cycle services, migration services, messaging services, and access to services provided by
the underlying distributed processing environment like XML parsers, legacy systems, etc.

• Distributed Processing Environment (DPE): that supports the key operations for object
life-cycle management and distributed services like Remote Method Invocation, access to
persistent repositories, deployment of existing legacy systems, enabling services like
vectors, etc. The distributed processing environment that will be deployed is that of the Java
Framework with support of CORBA middleware services in order to enable interoperable
access to distributed objects and components.

This architecture is presented in the following Figure 7.

D i s t r i b u t e d P r o c e s s i n g E n v i r o n m e n t

M o b i l e A g e n t P l a t f o r m S u p p o r t i n g S e r v i c e s

B u s i n e s s P r o c e s s
S p e c i f i c a t i o n , R e g i s t r a t i o n

a n d M a n a g e m e n t

A g e n t - b a s e d V i r t u a l
M a r k e t p l a c e S y s t e m

Figure 7: Overall System Reference Architecture

The last two layers are the basic infrastructure where the agent-based platform for the
management of VE has been developed. The different services and components provided by
these two layers will be directly used by the upper layer, i.e. from both the agent-based business
process specification, registration and management system and the agent-based virtual
marketplace.

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 89

Additionally, the first layer of the architecture is split into the business process specification,
registration and management sub-layer and the virtual marketplace sub-layer. However, every
administrative domain deploys this architecture in a rather different way. More specifically, the
virtual marketplace domain uses only the agent-based virtual marketplace sub-layer, the VE
representative and Candidate/Partner domain uses the business process specification, registration
and management, while the customer domain deploys only a standard web browser for accessing
the business processes. In both cases the two lowest layers deployed are the same, i.e. the
Distributed Processing Environment and the Mobile Agent Platform and Supporting Services. In
the following figure, the domain specific architecture is depicted.

Distributed Processing
Environment

Mobile Agent Platform and
Supporting Services

Agent-based Virtual
Marketplace System

Distributed Processing
Environment

Mobile Agent Platform and
Supporting Services

Business Process Specification,
Registration and Management

VE Representative & Partner Domain Virtual Marketplace Domain
Figure 8: Business Domain Specific Reference Architecture

In the following sections each one of the following layers is analysed and more information
regarding the specific components of each layer is provided. More emphasis is placed on the
upper layer where the appropriate components will be specified and analysed.

4.4.1 Agent-based Virtual Marketplace

A Virtual Marketplace is a third party administrative domain that provides matchmaking
services to the VE partners. The Virtual marketplace enables VE Candidate Partners to register
and administer service offers in relation to certain service types and VE Representatives to
search for potential partners that can provide particular business processes associated with
existing service types.

Every registered business process in the virtual marketplace is associated with a service type. In
general, service types describe in a consistent way the interface of business processes. For every
service type, the name of the process and a set of named properties are specified. The name of
the service type is the name of the business process, while the input and output parameters of the
process are named properties of the service type. Additionally, extra properties, related with the
negotiation process, are also included into the service type. For every property (name, value)
pair is associated. Service types managed by the virtual marketplace administrator. The service
type management includes creation, deletion, modification and retrieval of service types.

VE candidate partners that want to register their process offerings in the marketplace should
always create a service offer in association with an existing service type and register it to the
virtual marketplace. A service offer is actually an instance of a service type where certain
properties have given certain values. Service offers managed individually by each domain in a

Evangelos K. Ouzounis

 90

private manner. The management of service offers includes the registration of an offer, the
withdrawal, and the modification of it.

Finally, VE representatives or partners that want to find suitable partners that can provide a
particular process retrieve from the marketplace all the registered offers that satisfy certain
constraints. The service offer retrieval management process actually includes the retrieval of
offers that satisfy certain constraints.

Therefore, the basic services provided by the marketplace are service type management, service
offer management and service offer retrieval management. Each one of these operations
provided by individual, FIPA compliant, autonomous agents. More specifically, the:

• Service Type Agent (STA) is responsible for the management of service types and more
specifically for the addition, removal, listing, and modification of a service type,

• Service Offer Agent (SOA) is responsible for the management of service offers and more
specifically for the registration, withdrawal, description, and modification of a service offer,

• Service Offer Retrieval Agent (SORA) is responsible for the retrieval of offers associated
with a service type based on some constraints.

Other administrative domains are using the service provided by the three virtual marketplace
agents by exchanging messages. The messages are being described in FIPA-ACL format while
the content of the message is specified in XML following the virtual marketplace ontology.
Therefore, the virtual marketplace ontology is the set of FIPA ACL/XML requests and responses
that autonomous agents can exchange with the virtual marketplace agents. The communication
protocol used for this interaction is the FIPA compliant request-response protocol.

In addition to the above stated virtual marketplace agents, the following main non-agent
components are specified:

• Service Type Repository (STR) responsible for the storage and management of services
types in a persistent way,

• Service Offer Repository (SOR) responsible for the storage and management of offers
associated with service types in a persistent way.

In the following chapters, the marketplace concept and marketplace agents are extensively
analysed and full specifications of the agents and the key entities are provided.

4.4.2 Agent-based Business Process Specification,
Registration and Management

The business process specification, registration and management layer provides the basic
infrastructure for the specification, interpretation, execution, and management of business
processes in the context of dynamic VE. This layer supports both, the business process
specification phase, and the business process execution and management phase, i.e. the two key
phases of the VE life-cycle model.

In the first phase, the business process analyst in every VE domain specifies the business
processes by using the Business Process Definition Language (BPDL). The BPDL is an XML-
based language enabling the specification of complex processes. The language has been

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 91

specified and designed for the purposes of dynamic VEs and enables the utilisation of remote
business processes in an easy and flexible way. The business processes of each domain are
stored into the Business Process Repository (BPR). The BPR is a persistent system that stores
business process. Additionally, the BPR provides services for the interpretation of processes
from XML format into a specialised model that can be easily deployed by the autonomous
agents.

In the second phase, the execution and management of business processes in the context of
dynamic virtual enterprises is performed. The execution and management of processes is done
by a set of autonomous, distributed, inter-domain agents that co-operate among each other to
fulfil their mission. The following FIPA compliant agents have been identified for the provision
and management of VE processes:

• Personal User Agent (PUA) is responsible for managing the requests of the end-users
coming from standard web browsers and is located on the VE representative domain. These
customer requests can be to start, to resume, to suspend, to terminate a process or get the
status of one or more processes. Every request is checked for authorisation and then is
forwarded to the Domain Representative agent (DR),

• Domain Representative (DR) is responsible for managing the requests of the PUA, if the
domain plays the role of the VE representative, and the requests of the remote domains, if
the domain plays the role of the VE partner. In both cases, the DR authenticates the requests
by conducting the contract repository. If the request is an authorised one and is related to the
instantiation of a process, the DR creates a Workflow Provider Agent (WPA) that will serve
the request, otherwise the corresponding existing WPA is located and the request is
forwarded to him,

• Workflow Provider Agent (WPA) is responsible for executing and managing an instance
of a process or sub-process. The WPA replies to requests coming from the DR or informs
the DR about the status of the process that it executes. Additionally, the WPA co-operates
in an autonomous way with other WPAs by exchanging messages specified in the intra or
inter-domain ontology during the execution of business processes. Finally, the WPA
controls the execution of tasks involved into the business process by invoking, requesting,
or informing different Resource Provider Agents (RPA),

• Resource Provider Agent (RPA) is responsible for carrying out one specific task of the
business process. One task is a simple elementary processing unit that can be included into
one or more business processes. An RPA agent always deploys existing resources, business
objects, or legacy systems provided by the domain in a distributed and interoperable way.

• Requestor Negotiation Agent (RNA) is responsible for managing the partner search,
negotiation, and selection process. When a WPA realises that a remote process is required
for the continuation of the currently executed business process, it creates automatically a
RNA agent. This agent migrates to the virtual marketplace, selects the potential VE
candidate partners, based on some constraints, and starts a parallel negotiation process with
them. The result of the negotiation is an electronic contract that regulates this agreement.

• Provider Negotiation Agent (PNA) represents a VE candidate domain during the
negotiation process and is responsible for the automatic negotiations with other RNAs.
Additionally, PNAs manage the business process registration to the virtual marketplace and
update the contract repository when a negotiation process has been successfully ended, i.e. a
contract has been agreed upon.

Evangelos K. Ouzounis

 92

In addition to the above entities related to business processes, the following internal components
have been identified. These are:

• Inter-domain ontology is the set of messages exchanged among the autonomous agents
located in different administrative domains during the remote business process execution
and management. The specification of the ontology has been done in XML, the format of
the messages is based on FIPA ACL-XML, while the protocol used is the standard FIPA
request-response protocol,

• Intra-domain ontology: is the set of messages exchanged among the autonomous agents
located in the same administrative domains during the local business process execution and
management. The specification of the ontology has been done in XML, the format of the
messages is based on FIPA ACL-XML, while the protocol used is the standard FIPA
request-response protocol,

• Workflow Engine (WfE) is the intelligent unit of the WPA agent that controls the status of
a running process, evaluates the conditions of the related sub-processes, triggers the
creation, suspension, abortion, and termination of the related running agents, and checks
whether a process or sub-process has been completed,

• Offer Repository (OR) is responsible for the storage of offers and constraints related to the
negotiation process. For every local process that has been registered on the marketplaces, an
offer is specified into the OR. These offers regulate and drive the negotiation process during
the partner selection process,

• Contract Repository (CR) is responsible for storing the contracts that have been
established between this domain and other remote domains. The contract database is
updated automatically when an agreement has been reached after a negotiation process
among a RNA and a PNA agent. It is always local to each individual domain.

In the following chapters, analysis and design of the agent-based business process specification,
registration, and management system is provided and further details regarding how the agents
co-operate to manage business processes in the context of dynamic VE are provided.

4.4.3 Mobile Agent Platform

The emerging research activities related to mobile agent platforms started in the mid nineties,
motivated by several advantages promised by this new technology, e.g., asynchronous task
execution, reduction of network traffic, robustness, distributed task processing, and flexible on-
demand service provision (Chess 98). In course of time, several fundamental requirements and
services have been identified due to experiences that have been made during research and
development activities (Breugst 98a). These services have to be provided by the mobile agent
platform and the requirements that they impose have to be fulfilled by any state of the art mobile
agent platform. These services are:

• Agent Execution Support: An agent platform must provide the capability to create mobile
agents, taking into account agent-specific requirements regarding the runtime environment.
Before the creation, the platform has to retrieve the agent's code that may either be delivered
with the creation request or downloaded separately from an external, network location code
base.

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 93

• Management Support: It is necessary for agent administrators to be able to monitor and
control their agents. The control aspect comprises among others the temporary interruption
of an agent's task execution, its premature termination, or the modification of its task. The
monitoring of an agent is associated with its localisation in the scope of the whole
distributed environment. Regarding an agent system, all hosted agents as well as the
occupied system resources have to be monitored and controlled by the system administrator.

• Mobility Support: A special mobility support must be provided by the platform, supporting
remote execution as well as migration. Note that the mobility aspect cannot be sufficiently
handled without regarding the security support mentioned above.

• Support for Unique Identification: Mobile agents, as well as, agent systems have to be
uniquely identifiable in the scope of the entire agent environment. Thus, special support is
required for the generation of unique agent and agent system identifiers.

• Communication Support: Agents should be able to communicate with each other, as well
as, with platform services. Several mechanisms are possible, such as, messages, method
invocation or blackboard mechanisms. Communication through messages may be done
point-to-point, by multicasting, or broadcasting. Furthermore, agent communication
includes support for semantic analysis. Additionally, standardised agent communication
languages and content languages including compatible interpreters should be provided

• Security Support: Important aspects are authentication, i.e., the determination of an agent’s
or system’s identity, and access control of resources or services provided by an agent or
agent system. To guarantee privacy and integrity, important information such as code and
state of a migrating agent should by encrypted before transfer.

Further functional requirements may rise depending on concrete applications. However, these
additional features should be separated from the basic, inevitable capabilities mentioned above.
These enhanced services should be handled as add-ons that can be "plugged" into a core system
in order to individually enhance its functionality. Apart from these functional requirements,
various generic demands have to be regarded, such as performance, efficiency, portability, and
support for the integration/wrapping of legacy components. One particular legacy technology of
pivotal importance is distributed object technology!

The following figure shows the structure of a core agent system comprising several services in
order to fulfil the basic functional requirements identified above. Note that some of the services
provide remote interfaces in order to be accessible by external actors, such as, other agent
systems, agents, or human users.

Thus, in the course of time it become clear that only an integration of agent technology with
Distributed Processing Environment (DPE) will provide the prerequisite for the full acceptance
of agent technologies. In fact, both, distributed processing environment and agent technologies
are complementary. DPE enables the interoperability and reusability of distributed
heterogeneous service, or components, i.e., distributed intelligence, whereas Mobile Agent
Technology (MAT) allows the dynamic provisioning and extensibility of components, i.e., task
delegation and intelligence on demand. Furthermore, intelligent agent technology enables more
abstract communication between distributed components via a high level Agent Communication
Language (ACL) and thus, more advanced co-operation. As a consequence, an integrated
middleware would provide ultimate flexibility for implementing applications in accord to the
varying requirements of many different environments.

Evangelos K. Ouzounis

 94

Agent
Management

Service

Security
Service

Agent
Transport

Service

Enhanced
Services

Agent System
(Agency)

Network

ID
GeneratorInformation

Base

Agent
Execution

Service

Agent
Communication

Service

Figure 9: Basic Capabilities of Mobile Agent Platforms

As an example, for some applications it may be desirable to maintain certain service capabilities
in a centralised way, i.e., to interact with these remotely, whereas other service capabilities may
be realised in a distributed way more effectively. In order to combine these two approaches, a
distributed agent environment (DAE) can be established upon a Distributed Processing
Environment (DPE), such as CORBA or Java Framework. In this way, a unified environment is
built, combining DPE and MAT.

Good examples for existing state of the art mobile agent platforms are Aglets Software
Development Kit from IBM (Lange 96), Grasshopper from IKV++ (Breugst 98a), Odyssey from
General Magic (USA), Voyager from ObjectSpace (USA), April from Imperial College (UK),
D’Agents from Dartmouth College (USA). The first four platforms are Java based while the two
following ones non-Java-based.

In the context of this thesis the Grasshopper mobile agent platform with FIPA add on
capabilities will be used. The main reason for this decision is actually the fact that Grasshopper
is only standard Mobile Agent Platform that supports both FIPA and OMG-MASIF standards.
Grasshopper has been developed by GMD FOKUS and IKV++ GmbH and it is a mobile agent
development and runtime platform that is built on top of a DPE.

An analytical description of the Grasshopper platform with the FIPA add-on capabilities and
details regarding how to implement FIPA compliant agents is provided in the following chapter
5.

4.4.4 Supporting Services

In addition to the underlying Distributed Processing Environment and the Mobile Agent
Platform, a set of specialised supporting services will be used. These supporting services are:

• Extensible Markup Language (XML) will be used as a content description language for
the specification and interpretation of agent messages, as well as, for the specification of
business processes. The messages exchanged by agents are described in FIPA-ACL/XML.
FIPA ACL is a standard Agent Communication Language based on the speech-act theory.
FIPA ACL does not specify the deployment of any specific content description language.
The content of the messages and the semantic meaning of requests and responses will be
described in XML. Due to the extensible characteristics of XML as a meta -language,
business processes will also be described in XML in an flexible and dynamic way,

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 95

• Java Expert System Shell (JESS) is a Java -based “mini” expert system that allows
description of facts and rules related to specific knowledge domains. Jess is a tool for
building a type of intelligent software called Expert Systems. Jess uses a special algorithm
called Rete to match the rules to the facts. Rete makes Jess much faster than a simple set of
cascading if.. then statements in a loop. Jess was originally conceived as a Java clone of
CLIPS, but nowadays has many features that differentiate it from its parent. Jess has been
developed by Ernest Friedman-Hill at Sandia National Laboratories as part of an internal
research project. JESS will be used in the context of this thesis for the specification and
evaluation of scheduling conditions of business processes, as well as, for the decision
making process during negotiation among agents,

• OMG Trader is an OMG standard matchmaking service that enables distributed service
providers to register offers in a centralised repository in relation to specific standard service
types. Clients, that would like to locate potential providers, conduct the Trader and select a
set of potential providers based on some selection constraints. The OMG Trader has been
specified and deployed as a mechanism to locate objects in a distributed intra-domain
environment. In the context of this thesis, the OMG Trader will be used as a legacy system
supporting the basic operations of the agent-based virtual marketplace.

The following figure presents the underlying architecture of the proposed platform. This
architecture actually specifies all the services that will be used for the design, development and
testing of the agent-based virtual marketplaces and the agent-based business process
specification, registration and management systems.

OMG
TRADER

J
E
S
S

TCP/IP

RMI IIOP

Java Virtual Machine CORBA Middleware

Java Services CORBA Services

Grasshopper Agent Platform

X
M
L

FIPA Add On Agent Platform &
Supporting Services

Distributed
Processing
Environment

Figure 10: Layered Architecture of Mobile Agent Platform and Supporting Services

4.4.5 Distributed Processing Environment

On the distributed processing environment layer, the basic services offered by the Java
Framework (Java) and the CORBA Framework will be used. The main reason for selecting both
Java and CORBA frameworks is that they offer the basic means for true interoperable
distributed applications. In the following section the rational behind the selection of these
frameworks and the key services that will be deployed are explained.

Evangelos K. Ouzounis

 96

4.4.5.1 The Java Framework

The Java programming language and Framework developed by Sun Microsystems is based on
two concepts that appear to make it particularly suitable for the development of multi-agent
systems, namely a network-based concept and a platform independent development language.

In traditional programming languages, a compiler or a runtime interpreter is used to convert the
program source code into system-specific binary code. Java adopts another approach. The Java
compiler does not directly translate the Java source code into binary code but into a so-called
Java byte-code. This byte-code is platform-independent and can be executed without
modification on all platforms that support Java. A Java interpreter developed for a particular
platform is used to execute the byte-code on the target platform. The virtual machine is added to
the existing operating system of the target computer and provides a simulated, consistent,
runtime environment. Irrespective of the actual system platform, for example, UNIX, Windows
or Mac-OS, the Java Virtual Machine always provides a Java program with a standardised
runtime environment.

The byte-code can be either executed locally, as Java applications, or transferred over the
network to a remote computer where it is executed as a so-called Java applet. In the Web, for
example, the Java applet is embedded in the HTML page, transferred together with the HTML
page, and executed on the target computer in a browser. The browser must provide the required
Java runtime environment, i.e., a Java Virtual Machine and a Java interpreter. In a rather similar
way, a java object can be sent to a remote physical address and continue execution. This leads
directly to the concept of mobile agents. However, the existing Java Framework does not
provide the basic services for mobility of objects. For that reason dedicated mobile agent
platforms have been built upon the Java Framework that try to solve this problem and provide
specific services for the migration of services.

The network-based concept of Java and, in particular, the principle of remote objects, place
demands on the underlying security model that far exceed those provided by conventional
programming languages. If a user loads an existing object from the network and executes it on
his computer, he permits an object that he does not know to execute on his local system.
Although the task of the applet may provide the user with a general idea of the concrete actions
that the object performs, he can never be sure whether the applet behaves as expected or whether
under certain circumstances it performs some unwanted actions.

As seen from the security model, the execution of an object can be considered from two
directions. In one case, an object could have full access to the execution system. This
corresponds to the traditional model in which an operating system permits the executing
software programs to have access to all important system functions. This concept requires the
user to have complete trust in the executing program and the operating system to perform
preliminary checks on the program. Both aspects are difficult to realise for Java applets and in
general objects. The actions of an object can be restricted to a specified space within the system.
Java refers to this as the object’s “sandbox”. Although an object can perform any actions it
wishes within its sandbox, it has no access capabilities to resources that lie outside the sandbox.
The Java Virtual Machine provides the sandbox in practice. The security concept of Java9

9 The interested reader can read more bout the security model of Java on the http://java.sun.com/

Chapter 4: An Agent-based Platform for the Management of Dynamic VEs

 97

consists of various components, some of which are positioned in the Java language itself
whereas other parts are in the object executing application.

Object serialisation extends the central input/output classes of Java and permits sending a Java
object over a network connection. This extension plays an important role in the implementation
of mobile agents under Java framework. The functionality of the object serialisation is
concerned with the packaging of all the classes that belong to the object, including the classes
that the object can access, into a serial data stream, the transfer of this data stream over the
network, and the reconstitution of the original object at the target computer. Thus, object
serialisation supports the creation of persistent objects. An object can be interrupted at any point
in its execution, packaged and transferred, reconstituted at the target computer and continued at
the original program location. This is also a fundamental service that is used by the mobile agent
platforms.

In the context of this thesis, the Java programming language and therefore, the Java Virtual
Machine will be used for developing mobile intelligent agents based on a mobile agent platform.
The underlying services of Java framework, like security service, Remote Method Invocation
service, serialisation service, and basic core services, like hashtables and vectors, will be
deployed as basic middleware services for the required functionality within the agents.

4.4.5.2 The CORBA Framework

CORBA is a standard, defined by the Object Management Group (OMG 98), for implementing
distributed applications. Currently, CORBA is integrated and supplied with all kind of tools and
systems like databases, web browsers, program development environments standard object
oriented analysis and design methods, e.g., UML, and support plenty of operating systems.

Basically, CORBA provides two basic benefits. First, the capability of an object to request an
operation provided by a distributed object and to receive the results. Second, a set of standard
distributed services, which can be accessed in the same way as other distributed objects. What
makes CORBA an advantage is its support for interoperability. This means that CORBA objects
can be implemented in many different programming languages and run in different
environments with varying transport protocols, operating systems and hardware. This
interoperability is real, and supported by almost all the significant technology providers in the IT
domain.

Apart from the ORB, there is a set of standard middleware services and a component model.
This means that certain standard compliant services already implemented by different vendors
can be easily deployed and integrated into a distributed CORBA environment.

OMG defines a set of system-level services called CORBAservices. These services are of general
use, such as Naming service, Trader service, Life-cycle service, Event service, Security service,
etc. They are assumed to be widely available and affect the architecture of the application.
CORBAfacilities are general-purpose services useful in many application domains, but with no
relevant impact in the architecture. An example is the Printing Spooling facility. Those facilities
specific to market sectors, such as financial services, manufacturing, or telecommunications are
defined as CORBAdomains

In the context of this thesis, the CORBA framework will be used for integrating and deploying
distributed business objects that can be directly used by an autonomous agent in the context of a
business process. Additionally, the CORBA framework will be used for wrapping existing

Evangelos K. Ouzounis

 98

legacy systems and offer their services in a distributed multi-agent environment, like the
integration of OMG Trader into the virtual marketplaces.

4.5 Summary
This chapter presents a layered architecture of the system under analysis and identifies the key
business domains, actors, activities and agent required. Initially, a generic description of the
analysis method is presented. The analysis and specification approach used is the Unified
Modelling Language (UML) an OMG standard. In the sequel, three layers are identified, namely
the agent-based Virtual Marketplace and Business Process Specification, Registration and
Management layer, the Mobile Agent Platform and Supporting Services layer and the
Distributed Processing Environment (DPE) layer. For the first layer, which consists the core
contribution of this work, a set of autonomous and intelligent agents are identified and roughly
presented. These agents will be further analysed and specified in subsequent chapters.

 99

Chapter 5: Mobile Agent Platform

5.1 Introduction
Grasshopper is a CORBA-based MASIF conformant mobile agent platform which has been
enhanced recently with a FIPA add on in order to give the application developer total flexibility.
This evolution of the platform is witnessing the fact that the traditional separation of mobile
agents and intelligent agents is fading away as the corresponding standards bodies, i.e., OMG-
Agent SIG and FIPA are aiming to develop compatible standards. Thus, Grasshopper enables its
users to develop a broad range of agents, ranging from small simple mobile agents roaming the
network nodes, up to static multi agent systems talking via an Agent Communication Language
(ACL) for distributed problem solving.

Today Grasshopper is the agent platform of choice in multiple international research projects
within the European CLIMATE (Cluster for Intelligent Mobile Agents for Telecommunication
Environments) initiative (Climate 99). A common aspect of most of these projects is to explore
the usage of agent-based middleware in particular application domains, such as service control
in fixed and mobile networks, telecommunications management, electronic commerce,
multimedia applications, etc.

The emerging research activities related to mobile agent platforms started in the mid nineties,
motivated by several advantages promised by this new technology, e.g. asynchronous task
execution, reduction of network traffic, robustness, distributed task processing, and flexible on-
demand service provision. Many research labs and manufacturers were involved in the
development of various platforms, built on top of different operating systems, based on different
programming languages and technologies. However, within the last few years, common trends
can be noticed: Interpreter-based programming languages, particularly Java, are forming the
basis for most of today's agent platforms. Additionally several approaches are associated to the
integration of mobile agents and RPC-based middleware like CORBA.

Evangelos K. Ouzounis

 100

5.1.1 Distributed Agent Environment

In principle, Grasshopper realizes a Distributed Agent Environment (DAE). The DAE is
composed of regions, places, agencies and different types of agents. Figure 2 depicts an abstract
view of these entities.

Two types of agents are distinguished in Grasshopper: mobile agents and stationary agents. The
actual runtime environment for both mobile and stationary agents is an agency: on each host at
least one agency has to run to support the execution of agents. A Grasshopper agency consists of
two parts: the core agency and one or more places. Core Agencies represent the minimal
functionality required by an agency in order to support the execution of agents.

A g e n c y

C o r e A g e n c y C o m m u n i c a t i o n

Regis t ra t ion

T r a n s p o r t

Secur i ty

M a n a g e m e n t

Pers i s t ence

M A F
AgentSys tem

M

S

M M

S

Place

Region

M A F
F i n d e r C o m m u n i c a t i o n

M a n a g e m e n t

Region Reg i s t ry

Figure 11: Grasshopper Distributed Agent Environment

The following services are provided by a Grasshopper core agency:

• Communication Service: This service is responsible for all remote interactions that take
place between the distributed components of Grasshopper, such as location-transparent
inter-agent communication, agent transport, and the localization of agents by means of the
region registry. All interactions can be performed via CORBA-IIOP, Java-RMI, or plain
socket connections. Optionally, RMI and plain socket connections can be protected by
means of the Secure Socket Layer (SSL) which is the de-facto standard Internet security
protocol. The communication service supports synchronous and asynchronous
communication, multicast communication, as well as dynamic method invocation. As an
alternative to the communication service, Grasshopper can use its OMG MASIF-compliant
CORBA interfaces for remote interactions. For this purpose, each agency provides the
interface MAFAgentSystem, and the region registries provide the interface MAFFinder.

• Registration Service: Each agency must be able to know about all agents and places
currently hosted, on the one hand for external management purposes and on the other hand
in order to deliver information about registered entities to hosted agents. Furthermore, the
registration service of each agency is connected to the region registry which maintains
information of agents, agencies and places in the scope of a whole region.

• Management Service: The management services allow the monitoring and control of
agents and places of an agency by users. It is possible, among others, to create, remove,
suspend and resume agents, services, and places, in order to get information about specific

Chapter 5: Mobile Agent Platform

 101

agents and services, to list all agents residing in a specific place, and to list all places of an
agency.

• Security Service: Grasshopper supports two security mechanisms: external and internal
security.

• External security protects remote interactions between the distributed Grasshopper
components, i.e. between agencies and region registries. For this purpose, X.509
certificates and the SSL are used. By using SSL, confidentiality, data integrity, and
mutual authentication of both communication partners can be achieved.

• Internal security protects agency resources from unauthorised access by agents.
Besides, it is used to protect agents from each other. This is achieved by
authenticating and authorising the user on whose behalf an agent is executed. Due to
the authentication/authorisation results, access control policies are activated.

• Persistence Service: The Grasshopper persistence service enables the storage of agents and
places on a persistent medium. This way, it is possible to recover agents or places when
needed, e.g. when an agency is restarted after a system crash.

A place provides a logical grouping of functionality inside of an agency. The region concept
facilitates the management of the distributed components, i.e. agencies, places, and agents, in the
Grasshopper environment. Agencies, as well as, their places can be associated with a specific
region by registering them within the accompanying region registry. All agents, which are
currently hosted by those agencies will also be automatically registered by the region registry. If
an agent moves to another location, the corresponding registry information is automatically
updated.

5.1.2 Communication Concepts

The communication facilities of Grasshopper are realised by the Communication Service (CS)
which is an essential part of each core agency. This communication service allows location-
transparent interactions between agents, agencies, and non-agent-based entities.10

Remote interactions are generally achieved by means of a specific protocol. The communication
service supports communication via the IIOP, Java’s RMI, and plain socket connections. To
achieve a secure communication, RMI and the plain socket connection can optionally be
protected with the SSL.

• CORBA IIOP: The CORBA 2.0-compliant Internet Inter-ORB Protocol can be used in all
environments that support CORBA, independent of a vendor-specific ORB implementation.
It uses the standard-compliant mechanism to connect to an object using a CORBA Naming
Service.

10 As an alternative to the communication service, Grasshopper can use its OMG MASIF-compliant CORBA
interfaces for remote interactions. For this purpose, each agency provides the interface MAFAgentSystem, and the
region registries provide the interface MAFFinder. Those interfaces are defined in the MASIF standard. Note that the
following sections only describe the Grasshopper communication service. Detailed information about MASIF can be
found in the standard itself.

Evangelos K. Ouzounis

 102

• MAF IIOP: This protocol is a specialisation of CORBA IIOP developed for agent system
interaction. It is introduced in the MASIF standard and provides the connectivity between
agent systems of different vendors. Thus, MASIF IIOP does not use the Grasshopper
communication service and connects directly to the MASIF interface of the peer agency.

• RMI: Java Remote Method Invocation enables Java objects to invoke methods of other
Java objects running on another Virtual Machine (VM). Since this protocol is included in
every JDK1.1-compliant VM, all Grasshopper agencies support this protocol by default
without any further installation or configuration effort.

• Plain Sockets: The fastest way of remote interactions is the communication via plain
sockets to a specific port of the target host. This technique is robust and avoids the overhead
of a distributed object model. Plain socket communication is possible in each Internet-
enabled environment and it is the default protocol used by Grasshopper agencies.

• Plain Sockets with SSL: Using this protocol, plain socket connections are protected by
SSL. The preconditions for usage are the same as those mentioned for RMI/SSL.

Inside of a region, Grasshopper is able to determine dynamically the protocols supported by a
desired communication peer and to select the most suitable protocol for the remote interactions.
Since the supported communication protocols are realized via a plug-in interface, developers can
easily integrate new communication protocols by writing their own protocol plug-ins. In this
way Grasshopper is open for future requirements that may come up in the changing
communication world.

The communication service is used internally by the Grasshopper system for the agent transport,
for locating entities within the DAE, etc. Agents can use the communication service to invoke
methods on other agents. Since an agent does not have to care about the location of a desired
communication peer, the communication is totally location-transparent. Within the agent code,
there is no difference between remote method invocations and local method invocations.

Client Agent

Server Proxy

Communication
Service

Protocol
PluginsAgency 1

Server Agent

Communication
Server

Agency 2

Communication Channel

Remote Interfaces
for supported Protocols

1

2

3

4

1, 2, 4 Local Java method invocation

3 Remote method invocation via one of the supported protocols

Figure 12: Location Transparent Communication

This is achieved by means of so-called proxy objects that are directly accessed by a client. The
proxy object forwards the call via the ORB to the remote target object. In this way, these proxy
objects are equivalent to the client stubs used by CORBA implementations.

Chapter 5: Mobile Agent Platform

 103

Inter-agent communication within Grasshopper may be performed in several modes.
Grasshopper supports the following communication modes:

• Synchronous Communication: Usually, when a client invokes a method on a server, the
server executes the called method and returns the result to the client, which then continues
its work. This style is called synchronous because the client is blocked until the result of the
method is sent back.

• Asynchronous Communication: When using asynchronous communication, the client
does not have to wait for the server executing the method. Instead the client continues
performing its own task. There are several possibilities for the client to get the result of the
invoked method: It can periodically ask the server whether the method execution has been
finished, wait for the result whenever it is required, or subscribe to be notified when the
result is available.

• Dynamic Communication: This mechanism is useful if the client does not have access to a
server proxy. The client is able to construct a message at runtime by specifying the
signature of the server method that shall be invoked. Dynamic messaging can be used both
synchronously and asynchronously.

• Multicast Communication: Multicast communication enables clients to use parallelism
when interacting with server objects. By using multicast communication, a client is able to
invoke the same method on several servers in parallel.

5.1.3 Security Concepts

As mentioned, the Grasshopper security service supports two different kinds of security
mechanisms: external and internal security.

External security protects remote interactions between the distributed Grasshopper components.
The external security mechanisms are based on the use of X.509 certificates and the SSL. SSL is
an industry-standard protocol that makes substantial use of both symmetric and asymmetric
cryptography.

• Confidentiality: The whole communication between clients and servers is handled via
secure sockets, encrypted with a symmetric keys and an encryption algorithm negotiated in
a handshake prior to the actual SSL session. Although the IP packets can still be
intercepted, encryption renders them useless for eavesdroppers. Currently, Grasshopper uses
RC4 with 128 bit keys for encryption and RSA with 1024 bit keys for session key
exchange,

• Integrity: Message Authentication Codes (MACs) can prove that a message was not
modified during transportation. These MACs are calculated for each SSL packet using hash
functions. Grasshopper uses MD5 in conjunction with shared secrets to generate these
MACs,

• Authentication: The purpose of authentication is that both communication parties convince
each other of their identity. During the SSL handshake, client and server exchange personal
data and their public keys packaged together in the form of X.509 certificates. The
authentication process requires both parties to digitally sign protocol data with their private
keys. The certificate itself does not authenticate, but the combination of certificate and

Evangelos K. Ouzounis

 104

correct private key does. Currently, Grasshopper uses RSA with 1024 bit keys for
authentication,

Internal security protects resources of an agency from unauthorized access by agents.
Furthermore, it is useful to protect agents from each other.

Regarding access control, Grasshopper is strongly oriented towards the security mechanisms of
JDK 1.2. It makes use of an identity-based and group-based access control policy, which is
initialized at start-up. In Grasshopper, an access control policy is an access control list
comprising several entries, one for each subject treated in this policy, where a subject can be a
single identity or a group consisting of 1..n members. A set of permissions is associated with
each subject, granting access to all important parts of the Grasshopper agency. Each permission
consists of a type, a target and optionally one or more actions.

When an agent tries to make a system access an access controller is consulted to make the access
decision. In fact, each time a system access happens the access controller is invoked, but it is
capable of distinguishing whether the access was made by an agent or by trusted system code,
e.g. the Grasshopper core. If the access came from an agent, the access controller extracts the
agent's owner from the agent itself. With this information, it contacts the Policy object, a runtime
representation of the Grasshopper access control policy, to extract the set of permissions valid
for this subject. If the subject is a member in one or more groups, the group permissions are
added to the individual permissions. It is then checked if the permission to perform the access is
contained in the set of permissions granted to the subject. If not, an access control exception is
thrown.

Persistence is an important topic in the field of distributed applications. Objects are sent from
one computer to another and often have an extended life span. That is especially valid for mobile
agents. The following undesirable scenarios have to be taken into account:

• An agent moves from one agency to another. The transmission fails for some reason so that
the agent never arrives at its destination.

• An agent is residing within an agency whose host computer crashes or shuts down
unexpectedly (e.g. due to a power failure).

• There are many agents residing within an agency, with most of them waiting for external
events without performing any task, thus just wasting system resources. Therefore the host
computer could run out of resources (especially memory) if more agents want to migrate
into that agency.

While the first scenario can be avoided by buffering the agent until its arrival has been
confirmed, the remaining two need other approaches. A copy of the agent object has to be
maintained on a persistent medium, e.g. a hard disk. If the agency system crashes, persistent
agents can be reloaded from this medium after the agency has been restarted. Besides, idle
agents, i.e. agents just waiting for an event without executing any task, do not need to remain
instantiated, but could be stored permanently and then removed from the agency's memory in
order to save resources. If a request for such a flushed agent arrives, it can be re-instantiated in
order to handle the request.

Grasshopper provides mechanisms to handle all the topics mentioned above if the persistence
service is enabled.

Chapter 5: Mobile Agent Platform

 105

5.1.4 Agent Development

The functionality of Grasshopper is provided on the one hand by the platform itself, i.e. by core
agencies and region registries, and on the other hand by agents that are running within the
agencies, in this way enhancing the platform’s functionality. The following possibilities
regarding the access to the Grasshopper functionality must be distinguished:

• Agents can access the functionality of the local agency, i.e. the agency in which they are
currently running, by invoking the methods of their super classes Service,
StationaryAgent, and MobileAgent, respectively. These super classes are provided
by the platform in order to build the bridge between individual agents and agencies, and
each agent has to be derived from one of the classes StationaryAgent or
MobileAgent.

• Agents as well as other DAE or non-DAE components, such as user applications, are able to
access the functionality of remote agencies and region registries. For this purpose, each
agency and region registry offers an external interface which can be accessed via the
Grasshopper communication service.

• Agencies and region registries may optionally be accessed by means of the MASIF-
compliant interfaces MAFAgentSystem and MAFFinder.

In the context of Grasshopper, each agent is regarded as a service, i.e. as a software component
that offers functionality to other entities within the DAE. Each agent/service can be subdivided
into a common and an individual part. The common (or core) part is represented by classes that
are part of the Grasshopper platform, namely the classes Service. MobileAgent, and
StationaryAgent, whereas the individual part has to be implemented by the agent
programmer.

A Grasshopper agent consists of one or more Java classes. One of these classes builds the actual
core of the agent and is referred to as agent class. Among others, this class has to implement the
method live which specifies the actual task of the agent. The agent class must be derived,
either from the class StationaryAgent, or from the class MobileAgent, which in turn
inherits from the common super class Service. The methods of these classes represent the
essential interfaces between agents and their environment. The following two ways of method
usage have to be distinguished:

• One part of the super class methods of an agent enable the access to the local core agency.
For example, an agent may invoke the method listMobileAgents(), which it inherits
from its super class Service, in order to retrieve a list of all other agents that are currently
residing in the same agency.

• The remaining super class methods are defined to access individual agents. These methods
are usually invoked by other agents or agencies via the communication service of
Grasshopper. For instance, any agent may call the method getState() of another agent
in order to retrieve information about the other agent’s actual state. Note that this way of
access is not performed directly on an agent instance, but instead on an agent's proxy object.

Evangelos K. Ouzounis

 106

listHostedAgents

Agency

Place

B

Core
Agency

getState

Agency

Place

A
Proxy_B

Communication Channel
(ORB)

Communication
Service

Communication
Service Core

Agency

2a
1a

Agent B invokes method on itself to access the local core agency1

Agent A invokes method on (remote) agent B via B’s proxy2

2b

2c

2d

1b

Figure 13: Access of an Agent’s Methods

In order to contact a remote agency, the client (e.g. an agent, agency, or user application) must
have access to an agency proxy object. The remotely accessible functionality of each
Grasshopper agency can be separated into the following parts:

• Registration functionality offers detailed information about all places as well as
agents/services that are currently hosted by a remote agency.

• Service control functionality enables the remote control of places and agents/services
within an agency, such as agent creation, suspension, resumption, transport, and
termination.

• Persistence functionality supports the persistent storage of agents/services and places
within a remote agency.

• Listener functionality enables the registration and de-registration of
AgentSystemListeners for remote agencies.

The RegionRegistration Interface

In order to contact a remote region registry, the client must have access to a registry proxy. The
functionality of a Grasshopper region registry comprises the registration and de-registration of
agents/services, places, and agencies. Besides, lookup methods enable the retrieval of specific
information about the registered components.

The RegionRegistryListener Interface
This interface can be used to monitor the events occurring in the region registry, and to present
them to a user. The listener is notified about any changes associated with the registration/de-
registration of agencies, agents/services and places, and it retrieves any output from the registry.
Each listener is identified by means of a unique identifier. Listener implementations may be
realized by platform users, e.g. in order to create individual graphical user interfaces.

The following figure gives an overview of the remotely accessible interfaces described above.

Chapter 5: Mobile Agent Platform

 107

Region
Registration

AgentSystem

MAFFinder

MAFAgentSystem

Communication Channel

Agency

MASIF Compliant Access

Grasshopper Specific Access

AgentSystem
Listener

RegionRegistry
Listener

Region Registry

Client
Application

Figure 14: Remotely Accessible Grasshopper Interfaces

In the following section, the key concepts and functionality of the FIPA standards and platform
are described. Emphasis is placed on how the FIPA platform is integrated into the Grasshopper
agent platform and how standard FIPA agents can be developed.

5.2 Foundation for Intelligent Physical Agents
The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in
Geneva, Switzerland. FIPA’s purpose is to promote agent technology through the development
of specifications that maximise interoperability across agent-based applications, services and
equipment. FIPA specifies the interfaces of the different components in the environment with
which an agent can interact, i.e., humans, other agents, non-agent software and the physical
world. The main emphasis in FIPA is on standardising agent communication, which is a
dedicated Agent Communication Language (ACL) is used for all communication between FIPA
Agents.

FIPA specifications are developed in a yearly manner. In October 1997, FIPA released its first
set of specifications, called FIPA `97, Version 1.0. This set of specifications comprises seven
parts. The three main normative specifications (parts 1-3) are focusing on agent management
define an agent communication language, and deal with agent/software interaction. These
specifications have been derived from examining requirements on agent technology posed by
specific industrial applications chosen by FIPA.

In 1998, FIPA started work on an enhanced set of specifications, called FIPA`98. In addition to
modifications and extensions of the normative FIPA'97 specifications, FIPA'98 also contains six
new parts. These are: Human Agent Interaction, Product Design and Manufacturing Agents,
Agent Security Management, Agent Management Support for Mobility, Ontology Service, and
FIPA´97 Developers Guide.

Looking for the definition of a FIPA agent platform, one has to look at the normative Agent
Management System specification (FIPA 98a). Agent management provides the normative
framework within which FIPA Agents exist and operate. It establishes the logical reference
model for the creation, registration, location, communication, migration and retirement of agents

Evangelos K. Ouzounis

 108

and thus is very much related to capabilities of a FIPA agent platform. The following figure is a
graphical representation of the agent management reference model.

Wrapper

Agent
Communication

Channel

Directory
Facilitator

Agent Platform A

Communication Channel (ORB)

Agents

Domain

Agent
Management

System

Internal Platform Message Transport
ACL

Interfaces

Figure 15: FIPA Agent Management Reference Model

FIPA proposes the concept of an Agent Platform (AP) offering three basic services. These
services are namely the Agent Management System (AMS), the Directory Facilitator (DF) and
the Agent Communication Channel (ACC). Agents are considered residing on a home agent
platform (HAP) if they are registered on the home agent platforms’ AMS. Agents may offer
their services to other agents and make their services searchable in a yellow pages manner by the
Directory Facilitator if they register on the Directory Facilitator. Registration on a Directory
Facilitator is optionally while registering on the AMS is mandatory on an agent platform.
Finally, the Agent Communication Channel is enabling agent communication between agents on
a platform and between platforms by offering a message forwarding service called forward.
Reachability between platforms is gained by making the forward service available by the OMG-
IIOP.

In summary it can be recognised, that a FIPA agent platform provides the physical infrastructure
in which intelligent agents can be deployed. An agent must be registered on an agent platform in
order to interact with other agents on that agent platform or other agent platforms. In fact the
concept of agent platform can be regarded as a refinement of the facilitator concept in the
traditional intelligent agent frameworks.

5.2.1 The Agent Communication Language

FIPA provides the agent designer with speech-act-based performatives (speech act category with
well-known semantics) and a standard syntax for messages. These messages are based on the
speech act theory. The theory is a result of the linguistic analysis of the human communication
and is based on the work of (Searle 69). The key maxim of the speech act theory is that
producing language is an action. The action is performed by a speaker who intends to change the
mental state of the listener. FIPA provides the agent designer with speech-act-based
performatives and a standard syntax for messages.

Chapter 5: Mobile Agent Platform

 109

The main structural elements of an ACL message are depicted in the following figure:

(inform
:sender agent1
:receiver hpl-auction-server
:content

 (price (bid good02) 150)
:in-reply-to round-4
:reply-with bid04
:language sl
:ontology hpl-auction

)

Begin message structure

Communicative act type

Message parameter

ACL message

Message content expression

Parameter expression

Figure 16: Structure of an ACL Message

The semantic meaning of the individual message parameters of the message is the following:
(FIPA 97b):
• Sender: Denotes the identity of the sender of the message, i.e. the name of the agent of the

communicative act,

• Receiver: Denotes the identity of the intended recipient of the message that might be single
agent name, or a tuple of agent names. This corresponds to the action of multicasting the
message. Pragmatically, the semantics of this multicast is that the message is sent to each
agent named in the tuple, and that the sender intends each of them to be recipient of the CA
encoded in the message,

• CONTENT: Denotes the content of the message; equivalently denotes the object of the
action,

• REPLY-WITH: Introduces an expression which will be used by the agent responding to this
message to identify the original message. Can be used to follow a conversation thread in a
situation where multiple dialogues occur simultaneously,

• IN-REPLY-TO: Denotes an expression that references an earlier action to which this
message is a reply,

• ENVELOPE: Denotes an expression that provides useful information about the message as
seen by the message transport service. The content of this parameter is not defined in the
specification, but may include time sent, time received, route, etc.,

• LANGUAGE: Denotes the encoding scheme of the content of the action,

• ONTOLOGY: Denotes the ontology which is used to give a meaning to the symbols in the
content expression,

• REPLY-BY: Denotes a time and/or date expression which indicates a guideline on the latest
time by which the sending agent would like a reply,

• PROTOCOL: Introduces an identifier, which denotes the protocol which the sending agent is
employing. The protocol serves to give additional context for the interpretation of the
message.

• CONVERSATION-ID: Introduces an expression, which is used to identify an ongoing sequence
of communicative acts, which together form a conversation. A conversation may be used by
an agent to manage its communication strategies and activities.

Evangelos K. Ouzounis

 110

The following table categorizes the different key communicative acts:

Communicative

act
Information

passing
Requesting
information

Negotiation Action
performing

Error
handling

Accept-proposal ü
Agree ü

Cancel ü
Cfp ü
Failure ü

Inform ü
Not-understood ü

Propose ü
query-if ü
Refuse ü

reject-proposal ü
Request ü

Table 3: Categories of Communicative Acts [FIPA97P2]

The following example should give a motivation for using the FIPA-ACL. Suppose an agent,
named ‘Peter’, requests the delivery of a parcel to a certain location (‘home’), then the agent
could send the following message:

(request
 :sender peter
 :receiver parcel-service
 :content (action parcel-service
 (deliver parcel42 (location home)))
 :protocol fipa-request
 :reply-with order1
)

The receiving parcel-service agent working on behalf of the parcel-service provider can confirm
the request. The parcel-service agent may have problems to understand the location ‘home’. In
this case, the agent can send a request message back to agent ‘Peter’ asking to determine the
location ‘home’. In the other case the parcel-service agent knows the home location of agent
‘Peter’, because this information is already stored in its database. Then, the parcel-service agent
would send the following agree message:

(agree
 :sender j
 :receiver i
 :content ((deliver j parcel42 (location home))
 :in-reply-to order1
 :protocol fipa-request
)

The Grasshopper FIPA Add-On implementation supports the new standard language for the
World Wide Web, i.e., the eXtensible Markup Language (XML) as well the FIPA ACL as of

Chapter 5: Mobile Agent Platform

 111

FIPA 97 Specification (part 2). An appropriate parser for FIPA-ACL has been implemented and
is provided to the FIPA agents, i.e., the FIPA pla tform components ACC, DF, AMS as well as to
the applications. With XML, appropriate ontologies can be specified for different application
domains. The communication between the FIPA agents takes place with the default
communication language, either FIPA-ACL or ACL/XML. The real message content e.g.,
message payload can be encoded in FIPA SL1 or also in XML without any extra user
intervention. To support any other proprietary content language, it is left to the users, to develop
their specific own parser implementation.

5.2.2 Content of ACL Messages

According to FIPA the content of an ACL message can be encoded in any content language. A
content language must be able to express propositions, objects, and actions. No other properties
are required, though any given content language may be much more expressive than this. More
specifically, the content of a message must express the data type of the action: propositions for
inform, actions for request, etc.

In this context, a proposition can be a sentence, e.g. in predicate-logic, which can be true or
false. An object represents an abstract or a concrete entity, which does not necessary appear in
an object-orientated languages. An action can be regarded as activity, which can be carried out
by an agent. Possible candidate content languages are:

• Knowledge Interchange Format (KIF). KIF is a prefix version of first order predicate
calculus.

• Semantic Language (SL),

• Prolog,

• eXtended Markup Language (XML).

XML is regarded as the next generation of HTML, which, different from HTML, allows the
definition of new tags in the documents. By deploying XML as agent communication content
language is important because the presentation of agent communication messages in Web
browsers and the integration with existing Web-based applications can be easily performed.

There are two possible ways for encoding the ACL messages within XML documents:

• Encode only the ACL message content as XML documents and keep the ACL container
format specified in the current FIPA specifications, or

• Encode the whole ACL message both, the message layer and the content layer in a XML
document.

The first approach conforms to the current FIPA specifications, which allow the deployment of
arbitrary content language within the standardised ACL wrappers. The disadvantage is the
complexity of the implementation of the agent platform and the applications. Typically, in this
case two parsers are needed, one for parsing the ACL message and one for parsing the XML
content. The second approach does not comply with the current FIPA specification and thus, will
not be used in the context of this thesis.

Furthermore the knowledge and semantic meaning of messages exchanged between agents
should be described in an ontology using also a content language. An ontology describes the

Evangelos K. Ouzounis

 112

meaning of symbols and expressions in a domain. This description is expressed in the
appropriate content language of an agent. The ontology assigns a constant symbol in an agent
message a well-understood meaning. This ensures that agents with the same ontology have the
same semantic understanding of a message. In most cases, the agent programmers specify the
ontology. The applications developer should agree on a specific content language, e.g. XML,
and specify the common ontology that will be used. Based on these observations, the content of
the ACL messages will be fully encoded in XML and while the specification of the ontology for
these messages will be done in XML-DTDs.

5.2.3 FIPA Protocols

Ongoing conversations between agents often fall into typical patterns. In such cases, certain
message sequences are expected, and, at any point in the conversation, other messages are
expected to follow. These typical patterns of message exchange are called protocols. A designer
of an agent system has the choice to make the agents sufficiently aware of the meanings of the
messages, goals, beliefs and other mental attitudes the agent possesses. This, however, places a
heavy burden of capability and complexity on the agent implementation, though it is not an
uncommon choice in the agent community at large. An alternative, and very pragmatic, view is
to pre-specify the protocols, so that a simpler agent implementation can nevertheless engage in
meaningful conversation with other agents, simply by carefully following the known protocol.
FIPA specifies a number of protocols, in order to facilitate the effective inter-operation of simple
and complex agents.

The FIPA-request-inform protocol simply allows one agent to request from another agent to
perform some action. The receiving agent should first perform the action and then reply with an
inform message or explicitly specify that it can not perform it. Based on this protocol, the
requestor agent sends a request ACL message and the receiver of the message can reply with an
inform ACL message stating that the request has been performed.

In the FIPA-query-response protocol, the receiving agent is requested to perform some kind of
query action. Requesting by an agent to query results in the generation of an inform message
with the results of the query. There are two query-acts: query-if and query-ref. Both acts may be
used to initiate this protocol. If the protocol is initiated by a query-if act, the responder will plan
to return the answer to the query with a normal inform act. If the request has been initiated by
query-ref, it will instead be an inform-ref.

The FIPA contract-Net Protocol is a version of the widely used Contract Net Protocol, originally
developed by Smith and Davis (Smith & Davis 80). FIPA-Contract-Net is a minor modification
of the original contract net protocol in that it adds rejection and confirmation communicative
acts. In the contract net protocol, one agent takes the role of a manager. The manager wishes to
have some task performed by one or more other agents and further wishes to optimise a function
that characterises the task. This characteristic is commonly expressed as the price, in some
domain specific way, but could also be the fastest time to completion, fair distribution of tasks,
etc. The manager solicits proposals from other agents by issuing a call for proposals, which
specify the task and any conditions the manager is placing upon the execution of the task.
Agents receiving the call for proposals are viewed as potential contractors and are able to
generate proposals to perform the task as propose acts. The contractor’s proposal includes the
preconditions that the contractor is setting out for the task, which may be the price, time,
completion time, etc. Alternatively, the contractor may refuse to propose. Once the manager

Chapter 5: Mobile Agent Platform

 113

receives back replies from all of the contractors, it evaluates the proposals and makes its choice
of which agents will perform the task. One, several, or no agents may be chosen. The agents of
the selected proposal(s) will be sent an acceptance message while the others will receive a notice
of rejection. The proposals are assumed to be binding on the contractor, so that once the
manager accepts the proposal the contractor acquires a commitment to perform the task. Once
the contractor has completed the task, it sends a completion message to the manager. In the case
that a contractor fails to reply with either a propose or a refuse, the manager may potentially be
left waiting indefinitely. To guard against this, the cfp message includes a deadline by which
replies should be received by the manager. Proposals received after the deadline are
automatically rejected with the given reason that the proposal was late.

Other standardised FIPA protocols are: Iterated-Contract-Net, Request-when Protocol, Auction-
English Protocol, Auction-Dutch Protocol.

In the context of this thesis the FIPA request-response, FIPA query-response, and FIPA
Contract-Net protocols have been developed and used. The particular usage of these protocols in
the context of this thesis is further explained in the subsequent chapters.

5.2.4 Agent Management System Agent

The Agent Management System is the core of any agent platform. It is responsible for
registering agents on their HAP. An agent is residing on an agent platform which is then its
home agent platform, if and only if it is registered with the agent platform`s AMS. Registering
on an AMS is done by calling the AMS‘ message method with a request to register encoded in
an ACL string conforming to the FIPA ACL definition. Alternatively registration can be done by
calling the request method of the AMS with a data structure equivalent to an ACL message
containing such data as sender, receiver and content of the request, the content in this case
containing the agent description data. Other functionality offered by the AMS is deregistering of
agents, modification of the agent description and modifying the agents life cycle state.

The AMS is responsible for managing the operation of an AP. These responsibilities include
creation of agents, deletion of agents, deciding whether an agent can dynamically register with
the AP and overseeing the migration of agents to and from the AP. Since different APs have
different capabilities, the AMS can be queried to obtain a profile of its AP. A life-cycle is
associated with each agent on the AP.

All these features are already provided by the Grasshopper Mobile Agent Platform. Thus, the
AMSAgent provides a FIPA compliant interface to the Grasshopper agent management facilities.
Additionally, the AMS represents the managing authority of an agent platform. If the agent
platform has multiple machines the AMS represents the authority across all machines. An AMS
can request an agent to quit (i.e. terminate all execution on its AP). The AMS has authority to
forcibly terminate an agent if such a request is ignored.

The AMS possesses a table of all agents, which are currently resident on the platform. The table
maps the agents Globally Unique Identifier (GUID) and their associated transport address. The
GUID identifies the agent in the whole agent universe. All agents have a unique GUID. The
GUID consists of the Home Agent Platform (HAP) address and the agent’s name, which should
be unique within the HAP. In general, the GUID looks as follow <agent-name>@<HAP-
address>. The HAP-address can consist of the logical name or IP address of the host, on which
the ACC runs, and of the port-number, at which the ACC listens.

Evangelos K. Ouzounis

 114

The AMS functionality is based on the agent management functionality of Grasshopper agent
platform. The key services that the AMS offers are:

• Register: When an agent is created on the agent platform, it is automatically registered in
the Grasshopper Region Registry under an agent platform identifier. The AMS associates
the agent platform identifier with the agent's name and saves it in it's registration base.

• De-register: When an agent is removed from the agent platform, it is automatically de-
registered from the Grasshopper Region Registry. The AMS removed the agent's entry from
it's registration base.

• Authenticate: The Authentication functionality is covered by the Grasshopper agent
platform.

5.2.5 Directory Facilitator Agent

The Directory Facilitator is offering services similar to those of the AMS but offers additionally
a search functionality. Thus the DF acts as a yellow pages directory, where agents willing to
offer their services in a dynamic manner to other agents may register with a DF. The registration
is done in the same way as with the AMS. Agents can deregister with the DF by calling the
deregister service.

The DF may restrict access to information in its directory, and will verify all access permissions
for agents that attempt to inform it of agent state changes. The DF does not control the agent
platform life-cycle of any agent. Agents may register their services with the DF or query the DF
to find out what services are offered by which agents. DFs can register with each other.
Similarly, the AMS, and ACC can register with a DF.

Besides the agent platforms, FIPA has also defined the logical concept of domains. An agent
domain is a logical grouping of agents and their services, defined by their membership in a DF.
Each domain has one and only one DF, which provides a unified, complete, and coherent
description of the domain. The DF lists all intelligent agents in the domain and advertises the
intelligent agents existence, services, capabilities, protocols etc. An agent may be present in one
or more domains via registration in one or more DFs. A domain in this context can have
organizational, geo-political, contractual, ontological, affiliation or physical significance.

In Grasshopper, this functionality is already realized from the Region Registry. Thus, the DF
realises a wrapper of these features.

Agents willing to offer their services in a dynamical manner to other agents may voluntarily
register with a DF. An agent can de -register with the DF by calling the de-register service. The
registration is done in the same way as that on the AMS, and the data being contributed to
registration is identical to the data given to the AMS. All data delivered is then searchable by
other agents by calling the DF’s search service. Thus the DF acts as a yellow page directory.

The DF functionality consist of:

• Register: When it receives a register request, the DF will try to create an entry in the
registration base with the provided agent information. Therefore, it first checks if there is
already an entry for the given :agent-name. If an entry exists, the registration will fail
and an agent-already-registered failure message will be send back to the agent
which sent the request. If no entry exists, a new entry with the:agent-name as key will

Chapter 5: Mobile Agent Platform

 115

be created and a confirmation message will be sent back.

• De-register: When it receives a deregister request, the DF will try to remove the entry
corresponding to the provided agent information. If there is an entry with the given
:agent-name, it will be removed and a confirmation message will be send back. Else, the
de-registration will fail and the DF will send back an unable-to-deregister failure
message.

• Search: search requests are handled differently, according to the provided parameters. If no
:df-search-depth is specified or it's value is 1, the search request will be categorized
as simple and the search will be restricted to the local registration base. If the :df-
search-depth is grater than 1, the search request will be considered a federated one and
the DF will try to involve also other DFs for fulfilling the request. If the :df-
description contains the :agent-name, the search request will be categorized as
upon-name . In this case the search will finish when an entry with the given key was found.
If the :df-description contains only other search constraints as :services, :type
etc., the search will continue after a matching entry was found, and all the matching entries
will be returned.

5.2.6 Agent Communication Channel Agent

The Agent Communication Channel (ACC) realizes the messages exchanged among agents,
including the DF and AMS. The ACC provides the default communication channel between
FIPA agent platforms. An agent invokes the forward function of the ACC for exchanging the
ACL messages.

The ACC component is also implemented as a Grasshopper agent. Inheriting from the class
FIPAAgent it provides the message and send methods. The ACC agent is responsible for
receiving FIPA ACL messages from agents and forward them to the destination agent. If the
destination agent is residing on the same agent platform, the message is send to it directly. If the
destination agent resides on a remote platform, a forward FIPA ACL message, addressed to the
ACC from the remote platform, is built and sent to it. The ACC functionality consist of:

• Receive Messages over IIOP - The ACC provides an external IIOP interface for being able
to receive string messages from other ACC over IIOP. The ACC can receive forward
requests or IOR informs. When the ACC receives an IOR inform message it will save it in
it's URL-IOR base using the :sender as key, so that it will be able to get the IOR for a
given agent address.

• Forward Message: When the ACC receives a forward request from another ACC it will try
to extract the contained message and send it to the destination agent. If the content is not a
valid forward message, the ACC will send back a not-understood message. If the content
represents a valid forward message, it will extract the contained message and check the
receiver address. If the address is the same with the own address, it will try to send the
contained message to the local agent. If the address is not a local address, the ACC will
create a new forward message from the received message and will try to send the message
to the appropriate remote ACC.

• Forward Message Local: For sending a message to a local agent, the ACC will contact the
AMS in order to get the local agent platform identifier for the given agent name. If there is

Evangelos K. Ouzounis

 116

no agent with the given name on the local platform, the ACC will send back an agent-
not-registered refuse message. If the ACC can obtain the agent identifier, it will try
to send it the message using the Grasshopper communication mechanism. If an error occurs,
the ACC will send back a no-communication-means refuse massage.

• Forward Message Remote: In order to send a message to a remote agent, the ACC will first
try to get the IOR of the appropriate ACC. Therefore, it will analyse the receiver address
(GUID) and will extract the address of the platform. If the platform address is not already an
IOR, the ACC will check it's URL-IOR base in order to get the corresponding IOR. If no
entry for the given platform URL was found, the ACC will check the known IOR locations,
i.e. a list of Web servers read at start-up and will try to get the IOR from there. If there is no
entry for the given URL or the locations are not accessible, the it will send back an agent-
not-registered refuse message. If the ACC obtained the IOR of the remote ACC, it
will try get the ACC's reference and send it the message using the CORBA messaging
mechanism. If an error occurs, the ACC will send back a no-communication-means
refuse massage.

An agent, which intends to send a message to another agent on a different platform, has two
possibilities. On the one hand, the agent can contact the local ACC. Then, the local ACC routes
the messages to the remote ACC (residing on the target platform), which delivers the message to
the target agent. On the other hand, the agent contacts the target ACC directly, which will then
route (forward) the message to the target agent. With it, the sender agent avoids the usage of the
local ACC. The address of the target platform, which is necessary for contacting the
corresponding ACC can be ascertained from the target agent’s identifier (GUID). The first part
of the FIPA specification (FIPA97P1) specifies how forwarding is done and how logical
addresses are mapped to physical addresses.

Fundamentally, the FIPA communication concept bases on the exchange of messages by ACC’s.
An ACC has to wait only for incoming messages, which then have to be forwarded to the
addressed agents. Therefore, the forward action is the only service or method to be implemented
by an ACC.

How the implementation of local communication is realized is free to the developer of the agent
platform. However, it is obvious, that the simplest solution for local communication between
local agents is the usage of platform native communication protocols. Accordingly, for the
implementation of the FIPA platform components, Grasshopper’s communication service can be
applied.

FIPA prescribes the support for inter-platform communication, i.e. the communication among
agents on different, possibly heterogeneous agent platforms. It is mandatory to realize the
forward service supporting IIOP. The most convenient method is to use a common ORB
implementation for offering this service. Thus, the ACC-object offering the service should be
connected to an ORB and offers in this way automatically and transparently it’s services via
IIOP. Figure 17 illustrates the inter platform communication:

Chapter 5: Mobile Agent Platform

 117

Agent1 ACC

message

ACC Agent2

message

message

via IIOP

Platform 1 Platform 2

Local
Communication

Figure 17: Inter-Platform Communication

5.3 Implementing FIPA Agents on top of Grasshopper
Due to the increasing acceptance of the FIPA standards and the resulting increased demand for
FIPA conformant agent platforms, Grasshopper has been extended by a corresponding package,
referred to as “FIPA Add On”.

As described above, the main components of a FIPA compliant platform are the AMS, DF and
ACC. FIPA proposes to realize these components as agents. Appropriately, for the realization on
Grasshopper each of them is implemented as a single stationary Grasshopper agent respectively.
To support platform interoperability as required by FIPA the ACC has to support IIOP.
Grasshopper supports this protocol since the Java JDK contains a complete ORB including IIOP.

The class FIPAAgent, which forms the basis for the FIPA platform components, extends
Grasshopper’s class StationaryAgent. Agent developers have also to use this cla ss as basis for
their agent application. The class FIPAAgent offers two methods: send() and message(). With
them, the ACL-message exchange over the ACC is realized. The method send() requires a
parameter of the type ACLMessage and server for dispatching of messages, whereas the
message method serves for retrieval of messages.

Grasshopper Agent System

Place FIPADeskPlace InformationDesk

ACC

AMS

DF
ACL speaking

Agent

Communication
Partner

Platform internal
Communication

Inter-Platform
Communication

The FIPA
components

Figure 18: Realization of the FIPA Platform Components on Top of Grasshopper

Evangelos K. Ouzounis

 118

The following class diagram shows the implementation of the FIPA platform on top of
Grasshopper. The class FIPAAgent which will be the basis for the FIPA platform components,
extends the FIPARegistrableAgent class, which itself inherits from Grasshopper’s class
MobileAgent. Agent developers have also to use this class as basis for their agent application.
The FIPARegistrableAgent offers methods for automatically registration and deregistration with
the local DF.

The class FIPAAgent offers two methods: send() and message() for the ACL-based
communication with other agents. The method send() requires a parameter of the type
FIPAACLMessage and server for dispatching of messages, whereas the message method serves
for retrieving of messages. FIPA recommends that for asynchronous communication among
agents a message queue is applied. Such message stack can be considered as a enhancement of
class FIPAAgent in future versions.

To implement an agent, which intends to act as a FIPA agent, the agent class has to inherit from
the class FIPAAgent by means of writing a Java class extending FIPA.FIPAAgent. The class
FIPAAgent is itself extending the class de.ikv.grasshopper.agency.StationaryAgent, thus being a
regular grasshopper stationary agent. The extension of the stationary agent mainly consists of
two methods. These are:

• public void message(FIPAACLMessage msg) —This method has to be overwritten by a
FIPA agent in order to be able to receive FIPA ACL messages sent by other agents through
the ACC.

• public void message(String msg) – this method is the standard communication interface of
all FIPA agents. FIPA agents receive ACL messages encoded in strings through this
method. For the definition of the agent’s behavior this method has to be overwritten

• public void send(ACLMessage msg) – this method simplifies agent communication over the
ACC. Calling this methods results in establishing a connection to the local ACC by means
of grasshopper communication and sending a forwarding request with the message msg to
the agent addressed in the message. In this way the communication is completely ACC
transparent to the agent developer. Naturally, the communication with the ACC and other
agents can be done completely with native grasshopper’s communication service. Then, the
method send does not have to be used.

Apart from the regular Grasshopper agent methods, which have to be implemented for each
Grasshopper agent such as the live method, the agent developers have to implement or overwrite
the message method, whereas the send method can be simply used.

Additionally, standard FIPA agent should be in position to send and receive ACL/XML
messages. For that reason, when a message has been sent to an agent, the agent first needs to
parse the incoming ACL/XML message by deploying a standard ACL parser. For that reason a
FIPA ACL Parser is provided. The parser gets as input an ACL/XML message string, parses it
and produces a query object called FIPAACLMessage. The ACLMessage class provides
operations for getting and setting the type of message, the sender, receiver, content, etc.

As soon as the incoming messages have been parsed from the ACL parser, the content of the
message, which is described in XML, should also be parsed. For that reason a specialised XML
parser has been developed (see next chapters). The XML parser provides all the necessary
operations for retrieving information that has been formed in terms of XML content. Further

Chapter 5: Mobile Agent Platform

 119

details about the XML ontologies specified and used in the context of this thesis are provided in
subsequent chapters.

Additionally, when an agent wants to send an ACL/XML message to another agent he should
always compose an ACL/XML message. The message composers are tightly coupled with the
ontologies and will be explained in the subsequent chapters. In general, the responsibility of
message composer is to produce a legitimate ACL/XML string. The agent can then send the
message to another agent by utilising the send operation provided by the core FIPA agent class.

In the following UML class diagram the main classes involved in the development of a standard
FIPA agent are provided.

FIPARegistableAgent

registerwithLocalDF()
deregisterwithLocalDF()

Mobile Agent

live()

FIPAACLMessage

getPerformative()
getSender()
getReceiver()
getProtocol()
getReplyWith()

uses instantiates

FIPAACLParser

parse(String message)
parse(ACLmessage FIPAACLMessage)

1

1

1

1

XMLParser

parseXML(String content)

MessageComposer

String composeMessage()

FIPAAgent

message(String message)
message(ACLMessage FIPAACLMessage)
send(String message)

11 11

1

1

1

1

1

1

1

1

usesuses

Figure 19: FIPA Agent Class Diagram

In the following chapters, certain standard FIPA agents are specified. The internal class diagram
of this agent is based on the above described class model.

5.4 Summary
This chapter presents extensively the Agent Platform layer and the services that will be
deployed. More specifically, this chapter is split it into two parts the core agent management
platform which the Grasshopper Agent Platform, and the FIPA add on services. In both cases, an
analytical description of the services and capabilities offered are presented. Due to the fact that
all the agents under design and analysis are FIPA compliant agents, certain details concerning
the implementation of them in the Grasshopper agent platform are presented.

Evangelos K. Ouzounis

 120

 121

Chapter 6: Virtual Marketplaces

6.1 Introduction
A Virtual Marketplace is a third party administrative domain that provides matchmaking
services to the VE partners. The Virtual marketplace enables VE candidate partners to register
and administer service offers in relation to certain service types and VE representatives to search
for potential partners that can provide particular business processes associated with existing
service types.

Every business process registered in the virtual marketplace is associated with a service type. In
general, service types describe in a consistent way the interface of business processes. Service
types mainly managed by the virtual marketplace administrator. The service type management
includes creation, deletion, modification and retrieval of service types.

VE candidate partners that want to register their process offerings in the marketplace should
always create a service offer in association with an existing service type and register it to the
virtual marketplace. A service offer is actually an instance of a service type where certain
properties have given certain values. Service offers are managed individually from each domain
in a private manner. The management of service offers includes the registration of an offer, the
withdrawal, the listing of offers and the modification of an offer.

Finally, VE representatives or partners that want to find suitable partners that can provide a
particular process retrieve from the marketplace all the registered offers that satisfy certain
constraints. The service offer retrieval management process actually includes the retrieval of
offers that satisfy certain constraints.

Therefore, the basic services provided by the marketplace are service type management, service
offer management, and service offer retrieval management. Each one of these services are
provided by individual FIPA compliant agents, namely the:

Evangelos K. Ouzounis

 122

• Service Type Agent (STA) responsible for the management of service types and more
specifically for the addition, removal, listing, and modification of service types,

• Service Offer Agent (SOA) responsible for the management of service offers and more
specifically for the registration, withdrawal, description, and modification of service offers,

• Service Offer Retrieval Agent (SOR) responsible for the retrieval of offers associated with
a service type based on some constraints.

These three agents are FIPA compliant agent, i.e. they communicate with other agents by
exchanging standard FIPA ACL/XML messages. The content of these messages is described in
XML and it follows the Virtual Marketplace Ontology. The Virtual Marketplace Ontology
describes the set of input and output messages that the marketplace agents can exchange with
other agents. The whole specification of the Virtual Marketplace Ontology is given at the end of
the thesis in Annex. Agents that want to communicate with the STA, SOA, or SOR agents
should formulate and understand messages based on this ontology.

The layered reference architecture of the virtual marketplace is depicted in the following figure.
It is actually the specialisation of the overall reference architecture described in previous
chapters for the virtual marketplace.

Distributed
Processing
Environment

Corba/IIOP

Agent
Platform &
Supporting
Services Grasshopper Mobile Agent Platform

SOA

STR SOR

OMG Trader
FIPA Add On

ACL/XML

Administration
GUI

SOR STA

Distributed Processing Environment

ACC DF AMS
X
M
L

Figure 20: Virtual Marketplace Reference Architecture

The key design principles of the agent-based Virtual Marketplaces are being influenced by the
corresponding concepts of the OMG Trader. This is actually the objective of the thesis, i.e. to
develop an agent-based virtual marketplace by integrating a standard OMG Trader. For that
reason, a standard OMG Trader, as a basis for the development and testing of the virtual
marketplace, has been used. In principle, the OMG-Trader is a CORBA object and could not be
used directly by the different FIPA compliant agents in an autonomous and message-based way.
Due to this reason, the specialised STA, SOA, and SOR FIPA agents, as well as, the virtual
marketplace ontology have been specified and developed. These agents are actually offering the
basic functionality of the OMG-Trader in a FIPA compliant way to other agents.

The general format of a standard FIPA ACL/XML request based on the virtual marketplace
ontology is the following:

Chapter 6: Virtual Marketplaces

 123

 (request
 :sender Provider Negotiation Agent
 :receiver STA or SOA
 :content (<VMPMessage> // this is a VMP message

 <STAMessage or SOAMessage> //this is a message for the STA
agent
 <STARequest or SOARequest RequestId="abc"> // id of the request
 <command type> // the command requested;

 ……. / /
 </command type>//
 </STARequest or SOARequest>
</STAMessage or SOAMessage>
</VMPMessage>
)

 :protocol fipa-request
 :reply-with inform
)
The general format of a standard FIPA ACL/XML inform response to a particular request is the
following:
 (inform
 :sender STA or SOA
 :receiver Provider Negotiation Agent
 :content (<VMPMessage> // this is a VMP message

 <STAMessage or SOAMessage > //this is a message for the STA
agent
 <STAResonse or SOAResonse RequestId="abc"> // id of the request

 <command type> // the command requested;

 ……. / /
 </command type>//close everything according to the DTD file
 </STARequest or SOARequest >
 </STAMessage or SOAMessage >
</VMPMessage>
)

 :protocol fipa-request
 :reply-with inform

)

In general, VE candidate partners that want to create or administer new service types in the
marketplace should always refer to the appropriate service type name. In that case, a suitable
agent migrates to the virtual marketplace, composes a FIPA ACL/XML request, and sends it to
the STA agent. The communication protocol among the agents is based on the standard FIPA-
Request-Response protocol (FIPA98). The STA receives the request, parses it from the ACL and
XML parser, checks the type of the request and decides which action is required. In the sequel,
the STA performs the request by deploying the Service Type Repository, generates an
ACL/XML inform message and sends it to the requestor agent. The requestor agent, upon
receipt of the message, parses it first from the ACL and XML parser, checks the response and
migrates back to the VE candidate domain to inform its domain.

In a similar way, VE candidate partners willing to register new service offers in the marketplace
or administer them should always refer to the appropriate service type name. In that case, in a
similar manner like the STA agent, an instance of a suitable agent migrates to the marketplace,
composes a FIPA ACL/XML request and sends it to the SOA agent. In the sequel, the SOA
receives the message, parses it from the ACL and XML parser, checks the type of the request
and decides which action is required. Afterwards, the SOA performs the request, by deploying

Evangelos K. Ouzounis

 124

the Service Offer Repository, composes an ACL/XML inform message and sends it back to the
requestor agent. The requestor agent receives the message, parses it first from the ACL and
XML parser, checks the reply of the SOA and migrates back to the VE candidate partner to
inform its domain.

In addition to the generic entities that a FIPA compliant agent has, the internal architecture of a
virtual marketplace agent consists of the following key components:

• VMP XML Parser: responsible for parsing the content of the FIPA ACL messages based
on the virtual marketplace ontology,

• VMP Message composer: responsible for composing the appropriate response FIPA ACL-
XML messages that will be sent back to the requestor agents. The structure of the message
is based on the marketplace ontology,

• Decision manager: responsible for controlling the basic operations of the agent,
communicating with the STR, SOA and the OMG-Trader. According to whether the agent
is STA, SOA or SOR this module is different in order to perform the appropria te operations.

ACL
Parser

VMP
XML Parser

Decision
Manager

OMG
Trader

VMP Message
Composer

Generic VMP Agent
Architecture

Communication

Manager

CORBA IIOP

STR

SOR

FIPA ACL/XML

Figure 21: Generic Virtual Marketplace Agent Internal Architecture

In the following sections, the STA, SOA, and SOR agents are further analyzed and more details
about their functionality and structure are provided.

6.2 Service Type Management
One of the basic concepts of the Virtual Marketplace is the service type. A service type has a
unique service type name and one or more named properties. The named properties are (name,
value) pairs that represent behavioural, non-functional and non-computational aspects of a
service. For example, a service type for a video-conferencing service might have the cost of the
service, the payment mode, the QoS requirements, the name of domain that offers the service,
etc, as named properties. Additionally, the named properties can also have specific modes. These
modes are normal, meaning that the value for this property is not required during the service
offer process, read-only , meaning the value of a named property can not be changed, or
mandatory meaning that a value for this named property is required.

Chapter 6: Virtual Marketplaces

 125

Service types can also be derived from other service types. A service type that inherits existing
service types inherits also the properties specified for these super types. The concept of the
inheritance is exactly the same like the one used in the object oriented systems. In such a way,
value added service types can be created. The main reason for the inheritance concept is the re-
usability and enhancement of existing service types.

According to previous descriptions, a service type has a name, a set of zero or more property
descriptions, and a set of zero or more super types from which it inherits its extra common
properties. A property description has a property name, a status, a type, e.g.. string, integer, or
sequence of strings or integers. A super type is the name of an existing service type. Service
Types can be created and managed either by the administrator of the marketplace or by the
Provider Negotiation Agent (PNA). The following definitions can easily translated into the
following DTD format of a service type.

<!ELEMENT Service Type (type, propdescs, super_types)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT if_name (#PCDATA)>
<!ELEMENT propdescs (propdesc*)>
<!ELEMENT propdesc (prop_name, (normal | readonly | mandatory |
readonly_mandatory), (string | integer | float | boolean | stringseq |
integerseq | floatseq | booleanseq))>
<!ELEMENT prop_name (#PCDATA)>
<!ELEMENT normal EMPTY>
<!ELEMENT readonly EMPTY>
<!ELEMENT mandatory EMPTY>
<!ELEMENT readonly_mandatory EMPTY>
<!ELEMENT super_types (super_type*)>
<!ELEMENT super_type (#PCDATA)>

Service Types are stored and maintained by the Service Type Repository (STR), which is
located inside the marketplace domain. For every virtual marketplace only one STR exists. The
main reason fro that is that the services types managed and administered by this marketplace
should be stored in a central storage system for data consistency purposes. For every service
type a service type object is created and stored into the STR. A service type object is actually an
abstraction, in object oriented terms, of a service type that provides certain operations to access
the information stored inside the object. Every service type and, consequently a service type
object, is identified inside the STR by a unique service type name. All these objects are stored
into and maintained by the STR. Using the service type name as a unique key to retrieve the
service type, retrieval of service type objects is performed easily and effectively. The class
model and the basic operations of the STR is depicted in the following Figure 22. The main
operations of the STR are to create a new service type object, to delete it, and to modify it. The
entity that deploys these operations is the Service Type Agent (STA).

STR

getTypes()
setTypes()
deleteType()
listTypes()

Service Type Object

getProperties()
setProperties()
getName()
setName()
getSuperTypes()
setSuperTypes()

0..*1 0..*1

Properties

getname()
setName()
getValue()
setValue()
getMode()
setMode()

0..*11 0..*

Figure 22: Service Type Repository Class Model

Evangelos K. Ouzounis

 126

The STA agent is responsible for the management of service types and the main operations that
this agent provides are:

• addition of a service type to the STR,

• removal of a service type from the STR,

• listing of existing service types from the STR,

• description of a service type from the STR,

When the STA agent gets an ACL/XML request for an addition of new service type, it first
parses the content of the incoming message from the ACL and XML parser and checks the type
of the request. Since the request is the creation of a new service type, the Decision Manager
requests from the STR to create a new service type object. Then, the Decision Manager inserts
the information included in the message and requests from the STR to store it internally. As soon
as the request has been fulfilled, the agent composes a response ACL/XML message and sends it
back to the requestor. An example of the content of the FIPA ACL/XML message concerning
service type addition is the following.

<VMPMessage>
<STAMessage>
<STARequest RequestId="abc">
<AddType>
<type> testType1 </type>
<if_name> testTypeIf1 </if_name>
<propdescs>
<propdesc>
<prop_name> testprop1 </prop_name>
<normal/>
<string/>
</propdesc>
<propdesc>
<prop_name> testprop2 </prop_name>
<mandatory/>
<integer/>
</propdesc>
</propdescs>
<super_types>
</super_types>
</AddType>
</STARequest>
</STAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

Chapter 6: Virtual Marketplaces

 127

 : message
composer

 : Provider
Negotiation Agent

 : Communication
Manager

 : ACL Parser : XML Parser : Service Type
Repository

 : Decision
Manager

add service type()

forward message()

parse ACL()

parse XML()

check request()

create new service type object()

compose inform message()

send message()

send ACL/XML response()

Figure 23: Add Service Type Sequence Diagram

In a similar way like the creation of a new service type, when the STA agent gets an ACL/XML
request for the deletion of an existing service type, it first parses the content of the incoming
message from the ACL and XML parser and checks the type of the request. Since the request is
the deletion of an existing service type, the Decision Manager requests from the STR to locate
the corresponding service type object and then to delete it. As soon as the request for the
deletion of an existing service type has been fulfilled, the agent composes a response ACL/XML
message and sends it back to the requestor. An example of the content of the FIPA ACL/XML
message concerning service type removal is the following.

<VMPMessage>
<STAMessage>
<STARequest RequestId="removetype1">
<RemoveType>
<type> testType1 </type>
</RemoveType>
</STARequest>
</STAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

Evangelos K. Ouzounis

 128

 : Provider
Negotiation Agent

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : Service Type
Repository

 : message
composer

remove service type()

forward message()

parse ACL()

parse XML()

check request()

delete service type object()

compose inform message()

send message()

send ACL/XML response()

Figure 24: Remove Service Type Sequence Diagram

When a VE candidate partner wants to get the list of existing service types stored into the
marketplace, a request for list of existing service types is generated. In that case, the STA agent
parses the incoming message and checks the request. Since the request is to list all the existing
service types, the Decision Manager conducts the STR and asks from it to return the whole list
of the existing service types. In the sequel, the agent composes the appropriate ACL/XML
message based on the virtual marketplace ontology and sends it back to the requestor. An
example of the content of the FIPA ACL/XML message concerning list service type operation is
the following.

<VMPMessage>
<STAMessage>
<STARequest RequestId="listtype01">
<ListTypes>
<all/>
</ListTypes>
</STARequest>
</STAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

Chapter 6: Virtual Marketplaces

 129

 : Provider
Negotiation Agent

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : Service Type
Repository

 : message
composer

list service types()

send ACL/XML response()

forward message()

check request()

send message()

parse ACL()

parse XML()

list service type objects()

compose inform message()

Figure 25: List Service Types Sequence Diagram

Finally, when VE candidate partners want to get all the information, namely service type name
and a set of named properties about an existing service stored into the marketplace, they should
generate a request for describe service type. In that case, the STA agent parses the incoming
message and checks the request. Since the request is to describe an existing service type, the
Decision Manager conducts the STR and gets the corresponding service type object. In the
sequel, the Decision Manager gets the information stored into the object and composes the
appropriate ACL/XML message based on the virtual marketplace ontology and sends it back to
the requestor. An example of the content of the FIPA ACL/XML message concerning describe
service type operation is the following.

<VMPMessage>
<STAMessage>
<STARequest RequestId="describetype01">
<DescribeType>
<type> testType1 </type>
</DescribeType>
</STARequest>
</STAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

Evangelos K. Ouzounis

 130

 : Provider
Negotiation Agent

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : Service Type
Repository

 : message
composer

list service types()

send ACL/XML response()

forward message()

check request()

send message()

parse ACL()

parse XML()

list service type objects()

compose inform message()

Figure 26. Describe Service Type Sequence Diagram

6.3 Service Offer Management
Another basic concept of the Virtual Marketplace is the service offer. A service offer is actually
an instantiation of a specific type, i.e. for all the named properties of a service type certain
values are provided. Therefore, for every service type zero or more service offers are associated.
A service offer about a service type has a unique id and is related to a specific VE candidate
partner that registers the offer. Since properties have different modes, like normal, read-only, or
mandatory, service offer registration should provide values to all mandatory and normal values.
Properties having the mode of read-only have pre-specified values that could not be changed
during service offer registration.

Service offers can be created and managed either by the administrator of the marketplace or by
the Provider Negotiation Agents (PNA) located into the VE candidate domains. Service offers
are stored in the Service Offer Repository (SOR), which is located inside the marketplace. For
every marketplace only one SOR exists. Inside the SOR, every Service Offer is identified by a
unique service offer id and is always associated to a corresponding service type. For every
service offer a service offer object is created and stored into the SOR. A service offer object is
actually an abstraction, in object-oriented terms, of a service offer that provides certain
operations to access the information stored inside the object. Using the service offer id as a
unique key to retrieve the service offer, retrieval of service offer objects is performed easily and
effectively. The structure of the SOR is depicted in the following Figure 27. The main operations
of the SOR is to register a new service offer object, to delete it, to modify an existing service
offer, and to get the property values of an existing service offer. The entity that deploys these
operations is the Service Offer Agent (SOA).

Chapter 6: Virtual Marketplaces

 131

S e r v i c e O f f e r R e p o s i t o r y

n e w S e r v i c e O f f e r ()
d e l e t e S e r v i c e O f f e r ()
l i s t S e r v i c e O f f e r s ()
g e t S e r v i c e O b j e c t s ()

S e r v i c e O f f e r

g e t N a m e ()
g e t O f f e r s ()
s e t O f f e r ()
d e l e t e O f f e r ()

0 . . *

1

0 . . *

1

O f f e r

g e t O f f e r I d ()
s e t O f f e r I d ()
g e t P r o p e r t i e s ()
s e t P r o p e r t i e s ()

0 . . *

1

P r o p e r t i e s

g e t n a m e ()
s e t N a m e ()
g e t V a l u e ()
s e t V a l u e ()
g e t M o d e ()
s e t M o d e ()

(f r o m S T R)

0 . . *

1

1

0 . . *
1

0 . . *

Figure 27: Service Offer Repository Class Model

The SOA agent is responsible for the management of service offers and the main operations that
this agent provides are:

• register a service offer,

• withdraw a service offer,

• modify a service offer,

• describe a service offer.

When the SOA agent gets an ACL/XML request for a registration of new service offer, it first
parses the content of the incoming message from the ACL and XML parser and checks the type
of the request. Since the request is the registration of new service offer, the Decision Manager,
based on the service type name, requests from the SOR to create a new service offer object.
Then, the Decision Manager inserts the information included in the incoming message and
requests from the SOR to store it internally. The SOR returns back to the Decision Manager a
unique registration id that identifies uniquely this particular offer in relation to the service type.
As soon as the request has been fulfilled, the agent composes a response ACL/XML message
with the unique service offer id and sends it back to the requestor. An example of the content of
the FIPA ACL/XML message concerning register service offer operation is the following.

<VMPMessage>
<SOAMessage>
<SOARequest RequestId="addoffer01">
<ExportOffer>
<type> testType1 </type>
<agent> testAgent1@fokus.gmd.de </agent>
<properties>
<property>
<pname> testprop1 </pname>
<pvalue>
<string/>
<value> teststringvalue1 </value>
</pvalue>
</property>
<property>

Evangelos K. Ouzounis

 132

<pname> testprop2 </pname>
<pvalue>
<integer/>
<value> 1234561 </value>
</pvalue>
</property>
</properties>
</ExportOffer>
</SOARequest>
</SOAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

 : ACL Parser : Provider
Negotiation Agent

 : Communication
Manager

 : XML Parser : Service Offer
Repository

 : message
composer

 : Decision
Manager

register offer()

send ACL/XML response()

forward message()

parse ACL()

parse XML()

check request()

create new service offer object()

compose inform message()

send message()

Figure 28: Register Service Offer Sequence Diagram

If a VE candidate partner wants to delete an existing service offer, a request for service offer
withdrawal is generated and sent to the SOA agent. This request should refer to the
corresponding service type and also include the unique registration id that has been provided to
this domain during offer registration. This means that only this domain can withdraw an existing
service offer. When the SOA agent gets the request, it initially parses the content of the
incoming message from the ACL and XML parser and checks the type of the request. Since the
request is the withdrawal of service offer, the Decision Manager, based on the service type name
and the unique registration id, requests from the Service Offer Repository to delete the service
offer object. As soon as the SOR deleted the object, the Decision Manager composes a response
ACL/XML message and sends it back to the requestor. An example of the content of the FIPA
ACL/XML message concerning withdraw service offer operation is the following.

<VMPMessage>

Chapter 6: Virtual Marketplaces

 133

<SOAMessage>
<SOARequest RequestId="removeoffer01">
<WithDrawOffer>
<offerid> testType1/R0 </offerid>
</WithDrawOffer>
</SOARequest>
</SOAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

 : message
composer

 : Provider
Negotiation Agent

 : Communication
Manager

 : ACL Parser : XML Parser : Service Offer
Repository

 : Decision
Manager

withdraw service offer()

send ACL/XML response()

forward message()

parse ACL()

parse XML()

check request()

delete service offer object()

compose inform message()

send message()

Figure 29: Withdraw Service Offer Sequence Diagram

If a VE candidate partner wants to modify an existing service offer, a request for service offer
modification is generated and sent to the SOA agent. This request should refer to the
corresponding service type and also include the unique registration id that has been provided to
this domain during offer registration and also the new values for specific properties of the
service type. When the SOA agent gets the request, it initially parses the content of the incoming
message from the ACL and XML parser and checks the type of the request. Since the request is
the modification of an existing service offer, the Decision Manager, based on the service type
name and the unique registration number, requests from the SOR to locate the service offer
object from the SOR. In the sequel, the Decision Manager modifies the values of properties
included into the message and stores the service offer object again in the SOR. In that case the
SOR do not generate a new service offer registration id. As soon as the SOR modified the object,
the Decision Manager composes a response ACL/XML message and sends it back to the
requestor. An example of the content of the FIPA ACL/XML message concerning modify
service offer operation is the following.

<VMPMessage>
<SOAMessage>
<SOARequest RequestId="modifyoffer02">

Evangelos K. Ouzounis

 134

<ModifyOffer>
<offerid> testType2/R0 </offerid>
<delete>
<prop_name> testprop1 </prop_name>
<prop_name> testprop3 </prop_name>
</delete>
<modify>
<properties>
<property>
<pname> testprop2 </pname>
<pvalue>
<integer/>
<value> 7654321 </value>
</pvalue>
</property>
<property>
<pname> testprop4 </pname>
<pvalue>
<integerseq/>
<seq_value>
<value> 9999999 </value>
<value> 8888888 </value>
<value> 7777777 </value>
</seq_value>
</pvalue>
</property>
</properties>
</modify>
</ModifyOffer>
</SOARequest>
</SOAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

Chapter 6: Virtual Marketplaces

 135

 : Provider
Negotiation Agent

 : Communication
Manager

 : ACL Parser : XML Parser : Service Offer
Repository

 : Message
composer

 : Decision
Manager

modifyServiceOffer()

send ACL/XML response()

forward message()

parse ACL()

parse XML()

check request()

getServiceOffer()

compose inform message()

send message()

modifyServiceOffer()

setServiceOffer()

Figure 30: Modify Service Offer Sequence Diagram

Finally, if a VE candidate partner wants to get the properties and values of an existing service
offer, a request for service offer description is generated and sent to the SOA agent. This request
should refer to the corresponding service type and also include the unique registration id that has
been provided to this domain during offer registration. When the agent gets the request, it
initially parses the content of the incoming message from the ACL and XML parser and checks
the type of the request. Since the request is the description of an existing service offer, the
Decision Manager, based on the service type name and the unique registration number, requests
from the SOR to locate the corresponding service offer object from the SOR. In the sequel, the
Decision Manager gets the values of the properties included into service offer, composes a
response ACL/XML message and sends it back to the requestor. An example of the content of
the FIPA ACL/XML message concerning describe service offer operation is the following.

<VMPMessage>
<SOAMessage>
<SOARequest RequestId="describeoffer01">
<DescribeOffer>
<offerid> testType1/R0 </offerid>
</DescribeOffer>
</SOARequest>
</SOAMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

Evangelos K. Ouzounis

 136

 : ACL Parser : Provider
Negotiation Agent

 : Communication
Manager

 : XML Parser : Service Offer
Repository

 : Message
composer

 : Decision
Manager

describeServiceOffer()

send ACL/XML response()

forward message()

parse ACL()

parse XML()

check request()

getServiceOffer()

compose inform message()

send message()

Figure 31: Modify Service Offer Sequence Diagram

6.4 Service Offer Retrieval Management
Whenever a VE representative or partner is looking for a potential VE partner that can provide a
specific business process, it always uses the virtual marketplace to find out the potential
providers. The selection of the VE candidate partners is done based on some selection criteria.
After a set of VE candidate partners have been selected, the negotiation process starts among the
VE partner and the VE candidate partners. The result of the negotiation process is the selection
of the best VE candidate partner that satisfies certain requirements imposed by the VE
representative or partner.

The virtual marketplace agent, responsible for the service offer retrieval management, is the
Service Offer Retrieval (SOR) agent. The main operation, that this agent provides, is retrieval of
VE candidate partners that can provide a certain business process related to a specific service
type and satisfy certain retrieval constraints

The retrieval constraints are being specified in the OMG Constraint Language (CL) [OMG
Constraint Language]. More specifically, the retrieval constraints are logical expressions relating
the properties of the service type with certain values. The logical operators, supported by the
OMG Constraint Language, are all the well-known logical operators like, “>”, “>=”, “AND”,
“NOT”, etc. For example, if a service type A has three named properties X1,X2 and X3, then a
legitimate11 retrieval constraint would have been [(“X1=”10”) AND (“X2”<=”Vag”) AND
(NOT (“X3<”45”))].

11 Legitimate in the sense that the expression is compatible with the grammar and syntax of the OMG Constraint
Language

Chapter 6: Virtual Marketplaces

 137

The OMG Constraint Language is a standard mechanism for specifying constraints in the OMG
Trader. Every standard OMG Trader should provide support for the Constraint Language in
terms of a Constraint Language Parser (CLP) that interprets and acts upon specific retrieval
constraints. The CLP gets as input a retrieval constraint specified in the Constraint Language
and, if the expression is syntactically correct, creates an expression tree. The expression tree has
as nodes the binary operators of the logical expression and as leafs the named properties and
values. Figure 32 depicts the expression tree for the previous presented example. In the sequel,
the expression tree is traversed with the pre-order method. The pre-order algorithm is working
like this: “unless a leaf has not been found yet, traverse the left node. If a leaf has been found,
return back and traverse the father of the node, and then continue with the right node”. During
the traverse process, reduction of the search space is done, i.e. the identification of all the service
offers that can satisfy the specified retrieval constraints. The reduction of the search space is
done like this: “initially select all the service offers related with the service type name from the
Service Offer Repository (SOR). In the sequel, when a simple logical expression found from the
expression tree, locate all the service offers that satisfy this logical expression. This list will be
used in subsequent search space reduction passes”. Based on this simple search space reduction
approach, the service offers that satisfy the retrieval constraints are identified. The CLP and
search space reduction mechanisms are components included into the standard components of
the OMG Trader. In the context of this thesis, only deployment of this components is done.

AND

AND NOT

= = <

X1 10 X2 Vag X3 45

Figure 32: Expression Tree Representation

The selection of potential VE candidate partner form the virtual marketplace is performed in the
following manner. Initially, the VE representative or VE partner domain, during a business
process execution, creates a Requestor Negotiation Agent (RNA), informs him about the
requested business process and the retrieval constraints that should be satisfied, and sends him to
the virtual marketplace to search for potential VE candidate partners. The RNA uses the FIPA
compliant request-response protocol and the virtual marketplace ontology to communicate with
the SOR agent. More specifically, the RNA migrates to the virtual marketplaces, creates a FIPA
ACL/XML request message, and sends it to the SOR agent. The message specifies the requested
service type name and the corresponding retrieval constraints for the selection of partners.

When the SOR agent gets the request, it initially parses the content of the incoming message
from the ACL and XML parser and checks the type of the request. Since the request is the
retrieval of existing service offers from the Service Offer Repository, the Decision Manager

Evangelos K. Ouzounis

 138

conducts the Constraint Language Parser (CPL) to syntactically parse the retrieval constraint. If
the retrieval constraint expression is not correct, an error message is returned to the RNA agent.
If the constraint is syntactically correct, then the Decision Manager asks from the Retrieval
Manager to locate the service offers, which exist in the Service Offer Repository and satisfy the
requested constraints. The result of the retrieval is a list of service offer objects. Then, the
Decision Manager processes the list and, with the help of message composer, creates a FIPA
ACL/XML message with the response. This response message is sent to the RNA agent. An
example of the content of the FIPA ACL/XML message concerning retrieval of service offers
operation is the following.

<VMPMessage>
<SORMessage>
<SORRequest RequestId="query01">
<Query>
<type> testType1 </type>
<constraint>
testprop1=="teststringvalue1" AND testprop2>=1234561”
</constraint>
</Query>
</SORRequest>
</SORMessage>
</VMPMessage>

The previously described steps are further explained in the following sequence diagram.

 : Communication
Manager

 : Constraint Language
Parser

 : Retrieval
Manager

 : Expression
Tree

 : Message
composer

 : Service Offer
Repository

 : Requestor
Negotiation

 : Decision
Manager

forward message()

check request()

send message()

retrieveOffers()

parserConstraint()

retrieveOffers()

getLeftNode()

getServiceOffer()

getRightNode()

getMidNode()Service_Offers()

compose inform message()

Get_Mesage()

Figure 33: Service Offer Retrieval Sequence Diagram

Chapter 6: Virtual Marketplaces

 139

6.5 Virtual Marketplace Administration
The virtual marketplace is administered from a human operator called the Administrator. The
main responsibilities of the virtual marketplace administrator are service type management
operations. The administrator uses an administration Graphical User Interface (GUI) that enables
him to perform in a easy and user friendly way its main operations.

The main operations that the administrator can perform are similar with the ones that are
provided by the STA agent. These operations are:

• addition of a new service type to the virtual marketplace,

• removal of a service type from the virtual marketplace,

• listing of existing service types to the virtual marketplace,

• description of a service type from the virtual marketplace.

The use case diagram of all the operations that the administrator can perform is depicted in the
following Figure 34. In this diagram, except the key operations that can be performed, a set of
sub-operations is also identified. For example, the add service type operations is supported by a
set of sub-operations, namely the provision of a new service type name, the insertion of a new
property or properties, the addition of the inheritance relationships with existing services types,
and the storage of the new service type in the Service Type Repository (STR).

Add Name Add PropertyAdd InheritanceStore Type In STR

Delete Type from STR

Add Service Type Remove Service TypeList Service Types

VMP
Administrator

Describe Service Type

Figure 34: VMP Administration Use Case Diagram

The main entities of the virtual marketplace administration GUI are the:

• Administrator GUI Manager: responsible for the provision of the graphical interface to
the human operator,

• Service Type Repository (STR): responsible for the provision of the core operations of the
service type management and the persistent storage of the service types,

Evangelos K. Ouzounis

 140

The class diagram of the administration GUI and the relationships between these two entities are
depicted in the following Figure 35.

P r o p e r t i e s

g e t n a m e ()
s e t N a m e ()
g e t V a l u e ()
s e t V a l u e ()
g e t M o d e ()
s e t M o d e ()

(f r o m S T R)

S e r v i c e T y p e O b j e c t

g e t P r o p e r t i e s ()
s e t P r o p e r t i e s ()
g e t N a m e ()
s e t N a m e ()
g e t S u p e r T y p e s ()
s e t S u p e r T y p e s ()

(f r o m S T R)

1

0 . . *

1

0 . . *

S e r v i c e T y p e R e p o s i t o r y

c r e a t e n e w s e r v i c e t y p e o b j e c t ()
d e l e t e s e r v i c e t y p e o b j e c t ()
l i s t s e r v i c e t y p e o b j e c t s ()
r e t r i e v e s e r v i c e t y p e o b j e c t ()

(f r o m S T R)

0 . . *1 0 . . *1

V M P
A d m i n i s t r a t o r

(f r o m U s e C a s e V i e w)

A d m i n i s t r a t i o n G U I

a d d S e r v i c e T y p e ()
r e m o v e S e r v i c e T y p e ()
d e s c r i b e S e r v i c e T y p e ()
l i s t S e r v i c e T y p e ()

0 . . *1 0 . . *1

1

1 . . *

1

1 . . *

Figure 35: VMP Administration Class Diagram

According to this class diagram, the administrator uses directly the Service Type Repository
(STR) to perform his operations. For example, if the administrator would like to remove an
existing service type, it first specifies the unique name of the service type and then the STR
locates the corresponding Service Type object. Since the operation requested is delete service
type, the STR deletes the corresponding object. In a similar way, if the administrator would like
to modify an existing service type, it first specifies the unique name of the service type and then
is allowed to change the properties and inheritance of the service type. The deletion and
modification of existing service types might create inconsistencies with the service offers
registered into the virtual marketplace. In that case, if at least one service offer has been already
registered for a given service type, the administration GUI does not allow the deletion or
modification of this type.

6.6 Summary
This chapter presents detailed specification and design of the virtual marketplace agents and the
deployment of the standard OMG-Trader. More specifically, three agents are proposed and
analysed, namely Service Type Agent (STA), Service Offer Agent (SOA) and Service Retrieval
Agent (SRA). For every agent, the internal architecture of it and the key components are
specified. Then, for every operation that the agent supports, a UML sequence diagram is given
and discussed. The sequence diagrams actually specify the way that the different internal entities
of the agents are co-operating to provide the services to other agents with the environment. In
addition to the three agents, the Virtual Marketplace ontology is specified. The ontology has
been specified in ACL/XML and is based on the FIPA compliant request-response protocol.

In the following two chapters, the two key phases of the VE life-cycle are explained and
discussed. These phases are the Business Process Specification and Registration and Business
Process Management.

 141

Chapter 7: Business Process Specification and
Registration

7.1 Introduction
During the Business Process Specification Phase, VE candidate partners specify their local and
remote business processes. The specification of the business processes is done using the
Business Process Definition Language (BPDL). The reference model of Workflow Management
Coalition defines as business process “a procedure where documents, information or tasks are
passed between entities of the workflow according to defined sets of rules to achieve, or
contribute to, an overall business goal” (WfMC, 1996). In general, a business process
specification is a representation of a real-world activity in a machine readable format.
Conceptually, a business process specification is a directed, acyclic graph in which nodes
represent steps of execution and edges represent the flow of control and data among the different
steps.

For every business process, the input parameters, the output parameters, the sub-processes, the
tasks and the conditions among the sub-processes and tasks are being specified. The input and
output parameters constitute the flow of data, i.e. the data that are passed among the elements of
the process. The conditions constitute the flow of control, i.e. the order according to which the
elements of the process will be executed. Additionally, every process or sub-process is specified
as local or remote process. Local processes are the processes that can be fully provided by this
domain while remote processes are the processes that can be provided only by remote domains.
Moreover, for every task the associated business object, that will be deployed, is also specified.
Tasks are elementary processing units while processes orchestrating and controlling the whole
business process according to the flow of data and control.

During the Business Process Registration Phase, VE candidate partners register their local
business processes to the virtual marketplaces. The registration process is performed using the

Evangelos K. Ouzounis

 142

existing service types provided by the marketplace. If there is no associated service type for a
particular process, a new one is being created, by possibly inheriting existing service types. This
process can be done either, automatically or through the virtual marketplace administrator.
During the registration process, certain values for certain attributes related to the service type,
like location, quantity, etc., are provided. These attributes are usually related to the provision of
the process to remote administrative domains. In addition to the service provision related
attributes, a set of attributes, which will influence the negotiation process are also specified, e.g.
price. These attributes might include the low price that can be negotiated upon, the maximum
quantity that can be offered, the best and worst delivery dates, etc.

In Business Process Specification and Registration phase, the Business Process Analysts
performs the specification of the business processes, the administration of the registration of
local processes into the virtual marketplace, and the specification of the terms and conditions of
the negotiation process. The following sections present an analytical description concerning the
services that the business process analyst uses to fulfil its role.

7.2 Business Process Specification
The Business Process Specification Phase is a manual process performed by the Business
Process Analyst of each individual administrative domain. The main responsibilities of this role
are the creation of a business process, the modification and the deletion of it.

In order to perform these operations, the Business Process Analyst uses the Business Process
Definition Language and the Business Process Repository (BPDL). The BPDL is an XML-based
language that enables the specification of complex VE business processes. The language has
been specified and designed for the purposes of dynamic VEs and enables the utilisation of
remote business processes in a dynamic and flexible way. The business processes of each
domain are stored into the Business Process Repository (BPR). The BPR is a persistent system
that stores bus iness processes and provides services for the interpretation of processes from
XML format into a specialised model that can be easily deployed by the intelligent, autonomous
agents.

The following sections present the concept and certain design issues related to the business
process specification language and the business process repository.

7.2.1 Business Process Definition Language

The BPDL is an XML-based language that enables the specification of complex VE business
processes. The BPDL provides all the necessary mechanisms to describe complex processes and
relationships among them. Each step within a process is a special business goal that an
autonomous, intelligent agent undertakes the responsibility to execute and manage when
specialised conditions are satisfied.

The basic syntactical elements of the Business Process Definition Language are:

• Business Process, a description of the sequence of steps to be completed in order to
accomplish a business goal. A business process has a name, a set of input and output
parameters, and special start pre-conditions. A process consists of one or more sub-
processes,

Chapter 7: Business Process Specification and Registration

 143

• Sub-process, or each step within a process. A sub-process has a name, a set of input and
output parameters, and start pre-conditions. With these elements, every sub-process
specifies the flow of data and the flow of control. The flow of data, specified through the
input/output parameters between activities, is a series of mappings between output data and
input data to allow activities to exchange information. Actually, the output parameters of
one process can be input parameters of another process. The flow of control, specified by
special logical conditions assigned to the sub-processes or atomic processes, is actually the
order in which activities are being scheduled and executed. A sub-process consists of one
atomic process or one or more sub-processes. A sub-process can be either local, when the
current domain can execute the whole sub-process, or remote, when the execution of the
sub-process can be performed by another domain. Sub-processes are used for nesting and
modular design and reusability reasons.

• Atomic process has a name and a business object assigned to it that will be deployed when
the atomic process is executed. The atomic process passes to the external business object the
input data, waits for the execution of the business object, collects the output data, and
finally sends them back to the workflow system. The atomic processes are computational
elements, i.e. they provide special elementary operations into the business process. The
atomic process has always a well-defined functionality and is always associated with an
external business object.

• Input Parameters : a sequence of typed variables and structures that are used as input to the
invoked activities. An input parameter has a name, a basic type like string, integer, etc. and
constraints which associate parameters with certain values. During process specification
time, the input parameters have only default values and optional constraints associated to
them.

• Output Parameters: a sequence of typed variables and structures denoting the output of an
invoked sub-process or atomic process. An output parameter, in a similar way like the input
parameters, has a name, a basic type like string, integer, etc. and constraints which associate
parameters with certain values. During process specification time, the output parameters
have only default values and optional constraints associated to them.

• Conditions , which specify the circumstances under which certain events will happen. When
a condition becomes true then the corresponding sub-process should start its execution.
Conditions can be either atomic or composite.

• Atomic Conditions are simple logical expressions formed among an input or output
parameter, a binary comparison operator and a value. The comparison operators might be >,
<, >=, <=, =,etc.

• Composite Conditions are complex logical expressions formed in terms of atomic
conditions and logical operators such as AND, OR, or NOT. The BPDL also enables the
specification of conditions on an existing condition specification language, like the JESS
language or OMG Constraint Language. These conditions are computed based on several
standard third party conditions checkers included into the agents.

• Business Object: is any type of external object that can be accessed either locally or remote
through Java RMI or CORBA-IIOP. It is the responsibility of the atomic process to deploy
and integrate the business into the business process specification.

The following picture depicts the relationships among the different entities of the BPDL.

Evangelos K. Ouzounis

 144

B u s i n e s s O b j e c t s

P a r a m e t e r s
n a m e
t y p e
va lue
c o n s t r a i n t

A t o m i c C o n s t r a i n t s
p a r a m e t e r
o p e r a t o r
v a l u e

C o m p o s i t e C o n s t r a i n t
s e q u e n c e _ a t o m i c

B u s i n e s s P r o c e s s
n a m e
i n p u t P a r a m e t e r s
o u t p u t P a r a m e t e r s
p r e C o n d i t i o n

C o n s t r a i n t
n a m e

1

1

1

1

1

1

1

1

A t o m i c p r o c e s s e s
n a m e
c o n s t r a i n t

1

1

1

1

1

1

1

1

I n p u t P a r a m e t e r s

1

1

1

1

0 . . *

1

0 . . *

1

S u b P r o c e s s
n a m e
i n p u t P a r a m e t e r s
o u t p u t P a r a m e t e r s
p reCond i t i on
l o c a l O R r e m o t e

1 . . *

1

1 . . *

1

0 . . *

1

0 . . *

1

1

1

1

1

11

0 . . *

1

O u t p u t P a r a m e t e r s

1

1

1

1

0 . . *

1

0 . . *

1

0 . . *

11

0 . . *

1

0 . . *

Figure 36: Business Process Definition Language Class Model

The specification of the business process definition language in XML-DTD format is the
following. This specification is actually a direct translation of the model presented in Figure 36.

<!-- Entry point for business process definition in XML -->

<!ELEMENT business-process-definition (process-definition | condition-
definition | parameter-definition)*>

<!-- Generic class for representing a business process definition -->

<!ELEMENT process-definition (process-name, comment?, in-data*, out-data*,
(atomic-process | composite-process))>
<!ELEMENT process-name (#PCDATA)>

<!ELEMENT atomic-process (external-task-name)>
<!ELEMENT external-task-name (#PCDATA)>

<!ELEMENT composite-process (composite-process-element+, exception-handling-
process-element*)>
<!ELEMENT composite-process-element (precondition-name?, sub-process-name,
time-allowed-to-complete?, (is-remote | to-be-negotiated)?, in-data*, out-
data*)>
<!ELEMENT exception-handling-process-element (exception-source+, sub-process-
name, time-allowed-to-complete?, (is-remote | to-be-negotiated)?, in-data*,
out-data*)>
<!ELEMENT precondition-name (#PCDATA)>
<!ELEMENT exception-source (#PCDATA)>
<!ELEMENT sub-process-name (#PCDATA)>
<!ELEMENT is-remote EMPTY>

Chapter 7: Business Process Specification and Registration

 145

<!ELEMENT to-be-negotiated EMPTY>
<!ELEMENT in-data (#PCDATA)>
<!ELEMENT out-data (#PCDATA)>
<!ELEMENT time-allowed-to-complete (#PCDATA)>
<!ATTLIST time-allowed-to-complete
 unit (seconds | s | minutes | m | hours | h | days | d) #REQUIRED
 trials CDATA "1">

<!-- Generic class for representing a condition definition -->

<!ELEMENT condition-definition (condition-name, comment?, (atomic-condition |
composite-condition))>

<!ELEMENT condition-name (#PCDATA)>

<!ELEMENT rule (rule-language, rule-body)>
<!ELEMENT rule-language (#PCDATA)>
<!ELEMENT rule-body (#PCDATA)>

<!ELEMENT composite-condition (is-not?, (is-or | is-and), branch-condition-
name+)>
<!ELEMENT is-not EMPTY>
<!ELEMENT is-or EMPTY>
<!ELEMENT is-and EMPTY>
<!ELEMENT branch-condition-name (#PCDATA)>

<!ELEMENT atomic-condition (((is-not?, process-status?) | rule), external-
condition-name)>
<!ELEMENT process-status (process-name)>
<!ATTLIST process-status process-state (running | notStarted | suspended |
aborted | terminated | completed) #REQUIRED>

<!-- Generic class for representing parameter definition -->

<!ELEMENT external-condition-name (#PCDATA)>

<!ELEMENT parameter-definition (parameter-name, comment?, parameter-type,
parameter-value)>
<!ELEMENT parameter-name (#PCDATA)>
<!ELEMENT parameter-type (#PCDATA)>
<!ELEMENT parameter-value (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

The above provided business process definition DTD and an example business process
definition are provided at the end of the thesis on the ANNEX.

The BPDL has been defined for the purposes of dynamic VEs. During specification time, each
process can be specified either as local or remote. A process is considered local when the
specification of this process exists fully in this domain. On the contrary, a process is considered
remote, when the specification and execution of this process can be provided only by another
domain. This is achieved by the setting of a special flag called isRemote. When a sub-process
has been specified as remote, then the corresponding flag isRemote has been set to true.
Otherwise, if the process is not considered remote, then it is local, and in that case the execution
and management of the sub-process will be done within the same domain.

The BPDL has been specified in XML-DTD while the specification of each process is done in
XML. This design choice has four very serious consequences. The main reason is that the

Evangelos K. Ouzounis

 146

extension of the language can be easily performed due to the dynamic capabilities of the XML.
Additionally, the specification of processes is done in XML, which is simple ASCII text, and
thus, the business process descriptions are ASCII text files that can be easily stored in any
conventional file system. Furthermore, XML is an open standard that most of the emerging
systems and especially agent-based ones will in the near future support. And finally, a business
process definition parser in XML can be easily developed due to the existing commercial
support of XML parsers.

The Business Process Definition Language supports increased re-usability and modular design.
This is achieved due to the call by name concept. This means that existing business process
specifications can be easily used in other process specifications by only referring to the name of
the process, sub-process, or atomic process. For example, if there is a sub-process called
“find_book”, that has been specified within one process A, then this sub-process is specified
only one time and its name can be used to represent the specification of this sub-process in
different other processes, though the specification of the sub-process has been done in another
process. This means that process specifications can easily include references to other processes.
In this way, high degree of reusability and modularity is achieved. This concept leads directly to
reusability of process specification building blocks. In a similar way like the middleware
services, processes can be built by combining existing business process specifications. This
reduces significantly the business process specification costs and increases the degree of
flexibility of the specified processes.

7.2.2 Business Process Repository

Business processes are stored into the business process repository (BPR). In every administrative
domain only one BPR exists. In general, the BPR is a persistent storage system that maintains
the current XML specifications of the business processes. Business processes are specified in
XML ASCII files and thus, they can be stored into conventional file systems.

The main operations offered by the BPR are:

• insert a new business process specification,

• delete an existing business process specification,

• modify a business process specification,

• parse and interpret a business process specification in XML.

The BPR actually maintains all the associations between business process specifications and
XML files. For every business process specification, an XML ASCII file is specified. The XML
file contains the definition of the process following the syntax of BPDL. The association
between processes and XML file specification is achieved by having a special configuration file
called business.dtd. The syntax of this DTD is the following:

<!ELEMENT BUSINESS-CONTROL (BUSINESS*)>
<!ELEMENT BUSINESS (NAME)>
<!ELEMENT NAME (#PCDATA)>

Chapter 7: Business Process Specification and Registration

 147

For all local business processes specified in this domain the corresponding XML file name is
specified. An example of the business.xml file, that contains two processes, namely Process1 and
Process 2, is given:

<?xml version="1.0"?>
<!DOCTYPE BUSINESS-CONTROL SYSTEM "Business.dtd">
<BUSINESS CONTROL>
 <BUSINESS>
 <NAME>Process1.xml</NAME>
 </BUSINESS>
 <BUSINESS>
 <NAME> Process2.xml </NAME>
 </BUSINESS>
</BUSINESS-CONTROL>

Initially, the BPR reads and interprets the business.xml file. The BPR locates all the files of the
currently specified business process specifications, opens the specification files, reads the
specifications in XML, produces the Definition Model for each process, and creates the List of
Business Process Specification (LBPS). The LBPS is actually the list of all DMs, i.e. business
processes that can be provided by this domain. Access to this list is done through the names of
the business processes that uniquely identify a business process specification.

The Definition Model (DM) is an object-oriented representation of the business process
specification. The DM contains actually the relationships of different processes, sub-processes,
atomic processes and conditions and consists of the following modules:

• process definition: provides the operations for the retrieval and setting of the appropriate
elements of a process, like set and get input/output parameter, set and get external task, or
set and get sub-processes. One of the key methods is the createInstance that enables the
creation of an instance of this process. The Workflow Provider Agent (WPA) uses this
method to create a new instance of the process (see Workflow Provider Agent (WPA)
section in next chapter).

• Sub-process definition: provides operations for the retrieval and setting of the appropriate
elements of a sub-process, like set and get input/output parameter, set and get atomic
process, set and get sub-processes. This is actually what the Workflow Provider Agent uses
to locate the sub-processes of a process and execute them recursively.

• process condition definition: provides operations for the retrieval and setting of the
appropriate elements related to the conditions of a process or sub-process like the logical
expressions of the conditions.

The following Figure 37 depicts the class model of the DM, the key operations that the different
modules provide and the relationships that they have.

Evangelos K. Ouzounis

 148

0..*
1

0..*1

11

ProcessDefinition

createInstance() : ProcessInstance
getName() : String
getExternalTaskName() : String
getSubprocessDefinitions() : SubprocessDefinitionCollection
getIndataNames() : StringCollection
getOutdataNames() : StringCollection

ProcessConditionDefinition

createInstance(subprocess : SubprocessInstance) : ProcessConditionInstance
isNot() : Boolean
setNot(bool : Boolean) : void
isAnd() : Boolean
isOr() : Boolean
setOr(bool : Boolean) : void
getExternalConditionName() : String
getRuleBody() : String

SubprocessDefinition

createInstance(parentProcess : ProcessInstance) : SubprocessInstance
getProcessDefinitionName() : String
isRemote() : Boolean
getPreconditionDefinition() : ProcessConditionDefinition
getIndataNames() : StringCollection
getOutdataNames() : StringCollection

BusinessProcessRepository

getProcessDefinition(processDefinitionName : String) : ProcessDefinition
addProcessDefinition (processDefinitionName : String)
removeProcessDefinition(processDefinitionName : String)

Figure 37: Process Definition Class Model

When a particular business process with a particular name is requested for execution, the BPR
searches the LBPS, locates the Definition Model for this process and returns it back to the agent
that requested the process. The agent, based on the DM, can create an instance of the process,
can find all the sub-processes and atomic processes, and can get all the conditions associated
with a particular sub-process. More details regarding how the DM is deployed during the
instantiation, execution and management of a process are provided in the Workflow Provider
Agent section.

The main operations of the BPR are provided to the Business Process Analyst (BPA) in a
manual way. When the BPA wants to specify a new business process, it uses the BPDL and
writes manually in a XML file the specification of the process including all the necessary
elements like sub-processes, input and output parameters, and conditions. During the
specification phase, the BPA can reuse existing specifications of processes and sub-processes
that have been previously specified in other specifications. It is assumed that the BPA has a
thorough understanding of the syntax and the grammar of the BPDL. Then, the BPA updates the
configuration file of the existing business processes, i.e. the business.xml, by declaring the newly
specified process. In a similar way, when the BPA wants to modify an existing business process,
it opens the corresponding XML file of the business process specification and makes the
appropriate modifications. Changes to the configuration file, namely the business.xml, are not
required since the process has been already registered. The BPR will automatically get the
modified specification of the process and put it into the LBPS. Finally, when the BPA wants to
delete a business process specification, he only needs to delete the name of the process from the
corresponding configuration file. Optionally, the BPA can also delete the XML specification file
from the file system. If the deleted process specification is referenced by name by other
processes, then inconsistencies will occur. In that case, the BPA is responsible for modifying the
process specifications accordingly to avoid the problem.

In the following sections, the relationship of BPR with the execution of the business processes
and the workflow engine are provided.

Chapter 7: Business Process Specification and Registration

 149

7.3 Business Process Registration
The Business Process Registration Phase is a process performed by the Business Process Analyst
of each individual domain with the help of an autonomous intelligent agent called Provider
Negotiation Agent (PNA). The main responsibilities of the Business Process Analyst (BPA) is
this phase are specification, modification, and deletion of certain terms and conditions related to
the registration and negotiation of local and remote business process to potential partners. These
terms and conditions will be used from this domain during the negotiation process with potential
VE partners.

The business process registration phase includes the following steps for every local process:

• The Business Process Analyst specifies in the Offer Repository the local and remote
processes, including the input and output parameters that can be provided to potential VE
partners. For that reason, reuse of the existing business process specifications stored in the
Business Process Repository can be done. Additionally, the Business Process Analyst
specifies the constraints related to the negotiation parameters. These constraints specify the
lower and upper bounds of the accepted values and will, in general, drive and determine the
negotiation process,

• The Provider Negotiation Agent (PNA) agent retrieves from the offer repository all the local
processes and the corresponding input, output, and negotiation parameters and migrates to
the virtual marketplace where it checks for every local process the existence of a
corresponding service type. For every local process a generic service type should exist. This
service type should have as properties the input and output parameters of the local process
and some extra properties related to the negotiation process, e.g. price, delivery day,
payment method, payment due, etc (see next section). If there is no existing service type
available on the marketplace for a given local business, the PNA agent creates a new one. In
the sequel, the PNA registers every local process in the marketplace in relation to an
existing compatible service type. For that reason, the PNA agent interacts with the Service
Offer Agent (SOA) in the virtual marketplace. After the successful registration of local
business processes, potential VE partners can search the virtual marketplace and locate this
domain as a potential VE candidate partner. This is the initial step for the beginning of the
negotiation process among the domains that will be described in the next sections (see NRA
section).

The Offer Repository (OR) stores information regarding all the local and remote processes that
can be provided to potential VE partners. For every local and remote process, the name of the
process, the input, output, and negotiation parameters are stored. All the different types of
parameters have a name associated to it, a type, e.g. a string, a value, and a constraint. In
addition to that, the negotiation parameters have two classification modes, namely public and
private. The values of the negotiation parameters that have public mode can be revealed into the
different agents of other domain and the virtual marketplace. On the contrary, values of
negotiation parameters that have private mode should not be revealed into the public agents and
virtual marketplace, and are the ones that are used for determining the negotiation process. For
example, price can be a negotiation parameter with private mode. This means that the price of
the local process can be revealed when a negotiation process will start. On the contrary, discount
might be another negotiation parameter with private mode. This means that the percentage of
discount offered by this domain concerning this process will be revealed only when the other
domain will request it. The constraints are simple binary logical expressions related to

Evangelos K. Ouzounis

 150

parameters and values. For example, if one potential negotiation parameter is price, then the
following constraint can be assigned (“price”<=”32”). This means that the price that can be in
worst case agreed should not be maximum than 32. In such a way, the Business Process Analyst
can specify which negotiation parameters and values will be used as private and public and
which lower and higher values can have during the negotiation process.

The main operations that the Business Process Analyst can do with the Offer Repository are:

• registration of a new local or remote process, input, output, and negotiation parameters and
values

• modification of a local or remote process by providing new values to input, output, or
negotiation parameters.

• deletion of a local or remote process and the associated values for the input, output, and
negotiation parameters

• retrieval of a local or remote process and the associated values for input, output, and
negotiation parameters

The use case diagram of all the operations that the Business Process Analyst can perform is
depicted in the following Figure 38. In this diagram, except the key operations that can be
performed, a set of sub-operation is also identified. For example, the register new local process
operation is supported by the set process name , set input and output parameters and set
negotiation parameters.

modify process

set process name set input parameters set output parameters set negotiation parameters

administer local processes

Business Process
Analyst

register process delete process

administer remote processes

Figure 38: Use Case Diagram of Local Business Process Specification in Offer Repository

The above mentioned operations are provided though a Graphical User Interface that helps the
user to fulfill his role in a friendly way. The main entities of the Offer Repository administration
GUI are the following:

• Offer Repository GUI Manager: responsible for the provision of the graphical interface to

Chapter 7: Business Process Specification and Registration

 151

the human operator,

• Offer Repository (OR): responsible for the provision of the core operations of the local
and remote process management and the persistent storage of them,

• Offer: represents an offer stored into the repository and provides a set of operations for the
access and modification of them. Operations provided by the entity are to get and to set the
input, output parameters, and negotiation parameters.

• Parameters : represents an abstract class that describes the main operations for accessing
and modifying parameters like get and set parameter name, value, and constraint.

The class diagram of the Offer Repository administration GUI and the relationships among them
entities are depicted in the following Figure 39.

input parameters
(from Offer Repository)

output parameters
(from Offer Repository)

Parameters

name
type
value
constraint

(from business process definit ion language)

negotiation parameters
(from Offer Repository)

Offer Object

getInputParameters()
setInputParameters()
getOutputParameters()
setOutputParameters()
getNegotiationParameters()
setNegotiationParameters()
getName()
isRemote()

(from Offer Repository)

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

Offer Repository

getOffer()
setOffer()
deleteOffer()
modifyOffer()

(from Offer Repository) 1

0..*

1

0..*

Offer Repository GUI

registerOffer()
deleteOffer()
modifyOffer()
editOffer()

1

1

1

1

Figure 39: Offer Repository Administration GUI Class Model

All the offers that have been specified in the Offer Repository are stored in an XML file in
ASCII format following a certain structure determined by the following XML-DTD
specification. This is actually the specification of the above stated structure of offers in XML
style. However, this choice makes the retrieval of offers from the Offer Repository easy and
flexible. The Offer Repository supports special XML interpretation mechanism that enables the
transformation from the XML into the previously described class model and the opposite. In
such a way, the Provider Negotiation Agent can easily access the information stored into the
repository and perform the registration of offers into the virtual marketplace. The Offer
Repository information is stored on a normal file system due to the fact that the XML file that
contains the values is actually an ASCII file.

Evangelos K. Ouzounis

 152

The XML-DTD specification of the Offer Repository is the following.
<!ELEMENT Offers (local_processes*)>
<!ELEMENT local_processes (process)>
<!ELEMENT remote_processes (process)>
<!ELEMENT process (processName, inputParameter, outputParameter,
negotiationParameter)>
<!ELEMENT inputParameter (parameter*)>
<!ELEMENT outputParameter (parameter*)>
<!ELEMENT negotiationParameter (parameter*)>
<!ELEMENT processName (#PCDATA)>
<!ELEMENT parameter (parameter-name, parameter-type, parameter-value)>
<!ELEMENT parameter-name (#PCDATA)>
<!ELEMENT parameter-type (#PCDATA)>
<!ELEMENT parameter-value (#PCDATA)>
<!ATTLIST parameter-value constraint (lessequal | greaterequal | equal)
#IMPLIED>
<!ELEMENT listOfDeleted (processName*)>
<!ELEMENT listOfModified (processName*)>

In the following section certain analysis and design issues regarding the internal structure of the
PNA agent and how it functions in order to perform the registration of business processes into
the virtual marketplaces are discussed.

7.3.1 Provider Negotiation Agent

The Provider Negotiation Agent (PNA) is responsible mainly for two key activities, namely for
registering the local processes of an administrative domain into the virtual marketplaces, based
on the values stored into the Offer Repository, and for negotiating with VE partners about
certain local processes.

In the first case, the PNA retrieves all the local processes that have been specified in the Offer
Repository, migrates to the virtual marketplace and starts communicating with the STA and
SOA agents by exchanging FIPA compliant ACL/XML messages based on the Virtual
marketplace ontology. The communication protocol for the exchange of messages is the standard
FIPA request-response protocol. If a service type for a given local business process already
exist, then the PNA registers an offer to the marketplace by sending a register service offer
request message to the SOA agent. If a service type does not exist, then the PNA agent initially
creates a new service type, by communicating with the STA agent, and then registers the service
offer.

In the second case, if a VE partner needs to execute a remote process, it first conducts the virtual
marketplace to find a set of VE candidate partners for this process and then starts to negotiate
with them based on a standard negotiation protocol. The agent representing the requestor domain
is the Requestor Negotiation Agent (RNA) (see RNA section) while the agent representing the
VE candidate domain is the PNA. These two agents communicate by exchanging messages
specified in FIPA compliant ACL/XML format using the negotiation ontology. The protocol
used during the negotiation process is the standard FIPA Contract-Net. More details about the
negotiation process and how the PNA communicates with the RNA are provided in the section
related to the Requestor Negotiation Agent (see the related section to the RNA).

In both cases, the Provider Negotiation Agent should send, receive and parse incoming and
outcoming ACL/XML messages by using both an ACL and an XML parser. The PNA should
also support two different FIPA compliant communication protocols, namely the Request-

Chapter 7: Business Process Specification and Registration

 153

Response and the Contract-Net protocol. Finally, the PNA should also formulate outgoing
ACL/XML messages accordingly and take decisions about the proposals that he should do
during negotiation based on a well-defined but simple strategy. All the above stated operations
are provided by specialized entities included into the PNA agent. In addition to the generic
entities of a FIPA compliant agent, the internal architecture of the PNA agent contains the
following modules:

• VMP and INDO XML Parser: responsible for parsing the content of the FIPA ACL
messages based on the marketplace and the Inter-domain ontology,

• VMP and INDO Message composer: responsible for composing the appropriate response
FIPA ACL-XML messages related either with the marketplace agents or the RNA The
structure of the messages is based on both the virtual marketplace and the Inter-domain
ontology,

• Decision manager: responsible for controlling the basic operations of the agent,
communicating with the Offer Repository, the Strategy manager, and the other entities

• Strategy manager: responsible for providing proposals during the negotiation process and
according to a well-defined strategy. In the context of this thesis12, only a simple strategy
algorithm has been implemented.

In the following picture the internal architecture of the PNA agent and the relationships among
the basic modules is depicted.

ACL
Parser

VMP & INDO
XML Parser

Decision
Manager

Offer
Repository

Message
Composer

Provider
Negotiation

Agent

Communication

Manager

Java Invocations

FIPA ACL/XML

Strategy
Manager

Figure 40: Provider Negotiation Agent Internal Architecture

The PNA initially retrieves from the Offer Repository all the local process that have been
specified. For that reason, the agent accesses the XML file of the Offer Repository and
instantiates the Offer Repository object. In the sequel, for every local process specified in the
Offer Repository, the agent retrieves the name of the process, the input, output and negotiation
parameters and the values associated with them. As soon the retrieval of the data from the Offer
Repository finished, the agent migrates to the virtual marketplace using the native migration
services of the agent platform. Then, for the local processes specified in the Offer Repository

12 The strategy that can be followed during negotiation process is out of the scope of this thesis. However, the
interesting reader can have a look on the following reference (Bichler 98)

Evangelos K. Ouzounis

 154

performs the following operations. The PNA generates a service type registration message and
sends it to the STA agent. The service type has as a name the name of the local process, and
properties the names and values of the input, output and negotiation parameters. If there is no
service type with such characteristics, then a new service type is created. As soon as a service
type has been found or created, the PNA agent generates a service offer registration request
message and sends it to the SOA agent. The message is a FIPA compliant ACL/XML message
that follows the virtual marketplace ontology. Property values for the negotiation parameters are
only the allowable values specified in the negotiation parameters, i.e. the negotiation parameters
that have public mode. On the contrary, private property values that will influence the
negotiation process are kept secret and are not included into the offer registration. When all the
local processes have been successful registered into the marketplace, the PNA migrates back to
the original domain using the migration services of the mobile agent platform. In the following
Figure 41 the steps involved in the registration of the local business processes into the virtual
marketplaces are depicted.

Virtual MarketPlace VE C andidate partner

1

4,5

3

2

Grasshopper

FIPA

Distr ibuted Process ing
Environment

O f f e r
R e p o s i t o r y

P N A

STA

S O A P N A

Java Invocat ion FIPA ACL/XML

M i g r a t i o n

6

Grasshopper

FIPA

Distr ibuted Process ing
Environment

Figure 41: Business Process Registration into the Virtual Marketplace

In the following sequence diagram, the internal steps that the PNA agent follows to create a
service type based on the data stored into the Offer Repository in relation to the internal modules
is depicted. When the PNA agent launched, it first parses the Offer Repository in XML and
instantiates an Offer Repository object. In the sequel, the Decision Manager gets all the stored
offers. For every Offer object, the Decision Manager retrieves the name of the local process, the
input parameters, the output and the negotiation parameters. For each one of these objects, the
agent retrieves the name of the parameter, value and the constraints specified for it. Based on
these information, the agent with the help of the Message Composer creates a create service type
request message, that complies with the virtual marketplace ontology, and sends it to the STA
agent located in the virtual marketplace.

Chapter 7: Business Process Specification and Registration

 155

 : D e c i s i o n
M a n a g e r

 : O f f e r
R e p o s i t o r y

 : O f f e r : m e s s a g e
c o m p o s e r

 : C o m m u n i c a t i o n
M a n a g e r

g e t O f f e r ()

g e t I n p u t P a r a m e t e r s ()

g e t O u t p u t P a r a m e t e r s ()

g e t N e g o t i a t i o n P a r a m e t e r s ()

i n s t a n t i a t e O f f e r ()

c r e a t e R e g i s t e r S e r v i c e T y p e ()

s e n d m e s s a g e ()

Figure 42: PNA Service Type Generation Sequence Diagram

Furthermore, in the following sequence diagram, the internal steps that the PNA agent follows to
create and register a service offer based on an existing service type in relation to internal
modules is depicted. In similar way like in previous case, the Decision Manager gets all the
stored offers and for every Offer object, the name of the local process, the input parameters, the
output and the negotiation parameters are retrieved. Based on this information, the agent creates
a register service offer request message, which complies with the virtual marketplace ontology,
and sends it to the SOA agent located in the virtual marketplace.

 : O f f e r
R e p o s i t o r y

 : D e c i s i o n
M a n a g e r

 : O f f e r : m e s s a g e
c o m p o s e r

 : C o m m u n i c a t i o n
M a n a g e r

g e t O f f e r ()

g e t I n p u t P a r a m e t e r s ()

g e t O u t p u t P a r a m e t e r s ()

g e t N e g o t i a t i o n P a r a m e t e r s ()

i n s t a n t i a t e O f f e r ()

c r e a t e R e g i s t e r S e r v i c e T y p e ()

s e n d m e s s a g e ()

c h e c k N e g o t i a t i o n P a r a m e t e r M o d e ()

Figure 43: PNA Service Offer Generation Sequence Diagram

Moreover, when the Business Process Analysts deletes or modifies an offer from the Offer
Repository, the corresponding offer in the virtual marketplace should be deleted or modified. In
both cases, the PNA agent is re-launched again. In principle the agent follows the same process
as previously described. In more details, the agent retrieves from the Offer Repository the set of

Evangelos K. Ouzounis

 156

offers that have been deleted and modified. The names of these offers are stored in individual
lists maintained by the Offer Repository. In the case of the deleted ones, the PNA migrates to the
virtual marketplace, creates a withdraw service offer request messages and sends them to the
SOA agent. In the case of modified, the PNA retrieves from the Offer Repository the modified
offers and creates corresponding modify service offer request messages and sends them to the
SOA agent in the virtual marketplace. As soon this service offer update process has finished, the
PNA migrates back to its original domain and deletes the list of deleted and modified offers
maintained in its local Offer Repository. When new modifications to existing offers will be
done, the PNA agent will perform in a similar way, i.e. by updating the services offers in virtual
marketplace and thus, maintaining consistency with the offers stored into the local, domain
specific Offer Repository.

Finally, the PNA agent is also responsible for negotiation process during partner selection. For
that reason, the PNA negotiates with the Resource Negotiation Agents (RNAs) located in the VE
partner domains by following a standard negotiation ontology and protocol. Details regarding
how the PNA agent is functioning, the type of messages exchanged, and the protocol and
ontology used will be provided in the section related to Resource Negotiation Agent.

7.4 Summary
This chapter presents the detailed specification and design of the business process specification
phase. More specifically, the XML-based business process definition language for shared
business processes and the key constructs of it are fully analysed. In addition to that, the
business process repository that stores business processes is presented and specified. Finally, the
business process registration process is presented and analysed. This is actually the process that
the different providers are using to register offers in the virtual marketplace. In that case, the
Negotiation Provider Agent (NPA) is specified and analysed. The internal architecture of the
agent, the services that it provides, as well as, a set of sequence diagrams, that explain the
involvement of the internal modules, are provided.

 157

Chapter 8: Business Process Management

8.1 Introduction
Business process management is related with the execution and management of shared business
processes across different administrative domains. The management of business processes is
performed in a autonomous and distributed way and is fully performed by autonomous
intelligent mobile agents without human intervention.

The execution of a shared business process starts by the end-user of the VE. The main operations
that this role performs are:

• log into the web site of the VE representative that provides the shared business processes by
using a standard web browser,

• execution of a shared business process and monitor of the status of the running process,

• management of a shared business process, i.e. suspension, resumption, or termination of a
running business process.

In addition to the above user initiated operations, the following situations occur. When a running
business process is completed, the results of the process, i.e. the output parameters of it, are
returned to the user automatically. Furthermore, If during the execution of a process a problem
occurs, then the process is aborted and the user is notified about this fact.

The execution and management of shared business processes, in the context of dynamic VEs, are
performed from the following autonomous, intelligent, FIPA compliant agents.

• Personal User Agent (PUA) responsible for managing the requests of the end-users
coming from the standard web browsers. This agent is located on the VE representative
domain. Every user request is checked for authorization and then is forwarded to the
Domain Representative agent (DR).

Evangelos K. Ouzounis

 158

• Domain Representative (DR) responsible for managing the requests of the PUA, if the
domain plays the role of the VE representative and the requests of the remote domains, if
the domain plays the role of the VE partner. In both cases, the DR authenticates the requests
by conducting the Contract Repository. If the request is an authorized one and is related to
the instantiation of a new process, the DR creates a Workflow Provider Agent (WPA) that
will serve the request, otherwise the corresponding existing WPA is located and the request
is forwarded to him,

• Workflow Provider Agent (WPA) responsible for executing and managing an instance of
a process or sub-process. The WPA replies to requests coming from the DR or informs the
DR about the status of the process that it executes. Additionally, the WPA co-operates in an
autonomous way with other WPAs during the execution of the business processes. Finally,
the WPA controls the execution of atomic processes involved into the business process by
invoking, requesting, or informing different Resource Provider Agents (RPA),

• Resource Provider Agent (RPA) responsible for carrying out one specific atomic process
of the business process. One atomic process is a simple elementary processing unit that can
be included into one or more business processes. An RPA agent always deploys existing
resources or business objects provided by the domain in a distributed and interoperable way.

• Requestor Negotiation Agent (RNA) responsible for managing the partner search,
negotiation, and selection process. When a WPA realizes that a remote process is required
for the continuation of the currently executed business process, it creates automatically a
RNA agent. This agent migrates to the virtual marketplace, selects the potential VE
candidate partners, based on some constraints, and starts a negotiation process with them.
The result of the negotiation is an electronic contract that regulates this agreement.

• Provider Negotiation Agent (PNA) represents a VE candidate domain during the
negotiation process and is responsible for the automated negotiations with other RNAs.
Additionally, PNAs manage the business process registration to the virtual marketplace and
update the contract repository when a negotiation process has been successfully ended, i.e. a
contract has been agreed upon.

Based on the above definitions, the reference architecture of the VE representative or the VE
partner domain is depicted in the Figure 44.

Distributed
Processing
Environment

Agent
Platform &
Supporting
Services Grasshopper Mobile Agent Platform

Business Objects

&
Lecagy Services

WPA

FIPA Add On

RPA DR

Distributed Processing Environment

ACC DF AMS
X
M
L

PNA RNA

Business Process
Repository

Contract
Repository

Offer
Repository

PUA

Figure 44: Business Process Specification, Registration, and Management Reference
Architecture

Chapter 8: Business Process Management

 159

In general, a business process consists of sub-processes. Each sub-process consists of one or
more sub-processes or one atomic process. For a given process, the father of this sub-process is
called the super-process while a child of the process is called the sub-process. Every sub-process
has one and only one super process and one ore more sub-processes. On the contrary, an atomic
process has one super process and no one sub-processes. This hierarchical organization of
processes and sub-processes leads to the formation of a directed graph.

Based on the operations provided to the user, a business process can be in different states. The
different states of a business process are:

• ready, after the instantiation of the process and before the execution of it,

• running, during the execution of the process,

• suspended, when the process has been suspended by the user or other super process,

• resumed or running, when the process were previously suspended and has now been
resumed,

• completed when the execution has been completed,

• terminated when the initiator of the process has requested to terminate the process,

• aborted when the process, sub-process, or an atomic process has declared that it can not
perform its operation and thus it aborts itself.

The following state transition diagram reveals the different states and how the process can
change states. The nodes in the diagram denote the states while the arrows represent transitions
from one state to the other. The messages on the arrows represent the events that might trigger
the transition of the process from one state to the other. The dotted arrows reveal that the process
it self, without any external intervention, can transit from one state to other. This means that
when a process has be en completed then it moves automatically, without any external
intervention, to the terminated state. In a similar way, when a process has been aborted, it
automatically moves into the aborted state. In all other cases, the process changes status after an
external event generated by the end-user or the super process.

terminate

abort

terminate complete

abort

resume suspend

run ready running

suspended

terminated

aborted

completed

Figure 45: Process State Transition Diagram

When a process or sub-process changes state, then all the sub-processes should be informed
accordingly. Therefore, when a business process is suspended, then all the running sub-processes
and atomic processes should be suspended as well. In a similar way, when a process is resumed,

Evangelos K. Ouzounis

 160

all the sub-process that have been suspended previously should also be resumed. Finally, if a
process is aborted, then the execution of this process cannot be continued. In this case, the whole
execution of the process should be aborted, i.e. all the sub-processes and atomic processes
should also be aborted.

For example, when a request for suspension is arriving to a process, the process requests from its
sub-processes to suspend. The sub-processes request from their sub-processes to suspend and so
on. When the final level of sub-processes within the same process is reached, then these sub-
processes are suspended and they inform their super-processes about their suspended state.
When all the sub-processes of a process reported that they suspended, then the process can also
suspend and inform its super-process. The similar phenomenon occurs and in the case of
resumption, completion and termination. The lowest level sub-processes are completed or
terminated first and then the highest levels complete or terminate one by one until the initial
starting process is reached. Finally, the process informs the end-user about its current state or
results.

However, in the case of abortion, the algorithm is working in a different way. If one sub-process
cannot continue its operation, it informs its super-process and then aborts. When the super
process receives an abort message from one of its sub-processes, it requests from the other
remaining sub-processes to abort. When all the sub-processes have been aborted, then the
process informs its super process about this fact and finally aborts. If a super process receives an
abort message, it functions in a similar way. The whole procedure is continuing until the initial
process aborts and reports its state to the end-user.

In general, the following conditions are hold for the status of a process:

• a process is running when all of its sub-processes and atomic processes are running,

• a process is suspended when all of its sub-processes and atomic processes are suspended,

• a process is resumed or running again when all of its sub-processes and atomic processes
are suspended,

• a process is terminated when all of its sub-processes and atomic processes are terminated,

• a process is aborted when at least one of the sub-processes or atomic processes is aborted,

• a process is completed when all of its sub-processes and atomic processes are completed.

This back tracking alterations on process and sub-processes status are depicted in the following
Figure 46. The numbers on the arrows depict the order that the events occur while the direction
the requestor and the receiver.

Chapter 8: Business Process Management

 161

10:suspended

9:suspended

8:suspended

7:suspended 6:suspended 5:suspended
4:suspend 3:suspend

2:suspend 2:suspend

1:suspend

3: suspend

Figure 46: Process Status Mechanism

For every running business process a process instance is instantiated. This means that different
instances of the same process can be executed and managed. Every instance of a process has a
unique process id that differentiates it from the others. Although all of these instances are
instantiated based on the definition of the business process, they are different due to the different
input values that the users have provided for them. Therefore, a process instance is, in a similar
way to object oriented systems, an object while a business process definition is the class
specification. Process instances are executed and managed by autonomous, intelligent, FIPA
compliant agents. In particular, a process or sub-process is managed and executed by a
Workflow Provider Agent (WPA), while an atomic process is managed and executed by a
Resource Provider Agent (RPA). This means that the execution and management of shared
process instances is provided by a set of WPAs and RPAs that co-operate autonomously to
accomplish the completion of the process.

The communication between WPAs and RPAs is performed by the exchange of FIPA compliant
ACL/XML messages while the communication protocol used is the FIPA Request-Response
protocol. The content of the messages is specified based on the inter and intra domain ontology.
The intra and inter domain ontology specifies all the messages that the autonomous agents can
exchange during the execution and management of a business process. If the agents belong in
the same administrative domain, then the intra-domain ontology is used. If the agents belong to
different domains, then the inter-domain ontology is used.

In the following sections, the different agents participate in the execution and management of
VE processes are presented and certain details regarding the internal architecture, the modules
and the operations that they provide are explained.

8.2 Personal User Agent
The Personal User Agent (PUA) is responsible for managing the requests of the end-users. This
agent is located on the VE representative domain. In principle, the Personal User Agent
“represents” the end user in the multi-agent system. Actually, the PUA is technically a gateway
among the conventional web server of the VE representative and the multi-agent system. This
means that all the requests of the user are managed from the web server and the PUA. Every

Evangelos K. Ouzounis

 162

request from the user is translated into a legitimate ACL/XML message following the intra-
domain ontology and sent to the Domain Representative (DR) agent for further fulfilment.

The main operations of the PUA agent are the following: the user, using a normal Web browser,
logs into the VE representative web site and selects one VE business process for execution. The
VE representative web site initially checks if the user is authorized13 to use this process and then
requests from him to provide values for the input parameters of the process. After the user has
provided values for the input parameters, the execution of the process can start. This request for
process execution is forwarded to the Personal User Agent (PUA), which creates a legitimate
ACL/XML message with the name of the process, the instance id, and the input parameters and
values, and sends it to the Domain Representative (DR) agent for further fulfilment. The DR
agent gets the request and starts the execution of the corresponding process. When the execution
of the process has been started, the user can always suspend the process, resume the process if it
was previously suspended, terminate the process or ask for the status of the process. All the
above mentioned requests are managed initially by the VE representative web server and are
then forwarded to the PUA.

The following figure depicts these interactions. The requests from the user are forwarded from
the web site to the PUA through a normal TCP/IP connection, i.e. the web server and Java
servlets open a TCP/IP socket connection with the PUA and forwards to him the request.

VE Representative
Domain

FIPA ACL/XMLTCP/IP
HTTPWeb

browser
Web Server

Java Servlets

user

FIPA

Grasshopper

DPE

PUA

Customer Domain

DR

Figure 47: Personal User Agent Interaction Model

The PUA maintains for each user of the VE representative the list of processes that have been
initiated by him. This information is stored into the Active User Repository (AUR). The AUR
stores for every user the process instances, the status of each process instance, and input and
output values. Whenever a new process instance is instantiated, a new entry is created into the
AUR in relation to a user. When a process instance is completed, the corresponding process
instance entry is deleted from the AUR. If the user requests to suspend, resume, or terminate a
process instance, the current status of the process instance is also stored into the AUR.

The Active User Repository consists of the following three key entities, namely:

13 Subscription of the user to the VE services is performed off-line in a manually way. The off-line subscription is
considered out of the scope of the thesis. However, the interesting reader can get more information about on-line and
off-line subscription on http://www.fokus.gmd.de/research/cc/platin/projects/

Chapter 8: Business Process Management

 163

• Active User Repository (AUR) which provides the main operations to the PUA, like
management of active users and process instances

• Active User (AU), which provides operations for the management of process instances of a
particular user like create process instance, retrieve all instances, etc.

• Process Instance Status (PIS), which provides operations for the management of a
particular process instance, like update process status instance, get and set instance name,
etc.

The class model of the Active User Repository and the relationships among the main entities is
depicted in the following Figure 48.

Active User Repository

getActiveUser()
setActiveUser()
deleteActiveUser()
getAllActiveUsers()

Active User

getAllInstances()
createInstance()
deleteInstance()
modifyInstance()

0..*1 0..*1

Parameters

name
type
value
constraint

(f rom business process def in i t ion language)

Input Parameters
(f rom business process def in i t ion language)

1

1

1

1

Process Instance Status

getInstanceName()
setInstanceName()
getInstanceStatus()
setInstanceStatus()
getProcessName()
setProcessname()
getInputParameters()
setInputParameters()
getOutputParameters()
setOutputParameters()

0..*
1

0..*
1

0..*

1

Output Parameters
(f rom business process def in i t ion language)

1

1

1

1

0..*
1

1

0..*
1

0..*

Figure 48: Active User Repository Class Model

In addition to the key entities of a FIPA compliant agent, the PUA agent contains the following
key modules:

• INDO XML Parser: responsible for parsing the content of the FIPA ACL messages based
on the intra-inter domain ontology,

• INDO Message composer: responsible for composing the appropriate response FIPA ACL-
XML messages related to the DR agent. The structure of the messages is based on the inter-
domain ontology,

• Decision manager: responsible for controlling the basic operations of the agent,
communicating with the Active User Repository and the other entities

• TCP/IP server: responsible for getting the requests of the users from the web site and for
initiating the necessary actions. It also forwards back the web site the results of the requests.

Evangelos K. Ouzounis

 164

In the following picture the internal architecture of the PUA agent and the relationships among
the basic modules is depicted.

TCP/IP
Server

INDO
XML Parser

D e c i s i o n
M a n a g e r

Active
User

Repository

Message
C o m p o s e r

Personal
User

Agent

Communication

Manager

Java Invocations

FIPA ACL/XML

ACL Parser

T
C
P

TCP/IP requests from the
Web site

Figure 49: Personal User Agent Internal Architecture

In the following sequence diagram, the internal steps that the PUA is undertaking to start a
business process for a given user are provided. The other type of operations, like suspend,
resume and terminate a process instance or ask the status of a process instance are performed in
a similar way. Initially, a start process instance request is generated by the end-user and sent to
the PUA through a TCP/IP connection. The TCP/IP server of the PUA agent gets the request of
the user and forwards it to the Decision Manager. The Decision Manager identifies the nature of
the request, i.e. to a start process, creates a new entry in AUR, and composes a start process
ACL/XML message that the Communication Manager sends to the DR agent. When the process
instance has started (see section about DR), the DR agent informs the PUA agent, by sending a
FIPA ACL/XML inform message, about the successful instantiation of the process instance, i.e.
the process instance is running. The Communication Manager forwards it to the Decision
Manager, which parses it with the help of ACL and XML parser. Afterwards, the PUA checks
semantically the message, updates the AUR and forwards the response to the TCP/IP server. The
TCP/IP server forwards the request to the web server and finally to the user.

Chapter 8: Business Process Management

 165

 : TCP/IP server : Decision
Manager

 : Active User
Repository

 : message
composer

 : Communication
Manager

 : ACL Parser : XML Parser

check request()

setActiveUser()

composeStartProcessRequest()

send message()

forward message()

parse ACL()

parse XML()

checkMessage()

setActiveUser()

informUser()

Figure 50: Start Process Sequence Diagram

In a similar manner, when a particular process instance has been completed, the DR agent sends
to the PUA agent a FIPA ACL/XML message informing him that the process instance has
completed. The message contains the name of the process, the instance id, and the set of output
parameters and values of the process. The PUA agent parses the message using the ACL and
XML parser and checks the type of inform message. Since the message is completed, the
Decision Manager informs the Active User Repository by setting the status of the process and
the output parameters and values. In the sequel, the Decision Manager informs the user about the
new status of the process and the output results. The internal steps that the PUA performs to
provide this operation are depicted in the following figure.

Evangelos K. Ouzounis

 166

 : XML Parser : TCP/IP server : Decision
Manager

 : Active User
Repository

 : Message
composer

 : Communication
Manager

 : ACL Parser

informUser()

parse ACL()
parse XML()

checkMessage()

getActiveUser()

updateProcessStatus()

compose inform message()

Figure 51: Process Instance Completes Sequence Diagram

In the following section, details about the functionality and internal modules of the DR agent
and how it operates to perform its key operations are provided.

8.3 Domain Representative Agent
The Domain Representative agent is the central communication point within one administrative
domain. The DR is responsible for managing the requests and responses among the agents
executing the business processes within the domain and the users or the remote domains. The
DR agent should be in every administrative domain independent if the domain plays the role of
the VE representative, the VE partner or the VE candidate partner.

The DR agent gets requests from the following agents:

• PUA when a user starts a new process or manages an existing one. In that case the DR is
located in the VE representative domain and the communication among the DR and PUA
agents is intra-domain communication.

• Remote Workflow Provider Agents when a remote process should be started or managed. In
that case the DR is located on a VE partner domain and the communication among the DR
and remote WPA agents is inter-domain.

The different type of requests that the DR can get from these two agents are to start a process, to
suspend a process, to resume a process, to terminate a process or to ask for the status of a
process. The communication among the agents is performed based on message exchanges, i.e.
FIPA compliant ACL/XML messages. The content of the messages follows the inter- or intra-
domain ontology accordingly.

Chapter 8: Business Process Management

 167

The DR agent always checks the identity of the requesting agents and authorizes or not the
execution of the process. In the first case, i.e. when the request is coming from the PUA, the
authorization of the user is performed by the PUA and thus, no extra authorization is performed.
The PUA agent considered by the DR a trusted agent. In the second case, i.e. when a remote
WPA requests the execution of a business process, the DR always checks whether this agent has
the right to access this process. This performed by conducting the Contract Repository.

The Contract Repository maintains a list of contracts that have been established with remote
domains. Every contract is a result of a successful negotiation process between a remote
requestor domain and this domain. The meaning of the contract is strictly technically and not
legal14. The existence of a contract concerning a particular local process means that a specific
WPA agent from a specific remote domain can access this process. The contract has a limited
duration and lasts only during the execution of the local process. When the requested local
process has been completed, then the contract and its corresponding id is deleted. In that way,
processes that are heavily requested by remote domains can be provided with different pricing
schemes while processes that have not been requested can be provided with better prices.

In general, a contract has always a unique id, the date of issue, is characterized as remote or local
and contains data related to both domains. A contract is characterized local when the domain
should provide the process to another domain. On the contrary, a contract is characterized
remote when the domain deploys the business process from another domain. Additionally, the
information stored for every domain can be categorized in three sections, namely the technical,
the administrative and the pricing15 section. In the technical section, the name of the agents
involved in the provision and management of the process, i.e. the DR and WPA agents, the FIPA
address of these agents (see GUID in chapter 4), the ontology used, i.e. the inter-domain
ontology, and the protocol used, i.e. the FIPA compliant Request-Response protocol, are stored.
In the administrative section, the name of the domains, the physical addresses, the name,
telephone, fax and e-mail address of the administrative person, etc. In the pricing section, the
price agreed, the payment method, the payment deadline, and the bank ids, are stored.

The following XML-DTD specification determines the format of a legitimate contract that can
be established among two VE partners.
<!-- Contract Repository -->
<!ELEMENT contract (Contract_ID, DateOfIssue, IsRemote, RequestorSection,
SupplierSection)>

<!-- Contract Characteristics -->
<!ELEMENT Contract_ID (#PCDATA)>
<!ELEMENT DateOfIssue (day_entity)
<!ELEMENT day_entity (day, month, year)>
<!ELEMENT day (#PCDATA)>

14 The interesting reader might get more information about the legal aspects of contracts in the following reference:
Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data and on the free movement of such data, OJEC L 281 of 23
November 1995 and European Directive EC/97/7 of the European Parliament and the Council of 20 May 1997 on the
protection of consumers in respect of distance contracts , OJEC L 144 of 4 June 1997, and on COM (97) 503
"Towards A European Framework for Digital Signatures And Encryption, available on
http://www.ispo.cec.be/eif/policy/97503.html
15 Accounting mechanisms for inter-domain usage of services is out of the scope of this thesis. However, the
interesting reader can have more information about that on “Introduction to Accounting Management” by B. Aboba, J.
Arkko, D. Harrington in the following IETF draft-ietf-aaa-acct-03.txt, 02-May-00

Evangelos K. Ouzounis

 168

<!ELEMENT month (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT IsRemote(#PCDATA)>

<!-- Contract Main Entities -->
<!ELEMENT RequestorSection (Technical_Section, Administrative_Section,
Pricing_Section)>
<!ELEMENT Supplier Section (Technical_Section, Administrative_Section,
Pricing_Section)>

<!-- Contract Technical section specification -->
<!ELEMENT Technical_Section (agentName, FIPA_Address, Ontology, Protocol)>
<!ELEMENT agentName (#PCDATA)>
<!ELEMENT FIPA_Address (#PCDATA)>
<!ATTLIST Technical_Section Ontology (Inter-Domain | Intra-Domain) 'Inter-
Domain' #REQUIRED>>
<!ATTLIST Technical_Section Protocol (Request-Response | Query-Response |
Contrat-Net) 'Request-Response' #REQUIRED>>

<!-- Contract Administrative section specification -->
<!ELEMENT Administrative_Section (DomainName, Address, telephone, fax, e_mail)>
<!ELEMENT DomainName (#PCDATA)>
<!ELEMENT Address (address_entity)>
<!ELEMENT address_entity (street, city, zipcode, country)
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT zipcode (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT e-mail (#PCDATA)>

<!-- Contract Pricing section specification -->
<!ELEMENT Pricing_Section (price, paymentMethod, paymentDateline, BankZIp)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST pricing_Section paymentMethod (visa | eu-card | bank-transfer) 'visa'
#REQUIRED>>
<!ELEMENT paymentDateline (day_entity)>
<!ELEMENT BankZip (#PCDATA)>

All the contracts are stored in a conventional file system as ASCII XML files that follow the
previously mentioned format. In addition to that, a configuration file called
contract_repository.xml maintains all the existing contracts, i.e. the names of the contract files.

The main operations that the contract repository provides are to create a new contract and to
delete an existing one. Modification of the contract is not allowed as soon as a contract has been
created. The main reason is that existing contracts have been agreed on during negotiation and of
course can not be changed individually by one domain without prior knowledge of the other. In
the following Figure 52 the class model, the key entities and the relationships of the Contract
Repository are depicted.

Chapter 8: Business Process Management

 169

T e c h n i c a l S e c t i o n

g e t A g e n t N a m e ()
s e t A g e n t N a m e ()
g e t F I P A A d d r e s s ()
s e t F I P A A d d r e s s ()
g e t O n t o l o g y ()
s e t O n t o l o g y ()
g e t P r o t o c o l ()
s e t P r o t o c o l ()
opname()

C o n t r a c t R e p o s i t o r y

ge tCon t rac t ()
s e t C o n t r a c t ()
d e l e t e C o n t r a c t ()

C o n t r a c t

ge t I d ()
s e t I d ()
g e t R e q u e s t o r S e c t i o n ()
s e t R e q u e s t o r S e c t i o n ()
g e t S u p p l i e r S e c t i o n ()
s e t S u p p l i e r S e c t i o n ()

0 . . *1 0 . . *1

R e q u e s t o r S e c t i o n

g e t T e c h n i c a l S e c t i o n ()
s e t T e c h n i c a l S e c t i o n ()
g e t A d m i n i s t r a t i v e S e c t i o n ()
s e t A d m i n i s t r a t i v e S e c t i o n ()
g e t P r i c i n g S e c t i o n ()
s e t P r i c i n g S e c t i o n ()

1

1

1

1

1

1

A d m i n i s t r a t i v e S e c t i o n

g e t D o m a i n N a m e : r e t u r n ()
s e t D o m a i n N a m e ()
g e t A d d r e s s ()
s e t A d d r e s s ()
ge tTe lephone ()
s e t T e l e p h o n e ()
g e t F a x ()
s e t F a x ()
g e t E m a i l ()
s e t E m a i l ()
g e t P e r s o n N a m e ()
s e t P e r s o n N a m e ()

1

1

S u p p l i e r S e c t i o n

g e t T e c h n i c a l S e c t i o n ()
s e t T e c h n i c a l S e c t i o n ()
g e t A d m i n i s t r a t i v e S e c t i o n ()
s e t A d m i n i s t r a t i v e S e c t i o n ()
g e t P r i c i n g S e c t i o n ()
s e t P r i c i n g S e c t i o n ()

1

1

1

1

1

1

1

1

P r i c i n g S e c t i o n

g e t P r i c e ()
s e t P r i c e ()
g e t P a y m e n t M e t h o d ()
s e t P a y m e n t M e t h o d ()
g e t P a y m e n t D e a d l i n e ()
s e t P a y m e n t D e a d l i n e ()
g e t B a n k I d ()
s e t B a n k I d ()

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

Figure 52: Contract Repository Class Diagram

The Contract Repository used by the Provider Negotiation Agent (PNA) when a successful
negotiation process has been performed. In that case, when the negotiation completes
successfully, the PNA creates a new contract XML file, stores it into the file system and updates
the contract_repository.xml configuration file about the new contract. In the sequel, when a
request about a process execution arrives from a remote domain, the DR retrieves the
corresponding contract, checks the contract id and the name of the requesting agent, and enables
the execution or not of the requested process. In such a way, access control and authentication is
performed.

When the DR gets a request from the PUA or from a remote WPA it functions in the following
way: if the request is to start a process, the DR instantiates a new WPA agent and forwards to
him the request. The request contains the name of the process, the process instance, the contract
id, and the input parameters and values. From now on, the newly created WPA is responsible for
the execution of the requested process. If the request is to suspend, to resume, or terminate a
process, the DR locates the corresponding WPA agent for this process and forwards the request
to him.

In order the DR to perform the mapping between the running process instances and the
corresponding WPA agents executing these instances, the DR maintains a List of Active
Processes (LAP). Whenever a new instance is instantiated, a new entry is created on the LAP.
Whenever an instance terminates, completes, or aborts the DR deletes the corresponding entry
from the LAP. The LAP entries are actually records containing the process name, the instance

Evangelos K. Ouzounis

 170

id, the contract id, the name of the WPA agent, and the name of the agent that initially requested
to start the instance of the process.

Whenever a process instance changes status, it informs the initial requestor agent of this
instance. This means that the responsible for this instance WPA, informs the DR about the status
change by sending a FIPA ACL/XML message following the intra-domain ontology. The DR
checks on the LAP to find the initial requestor agent, constructs a legitimate ACL/XML
message, and forwards it to the related agent. It should be noted that responses about status
changes are performed after corresponding requests have been issued. This means that a process
instance will send a suspend status message only after getting a request to suspend. The only
case that responses are generated without prior requests is when a process completes or when a
process aborts. In that case, the process instance changes automatically status and informs the
other agents about the change.

In addition to the key entities of a FIPA compliant agent, the DR agent contains the following
modules:

• INDO XML Parser: responsible for parsing the content of the FIPA ACL messages based
on the intra-inter domain ontology,

• INDO Message composer: responsible for composing the appropriate response FIPA ACL-
XML messages related to the local WPA, PUA and remote WPA agent. The structure of the
messages is based on the inter-intra domain ontology,

• Decision manager: responsible for controlling the basic operations of the agent,
communicating with the Contract Repository, the LAP and the other entities

• List of Active Processes (LAP): responsible for maintaining all the active local processes
running on this domain.

In the following picture the internal architecture of the DR agent and the relationships among the
basic modules is depicted.

ACL Parser INDO
XML Parser

Decision
Manager

Contract
Repository

INDO Message
Composer

Domain
Representative

Agent

Communication

Manager

Java Invocations

FIPA ACL/XML

LAP

Figure 53: Domain Representative Agent Internal Architecture

In the following sequence diagram, the internal steps that the DR agent follows to serve a
request for a new process instance are provided. Initially, the DR gets an ACL/XML message
from a remote WPA. It first parses the message using the ACL and the inter-domain XML

Chapter 8: Business Process Management

 171

parsers. In the sequel, the DR checks the type of the request, i.e. start new process instance, and
conducts the Contract Repository to check if there is an existing contract with this remote WPA
agent. If a contract already exists, the DR creates a WPA agent using the native commands of
the agent platform, i.e. the Grasshopper, updates the List of Active Processes and composes an
ACL/XML message. The request message for the creation of new process instance is send to the
newly created WPA. The message contains the name of the process, the instance id assigned to
this process instance, the input parameters and the values for each one of them. Requests for the
creation of new process instance coming from the PUA are served in a similar way. The only
difference is that the contract repository is not involved since the PUA agent is considered a
trusted agent.

 : Decision
Manager

 : Communication
Manager

 : ACL Parser : XML Parser : Contract
Repository

 : LAP : message
composer

forward message()

parse ACL()

parse XML()

getContract()

checkContract()

createWPA()

createLAPEntry()

composeStartProcessRequest()

send message()

Figure 54: Start Process Sequence Diagram

In the following sequence diagram, the internal steps that the DR agent follows to serve a
response coming for an existing process instance and should be forwarded to the initial requestor
agent, i.e. the PUA or the WPA discussed. Initially the DR gets an ACL/XML response message
from one of its local WPA, parses it with the ACL and XML parser, and then checks the LAP. If
the response message is terminated, aborted, or completed, the DR deletes the corresponding
entry from the LAP. In addition to that, in case that the process has been completed, the
corresponding contract has been fulfilled and thus, should be deleted from the contract
repository, i.e. the contract_repository.xml. Access to this local process by this remote WPA is
not valid any more unless a new contract will be established. In the sequel, the DR agent creates
a legitimate response ACL/XML message and forwards it to the agent that started the process.

Evangelos K. Ouzounis

 172

 : ACL Parser : Communication
Manager

 : Decision
Manager

 : XML Parser : LAP : message
composer

forward message()

send message()

parse ACL()

parse XML()

checkLAPEntry()

composeStartProcessRequest()

Figure 55: Response Sequence Diagram

In the following section the key operations of the WPA agent are provided and certain details
about the internal architecture, as well as, the modules are provided.

8.4 Workflow Provider Agent
The Workflow Provider Agent (WPA) is responsible for the execution and management of a
business process instance. The execution and management of a process instance is done in a
distributed, autonomous and co-operatively way by a set of WPA agents.

In general, the life-cycle and status of a WPA are the same like the life-cycle of a business
process instance, i.e. a WPA exists, as soon as, the corresponding process instance exists. If the
process instance terminates, aborts or completes, then the WPA dies out. Additionally, the WPA,
in a similar way like the process instance, can be in different states based on the status of the
instance that it executes. Therefore, when the process instance status is running, then the WPA is
also running, while when the process instance status is suspended, then the WPA suspends. If
the process instance status is aborted then the WPA also aborts, while when the process instance
status is completed, then the WPA also completes.

In general, the following conditions are hold for the status of a WPA and its co-operating agents:

• a WPA is running when all of its sub-process WPAs and RPAs are running,

• a WPA is suspended when all of its sub-process WPAs and RPAs are suspended,

• a WPA is resumed or running again when all of its sub-process WPAs and RPAs are
suspended,

• a WPA is terminated when all of its sub-process WPAs and RPAs are terminated,

• a WPA is aborted when at least one of the sub-process WPAs or RPAs is aborted,

Chapter 8: Business Process Management

 173

• a WPA is completed when all of its sub-process WPAs and RPAs are completed.

A WPA can be instantiated by either the DR, when a new process has been requested, or by
another WPA, if the originator WPA needs to start a new sub-process for this process. In both
cases, the creation of the WPA by either, the DR, or the WPA is provided by the underlying
agent platform. Initially, the parent agent instantiates the new WPA and sends him a message to
start executing a specific process, with a given name, instance id, and given set of input
parameters and values. The newly created WPA retrieves from the Business Process Repository
the specification for this process and starts the execution of it.

Due to the fact that different instances of the same process might simultaneously exist, there
should be a way to differentiate the instances and consequently the different WPAs that provide
them. For that reason, the concept of the instance id has been used. For every given process,
there are different instances with different ids. The combination of process name and instance id
is unique and corresponds to only one active process instance. The instance ids are created
dynamically by the DR, when a new process instance is started, or by the parent WPA when a
new sub-process starts.

Additionally, there should be a mechanism for the agent platform to differentiate the WPAs that
take part in the execution of a particular instance. For that reason, the name of the WPA has the
following format “process name&instance id”. The same is hold for the sub-processes that also
have a unique process name and a unique instance id. In that case, the parent WPA generates a
new instance id, it stores it internally, and then creates a WPA with the following name
“subprocess name&instance id”. The instance id and the names of WPAs are vital information
for message exchanging and are stored inside the WPA in the List of Active Sub-Processes
(LAP). The LAP, in a similar way like in DR, stores the names and instances of all the sub-
processes and atomic process and the corresponding names of the WPA and RPA agents that
currently provide them. Due to the fact that the communication among the agent is based on the
FIPA ACL, the names of agents are playing a very important role.

The type of request messages that the WPA can get from the DR or the parent WPA are the
same as in the case of the DR, i.e. to start a process, to suspend it, to resume it, to terminate it, or
to ask about the status of the process. For every request, a response is generated. The response
actually contains the name of the process, the instance id and the current status of the process
instance. The status of a process instance can be running, suspended, aborted, terminated, or
completed. Particularly, in case that the process instance aborts or completes, no request
message is required. The process instance, i.e. the WPA, creates the corresponding status
messages, when the status has been changed, and sends them back to the DR or the parent WPA.
Additionally, in case that the process has completed, the values of the output parameters are also
included into the message. In that way, sub-process instances can always exchange data with the
parent process, i.e. the output values of a process might be input values for another sub-process.
The communication among the DR and WPA, WPA and WPA, or WPA and RPA is based on
the FIPA compliant request-response protocol, while the ontology used for the description of
messages is the intra-domain ontology.

In general, a business process consists of sub-processes and external tasks. For every sub-
process, a WPA is created for executing the sub-process, while for every external task, a RPA is
created for executing the atomic process. Initially, when a new process is requested, the DR
creates a WPA that is responsible to execute the requested process. If the process has a sub-
process, then the WPA creates a new WPA and assigns to him the responsibility to execute the
sub-process. If the process has an atomic process, then the WPA creates a RPA and delegates to

Evangelos K. Ouzounis

 174

him the responsibility to execute the atomic process. This means that the execution of a process
instance is provided autonomously and distributed by a set of WPAs and RPAs that co-operate
to execute the process and thus to accomplish a business goal. The co-ordination is achieved by
message exchanges. The format of the messages is FIPA compliant ACL/XML while the
ontology used is the intra-inter domain ontology. The basic algorithm and mechanism for the co-
ordination of agents during process execution has been explained in the process management
section. Details about how the co-operation mechanism is achieved are provided subsequently.

In addition to the key entities of a FIPA compliant agent, the WPA agent contains the following
modules:

• INDO XML Parser: responsible for parsing the content of the FIPA ACL messages based
on the intra-inter domain ontology,

• INDO Message composer: responsible for composing the appropriate response FIPA ACL-
XML messages related to the sub-process WPAs, and the parent WPA or the DR agent. The
structure of the messages is based on the inter-intra domain ontology,

• Decision manager: responsible for controlling the basic operations of the agent,
communicating with the Workflow Engine, the LAP, and the other entities

• List of Active Processes : responsible for maintaining all the active sub-processes and the
corresponding responsible WPAs,

• Workflow Engine : responsible for controlling the execution and management of the
process instance in relation to sub-processes and external tasks.

• External Condition Checker: responsible for evaluating the conditions associated with
every sub-process and for informing the Workflow Engine about when one of them
becomes true.

In the following picture the internal architecture of the WPA agent and the relationships among
the basic modules is depicted.

ACL Parser INDO
XML Parser

Decision
Manager

INDO Message
Composer

Workflow
Provider
Agent

Communication

Manager

FIPA ACL/XML

LAP

Workflow

Engine

External
Condition
Checker

Business Process
Listener Interface
(BPLI)

External Condition
Checker Interface
(ECCI)

Figure 56: Workflow Provider Agent Internal Architecture

The entity within the WPA responsible for controlling the execution of the process instance in
relation to sub-processes and atomic processes is the Workflow Engine (WE). The WE
maintains the status of the process instance and all of the sub-processes and atomic processes,

Chapter 8: Business Process Management

 175

evaluates the conditions associated with every sub-process, generates asynchronously the
requests that will be forwarded to the sub-processes and atomic processes, and generates
asynchronously the inform messages that will be sent to the parent WPA or DR containing the
process status changes. The asynchronous generation of request messages is performed
automatically in the form of events sent to the Decision Manager of the agent by the WE. For
that reason, a special interface has been specified called the Business Process Listener
Interface (BPLI).

The Business Process Listener Interface is actually a set of operations that the Decision Manager
should provide in order to receive the notifications generated by the WE. The WE invokes these
operations asynchronously when certain conditions are met. Actually, all the messages that the
WPA can send to its sub-processes, atomic processes, parent WPA or DR are generated by the
operations of the Process Listener Interface. The class model of the WE is depicted in the
following figure and is strongly related to the Definition Model described into the Business
Process Repository section. In general the WE is instantiated automatically when a new process
instance is requested by the BPR. The WE provides the basic mechanisms to update the status of
sub-processes, to insert input and output values, to suspend, resume, terminate, or abort the
instance and so on. Subsequently the basic mechanism of the WE will be explained in relation to
the WPA operations.

Evangelos K. Ouzounis

 176

ExternalConditionChecker

ProcessConditionDefinition

createInstance(subprocess : SubprocessInstance) : ProcessConditionInstance
isNot() : Boolean
setNot(bool : Boolean) : void
isAnd() : Boolean
isOr() : Boolean
setOr(bool : Boolean) : void
getExternalConditionName() : String
getRuleBody() : String

ProcessConditionInstance

getDefinition() : ProcessConditionDefinition
getSubprocess() : SubprocessInstance
check() : Boolean
setExternalConditionChecker() : void

11 11
0..*1 0..*1

SubprocessDefinition

createInstance(parentProcess : ProcessInstance) : SubprocessInstance
getProcessDefinitionName() : String
isRemote() : Boolean
getPreconditionDefinition() : ProcessConditionDefinition
getIndataNames() : StringCollection
getOutdataNames() : StringCollection

1

1

1

1

BusinessProcessRepository

getProcessDefinition(processDefinitionName : String) : ProcessDefinition
addProcessDefinition (processDefinitionName : String)
removeProcessDefinition(processDefinitionName : String)

ProcessStatus

getStatus()
setStatus()

SubprocessInstance

getDefinition() : SubprocessDefinition
getParentProcess() : ProcessInstance
getPrecondition() : ProcessConditionInstance
getStatus() : ProcessStatus

1

1

1

1

11 110..*1 0..*1

ProcessDefinition

createInstance() : ProcessInstance
getName() : String
getExternalTaskName() : String
getSubprocessDefinitions() : SubprocessDefinitionCollection
getIndataNames() : StringCollection
getOutdataNames() : StringCollection

0..*

1

0..*

1

0..*

1

0..*

1

ProcessListener

ProcessInstance

getDefinition() : ProcessDefinition
run() : void
suspend() : void
resume() : void
abort() : void
terminate() : void
getSubprocesses() : SubprocessInstanceCollection
getStatus() : ProcessStatus
updateStatus(subprocessName : String, subprocessStatus : ProcessStatus) : void
updateStatus(externalTaskStatus : ProcessStatus) : void
getIndata() : StringIndexedHashtable
setIndata()
getOutdata() : StringIndexedHashtable
setOutdata()

1

1

1

1

0..*

1

0..*

1

0..*1 0..*1

1

1

1

1

Figure 57: Workflow Engine Class Model

The operations of the Business Process Listener Interface are divided into three major
categories, namely the operations related to the parent WPA or DR, to the sub-processes and to
the atomic processes.

The operation related to parent WPA or DR is the:

• notifyProcessStatusChanged: the status of the process has changed. The WE notifies the
agent that the process instance has changed status and thus, the agent should inform its
parent about that. The Decision Manager generates an inform message with the new status
and sends it to the parent WPA or DR. In case that the new status is completed, then the
output parameters and values are extracted by the WE and inserted into the message.

The operations related to sub-processes are:

• notifySubprocessNeedsToRun: The WE notifies the agent that the given sub-process should
start its execution because its pre-conditions have been evaluated to true. The Decision
Manager creates a new WPA agent, composes a request message with the name of the sub-
process, the input parameters and the input values, and sends it to the newly created WPA.

Chapter 8: Business Process Management

 177

The input parameters and the values of the new sub-process are provided by the WE.

• notifySubprocessNeedsToSuspend: The WE notifies the agent that the given sub-process
should suspend its execution. The Decision Manager composes a suspend request message
and sends it to the corresponding sub-process WPA responsible for this sub-process.

• notifySubprocessNeedsToResume: The WE notifies the agent that the given sub-process
should resume its execution. The Decision Manager composes a resume request message
and sends it to the WPA responsible for this sub-process.

• notifySubprocessNeedsToTerminate: The WE notifies the agent that the given sub-process
should terminate its execution. The Decision Manager composes a terminate request
message and sends it to the WPA responsible for this sub-process.

• notifySubprocessNeedsToAbort: The WE notifies the agent that the given sub-process
should abort its execution. The Decision Manager composes an abort request message and
sends it to the WPA responsible for this sub-process.

The operations related to the external tasks are similar to the previous ones. These operations
are:

• notifyTaskNeedsToRun: The WE notifies the agent that the given atomic process should
start its execution. The Decision manager creates a RPA agent, composes a request message
with the name of sub-process, the input parameters and the input values and sends it to the
newly created RPA. The input parameters and the values of them are provided by the WE.

• notifyTaskNeedsToSuspend: The WE notifies the agent that the given atomic process
should suspend its execution. The Decision manager composes a suspend request message
and sends it to the RPA responsible for this atomic process.

• notifyTaskNeedsToResume: The WE notifies the agent that the given atomic process should
resume its execution. The Decision manager composes a resume request message and sends
it to the RPA responsible for this atomic process.

• notifyTaskNeedsToTerminate: The WE notifies the agent that the given atomic process
should terminate its execution. The Decision manager composes a terminate request
message and sends it to the RPA responsible for this atomic process.

• notifyTaskNeedsToAbort: The WE notifies the agent that the given atomic process should
abort its execution. The Decision manager composes an abort request message and sends it
to the RPA responsible for this external task.

When the WPA is created, it gets the first request message from its parent WPA or the DR to
start a given process, with a given name, instance id and given input parameters and values. The
WPA gets from the message the process name, the input parameters and the values of these
parameters. Afterwards, the WPA retrieves from the Business Process Repository the Definition
Model for this process and instantiates the Workflow Engine by creating a process instance.
From now on, the WE will control the status of the process and all of its sub-processes. After the
instantiation of the WE, the WPA inserts the values of the input parameters into the Process
Instance object and calls the run method. The previously described steps are depicted in the
following sequence diagram.

Evangelos K. Ouzounis

 178

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : BusinessProcess
Repository

 : Process
Definition

 : Process
Instance

forwardMessage()

parseACL()

parseXML()

checkRequest()

getProcessDefinition(String)

createInstance()

getIndata()

run()

Figure 58: Instantiation of the Workflow Engine

When the run method is called, the status of the process instance is changing to “running”.
Automatically and in an asynchronous way, the WE creates an event notifying the decision
manager about that. The WE actually invokes the notifyProcessStatusChanged operation of the
Process Listener Interface. The Decision Manager, upon receipt of the notification, gets from the
LAP the name of the parent of the process, generates a status inform message and sends the
message to him. The inform message contains the status of the process which in that case is
running. The same procedure is followed for all the process status changes, i.e. when the process
is suspended, resumed, terminated or completed. In all cases the WE invokes the corresponding
notifyProcessStatusChanged method of the Process Listener Interface and then the Decision
Manager functions accordingly. In case that the new status of the process is completed, then the
output parameters and values should be sent to the parent process too. The output parameters
and values are extracted from the Workflow Engine. When the new status of the process is
terminated, aborted, or completed the WPA dies out after he sends the message to his parent.
The steps involved in this process are depicted in the following sequence diagram.

Chapter 8: Business Process Management

 179

 : Decision
Manager

notifyProcessStatusChanged()

 : LAP : Message
Composer

 : Communication
Manager

 : Process
Instance

getParentProcess()

getOutdata()

createInformMessage()

sendMessage()

Figure 59: Creation of Process Status Inform Message

All the previously described operations explain what the WPA does in order to send a message
to other agents. On the contrary, when a WPA gets a message it functions as follows: the WPA
initially parses the ACL/XML message, gets the content of the message, and checks the type of
the message. Two types of messages might arrive:

• request messages: these messages are sent from the parent of the WPA to the WPA.
Potential messages in this category are request for run, suspend, resume, abort, or terminate.
This is actually how the parent process forwards to the lowest levels of the process any type
of events created in higher levels, e.g. the end-user requested to suspend the process.

• inform messages: these messages are sent from the sub-processes or atomic process to the
WPA when their process status has changed. Potential messages in this category are status
changes like suspended, resumed, aborted, terminated, or completed. This is actually how
the sub-processes inform its parent about any type of events occurring in the lowest levels.

In the first case, when a WPA gets a request like suspend, resume, terminate or abort message
from its parent WPA, it invokes the corresponding method provided by the process instance
object. The following sequence diagram explains the steps involved in this type of operations.

 : Decision
Manager

 : Communication
Manager

 : Process
Instance

 : XML Parser : ACL Parser

forwardMessage()

parseACL()

parseXML()

checkRequest()

suspend()

Figure 60: Suspension of a WPA

Evangelos K. Ouzounis

 180

When a WPA gets a suspend request from its father, it informs the WE. In that case the WPA
should suspend all of each sub-processes. In that case, the WE notifies the WPA by invoking the
notifySubProprocessNeedsToSuspend that all active sub-processes of this process should be
suspended. Then the Decision Manager, that asynchronously receives the notification, locates
the names of the sub-process WPAs from the LAP, composes an inform message, and sends it to
all the sub-process WPAs. The same steps are followed when a resume, terminate or abort
request is received. The following sequence diagram shows how these steps are provided by the
different entities.

 : Decision
Manager

 : LAP : Message
Composer

 : Communication
Manager

 : Process
Instance

notifySubprocessNeedstoSuspend()

createInformMessage()

sendMessage()

getSubprocesses()

getSubProcessNames()

Figure 61: Suspension of a sub-process WPA

In the second case, when a WPA gets an inform process status message like suspended,
resumed, terminated or aborted from its sub-processes, it always invokes the updateStatus
method provided by the process instance object. Additionally, if the inform message is
completed, the output parameters and values are extracted from the incoming message and
inserted into the WE. The following sequence diagram explains the steps involved in this type of
operations.

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : Process
Instance

forwardMessage()

checkRequest()

parseACL()

parseXML()

updateStatus(String, ProcessStatus)

Figure 62: Update Status Sequence Diagram

Based on the above description, it is clear that the WE plays a significant role in the execution
and management of a business process. In general, the WE maintains for the process instance
and all the sub-processes the current status and values of input and output parameters. Therefore,

Chapter 8: Business Process Management

 181

when the status of the process changes then the WE generates the corresponding events. When
the conditions related to a sub-process are evaluated to true, then this sub-process should start its
execution. This is performed by the generation of the appropriate event, i.e.
notifySubProcessNeedsToRun . The evaluation of the pre-conditions is performed from a third
party Condition Checker.

The External Condition Checker is actually a module that evaluates logical conditions included
in the business process specification. The logical conditions have been specified in terms of
logical operators, input and output parameters and certain values. The conditions are expressed
in a specific language that the External Condition Checker can understand. In the context of this
thesis, the Java Expert System Shell (JESS) has been used. JESS is an easy to use expert system
written totally in Java that provides all the basic operations of expert systems. JESS has a well-
defined condition specification language that is being used for the specification of conditions.
However, a general interface has been built among the WE and the External Condition Checker,
so as different Condition Checkers can be integrated. The External Condition Checker
Interface (ECCI) enables the WE to update the values of parameters within the JESS database.
The conditions have been specified during process specification and of course, cannot change
dynamically. When a new process instance is created, the conditions related to the sub-processes
are inserted into the JESS database. Then, during the process execution, the evaluation of
conditions is performed from the Condition Checker.

The External Condition Checker Interface is the link between the external Rule Engine and the
Workflow Engine through the process condition instances. Classes implementing this interface
should do the following things:

• Add rules to the rule engine whenever necessary. In practice, this has to be done every time
a new process condition instance representing an external condition is created and the rule
engine should take care of evaluating the rule,

• Subscribing the process condition instance to changes in the rules it is interested in. To do
this, the external condition checker provides a method the process condition instance can
call to notify its interest in a rule, and the external condition checker has to provide a
mechanism internally to make sure that any notifications are forwarded to the correct
process condition instance.

• If the rule engine allows so, the external condition checker should provide a method to do
backward chaining on a rule and return the result of it back to the process condition
instance. If the rule engine can't handle backward chaining, the external condition checker
has to throw an exception of type CannotCheckConditionException.

The following figure clarifies the design and implementation issues.

Evangelos K. Ouzounis

 182

P r o c e s s J e s s E x t e r n a l
C o n d i t i o n C h e c k e r

W P A
E x t e r n a l

C o n d i t i o n C h e c k e r
C l a s s

R u l e - B a s e d S y s t e m

F a c t sRules

L i n k u s e d t o a d d t h e r u l e s
and check i f ru les have f i red

L ink used to in form
E x t e r n a l C o n d i t i o n C h e c k e r w h e n a
rule f i res i f i t has subscr ibed

Link used to in i t i a l i se Rule -based
sys tem, add fac t s and fo rce re -
eva lua t i on o f r u l e s

Ru les t ha t f i r e on f ac t s i n t he J e s s Eng ine
instance
e.g.
if p1 t hen i n f o r m E x t e r n a l C o n d i t i o n C h e c k e r

W h e r e :
p1 i s a p recond i t ion in the BPD ru le

W o r k f l o w
Engine

Rule -Based Sys tem
M a n a g e m e n t

Figure 63: Interactions between the WPA and the Rule-Based System

The Rule-Based system must be able to store ‘if p then a’ type rules, where ‘a’ is an action, and
‘p’ is a precondition. This pre-condition must be specified in terms of facts that are also stored in
fact database. When a fact is inserted into the fact database all rules should then be evaluated. If
any pre-condition becomes true due to this new fact, then the action should be executed. It is
very important that this rule can only be fired once, the pre-condition should only be evaluated
once. It is also important that rules for each workflow engine instance are unique within the
Rule -Based system. This can be achieved either by, having multiple instances of the Rule -Based
system, for example one rule-based system instance for one process instance, or having one
instance of the Rule -Based system and marking the rules and facts as belonging to a particular
process instance as they are entered.

The Rule-Based system must provide methods to implement the following functionality:

• initialise the Rule -Based system,

• adding a rule,

• adding a fact and re-evaluating all rules by either Informing the ExternalConditionChecker
class, when a rule fires or if the Rule-Based system implements backward chaining
checking if a rule has fired

The ExternalConditionChecker Interface provides the functionality needed for the Workflow
Engine to be able to add rules to the Rule -Based System. It can also inform the Workflow
Engine when a rule fires within the Rule -Based System only if the Workflow Engine has
requested this using the notifyNeedsChangeUpdates method. A rule fires, when its pre-condition
becomes true. Additionally, the Workflow Engine is able to find out if a rule has fired by asking
the external condition checker class. Therefore, a method check must be implemented to provide
this functionality. If the Rule -Based System is unable to implement backward chaining then the
ExternalConditionChecker class must throw a CannotCheckConditionException whenever check
is called. When a Workflow Engine asks the ExternalConditionChecker to add a rule, the rule

Chapter 8: Business Process Management

 183

body is retrieved from the BPD. The ExternalConditionChecker informs the Workflow Engine
when a rule fires only if the Workflow Engine has first called the notifyNeedsChangeUpdates
method. The JessExternalConditionChecker class implements the IExternalConditionChecker
interface. It provides the functionality needed for the process engine to be able to add rules to the
JESS Engine. It also informs the process engine when the precondition of a rule within the JESS
Engine becomes true, causing a rule to fire.

In order to clarify the way the WE is cooperating with the Condition Checker an example is
given. Lets assume that a process ha s two sub-process A and B. Sub-process A has two output
parameters namely, “requested_items ” and “payment_method”. Additionally, sub-process B has
the following condition: “requested_items ” > ”10” AND “payment_method” = “VISA”. This
means that when this condition becomes true then the B sub-process should start. Initially,
during the execution of A, both parameters have no values and thus, the condition is evaluated
from the condition checker to false. Therefore, the B sub-process cannot start. When the sub-
process A completes, it forwards its output parameters to the parent WPA, which in the sequel
informs its WE. The WE gets the values of the parameters and passes them into the Condition
Checker for evaluation. The Condition Checker evaluates the condition and if it is true, it
informs the WE accorndigly. The WE locates the name of the process associated with the
condition and generates the event notifySubProcessNeedsToRun that the Decision Manager will
further process. This means that whenever the process or one of its sub-processes and atomic
processes change status, the WE is informed and accordingly, the Condition Checker starts the
evaluation of the conditions.

When a new sub-process should start its execution, the Decision Manager always checks if the
sub-process is local or remote. If the process is local then the previous described steps are
followed, i.e. a new WPA is created and a request to start the sub-process is sent. However,
when the process has been specified as remote, then a different procedure is followed.

In case that the sub-process is remote, the Decision Manager creates a Requestor Negotiation
Agent (RNA) and informs him about the remote process name, the input and output parameters,
the initial input parameter values and default constraints assigned to them during specification
phase. The RNA is responsible for “moving” into the marketplace, locate all the potential VE
candidate partners and start a negotiation process among them to locate the best VE partner. The
steps involved within the WPA are depicted in the following sequence diagram. However,
details about how the RNA agent is functioning during negotiation process are provided in the
section concerning RNA.

Evangelos K. Ouzounis

 184

 : Decision
Manager

notifysubProcessNeedsToRun()

 : Message
Composer

 : Communication
Manager

 : Subprocess
Definition

 : Subprocess
Instance

 : Process
Instance

getIndata()

getSubprocesses()

getDefinition()

isRemote()

instantiateRNA()

createRequestMessages()

sendMessage()

Figure 64: Instantia te Requestor Negotiation Agent

The above specifications of WPA operations and functionality are related to the sub-processes.
However, there is a direct one-to-one correspondence with the atomic processes. This means that
the WE, Decision manager and the external condition checker are functioning in the same way
for the atomic processes as in the case of sub-processes. In the following section more details
about the atomic processes and the Resource Provider Agent (RPA) are provided.

8.5 Resource Provider Agent
The Resource Provider Agent (RPA) is responsible for the execution of an atomic process. An
atomic process is an elementary unit of process inside a business process. Whenever an atomic
process is specified within a business process, the business object name that will be deployed is
also given. The RPA can be instantiated only by a WPA agent when an atomic process needs to
run. In that case, the WPA instantiates a RPA agent and provides him the name of the business
object and the input parameters and values. In the sequel, the RPA locates the business object
and invokes the operation provided by the business object. The input parameters of the business
object are the input parameters of the RPA while the output parameters of the business object are
the output parameters of the RPA agent. This means that the RPA agent has no sub-processes or
other atomic processes. Direct consequence to this, is that the RPA has no embedded Workflow
Engine and should not control the execution of any other sub-processes. Therefore, the
complexity of the RPA is rather smaller in comparison to the WPA.

The RPA agent is a vital part of the business process execution and it can also be in the same
potential states as the WPA agent. The states that the RPA agent might be are:

• running: when the RPA agent has been instantiated and the invocation of a business object
has started,

• suspended: when the RPA agent got a suspend message from his parent WPA to suspend its

Chapter 8: Business Process Management

 185

operations,

• resumed or running again: when the RPA agent got a resume message from his parent to
resume its operations,

• terminated: when the RPA agent got a terminate message from his parent to terminate its
operations,

• aborted: when the RPA agent got a abort message from his parent to abort its operations, or
it can not accomplish its mission and generate an aborted message to indicate that event to
his parent.

• completed: when the RPA agent has completed its mission and forwarded the output results
to the WPA agent.

The RPA agent communicates only with his parent WPA. The request messages that the agent
can get from the WPA are to start his execution, to suspend it , to resume it, to abort it, or to
terminate it. In any of the above requests, the RPA agent changes its status to a corresponding
status and sends back to his parent WPA a response with the new status. However, there are two
cases where the RPA might send a response to his parent WPA without prior request. The first
case is when the RPA agent has completed its mission and sends back a completed message with
the output parameters and values. The second case is when the RPA agent cannot continue his
execution and sends back an abort messages. An abort message might be generated when the
agent cannot locate the business object, or when the business object has generated an exception.

The communication of RPA agent with his parent WPA is based on message exchanges
specified in standard FIPA ACL/XML format while the content of the messages has been
specified in the intra-domain ontology.

In addition to the basic modules of the FIPA compliant agent, the following entities are specified
for the RPA agent:

• INDO XML Parser: responsible for parsing the content of the FIPA ACL messages based
on the intra-inter domain ontology,

• INDO Message composer: responsible for composing the appropriate response FIPA ACL-
XML messages related to the parent WPA. The structure of the messages is based on the
interdomain ontology,

• Decision manager: responsible for controlling the basic operations of the agent,
communicating with the Business Object manager and the other entities

• Business Object manager: responsible for locating the business object, invoking its
operations and returning back its output results.

In the following picture the internal structure of the WPA agent and the relationships among the
basic modules is depicted.

Evangelos K. Ouzounis

 186

ACL Parser INDO
XML Parser

Decision
Manager

INDO Message
Composer

Resource
Provider
Agent

Communication

Manager

FIPA ACL/XML
Business
Object

Manager

Business
Object

IIOP/RMI

Figure 65: Resource Provider Agent Internal Architecture

Although the DR agent and the WPA are generic agents related to the execution and
management of business processes, the RPA agent is always associated with a particular
business object, i.e. there are different RPAs within a single domain. In general, every RPA is
related to a particular business object and has the appropriate knowledge to deploy it.
Additionally, the RPA agent should communicate with the WPA agents and participate in
different business process instances. This means that the modules of the RPA agent can be
categorized into a generic part, related to the business process execution and management, and a
specific one, related to the business process object. The Business Object Manager is the specific
part related to the business process, while all the other modules are generic ones. The developer
of a RPA agent should only develop the Business Object Manager by extending the
functionalities of the generic RPA class operations.

The main operation of the Business Object Manager is the execute method. This is actually the
business logic of the RPA. When a RPA agent starts, the Decision Manager invokes the execute
method of the Business Object Manager. This means that the business logic of the agent starts.
At the same time, the status of the RPA is changing to running. The decision manager generates
a response message and informs its parent WPA that the external task is now running. As soon
as the business logic started, the Business Object Manager first gets the input parameters and
values from the Decision Manager, locates the corresponding business object, using probably the
CORBA or Java naming service, and invokes its operation. The business object might be any
type of object located anywhere inside the domain. The location of the object and the invocation
of the method by the business object manager is the responsibility of the RPA programmer.
However, since the Business Object Manager is a java class, it can invoke either remote CORBA
objects, or Java objects by deploying correspondingly the CORBA-IIOP or the RMI protocols.
The previously described steps are depicted in the following figure.

Chapter 8: Business Process Management

 187

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : Business Object
Manager

 : Message
Composer

 : Business
Object

forwardMessage()

checkRequest()

parseACL()

parseXML()

executeBusinessLogic()

getInputParametersandValues()

createInformMessage()

sendMessage()

invokeOperation()

Figure 66: Start RPA Agent

When the business object completes its operation, returns back to the Business Object Manager
the output parameters which forwards them to the Decision Manager. This situation interpreted
by the Decision Manager as the completion of the business logic. In that case, the Decision
Manager composes a completed message and informs its parent WPA. The new status of the
RPA agent is now completed. If during the invocation of the business object by the Business
Object Manager an exception occurs, then the Business Object Manager informs the Decision
Manager about that. In that case the Decision Manager generates an aborted status message and
sends it to his parent WPA agent while the RPA agent dies out. The previously described steps
are explained better in the following sequence diagram.

 : Bus iness
Objec t

 : Bus iness Object
Manager

 : Dec is ion
Manager

 : Message
Composer

 : Communicat ion
Manager

operat ionCompleted()

setOutputParameters()

createInformMessage()

sendMessage()

Figure 67: RPA Agent Completes

During the execution of the RPA agent certain requests might arrive from the parent WPA.
These requests might be to suspend the execution of the agent, to resume it, to terminate or to
abort it. When a request like this arrives in the RPA agent, the Decision Manager parses the
message from the ACL and XML parsers and checks the type of the request. In the sequel, the
Decision Manager fulfils accordingly the request and informs the parent WPA. If, for example, a

Evangelos K. Ouzounis

 188

suspend request arrives in the Decision Manager then the Business Object Manager should be
informed. One way to accomplish this is to inform the Business Object Manager about this event
by invoking an operation provided by the Business Object Manager. Then, it is the responsibility
of the RPA agent programmer to handle the event. The other way is to have the Business Object
Manager as an extra thread running under the control of the Decision Manager. In this case, the
Decision Manager suspends the operation of the thread without notifying the Business Object
Manager. In the context of this thesis the second approach has been adopted and implemented.
The main reason is that the programmer of the Business Object Manager should not handle any
type of business process execution requests. On the contrary, the events should be handled and
managed in a transparent to the Business Object Manager way by the Decision Manager. The
following sequence diagram shows how the RPA agent modules are cooperating to support a
request like this.

 : Commun i ca t i on
M a n a g e r

 : Dec is ion
M a n a g e r

 : A C L P a r s e r : X M L P a r s e r : M e s s a g e
C o m p o s e r

fo rwardMessage()

c h e c k R e q u e s t ()

sendMessage ()

pa rseACL()

parseXML()

c rea te In formMessage()

suspendThread()

Figure 68: Suspend RPA Agent

In the following section the way the Requestor Negotiation Agent is functioning and the main
operations that the agent provides are described and further analysed.

8.6 Requestor Negotiation Agent
The Requestor Negotiation Agent (RNA) is responsible for negotiating with potential VE
candidate partners about a particular business process instance. The RNA is instantiated
dynamically by a WPA agent when a remote business process needs to be executed. Initially, the
WPA provides him the name of the process, the input parameters and values, and requests from
him to find a suitable VE partner. Based on this request, the RNA locates from the Offer
Repository the negotiation parameters specified for this remote process and migrates into the
virtual marketplace. Based on the name of the process, the input, output and negotiation
parameters and values, the RNA agent composes a query message that will be sent to the Service
Offer Retrieval (SOR) agent. The SOR agent checks the Service Offer Repository, locates all the
offers that satisfy the constraints, composes a response message with all the VE candidate
partners, and sends it back to the RNA. The RNA interprets the messages and locates the names
of the VE candidate domains, i.e. the names of the Provider Negotiation Agents. At this point
the negotiation process among the RNA and all the PNAs is starting.

Chapter 8: Business Process Management

 189

The negotiation process is based on the FIPA compliant Contract-Net protocol. The messages
exchanged among the agents are FIPA compliant ACL/XML while the ontology used is the
negotiation ontology. The result of the negotiation process is the selection of the best VE partner
that can provide the remote process. In technical terms, this agreement is regulated by a
particular unique contract. When the negotiation process completes, the RNA informs the parent
WPA agent about the VE partner that has been selected and the contract that has been
established. At the same time, the PNA stores the contract that has been agreed on into the
Contract Repository on the VE candidate partner domain. In the sequel, the WPA composes a
request for a remote process execution and sends it to the remote DR of the VE partner by
referring to the contract id. The DR agent checks the contract repository, authenticates the WPA
with the contract id, and proceeds to the execution of the business process by creating a WPA
agent that will execute the requested process. In the following paragraphs, all the steps involved
in this complex process are further explained.

In addition to the basic modules of the FIPA compliant agent, the following entities are specified
for the Requestor Negotiation Agent (RNA):

• INDO, VMP and Negotiation XML Parser: responsible for parsing the content of the
FIPA ACL messages based on the intra-inter domain, marketplace and negotiation
ontology,

• INDO, VMP and Negotiation Message composer: responsible for composing the
appropriate response FIPA ACL-XML messages. The structure of the messages is based on
different ontologies used,

• Decision manager: responsible for controlling the operations of the agent,

• Offer Repository: responsible for managing information about all the remote business
processes and the input, output and negotiation parameters for each one of them.
Specification of the Offer Repository has been provided in the Business Process
Specification section,

• Strategy Manager: responsible for selecting the best VE candidate partner based on a
simple strategy.

In the following Figure 69 the internal structure of the WPA agent and the relationships among
the basic modules is depicted.

ACL Parser INDO, VMP and
Negotiation XML Parser

Decision
Manager

INDO, VMP and Negotiation
Message Composer

Requestor
Negotiation

Agent

Communication
Manager

FIPA ACL/XML Offer
Repository

Strategy
Manager

Java
Invocation

Figure 69: Requestor Negotiation Agent Internal Architecture

Evangelos K. Ouzounis

 190

Initially, a WPA instantiates an RNA agent and sends to him a request message to find a VE
partner for this process name, with the corresponding input parameters and values. The RNA
interprets the message and locates the name of the process and the input parameter and values. In
the sequel, the RNA conducts the Offer Repository, gets the output and negotiation parameters,
migrates to the virtual marketplace, composes a FIPA compliant ACL/XML message based on
the virtual marketplace ontology and sends it to the SOR agent. The above mentioned steps are
further explained in the following sequence diagram.

 : Communicat ion
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : Message
composer

forward message()

check request()

parse ACL()

parse XML()

migrateToMarketPlace()

composeQueryMessage()
send message()

 : Contract
Repository

getNegotiationParameters()

getOutputParameters()

Figure 70: Locate VE Candidate Partners

When the SOR agent gets the query request from the RNA agent, searches the service offer
repository, gets the list of VE candidate partners that satisfy the constraints of the query,
composes a response ACL/XML message and sends it back to the RNA. The RNA agent parses
the message, locates the VE candidate domains and especially the PNA agents, and migrates
back to his original domain. At this point of time, the RNA knows all the VE candidate partners
and can start the negotiation process with the corresponding PNA agents. In the following
picture the steps involved in the selection of the VE candidate partners are depicted.

V i r t u a l M a r k e t P l a c eR e q u e s t o r D o m a i n

1

3,4

2

G r a s s h o p p e r

F I P A

G r a s s h o p p e r

F I P A

D i s t r i b u t e d P r o c e s s i n g
E n v i r o n m e n t

O f f e r R e p o s i t o r y R N A S O AR N A

J a v a Invocat ion F I P A A C L / X M L M i g r a t i o n

5

D i s t r i b u t e d P r o c e s s i n g
E n v i r o n m e n t

Figure 71: Selection of VE Candidate Partners from the Virtual Marketplace

Chapter 8: Business Process Management

 191

The negotiation process among the RNA and PNAs agents is based on the FIPA compliant
Contract-Net protocol. According to this protocol, two main roles are involved, namely the
requestor and a set of providers. In our case, the RNA agent plays the role of the requestor, while
the PNA agent plays the role of the provider. The negotiation process starts when the RNA sends
a Call for Proposals (CFP) to the PNAs requesting from them to make proposals related to the
CFP. In our case, the CFP message contains the name of the process and a set of input and
negotiation parameters together with values and constraints. For example “Can you provide me
the process A with price< $20 and deliveryday=2” where A is the service name and price and
deliveryday are the negotiation parameters associated with certain constraints. All the PNAs, that
can provide process A with such requirements, prepare a Proposal message and send it back to
the RNA. The Proposal message contains the name of the process and the negotiation parameters
with certain values, e.g. “price=$12” and “deliveryday=1”. If a PNA cannot provide the process
with such requirements, prepares and sends back a Refuse message. The meaning of the Refuse
message is that this VE candidate provider can not provide the process under these constraints.

All the PNAs agents should respond to the CFP message within a given time period which is
called the negotiation time interval. Messages arriving later than this period will not be
considered. If all PNAs have responded to the CFP or the negotiation time interval has passed,
then the RNA evaluates the proposals received and, based on a simple strategy provided by the
Strategy Manager, selects the best one. In the sequel, the RNA sends back to the selected PNA
an Accept_Proposal message with a contract template containing the three parts of a contract,
namely the technical session, the administrative session and the pricing session, a contract id and
the date of issue. The combination of domain name and contract id is unique and corresponds to
only one contract. For all the other PNAs that have not been selected, the RNA sends back a
Reject_Proposal with a certain reason. When the selected PNA receives an Accept_Proposal
message, fills in the contract with its own information regarding the technical, administrative
and pricing session, sends it back to the RNA in the form of an Inform message, and finally
creates a contract and stores it into the contract repository. The requestor domain can now easily
invoke the local proposal by only referring to the contract id that has been generated during the
negotiation process. In addition to the above key messages sent by the RNA and PNA agent, the
following messages might sent during the negotiation process:

• not-understood-message: sent by the PNA when the agent can’t understand the CFP-
message and requires a new one to be sent,

• failure-message : sent by the PNA when the values included into the Accept_Proposal are
different with the ones that have been agreed upon, i.e. the RNA have changed the values
sent with the Proposal,

• cancel-message : sent by the RNA when the values included into the Inform message are
different with the ones that have been agreed upon i.e. the PNA have changed the values
specified within the Accept_Proposal.

Based on the negotiation protocol and the virtual marketplace, VE partners can dynamically
locate VE candidate partners, negotiate with them, and establish dynamic VE links. The above
described steps and messages are presented in the following figure.

Evangelos K. Ouzounis

 192

not-understood refuse
reason

Deadline for proposals

reject-proposal
reason

failure
reason

inform
Done(action)

the manager cancels the
contract due to a change
of situation

cancel
reason

accept-proposal
proposal

propose
preconditions2

cfp
action
preconditions1

Message send by the provider

Message send by the requester

Figure 72: Standard FIPA 97-Contact-net Specification

When the Provider Negotiation Agent (PNA) gets a CFP message from a Requestor Negotiation
Agent (RNA), it first parses the message and checks the type of the request. Afterwards, the
agent conducts the Offer Repository and checks the offer specified for this local process. If there
is no offer specified for this process, the PNA generates a Refuse me ssage and sends it back to
the RNA. If there is an offer stored into the Offer Repository, the PNA gets all the stored values
of the input, output and negotiation parameters and compares them one by one with the
constraints included into the CFP message. If the existing offer does not satisfy the constraints
imposed by the CFP, then the PNA agents generates a Refuse message and sends it back to the
RNA agent. Otherwise, it generates a Proposal message with the values stored into the Offer
Repository and sends it back to the RNA agent. The Proposal message contains the name of the
process, the input, output and negotiation parameters and certain corresponding values. It should
be noted that both private and public negotiation parameters are included in the Proposal
message. The previous described steps followed by the PNA agent, depicted in the following
sequence diagram.

Chapter 8: Business Process Management

 193

 : Communication
Manager

 : Decision
Manager

 : ACL Parser : XML Parser : message
composer

 : Offer
Repository

forward message()

check request()

send message()

parse ACL()

parse XML()

composeProposalMessage()

getInputParameters()
getNegotiationParameters()

compareValues()

Figure 73: PNA - Create Proposal Message

At the same time, after the RNA agent has sent the CFP messages, it waits for the incoming
messages from the VE candidate partners. Two types of messages might arrive, namely a
Proposal or a Refuse. The RNA maintains a List of Active VE candidate Providers (LAVEP).
When a Refuse message arrives, the corresponding VE candidate partner is removed from the
list of active providers. This means that this domain will not participate in the selection phase.
When a Proposal message arrives, the content of the message is stored into the LAVEP. The
RNA waits until all the PNAs have sent one message, either Refuse or Proposal, or the
negotiation time interval has passed. Then, the Decision Manager notifies the Strategy Manager
to evaluate the proposals stored into the LAVEP and to select the best offer.

The List of Active VE candidate Providers (LAVEP) is a dynamic list with all the VE candidate
providers that take part in a specific negotiation process. If one VE candidate domain sends a
Reject-Proposal or the Proposal message arrives after the negotiation time interval, then this
domain is removed from this list. This list actually contains all the proposals send by the
different domains. The main operations provided by LAVEP are to insert a VE candidate partner
proposal and to delete one. Modification of the lists elements and consequently of the proposals
is not allowed for obvious reasons. The class diagram of the LAVEP module is depicted in the
following Figure 74.

Evangelos K. Ouzounis

 194

LAVEP Manager

getProposal()
setProposal()
deleteProposal()
getNegotiationTimeInterval()
setNegotiationTimeInterval()

Parameters

name
type
value
constraint

(from business process definition language)

negotiation parameters
(from Offer Repository)

input parameters
(from Offer Repository)

output parameters
(from Offer Repository)

Proposal

getInputParameters()
setIntputParameters()
getOutputParameters()
setOutputParameters()
getNegotiationParameters()
setNegotiationParameters()
getProcessName()
setProcessName()
getPNAAddress()
setPNAAddress()
getTimeArrived()
setTimeArrived()

0..*
1

0..*
1

0..*1 0..*1

0..*
1

0..*
1

0..*11 0..*

Figure 74: List of Active VE Candidate Providers Class Diagram

The Strategy Manager is a generic component that provides a generic interface for the provision
of specialized selection mechanisms for the selection of best proposals and consequently, the
best VE candidate partner. Due to the fact that every remote business process under negotiation
has probably different negotiation parameters, a specialized selection mechanism is needed for
each remote business process. The Strategy Manager Interface (SMI) deploys the different
proposals stored into the LAVEP and enables the developer of the customized selection
mechanism to develop and integrate its own strategy. In short, the Decision Manager invokes the
specialized selection module for this process through the Strategy Manager Interface. The
specialized module gets as input the LAVEP list of proposals and then evaluates the different
proposals by accessing the input, output, and negotiation parameters and values in order to select
one. It is the responsibility of the developer of the specialized selection component to specify
and develop its own strategy. The specification and development of a generic strategy
mechanism for the selection of VE candidate partners is considered out of the scope of this
thesis. However, the interesting reader can get more about automated negotiation strategy
algorithms in (see negotiation part).

Proposal

getInputParameters()
setIntputParameters()
getOutputParameters()
setOutputParameters()
getNegotiationParameters()
setNegotiationParameters()
getProcessName()
setProcessName()
getPNAAddress()
setPNAAddress()
getTimeArrived()
setTimeArrived()

(from LAVEP)Strategy Manager Interface

evaluateProposals(ListofProposals : LAVEP Manager) : Proposal

<<Interface>>

Strategy Manager

LAVEP Manager

getProposal()
setProposal()
deleteProposal()
getNegotiationTimeInterval()
setNegotiationTimeInterval()

(from LAVEP)

1

0..*

1

0..*

implements

uses uses

Figure 75: Strategy Manager Interface Class Diagram

Chapter 8: Business Process Management

 195

In the context of this thesis, only simple selection mechanisms have been developed and tested.
More complex selection mechanisms and algorithms can easily be specified, developed, and
integrated for experimentation within the Strategy Manager. In the following sequence diagram
the previously described steps that the RNA agent follows are shown.

 : Communicat ion
Manager

 : Decis ion
Manager

 : ACL Parse r : XML Parser : S t ra tegy
Manager

 : message
composer

forward message()

check request()

parse ACL()

parse XML()

upDateLAVEP()

evaluateProposals()

composeAccept_Proposa l ()

composeReject_Proposal ()

send message()

Figure 76: Evaluate Proposal Message

The result of the selection process will be only one Proposal, i.e. one PNA that satisfies the
constraints and is the most competitive one in comparison with the others. In that case, the
selected PNA will get back an Accept_Proposal message while the remaining ones will get a
Reject_Proposal. The Accept_Proposal contains a contract id and a draft contract that should be
filled in by the PNA. The draft contract contains all the administration session, technical session,
and pricing session information of the RNA domain. The PNA gets the Accept_Proposal
message, fills in his own corresponding part, stores it into the Contract Repository, generates an
Inform message with the completed contract and sends it back to RNA. At this point of time a
contract has been agreed upon and the invocation of the remote process can start. The contract
for this domain is characterized as local because this domain will provide the business process to
the remote domain. In case that the draft contract contains values different than the ones that
have been agreed, the PNA generates a Failure message and sends it to the RNA indicating the
fact. The previous described steps are depicted in the following sequence diagram.

Evangelos K. Ouzounis

 196

 : C o m m u n i c a t i o n
M a n a g e r

 : D e c i s i o n
M a n a g e r

 : A C L P a r s e r : X M L P a r s e r : m e s s a g e
c o m p o s e r

 : Con t rac t
Repos i to ry

f o r w a r d m e s s a g e ()

p a r s e A C L ()

parse XML()

c h e c k A c c e p t _ P r o p o s a l ()

f i l l InCont rac t ()

s e t C o n t r a c t ()

c o m p o s e I n f o r m M e s s a g e ()

s e n d m e s s a g e ()

Figure 77: Generate Inform Message

Finally, the RNA agent receives the Inform message from the PNA with the fully completed
contract inside. The PNA parses the message, checks the values contained inside, generates an
Inform message with the technical characteristics of the VE partner that will provide the remote
process, stores the contract into the Contract Repository, sends the message to the initial WPA
that generated the negotiation process and dies out. The stored contract is characterized as
remote because this domain will deploy the business process specified in the contract. The
Inform message contains the name of the remote agent, in our case the DR, the FIPA address of
this agent, the ontology used, in our case inter-intra domain, and the protocol used, in our case
FIPA Request-Response protocol. This information used from the WPA for the generation of a
request message that will be sent to the remote DR agent. The message actually requests from
the remote DR agent to start a given process, with given input parameters values and a given
contract id. The DR authenticates the request by checking the contract id and starts the execution
of the requested process. When the requested process has started, the DR generates an Inform
message and sends it back to the WPA to inform him that the execution of the requested process
has started. The following sequence diagram describes the steps involved and the activities
among the agents.

Chapter 8: Business Process Management

 197

 : C o m m u n i c a t i o n
M a n a g e r

 : D e c i s i o n
M a n a g e r

 : A C L P a r s e r : XML Parse r : M e s s a g e
c o m p o s e r

fo rward message()

check In fo rmMessage ()

s e n d m e s s a g e ()

pa rse ACL()

parse XML()

c o m p o s e I n f o r m M e s s a g e ()

 : Con t rac t
Repos i to ry

se tCon t rac t ()

Figure 78: Inform WPA about VE Partner

8.7 Summary
This chapter presents the detailed specification and design of the business process execution and
management phases. More specifically, five FIPA compliant agents are introduced and analysed,
namely the Personal User Agent (PUA), the Domain Representative (DR), the Workflow
Provider Agent (WPA), the Resource Provider Agent (RPA) and the Requestor Negotiation
Agent (RNA). The PUA agent is responsible for the provision of the shared business process to
the end-user through a web-based interface, while the DR is responsible for initiating and
managing the business processes provided by a business domain by conducting the existing
contracts. The WPA is responsible for the execution and management of shared business
processes in an autonomous, distributed and co-operative way, while the RPA is responsible for
the provision of resources and third party business objects and legacy systems during the process
execution. Finally, the RNA is responsible for the selection of potential partners and the
negotiation among them in order to select the best one. For every agent, the internal architecture,
the internal modules, the relationships among them and a set of sequence diagrams are given and
discussed. Additionally, for the execution and management of shared business process the inter-
and intra-domain ontology are specified and described. Finally, the negotiation protocol used for
the automated negotiations and negotiation ontology are further explained and analysed.

Evangelos K. Ouzounis

 198

 199

Chapter 9: Implementation, Testing, Validation,
and Assessment

9.1 Implementation
The agent-based platform for the management of dynamic Virtual Enterprises has been fully
implemented and tested. The implementation of the platform has been done following the
overall architecture and the specifications and designs provided in the previous chapters. In
general, the development of the platform and the different agents has been done using open,
interoperable and standard technologies.

The development of the different agents that support the main operations of the platform has
been performed in Java programming language. The underlying agent platform deployed was the
Grasshopper agent platform with extra OMG-MASIF and FIPA compliant services. To
implement a FIPA compliant agent, the agent class has to inherit from the FIPAAgent class
provided by Grasshopper. In general, the class FIPAAgent itself extends from the
StationaryAgent class, i.e. the basic grasshopper stationary agent. The extension of a stationary,
FIPA compliant agent, mainly consists of two methods. These are:

• public void message(FIPAACLMessage msg): this method has to be overwritten by a FIPA
agent in order to be able to receive FIPA ACL messages sent by other agents through the
ACC.

• public void send(ACLMessage msg): this method enables an agent to send a message to
another agent though the ACC. Calling this methods results in establishing a connection to
the local ACC by means of grasshopper communication and sending a forwarding request
with the message msg to the agent addressed in the message.

Evangelos K. Ouzounis

 200

Apart from the regular Grasshopper agent methods, which have to be implemented for each
Grasshopper agent such as the live method, the agent developers have to implement or overwrite
the message method, whereas the send method can be simply used.

In principle, FIPA compliant agents should be in position to send and receive ACL/XML
messages. For that reason, when a message has been sent to an agent, the agent must first parse
the incoming ACL/XML message by deploying a standard ACL parser. For that reason a FIPA
ACL Parser is provided by the Grasshopper platform. The parser gets as input an ACL/XML
message string, parses it and produces a query object called FIPAACLMessage. In general, the
ACLMessage class provides operations for getting and setting the type of message, the sender,
receiver, content, etc. As soon as the incoming messages have been parsed from the ACL parser,
the content of the message, which is described in XML, should also be parsed. For that reason,
three specialised XML parsers have been developed. These XML parsers correspond to the three
ontologies, namely the inter-intra domain ontology, the virtual marketplace ontology and the
negotiation ontology. The XML parser provides all the necessary operations for interpreting and
retrieving information from XML content.

Additionally, when an agent wants to send an ACL/XML message to another agent he should
always compose a legitimate ACL/XML message. In general, the responsibility of the message
composer is to produce a legitimate ACL/XML string based on the corresponding ontology. For
that reason, three message composers have been developed and used corresponding to the inter-
intra domain ontology, the virtual marketplace ontology and the negotiation ontology. Using
these message composers, the different agents of the platform can easily create legitimate
ACL/XML messages following the specified ontologies.

Furthermore, the communication of agents obeys certain FIPA compliant protocols. In the
context of this thesis, three FIPA compliant protocols have been specified and developed. These
are the FIPA compliant Request-Response, Request-Query and Contract-Net. Additionally, the
status of the agents and the internal synchronisation of the provided operations are managed and
controlled by the Decision Manager module. The Decision Manager is a specialised module
tailored to the functionality of each agent that manages and controls the requests and responses
of the agent with the agents. It is actually the entity that synchronises the internal operations and
entities of an agent in order to respond to different requests.

In the following class diagram, the main classes involved in the development of a standard FIPA
agent are provided.

Chapter 9: Implementation, Testing, Validation, and Assessment

 201

Grasshopper Agent

live()

FIPA Registable Agent

registerwithLocalDF()
deregisterwithLocalDF()

uses
FIPA ACLParser

parse(ACLMessage msg)
parse(String msg)

instantiates

XML Parser

parseContent()

FIPA ACLMessage

getPerformative()
getSender()
getReceiver()
getContent()

uses
usesuses

Message Composer

composeMessage(String msg)

DecisionManger

getRequest(String msg)
setResponse(String msg)

FIPA Agent

message(ACLMessage msg)
send(String msg)

uses

Figure 79: Generic FIPA compliant agent class diagram

Additionally, the virtual marketplace agents deploy and integrate directly a standard OMG-
Trader. In that case, the three agents have the appropriate access to the corresponding CORBA
objects of the OMG-Trader. More specifically, whenever an agent deploys an object provided by
the OMG-Trader, the agent gets a reference to the corresponding object, by using the
Interoperable Object Reference (IOR), and, using the CORBA IIOP protocol, access the
different methods provided by the object. This interaction is a typical case of using CORBA
objects. The OMG-Trader objects deployed by the virtual marketplace agents are the Service
Type Repository, the Service Offer Repository and the OMG Constraint Language Parser
objects.

Furthermore, for the persistent storage of local and remote business process offers, contracts,
and business process specifications, certain XML based storage modules have been developed.
The Offer, Contract, and Business Process Repository are XML based persistent modules. In all
cases, the different entities of the repositories, i.e. the Offers, Contracts and Business Processes,
are stored as separate ASCII files with XML content in conventional file systems. For every
persistent storage module a configuration file with references to the individual files of the
entities is maintained and configured.

Finally, the execution and management of VE business process by the user is done through the
Web. For that reason, special mechanism based on TCP/IP and HTTP protocols and the standard
Java Servlets technology have been developed. More specifically, the in terface for the
management of the business processes is web-based. This means that the user needs only to have
a standard Web browser. Every request by the user initiates the corresponding Java servlet at the
web server of the VE representative domain. A Java servlet is actually a normal Java object that
formulates the appropriate XML request, connects to the TCP/IP server of the PUA agent, and
sends the request to the agent. When the request of the user has been fulfilled, the PUA agent,

Evangelos K. Ouzounis

 202

through the TCP/IP server, informs the Java servlet which in the sequel, informs the user by
generating a dynamic html web page.

In Figure 80, a screen shot of the web-based management system provided to the end-user of the
VE is provided. This figure depicts the main operations that the user can perform, i.e. to start a
process, to suspend, to resume, or to query a process. Additionally, the current status of the
process is also depicted.

Figure 80: Web-Based End-User Interface

In Figure 81, a screen shot of the business process execution and management system is
provided. This figure depicts the main FIPA agents (AMS, DF and ACC) and the agents of the
platform, i.e. the Domain Representative (DR), the Workflow Provider Agent (WPA) and the
PUA agent.

Chapter 9: Implementation, Testing, Validation, and Assessment

 203

Figure 81: Instantiation of business process

In Figure 82, a screen shot of the business process execution and management system is
presented. In that scenario, the end-user has requested to suspend the currently running process.
This request has been resulted in the suspension of the corresponding agents. Additionally, the
message sent by the PUA agent to the DR agent is depicted. This is actually an inform
ACL/XML message where the content of the message contains the status of the process, i.e.
suspended.

Evangelos K. Ouzounis

 204

Figure 82: Suspension of business processes

In Figure 83, the Virtual marketplace administration GUI is depicted. This is actually the GUI
that the administrator of the Virtual Marketplace uses to administer the service types of the
marketplace. In particular, this figure depicts the add new service type operation and especially
to insert new properties with a pre-defined type, i.e. Boolean, String, etc.

Figure 83: Virtual Marketplace Administration GUI

Chapter 9: Implementation, Testing, Validation, and Assessment

 205

9.2 Testing
In addition to the development of the different agents and components of the platform, extending
testing has also been performed. The testing activities have been conducted by developing
certain scenarios that testify certain functionality and features of the system. In every testing
scenario, a particular agent, component or interface is being tested. In general, five main testing
categories have been specified and developed. These are:

• testing of the virtual marketplace ontology and agents : different testing scenarios have
been developed for testing the functionality of the virtual marketplace agents and
marketplace ontology. These scenarios test actually the different services of the virtual
marketplace, i.e. the management of service types, the management of service offers, and
the management of retrieval requests. Through the testing scenarios, the specification of the
virtual marketplace ontology and the different agents has been improved. In addition to that,
the testing scenario improved the integration and deployment of the Service Type
Repository and Service Offer Repository. More specifically, effective ways, based on
CORBA IIOP, to access objects provided by the OMG-Trader have been identified and
improved.

• testing of the intra-domain business process execution and management: different
scenarios have been developed for testing the intra-domain execution and management of
business processes. Emphasis has been placed to the improvement of the intra-domain
ontology, the access to Business Process Repository, and the integration of the Workflow
Engine and JESS-based Condition Checker. Additionally, the three key interfaces, i.e. the
Business Process Listener Interface, the External Condition Checker Interface and the
Business Object Manager Interface, have also been tested and improved. Finally, certain
synchronisation problems due to the autonomous and distributed execution and
management of business processes have been resolved. Synchronisation of intra-domain
business processes was a serious problem occurred during the implementation and testing of
the system. However, by introducing timestamps and special mechanisms inside the WPA
and RPA agents the synchronisation problems have been eliminated.

• testing of the inter-domain business process execution and management: different
scenarios have been developed for testing the inter-domain execution and management of
business processes. Emphasis has been placed in the integration of the negotiation process
during the business process execution, the access control and authorisation of remote
requests based on contracts, and the overall process management process. More specifically,
the two key negotiation agents, i.e. RNA and PNA, have been fully integrated and tested
with the WPA agents. Additionally, the inter-domain ontology and Contract and Offer
Repositories have been fully tested. The testing scenarios resulted in improvements on the
specifications and designs of the ontology, the Offer and Contract Repository and the inter-
operation among WPA and RNA agents.

• testing of the web-based access of user to the business process management: different
scenarios have been also implemented for the testing of the web-based access to business
process management. The emphasis was on the interoperation among the Java Servlets and
the TCP/IP module located in the PUA, the testing of the Active User Repository (AUR)
and the interoperation of the PUA with the Domain Representative (DR) agent. The testing
scenarios have improved the specifications and designs of the AUR module and the
interoperation interface among the PUA and DR. Additionally, the deployment of Java

Evangelos K. Ouzounis

 206

Servlets proved to be a very good solution that enabled an efficient interoperation among
the web server modules, namely Java Servlets, and agents, namely PUA and DR.

• testing of the negotiation and contract establishment process: different scenarios have
been also implemented for the testing of the negotiation and contract establishment process.
The key entities tested were the negotiation protocol, the negotiation ontology, the Contract
Manager and the Strategy Manager Interface (SMI). More specifically, the negotiation
protocol and the ontology have been improved due to the fact that certain extreme cases of
the protocol have been tested, like the negotiation time interval, the refusal of a proposal,
the modification of a contract prior to contract establishment phase from the PNA agent,
etc. Through these testing scenarios, the Strategy Manager Interface and the List of Active
VE candidate Providers (LAVEP) entities have also been improved.

In general, the testing of the platform and the different entities has significantly improved the
initial specifications and designs of the ontologies, the agents, and the internal modules of them.

9.3 Validation
The validation of the platform for the management of dynamic Virtual Enterprises has been done
by the development of four independent business and application scenarios. The first two
scenarios have been developed in the context of the ACTS-MIAMI project (ACTS 99), the third
one in the context of the EURESCOM P815 (P815 99) project and the fourth one individually
independent from a particular project.

The first validation scenario is a dynamic VE for the provision of on-line document translation
and certification services to remote users. The VE representative is a consulting company that
provides document translation and certification services to different users. The translation and
certification services are individual processes that can be provided by different VE partners. For
that reason, document translation and document certification providers register their service
offers in the virtual marketplace. The document translation process is a local process for the
corresponding provider and remote process for the VE representative. In similar way, the
document certification process is local for the corresponding provider and remote for the VE
representative. When a user wants to translate and certify a document, he/she uses the web-based
service provided by the VE representative. The user actually specifies the document that will be
translated, the initial language that the document has been written, and the target language that
the document will be translated. This is actually a request for a business process execution that
will be served by the VE representative. When the VE representative gets a request like this, it
first checks the input parameters and values provided by the user and starts a negotiation process
with potential document translation providers in order to select the best one. When the document
translation provider has been selected, the remote document translation process starts. This is
actually an inter-domain business process execution. As soon as the document translation is
ready, the VE representative starts the negotiation process to locate a document certification
provider. This provider will get the translated document and will certify that the translation of
the document is correct. This is another inter-domain process execution among the VE
representative and the corresponding provider. When the certification process is ready, the
translated and certified document will be delivered to the user. This means that the VE business
process has been finished and the user can now access the translated document. During the
execution of the VE business process, the user can suspend, resume, or even terminate the
process.

Chapter 9: Implementation, Testing, Validation, and Assessment

 207

The second validation scenario is a dynamic network management solution. In that case, a third
party network provider called the Active Virtual Pipe plays the role of the VE representative and
provides network management services to potential corporations. More specifically, the Active
Virtual Pipe can establish network connections from one physical location to another with
certain Quality of Service (QoS) characteristics. In principle, the Active Virtual Pipe deploys the
capabilities of different Connectivity Providers (CP) to establish physical network connections
from A to B. When a user requests a network connection, the Active Virtual Pipe conducts the
virtual marketplace and negotiates with different Connectivity Providers about the potential
connection. When a suitable Connectivity Provider has been selected, the network connection
will be established dynamically. During the business process provision, the Active Virtual Pipe
monitors the established network connection by querying the status of the process, i.e. the
network connection. When a problem occurs, like network fault or performance degradation, i.e.
the process aborts, the Active Virtual Pipe conducts the virtual marketplace, negotiates with
other potential Connectivity Providers and finally selects another suitable Connectivity Provider.
Based on this scenario, the Active Virtual Pipe is the VE representative while the Connectivity
Providers are the different VE partners. The VE partners provide physical connections from one
physical location to another with some QoS properties. The provision of the network
management services to the user from the Active Virtual Pipe is the VE business process while
the network connections from A to B locations are local processes of the different Connectivity
Providers. The provision of network connections through the deployment of different
Connectivity Providers is totally transparent to the user.

The third validation scenario is an International Leased Line service. In a similar way like the
previous scenario, a corporation wants to establish an international leased line from one physical
location in one country to another physical location in another country. The leased line will be
provided to a set of telecom operators that will co-operate in the establishment, configuration
and management of an international leased line. This scenario deals not with the actual network
connections, like the previous one, but with the management of activities and operations that
different departments, teams, and people should do in order to design, configure and establish
the requested international leased line. In general, the user conducts a telecom provider and
requests an international leased line from one physical location A to another physical location B.
This provider is the VE representative while the VE process is the international leased line
provision process. The VE representative can provide leased lines only within its country
boundaries and for that reasons is looking for other providers that can provide the corresponding
segments of the international line until the final destination. However, different telecom
providers can provide these network segments of the leased line, and thus a negotiation process
starts among the different providers. These telecom providers play the role of the VE partner
while the services that they offer are domestic leased lines. For the user, the provision of the
international leased line is done by only one domain. However, in reality, different providers are
being involved for the provision of the international leased line to the user.

The fourth validation scenario is an on-line book portal system. The portal system sells books
on-line to different users all over the world and collaborates dynamically with logistic
companies for the delivery of books to the users and with banks for the management of
payments. In that respect, the on-line portal system is the VE representative while the logistic
and bank partners are VE partners. In principle, the selection of the logistic and bank VE
partners is performed dynamically through the virtual marketplace based on the location and the
requirements of the user. The delivery of the book to a customer is a local process for a logistic
company and remote for the on-line portal system. In a similar way, the payment management is

Evangelos K. Ouzounis

 208

a local process for a bank company and remote for the on-line portal system. Based on this
dynamic selection of logistic and bank domains, different dynamic VEs can be established based
on the location and requirements of the user.

The above described validation scenarios have been developed and demonstrated publicly to
different events and conference with great success. The diversity in scope and business context
of the validation scenarios underline the generality and openness of the proposed approach and
the applicability of the it in solving existing, every day, business problems based on dynamic
Virtual Enterprises concepts.

9.4 Assessment
Based on the development, testing and validation of the agent-based platform of the
management of Dynamic Virtual Enterprises, the assessment phase has been conducted. The
assessment phase focused on three individual areas, namely assessment of:

• XML-based workflow management standards,

• emerging FIPA standards,

• proposed solution.

In the following sections, these three individual assessment phases are presented and discussed.

9.4.1 Assessment of Workflow Management Standards

As part of the assessment phase, an analytical comparison of the proposed approach with the
current Interoperability Wf-XML Binding standard specified by the Workflow Management
Coalition has been performed (WfMC 98-00). The main emphasis of this comparison is on the
usage of XML and FIPA ACL for the communication among agents located in different agent
platforms. More specifically, this assessment will identify the similarities and differences
between the proposed approach and the approach described in the Workflow Management
Coalition Workflow Standard announced in January 2000 and labelled WFMC-TC-1023, which
is working standard.

The main difference between these two approaches is on the scope and the technology used for
the development of the XML-based workflow management systems. The WfMC’s standard
specifies an interoperable, XML-based interface for the execution and management of business
processes by different workflow management systems and products. Therefore, the proposed
standard neither address the technology used for the development of the workflow management
systems, the workflow engine, and the execution and management mechanisms, nor the
underlying transport protocols. The main emphasis is on the syntactic and semantic specification
of the XML messages that can be exchanged among the different workflow entities. On the
contrary, the proposed solution addresses a complete agent-based workflow management
solution using open, emerging, agent standards like FIPA and FIPA-ACL. Additionally, the
proposed solution is focusing on dynamic VEs and thus, dynamic selection of VE partners,
negotiation and integration of negotia tion with workflow management agents during process
execution are very important aspects of the platform. In general, the proposed solution deploys a
virtual marketplace for the dynamic selection of VE partners, i.e. registration of local business
processes to virtual marketplace is a very important feature of the proposed solution. The

Chapter 9: Implementation, Testing, Validation, and Assessment

 209

WfMC’s proposed standard has a narrow view, is focusing on the execution and management of
intra-domain business processes, and puts emphasis on the interoperability issue. Therefore, the
WfMC proposed standard could be considered as an intra-domain ontology for the execution and
management of business processes. For that reason, the assessment will be done on this basis.

In more details, the core of the proposed approach is built around the same logical concepts as
the one described in the Wf-XML Binding standard. The ProcessDefinition and ProcessInstance
maps directly to the corresponding ProcessDefinition and ProcessInstance models specified in
the context of this thesis The Observer interface specified in Wf-XML Binding standard
corresponds directly to the Business Process Listener Interface (BPLI) that has been specified
and developed in the proposed approach.

The overall message structure of the inter-domain ontology of the proposed approach is simpler.
The main choice was to use FIPA-ACL as the basic agent communication language, in order to
maintain interoperability among other agent platforms and to use XML in the content field of the
FIPA-ACL messages, in order to describe any data required for the execution and management
of business processes. As a result, the messages exchanged between the platforms of different
administrative domains are a combination of ACL messages with XML content inside. On the
contrary, WfMC specifies its own envelope in XML for the messages exchanged among the
different entities of the workflow management system. More specifically, the CorrelationData
element is used to connect the request and response messages together in the Wf-XML Binding.
This element already exists in the standard FIPA-ACL message and it is called conversation-id
field and thus, there was not clear need to define a field like this. However, there was an obvious
need to connect agent conversations together, i.e. to define a common context for two or more
agent conversations during a business process execution. Therefore, the proposed approach
includes a contextId element that facilitates this role. Additionally, the message header and the
functions of the message header were already provided by the FIPA ACL performatives, so there
was no need to include them into the proposed XML inter-domain ontology. Finally, the
message body is spread over the FIPA ACL part of the messages and the XML part of the
messages. This is due to the fact that the proposed model is based on FIPA compliant agent
communication. The option of having standard FIPA-ACL as a communication language among
agents gives the benefit of deploying the FIPA compliant communication protocols like the
Request-Response, Contract-Net, etc. However, in WfMC proposed standard these protocols
should be extensively specified and developed.

FIPA assumes that the communication among agents is asynchronous and loosely coupled. The
asynchronous communication is a feature provided by the FIPA platform and especially by the
Agent Communication Channel (ACC). Therefore, the inter-domain ontology and the
communication of different agents during the execution and management of business processes
have been designed for asynchronous and loosely coupled communication. In a similar way, the
WfMC also specifies that the communication model for the management of processes should
also be asynchronous and loosely coupled. However, the WfMC does not specify any particular
transport protocol or mechanism in order to achieve asynchronous and loosely coupled
communication. On the contrary, FIPA is based on CORBA as its transport layer and defines,
through the ACC agent, a single CORBA interface for all agents that want to comply to the
FIPA standard. The interface consists of only one method that allows an agent to receive a single
string from another agent. One of the consequences of having CORBA as transport protocol is
that any parameter that should be included in a message has to be serialized to a string, and the
agent that reads in the message should be able to reassemble the object from the serialized string.

Evangelos K. Ouzounis

 210

Additionally, the representation of process context and input and output parameters in this thesis
have been specified as (name, value , type) triplets. The same approach has been used in version
1.0a of the standard dated June1999. The main reason for this choice was simplicity and
flexibility. However, complex input and output parameters can also be specified within process
specifications. In that case, during process execution the complex input and output objects are
passed as serialized objects in string format. This means that special interpretation mechanisms
should be included for the serialisation and deserialisation of the complex objects into the WPA
and RPA agents. However, this approach is rather complex and results in loss of generality of
the whole concept. Therefore, the complex object structure for input and output parameters
specified in the WfMC proposed standard is a better way but results in complex message
definitions and descriptions.

Concerning process management operations both the proposed approach and the WfMC
standard specify the same operations, i.e. start, suspend, resume, abort, terminate, and complete
business process operations. Based on these operations, the potential states of a business process
instance are the same in both concepts. However, there are two basic differences between the
two approaches. The first one is related to the execution of remote business processes. The
WfMC standard does not specify any mechanism for access control and authorisation of
domains based on contracts and contracts ids. This means that the current standard has not been
designed and specified explicitly for inter-domain process execution. The second one is related
to the status of business processes. In the proposed model, querying the current status of the
process results only in the provision of the current status of a process and not on any other
additional data, as in the case of the WfMC.

9.4.2 Assessment of FIPA Standards

As part of the assessment phase, validation of the FIPA related concepts and standards has been
performed. One of the key requirements of this thesis was the deployment of FIPA compliant
agents by using the standard FIPA-Agent Communication Language (ACL) and the underlying
FIPA platform. Based on the experience gained during the design, implementation and testing of
the system, a set of conclusions regarding the maturity and efficiency of FIPA have been drawn.

The FIPA standards evolve every year. Although this approach results in significant
improvements of the provided specifications, at the same time introduces a set of interoperability
problems among different versions of the standards. For example, the Agent Communication
Channel (ACC) specification of FIPA97 is different to the FIAP98 specifications. The main
problem is the introduction of the forward performative that has been introduced in the FIPA98
series for the ACC-ACC communication. This means that in principle, the ACC specification of
FIPA98 is not compatible to the ACC specification of FIPA97.

The Agent Communication Language (ACL) specification is very generic and rather simplified.
The currently specified ACL envelope is rather simple and contains a rather limited set of fields.
In most of the cases, these fields are not being used, while the semantic meaning of them is
rather ubiquitous. At the same time, the execution and management of business processes
imposed certain fields to be included into the messages exchanged among agents. These fields
need to be included into the content of the message due to the absence of generic fields that
could have been used instead. Examples of such fields are the instance id , the contract id , and
the conversation id.

Chapter 9: Implementation, Testing, Validation, and Assessment

 211

Additionally, the standard FIPA protocols are simple and generic. Although this decision has
certain benefits, at the same time it is not easy to extend these protocols by specifying
specialised performatives. In general, the syntax of ACL envelope is static with pre-defined
performatives. The FIPA protocols have been specified based on these performatives. Therefore,
when a new protocol needs to be specified, then new performatives need to be defined also.
However, a flexible mechanism for defining new performatives does not exist and thus the
extension of existing protocols or the definition of new ones based on FIPA-ACL is rather
impossible.

Finally, FIPA does not specify the content language that will be used for the description of the
content of the message. This option increases the generosity and openness of the approach.
However, it introduces certain performance degradations. This is due to the fact that for every
incoming message two parsing activities needs to be done, one for the ACL message as such and
one for the content of the message. In particular, when the content language has been specified
in XML then the deployment of two different syntactic and semantic languages with different
formats makes the message format complex and diffic ult to parse. Instead, a unified message
description format would have been better.

In general, the FIPA standards and specifications are rather unstable, generic and in some cases
ubiquitous. However, the yearly evolution of the different specifications will definitely improve
the specifications and will finally provide a standard, interoperable platform for multi-platform,
multi-domain agent systems. Agent standards are very important for the large-scale deployment
and acceptance of agent systems and solutions.

9.4.3 Assessment of the proposed solution

Based on the development, testing, and validation of the agent-based platform for the
management of dynamic Virtual Enterprises, the following important characteristics and features
have been identified:

• Openness. This is achieved due to the deployment of the flexible, XML-based ontologies
for the management of shared business processes and the negotiation process. Additionally,
the specification of generic interfaces like the Business Process Listener Interface, the
External Condition Checker, the Strategy Manager Interface, and the Business Object
Manager enable the easy integration of third party components and thus contribute to the
openess of the system. Moreover, the integration of existing legacy systems, like the OMG-
Trader, distributed objects, and JESS rule engine also contribute to the openness of the
system. Finally, the usage of open, interoperable, standard technologies like XML, FIPA,
FIPA-ACL, and Java also increases the openness of the system.

• dynamicity, flexibility and evolution. This is achieved due to the dynamic selection of VE
partners and the automated negotiation during business process execution and management.
In principle, the proposed approach has been designed and developed with emphasis on
flexibility and evolution due to the dynamic Virtual Enterprise concept. The usage of the
virtual marketplaces, the registration of local business processes, and the negotiation and
dynamic selection of VE partners are special mechanisms that enable and support evolution
and flexibility. These concepts in conjunction with the generic communication mechanisms
offered by FIPA-ACL increase the levels of flexibility.

Evangelos K. Ouzounis

 212

• asynchronous and loosely coupled communication. This is achieved due to
communication mechanisms supported by FIPA platform. In general, the intelligent agents
communicate asynchronous and loosely coupled by message exchanges through the FIPA
ACC. Asynchronous communication is a key requirement for inter-domain business process
execution and management because the different administrative domains should not have
static references among them, like in Distributed Component based System. On the
contrary, the communication mechanism is based on message exchanges while the content
of the message is described in open and flexible ontologies.

• distribution and scalability. This is achieved due to the autonomous and distributed
execution and management of shared business processes. In principle, the execution and
management of business processes is performed by different intelligent, autonomous agents
located in different administrative domains. The agents are located in different physical
nodes and communicate with message exchanges. Additionally, the interaction between the
web server of the VE representative and the PUA agent is also distributed in the sense that
the communication is done through the TCP/IP protocol. This means that the web server
and the business process management system can be located in different physical locations.
The same principle has been adopted for the virtual marketplace. In that case, the three
agents of the virtual marketplaces are located in different physical location while the agents
that want to deploy their services should migrate to them. Finally, scalability is another
feature of the platform. This is achieved due to the autonomous execution of the processes.
For every sub-process a specialised agent is created to execute and manage the sub-process.
Therefore, as the business process instances running on the system inc rease, the number of
WPA and RPA agents for serving them increase. This concept improves the scalability of
the system in the sense that specialised agents are being dynamically created for serving the
business processes.

• autonomy. This is achieved due to the asynchronous and loosely coupled communication
of agents during the execution and management of business processes. Autonomy and
decentralisation is a key requirement for the management of dynamic VEs. In the context of
this thesis, the agents are autonomous and communicate by exchanging messages specified
in FIPA ACL, while the content of the requests and responses is specified by the inter-
domain, negotiation and virtual marketplace ontologies. The autonomy of the system is also
improved by the deployment of the FIPA compliant protocols.

• intelligence . This is achieved due to the deployment of artificial intelligence techniques
during the business process execution and management. For that reason, special
mechanisms have been developed and tested for the integration of rule engines like the
JESS rule engine for the assertion of conditions related to the flow of control in business
processes. Additionally, for that reason, two generic interfaces have been specified and
developed, namely the External Condition Checker Interface (ECCI) and the Strategy
Manager Interface (SMI). The ECCI enables the generic integration of third party condition
checkers like JESS while the SMI enables the easy integration of selection and negotiation
algorithms during the negotiation process. This means that the intelligence of the different
agents can be improved by using the interfaces to incorporate third party intelligent
modules.

• efficient management of network and computational resources. This is achieved due to
the migration of agents to the virtual marketplaces. In general, the migration of agents
should be used carefully in order to bring the appropriate results. In general, when a rather

Chapter 9: Implementation, Testing, Validation, and Assessment

 213

big in terms of size agent is moved from one physical location to another, it may require
more bandwidth and network resources than to send a message in ACL/XML format.
Therefore, migration of agents is advised only when the communication among the agents is
heavy and continuous. In the context of this thesis, migration of agents has been used only
for the deployment of virtual marketplace agents. In that case, the PNA and RNA agents
migrate to the virtual marketplace in order to register business processes or to select VE
partners that can provide a particular business process. In both cases, heavy interaction
among the agents occurs and thus the migration of agents is a good choice because it results
in efficient management of network and computational resources.

• easy integration of business objects . This is achieved due to the specification and
deployment of the generic Business Object Manager Interface (BOMI). The BOMI enables
the easy and flexible integration of distributed business objects and the creation of
specialised Resource Provider Agents (RPA). In general, the developer of the RPA agent
should only extend the generic RPA class and implement the methods specified by the
BOM Interface. Then, the integration of RPA agent with third party distributed business
objects can be easily and effectively performed in a transparent to the developer way. These
specialised RPA agents are then used in the different business process specifications.

• generality and applicability in various applications areas . This is achieved due to the
generality of the different entities of the platform. In principle, the Business Process
Definition Language (BPDL) and the service type are generic concepts for describing and
specifying processes and process templates. Additionally, the three inter-domain ontologies
are generic and can be used in different business sectors or application domains. Finally,
deployment of XML as a meta-language for ontology description enables the easy
customisation and extension of the different entities. The generality and applicability of the
proposed approach is proved by the fact that different validation scenarios from different
business sectors and application domains have been developed, tested and demonstrated
successfully.

In addition to the previously described benefits, one key drawback has been identified. This
drawback is performance and it is related to certain entities of the platform. The main reasons for
the performance limitations are:

• parsing of the messages. The format of the messages exchanged among agents is specified
in FIPA compliant ACL/XML format. Therefore, for every incoming message, parsing of
the ACL envelope and parsing of the XML content are required. However, the usage of
ACL/XML messages enables the autonomous and loosely coupled communication of agents
and thus the performance problem introduced is unavoidable.

• asynchronous message transportation. The transportation of messages exchanged among
agents is done in an asynchronous way through the FIPA Agent Communication Channel
(ACC). Every message sent from one agent to another is forwarded initially to the ACC,
which checks whether the destination agent is local or remote to the platform and forwards
the message to him. The involvement of the ACC in every agent-agent communication
decreases the performance of the system. However, the ACC is a standard entity specified
by FIPA standardization committee and the one that guarantees the asynchronous delivery
of messages. Therefore, the performance degradation is also unavoidable in that case too.

• migration of agents . The migration of agents from one physical location to another also
decreases the performance of the platform. The performance problem is introduced when

Evangelos K. Ouzounis

 214

the migrating agent is rather big enough in terms of bytes. However, when the message
exchanges with the remote agent increases, then the migration technique can be profitable.
In the context of this thesis, mobility of agents has been used in a reduced way and only
when the circumstances require it. For example, mobility is used only with the interaction
with the virtual marketplace and especially during the registration of business processes and
the selection of VE partners. In both cases, the number of messages exchanged among the
agents is high and thus, the mobility of the agent can improve the performance of the
platform.

• agent platform and third party module overhead. The agent-based platform for the
management of dynamic Virtual Enterprises is based on a standard mobile agent platform
with FIPA and OMG-MASIF support. All the agent life-cycle management services,
mobility services and FIPA compliant services introduce delays and complexity which is
inherited into the platform. However, this is also unavoidable due to the fact that the
platform is based on emerging agent standards. The same is happening with the JESS
engine, the OMG-Trader and the IBM XML parser. However, this is also unavoidable cost
due requirement for integration of legacy systems and third party business objects.

9.5 Summary
This chapter presents the implementation, testing, validation and assessment of the proposed
approach. More specifically, certain details regarding the implementation of the different agents
and components are provided. Main emphasis is given in the generic FIPA compliant agent and
the internal modules of this class. The ACL and XML parsers and composers are being
explained and discussed and short description of the Decision Manager module incorporated in
every agent is provided. Additionally, implementation details concerning the three ontologies,
namely the inter-domain, the negotiation, and the virtual marketplace ontology are also
provided. Furthermore, description and discussion of the implementation of the Offer, Contract
and Business Process Repository are provided. Finally, a short number of screen shots of the
implemented platform and the different agents are provided and further discussed. In addition to
the implementation details, an extensive analysis of the testing activities are discussed and
analysed. The testing activities have been focused on five respective areas, namely the virtual
marketplace, the intra-domain process execution and management, the inter-domain process
execution and management, the web-based management of processes, and the negotiation and
contracting phase. The validation of the platform has been done by developing, testing and
demonstrating four different scenarios. The first scenario is related to the ACT-MIAMI project
and deals with document translation and certification. The second is also related to the ACT-
MIAMI and deals with the dynamic management of network resources. The third scenario is
related to the EURESCOM P815 project and deals with international leased lines, while the
fourth scenario deals with an on-line book portal system with dynamic selection of logistic and
banking partners. After the validation, assessment of the proposed approach is performed. The
assessment is done in three respective phases, namely assessment of emerging XML-based
workflow standards, assessment of emerging FIPA standards, and finally assessment of the
platform and the proposed solution. In both cases, certain key features and characteristics of the
proposed solution are discussed and analysed.

 215

Chapter 10: Conclusions

10.1 Conclusions
The penetration of Internet and the web in accordance with new technological advances urged
companies to seize the opportunities offered by electronic commerce and to establish a strategic
position in the new global networked world. In order to do that, companies should co-operate in
different product development phases and share critical business processes, resources, core
competencies, skills and know how with each other. In a global, competitive marketplace,
companies are continuously seeking for new ways to address competitive pressure. Recognizing
the need to shorten development and manufacturing cycles, reduce time to market and
operational costs, increase customer satisfaction, operate on global scale and reach, and rapid
adaptation to new market changes has historically led companies to automation, collaboration
and distribution.

This new business model leaded to the concept of Virtual Enterprises (VE) that is the foundation
of the networked economy. The original goals for virtual enterprise business systems were to
enable deployment of distributed business processes among different partners, to increase the
efficiency of existing provided services, to decrease the cost for the provision of these services,
and to adapt rapidly to new market changes. Two broad, well-defined categories have been
identified so far, namely the static Virtual Enterprises (SVEs) and the Dynamic Virtual
Enterprises (DVEs).

Dynamic Virtual Enterprises improve significantly the Static VEs and take full advantage of the
open, global, opportunities offered by the Internet and the global economy. Dynamic Virtual
Enterprises feature very short lifetimes, the business relationships among the partners are
dynamic and flexible enough for alterations, modifications and evolution. Dynamic Virtual
Enterprises exhibit low process integration, high degree of autonomy and scalability between
different partners. The number of partners and thus the structure of the network can change
dynamically upon demand and supply and based on the requirements of the individual members

Evangelos K. Ouzounis

 216

of the marketplace. Additionally, Dynamic Virtual Enterprises feature more autonomicity
because the business relationships among the partners are dynamic and thus, any changes to the
internal business processes can easily be done. Finally, in Dynamic Virtual Enterprises there are
no tightly coupled interfaces among the partners and thus scalability and business evolution is a
key issue.

Due to the open mechanisms of Internet economy, flexible Dynamic Virtual Enterprises that
take advantage of the global market conditions are preferred. Although from business point of
view Dynamic Virtual Enterprises are the most promising business model, from technical point
of view, the required solutions and systems are more complex, sophisticated and distributed
(Ducroux, 1998). Current technologies and scientific results are not addressing in a consistent
and coherent way certain key requirements of Dynamic VEs. Open issues like specification and
storage of business processes in the context of dynamic VEs, flexible and dynamic mechanisms
for autonomous, distributed, and loosely coupled execution and management of business
processes across organizational boundaries, registration and management of core business
process that can be offered to potential VE partners in an open virtual marketplace, dynamic
selection of VE partners based on automated negotiations and business process offerings stored
in virtual marketplaces, flexible and adaptable ontologies for business process execution and
management across organisational boundaries, flexible and adaptable ontologies for virtual
marketplace deployment from both, business process providers and requestors, flexible and easy
adaptable ontologies for automated partner selection and negotiation, and finally integration of
existing legacy systems and business components with business processes in the context of
dynamic VEs.

This thesis analysed, designed, developed, tested, and validated a platform for the management
of dynamic virtual enterprises that supports the whole life cycle model, namely the business
process specification and registration and business process execution and management. The
platform is based on FIPA compliant, autonomous, intelligent agent technologies, emerging
agent-based workflow management concepts for cross-organisational business process execution
and management, virtual marketplaces with emphasis on OMG Trader integration, and
automated negotiation for dynamic partner selection.

More specifically, this thesis defined, developed and validated the following key entities:

• an agent-based, FIPA compliant virtual marketplace that provides service types
management, service offer management and service retrieval management based on
standard OMG Trader concepts,

• a XML-based virtual marketplace ontology that enables the registration and administration
of business process, the management of processes offers, and the dynamic selection partner
of partners,

• a negotiation ontology and protocol for the automated and dynamic selection of VE
candidate partners based on the FIPA compliant Contract-Net protocol,

• an XML-based business process definition language for the specification of business
processes in the context of dynamic Virtual Enterprises and a business process repository
for the storage and administration of business processes,

• a distributed, autonomous, agent-based, FIPA compliant, workflow management system for
the execution and management of shared business processes across different organizational
boundaries based on a flexible and adaptable inter-domain ontology,

Chapter 10: Conclusions

 217

• an XML-based intra- and inter-domain ontology for the execution and management of
cross-organizational, agent-based, business process execution and management,

• a generic mechanism for the deployment and integration of distributed objects within shared
business processes

The agent-based platform for the management of dynamic Virtual Enterprises has been fully
implemented and tested. The development of the platform and the different entities of it have
been done using open, interoperable and standard technologies. More specifically, the
specification and development of the virtual marketplace ontology, the negotiation ontology, and
the inter- and intra-domain ontology have been in done in XML. The development of the
different agents that support the main operations of the platform has been performed in Java.
The underlying agent platform deployed was Grasshopper, an OMG-MASIF and FIPA
compliant platform. The communication and interaction among the different agents were based
on standard FIPA-ACL while the protocols used were the FIPA compliant Request-Response,
Request-Query and Contract-Net. Finally, the platform integrated directly a standard OMG-
Trader and developed a special mechanism for the execution and management of business
processes through the www by using the TCP/IP and HTTP protocols and the standard Java
Servlets technology.

The validation of the agent-based platform for the management of dynamic Virtual Enterprises
has been done by the development of four independent business and application scenarios. The
first two scenarios have been developed in the context of the EU funded ACTS-MIAMI project,
the third one in the context of the EURESCOM P815 project and the fourth one individually.
The first scenario is a dynamic VE for the provision of on-line document translation and
certification services to remote users. The second scenario is a dynamic network management
solution provided by a third party provider called the Active Virtual Pipe. The third scenario is
the development of an International Leased Line Scenario through a set of network and telecom
providers. Finally, the fourth scenario is an on-line book portal system that collaborates
dynamically with a logistic company to delivery the books to the customers and a bank to
manage the payment from the customer.

The assessment of the agent-based platform for the management of dynamic Virtual Enterprises
has been focused in thee respective areas. An analytical comparison of the proposed approach
with the current Interoperability Wf-XML Binding standard specified by the Workflow
Management Coalition has been performed. Additionally, as part of the assessment phase,
validation of the FIPA related concepts and standards have been performed. One of the key
requirements of this thesis was the deployment of FIPA compliant agents by using the standard
FIPA-Agent Communication Language (ACL) and the underlying FIPA platform. Based on the
experience gained during the design, implementation and testing of the system, a set of
conclusions regarding the maturity and efficiency of FIPA have been drawn. Finally, assessment
of the proposed model has been performed. Based on the development, testing, validation, the
agent-based platform for the management of Dynamic Virtual Enterprises reveals the following
important characteristics and attributes:

• openness due to the flexible ontologies used for the management of shared business
processes, the integration of existing legacy systems, like the OMG-Trader and distributed
objects, and the open interfaces used, like the Business Process Listener Interface and
External Condition Checker Interface,

Evangelos K. Ouzounis

 218

• dynamicity, flexibility and evolution due to the dynamic selection of partners, the
automated negotiation during business process execution and management, and the standard
protocols and technologies used,

• asynchronous and loosely coupled coordination due to the fact that the communication
among the intelligent agents is performed by message exchanges through the FIPA ACC
that supports asynchronous and loosely coupled communication,

• distribution and scalability due to the distributed execution and management of shared
business processes from different intelligent agents across different administrative domains,

• autonomy and decentralization due to the loosely coupled coordination of business
process execution and management through autonomous intelligent agents and the message
exchange approach based on FIPA compliant ACL, protocols and XML-based ontologies,

• intelligence due to the deployment of artificial intelligence techniques during business
process execution and management, like the JESS engine, and easy integration of
specialized selection algorithms through the Strategy Manager Interface,

• efficient management of network and computational resources due to the migration of
agents to the virtual marketplaces during the business process registration and the VE
partners selection phases,

• generality and applicability in various applications areas and business sectors due to
the generality of the business process definition language, the service types, the inter- and
intra-domain ontologies, negotiation ontologies and virtual marketplace ontologies.

In addition to the previously described benefits, one key drawback has been identified. This
drawback is performance limitation and it is related with certain entities and features of the
platform. The main reasons for the performance limitations are the double parsing of the
ACL/XML messages, the asynchronous message transportation through the ACC agent, the
migration of agents to different physical locations and the overhead introduced from the agent
platform and the third party modules. However, most of the performance deficiencies occurred
are strongly related with certain useful features of the platform. Thus, improving the
performance of the system results in loss of certain attributes and features of the system. For
example, the deployment of both ACL and XML for the description of messages decreases the
performance of the system due to the double parsing required in every incoming message.
However, at the same time, due to the deployment of the ACL and XML-based ontologies the
system reveals high degree of autonomy, openness and loosely couple communication.

Dynamic Virtual Enterprises is an emerging and very attractive business model that enables the
dynamic collaboration among different administrative domains based on market oriented
approaches and automated negotiation and can constitute the foundation of future electronic
business. This thesis tried to provide a systematic, coherent and state of art solution for the
management of dynamic Virtual Enterprises based on standard, intelligent agent concepts and
technologies. The acceptance and penetration of solutions like this will depend of the success
and adoption of the intelligent agent approach and the specification and development of generic
business process templates and service types from standardization committees. As the Internet
and the new digital economy will urge companies to collaborate and share critical business
processes dynamically, solutions like this will become more important, applicable and effective
for day to day business operations.

Chapter 10: Conclusions

 219

10.2 Future Work
Although the presented work tried to provide a coherent solution for the management of
dynamic VEs, certain issues are subject to further improvements and research. These are:

• negotiation strategy algorithms. The automated negotiation was one of the key
requirements for the selection of VE partners. The thesis provided the basic infrastructure,
i.e. protocol, ontology and standard, open interfaces, for the automated negotiation and
selection of partners and the integration of negotiation mechanisms with the process
execution and management. In principle, different negotiation strategies that can be
developed and adopted during the negotiation processes. Since strategy algorithms were not
a key requirement, this issue has not been addressed by this thesis. Therefore, a potential
improvement would have been the integration and experimentation of different negotiation
strategies for the selection of VE partners. The specification of the Strategy Manager
Interface enables the easy and flexible integration of negotiation manager modules.

• fault tolerance and exception handling . During the execution of business processes
certain unpleasant situations might arise. In any case, when the execution of a running
business process cannot continue anymore, the process should abort. In the current
specification and implementation, unpleasant situations are managed with specific
exception handling processes specified during the business process specification. When a
process aborts, then the exception handling process starts automatically to bring the system
in a stable state. However, this approach solves the problem only in intra-domain process
execution but not in inter-domain processes. Therefore, a potential improvement of the
platform would have been the provision of fault tolerance and exception handling features
for the inter-domain processes.

• secure inter-domain communication. In general, the execution and management of inter-
domain business processes is performed using the native security features of the underlying
platform, i.e. the Grasshopper. The provided solution addressed the problem of access
control and authorization to local business processes from remote domains and users. In
principle, the Grasshopper security services can be used only for distributed inter-domain
Multi-Agent Systems developed in Grasshopper agent platform. However, when different
agent platforms are involved, the FIPA-ACL as an interoperability mechanism for agent
communication should be used. In that case, the FIPA recommendations do no address
explicitly how secure inter-domain communication among agents can be done. Therefore, a
potential improvement would have been the introduction of security mechanisms for inter-
domain agent communication. However, this is a feature mostly related with the underlying
agent platform and not directly with the proposed result.

• mobility and inter-domain business process execution. The execution and management
of inter-domain business processes is performed in an asynchronous and loosely coupled
way by the exchange of messages. The migration of WPA agents from one domain to
another has been avoided due to the fact that the performance of the system is worsening.
The main reason is that the size of the WPA agents is bigger in comparison to the string-
based ACL/XML messages. This means that it takes less time and resources to send a string
message than to send a whole agent. As the performance of migration services provided by
the mobile agent platforms might be improved in the future, migration of agents to different
domains for the coordination and management of business processes would have been an
alternative option and thus an issue for further research and investigation.

Evangelos K. Ouzounis

 220

10.3 Summary
This chapter presents the results achieved in this thesis and identifies a list of issues for further
research, experimentation and development.

 221

Chapter 11: Glossary

Agent An entity that combines one or more service capabilities into a unified
and integrated execution model that can include access to external
modules, human users, and communication facilities.

Agent Cloning The process by which an agent creates a copy of itself on a local or
remote Agent Platform

Agent Communication
Channel (ACC)

Is the agent responsible for routing messages between agents within
the platform and to agents resident on other platforms

Agent Communication
Language (ACL)

A language with precisely defined syntax, semantics, and pragmatics
that is the basis of communication between independently designed
and developed software agents.

Agent Creation The process by which an instance of an agent in being created on an
Agent Platform

Agent Domain is a logical space that provides a context within which Agents may
organize and locate each other

Agent Life-Cycle The finite steps an agent may go through over its entire life history.
The agent life cycle consists of the following five states: Initiated. The
agent is created. Active. The agent is currently executing. Suspended.
The agent has been suspended. Waiting. The agent is waiting for some
event. Transit. The agent is in the process of moving (only applies to
mobile agent)

Agent Management
System (AMS)

is an agent that manages the creation, deletion, suspension,
resumption, authentication, and migration of agents on the agent
platform and provides a ‘white pages’ directory service for all agents
resident on an agent platform. It stores the mapping between Globally
Unique Agent Names (GUID) and local transport addresses used by
the platform. Only one AMS exists in a single Agent Platform.

Evangelos K. Ouzounis

 222

Agent Migration The process by which an agent transports itself from one Agent
Platform to another.

Agent Name Uniquely identifies an agent within the network. Stationary and
mobile agents communicate mainly through agent names.

Agent Platform (AP) Provides an infrastructure in which agents can be deployed. An agent
must be registered on a platform in order to interact with other agents
on that or other platforms.

Atomic Process Are computational elements, i.e. they provide special elementary
operations into the business process. The atomic process has always a
well-defined functionality and is always associated with an external
business object.

Business Object a network accessible object that represents a real world business entity
or performs a real world business process.

Business Process (BP) “A procedure where documents, information or tasks are passed
between entities of the workflow according to defined sets of rules to
achieve, or contribute to, an overall business goal” (WfMC, 1996).

Business Process
Analyst (BPA)

The human role responsible for the specification of business processes
using a business process definition language.

Business Process
Definition Language
(BPDL)

Is an XML-based language that enables the specification of complex
business processes. The language enables the specification of
processes, sub-processes, atomic processes, conditions, input and
output parameters

Business Process
Execution

Is the process of interpreting and instantiating business processes
specified with the help of a business process specification. The
execution of the process is performed based on the flow of control and
data specified in the specification of it.

Business Process
Management

Is the process of managing the status of a business process. The main
operations are the suspension, termination, resumption, or completion
of a process

Business Process
Registration Phase

Is the process of registering business process offers to the virtual
marketplace. In that way, different VE partners can find the process
providers and select them for dynamic co-operation.

Business Process
Repository (BPR)

Is the permanent storage system that stores, administers, and interprets
the business process specification.

Business Process
Specification

Is a representation of real-world activity in a machine readable format.
Conceptually, a business process specification is a directed acyclic
graph in which nodes represent steps of execution and edges represent
the flow of control and data among the different steps.

Business Process
Specification Phase

Is the process that the business process analyst undertakes for the
specification of a business process by using the business process
definition language.

Business Sub-Process Is each step within a process. A sub-process has a name, a set of input
and output parameters, and start pre-conditions. A sub-process
consists of one atomic process or one or more sub-processes. A sub-

Chapter 11: Glossary

 223

consists of one atomic process or one or more sub-processes. A sub-
process can be either local, when the current domain can execute the
whole sub-process, or remote, when the execution of the sub-process
can be performed by another domain.

Communicative Act A special class of actions that correspond to the basic building blocks
of dialogue between agents. A communicative act has a well-defined,
declarative meaning independent of the content of any given act.
Communicative Act 's are modelled on speech act theory.

Conditions Specify the circumstances under which certain events will happen.
When a condition becomes true then the corresponding sub-process
should start its execution. Conditions can be either atomic or
composite.

Constraint Language
Parser (CLP)

Is the parser that interprets constraints that have been specified using
the OMG Constraint Language.

Content Language (CL) The language used to describe the ontologies and the content of the
messages that the agents exchange.

Content of a message Is part of a communicative act that represents the domain -dependent
component of the communication

Contract Repository
(CR)

Is the permanent storage system that stores and administers the
electronic contracts that have been established as a result of the
negotiation process

Conversation An on-going sequence of communicative acts exchanged between two
or more agents relating to an on-going topic of discourse. A
conversation may, perhaps implicitly, accumulate context that is used
to determine the meaning of later messages in the conversation.

Directory Facilitator
(DF)

Provides ‘yellow pages’ services to other agents. It stores descriptions
of the agents and the services they offer. The DF is a mandatory,
normative agent that is the trusted, benign custodian of the directory
within a single domain.

Domain Representative
(DR)

Is the autonomous, intelligent agent that represents one administrative
domain and is responsible for the management of the business process
requests coming from remote domains or the end-user.

Dynamic VE Is a dynamic constellation of different administrative domains that co-
operate in order to execute and manage share business processes. The
form and the relationships among the partners are built dynamically
and after negotiation.

Electronic Contract Is the electronic representation of the agreement reached between two
administrative domains for the sharing of a particular business
process. It regulates the terms and conditions of the partnership.

FIPA Protocols Are the set of protocols specified by the FIPA standardization
organization in order to achieve standard behaviour and interoperation
among different multi-agent systems

FIPA-ACL Is the agent communication language that has been specified by the
FIPA standardization organization. It is based on the speech-act theory
and is considered the successor of KQML

Evangelos K. Ouzounis

 224

and is considered the successor of KQML

Flow of Control Is actually the order in which activities are being scheduled and
executed. The Flow of Control is specified by special logical
conditions assigned to the sub-processes or atomic processes.

Flow of Data Is a series of mappings between output data and input data to allow
activities to exchange information. Actually, the output parameters of
one process can be input parameters of another process.

Home Agent Platform
(HAP)

Is the platform that creates and manages the life-cycle of agents or is
the initial platform that agents have registered onto.

Inter-Domain Ontology The set of messages that different autonomous agents, belonging to
different administrative domains, exchange during the execution and
management of shared business processes.

Intra-Domain Ontology The set of messages that different autonomous agents, belonging to
the same administrative domains, exchange during the execution and
management of local business processes.

Life-Cycle Model The finite steps a system may go through over its entire life history.
The different life cycle phases define types of activities which are
pertinent during the life cycle of the entity, ISO/DIS 15704 (ISO)

Local Agent Platform Is the Agent Platform to which an agent is attached. The Local Agent
Platform represents an ultimate destination for messages directed to
that agent.

Local Business
Processes

Are the business processes that can be fully and consistently provided
by one administrative domain. The specification of local business
processes is stored and managed by one administrative domain.

Message An individual unit of communication between two or more agents. A
message corresponds to a communicative act, in the sense that a
message encodes the communicative act for reliable transmission
between agents. Communicative acts can be recursively composed.

Message transport
service

Is an abstract service provided by the agent management platform to
which the agent is currently attached. The message transport service
provides reliable delivery of messages to their destination agents, and
also a mapping from agent logical names to physical transport
addresses.

Mobile Agent An agent that is not reliant upon the Agent Platform where it was
created and can subsequently transport itself between different Agent
Platforms.

Mobility The property or characteristic of an agent that allows it to travel
between different Agent Platforms.

Negotiation Is a process by which a joint decision is made by two or more parties.
The parties first verbalize contradictory demands and then move
towards agreement by a process of concession making or search for
new alternatives (Bicher and Siera, 1997)

Negotiation Ontology The set of messages, with well-defined syntax and semantic meaning,
exchanged by the autonomous agents during the negotiation process.

Chapter 11: Glossary

 225

exchanged by the autonomous agents during the negotiation process.

Negotiation Protocol A common pattern of conversations used by different agents during
the negotiation process.

Offer Repository (OR) Is the persistent storage system that maintains information regarding
the registration of local and remote business processes into the virtual
marketplace and the negotiation process during partner selection.

OMG Constraint
Language (OMG-CL)

Is the standard OMG language for the specification of logical
constraints related to the service types and the OMG Trader. It is used
for the specification of constraints related to the retrieval of service
offers stored into the OMG Trader.

Ontology Gives meaning to symbols and expressions within a given domain
language. In order for a message from one agent to be properly
understood by another, the agents must ascribe the same meaning to
the constants used in the message. The ontology performs the function
of mapping a given constant to some well-understood meaning. For a
given domain, the ontology may be an explicit construct or implicitly
encoded with the implementation of the agent.

Personal User Agent
(PUA)

Is the autonomous agent responsible for the provision of shared
business process management and execution operations to the
customers of the VE.

Protocol A common pattern of conversations used to perform some generally
useful task. The protocol is often used to facilitate a simplification of
the computational machinery needed to support a given dialogue task
between two agents. In the context of this thesis, protocol refers to the
dialogue patterns between agents, and networking protocol refers to
the underlying transport mechanisms.

Provider Negotiation
Agent (PNA)

Is the autonomous agent responsible for the registration of local
business processes into the virtual marketplace and for controlling the
negotiation process on behalf of the provider domain.

Remote Business
Processes

Are the business processes that can not be fully provided by one
administrative domain. In that case, the administrative domain needs
to deploy remote business processes provided by other administrative
domains. The specification of remote business processes is stored and
managed by other administrative domains.

Requestor Negotiation
Agent (RNA)

Is the autonomous agent responsible for the selection of potential VE
candidate partners from the virtual marketplace and for controlling the
negotiation process on behalf of the requestor domain.

Resource Provider
Agent (RPA)

Is the autonomous agent that provides a simple, elementary processing
activity into the business process. It has always a well-defined mission
and it is related to an external business object.

Role A well-defined business activity which can not be further subdivided
between a number of players.

Service Offer Agent
(SOA)

Is the autonomous agent responsible for the management and
administration of the service offer requests in the virtual marketplace.

Evangelos K. Ouzounis

 226

Service Offer
Management

Is the process of managing the service offers stored into the virtual
marketplaces in relation to certain local business processes of different
administrative domains.

Service Offer
Repository (SOR)

Is the persistent storage system that stores the different service offers
registered in the virtual marketplace.

Service Offer
Repository (SOR)

Is the persistent storage system that stores the service offers that have
been registered in the virtual marketplace concerning local business
processes.

Service Offer Retrieval
Agent (SOR Agent)

Is the autonomous agent responsible for the management and
administration of the service offer retrieval requests in the virtual
marketplace. It is being used for the selection of VE candidate
partners.

Service Offer Retrieval
Management

Is the process of managing the service offer retrieval requests in the
virtual marketplace.

Service Type Agent
(STA)

Is the autonomous agent responsible for the management and
administration of the service types stored into the virtual marketplace.

Service Type
Management

Is the process of managing and administering the service types in the
virtual marketplace.

Service Type Repository
(STR)

Is the persistent storage system that stores the different service types
that have been created in the virtual marketplace.

Speech Act Theory A theory of communications which is used as the basis for ACL.
Speech act theory is derived from the linguistic analysis of human
communication. It is based on the idea that with language the speaker
not only makes statements, but also performs actions. A speech act
can be put in a stylized form that begins ‘I hereby request ’ or ‘I
hereby declare ’ In this form the verb is called the performative, since
saying it makes it so. In speech act theory, communicative acts are
decomposed into locutionary, illocutionary, and perlocutionary acts.

Static VE Is a static constellation of different administrative domains that co-
operate in order to execute and manage pre-defined and statically
specified business processes. The form and the relationships among
the partners are built statically and before the provision of the process
to the customer.

Stationary agent An agent that executes only on the Agent Platform where it was
created and is reliant upon it.

VE Business Process is a business process where the different steps involved are provided
by different administrative domains.

VE Candidate Partner Is the administrative domain that registers its local business processes
to the virtual marketplace and is willing to establish dynamic
relationships with other domains.

VE Partner Is the domain that has been engaged itself into a business relationship
with another domain through negotiation. The VE partner offers for a
very short period of time a specific business process with specific
terms and conditions to another domain.

Chapter 11: Glossary

 227

terms and conditions to another domain.

VE Representative Is the administrative domain that represents the VE to the external
world and provides the shared business processes to the different
customers.

Virtual Enterprises (VE) A network of different administrative business domains that co-
operate by sharing business processes and resources to provide a
value-added service to the customer. Each partner of the virtual
enterprise will contribute primarily what it regards as its core
competencies, i.e. business processes and resources. There is a time
limit on the existence of the virtual enterprise caused by fulfilment of
its business purpose. From the viewpoint of an external observer, i.e. a
customer, the virtual enterprise appears as a unitary enterprise.

Virtual Marketplace
(VMP)

Is the set of matchmaking services for the dynamic selection of
partners. The matchmaking services consist of the service type
management, service offer management, and service retrieval
management.

Virtual Marketplace
Administrator

Is the human operator of the virtual marketplaces that performs
alternatively the service type management operations, like create
service type, etc.

Virtual Marketplace
Domain

Is the third party administrative domain that provides the
matchmaking services to different VE candidate and partner domains.

Virtual Marketplace
Ontology

The set of messages, with well-defined syntax and semantic meaning,
exchanged by the autonomous agents during the deployment of the
virtual marketplace services.

Workflow Engine (WE) Is the module of the workflow management system responsible for the
execution and management of different business process instances.

Workflow Management
System (WFMS)

Is the set of tools used to design, define, and specify business
processes utilising a business process definition language, widely
known as business process modelling tools, the environment or
workflow engine in which these processes are executed and managed,
widely known as workflow engine, and the set of interfaces to the
users and applications involved in the workflow process, widely
known as application interfaces and tasklists.

Workflow Provider
Agent (WPA)

Is the autonomous agent responsible for the execution and
management of a single step within a business process. A set of WPAs
and RPAs agent co-operate in an asynchronous and autonomous way
to execute business processes.

Evangelos K. Ouzounis

 228

 229

Chapter 12: Acronyms

ACC Agent Communication Channel

ACL Agent Communication Language

AMS Agent Management System

AP Agent Platform

API Application Programming Interface

AUR Active User Repository

BO Business Object

BOM Business Object Manager

BP Business Process

BPD Business Process Definition

BPDL Business Process Definition Language

BPLI Business Process Listener Interface

BPR Business Process Repository

C/S Client/Server

CA Communicative Act

CFP Call For Proposals

CL Content Language

CORBA Common Object Request Broker Architecture

CR Contract Repository

DF Directory Facilitator

Evangelos K. Ouzounis

 230

DM Definition Model

DPE Distributed Processing Environment

DR Domain Representative

DTD Document Type Definition

ECCI External Condition Checker Interface

EDI Electronic Data Interchange

FIPA Foundation for Intelligent Physical Agents

GUID Global Unique Identifier

HAP Home Agent Platform

HTML Hyper Text Mark-up Language

HTTP Hypertext Transmission Protocol

IDL Interface Definition Language

IDWfMML Inter-Domain Workflow Message Mark-up Language

IIOP Internet Inter-Orb Protocol

INDO Inter- and Intra domain Ontology

IP Internet Protocol

JESS Java Expert System Shell

LAP List of Active Processes

LAVEP List of Active VE Providers

MASIF Mobile Agent System Interoperability Facilities

MAT Mobile Agent Technologies

OMG Object Management Group

OR Offer Repository

PNA Provider Negotiation Agent

PUA Personal User Agent

RMI Remote Method Invocation

RNA Requestor Negotiation Agent

RPA Resources Provider Agent

RPC Remote Procedure Call

SL Semantic Language

SOA Service Offer Agent

SOR Service Offer Repository

SORA Service Offer Retrieval Agent

Chapter 12: Acronyms

 231

STA Service Type Agent

STR Service Type Repository

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/ Internet Protocol

UML Unified Modeling Language

VMP Virtual Market Place

WE Workflow Engine

WFM Workflow Management

WfMC Workflow Management Coalition

WFMS Workflow Management System

WPA Workflow Provider Agent

WWW World Wide Web

XML Extensible Mark-up Language

Evangelos K. Ouzounis

 232

 233

Chapter 13: ANNEX

Virtual Marketplace Ontology Specification in XML-DTD Format

<!ELEMENT VMPMessage (STAMessage | SOAMessage | SORMessage | (VMPException,
YourMsg))>
<!ELEMENT YourMsg (#PCDATA) >

<!-- STA -->
<!-- Request and Respond messages for the STA agent -->

<!ELEMENT STAMessage (STARequest+ | STAResponse)>

<!-- STARequest -->

<!ELEMENT STARequest (AddType | DescribeType | MaskType | ListTypes |
UnmaskType | RemoveType)>
<!ATTLIST STARequest RequestId ID #REQUIRED>
<!ELEMENT AddType (type, if_name, propdescs, super_types)>
<!ELEMENT DescribeType (type, fully?)>
<!ELEMENT fully EMPTY>
<!ELEMENT MaskType (type)>
<!ELEMENT UnmaskType (type)>
<!ELEMENT ListTypes ((since, incarnation) | (all))>
<!ELEMENT RemoveType (type)>

<!-- STAResponse -->

<!ELEMENT STAResponse (VMPException | AddTypeRes | DescribeTypeRes |
MaskTypeRes | ListTypesRes | UnmaskTypeRes | RemoveTypeRes)>
<!ATTLIST STAResponse RequestId ID #REQUIRED>
<!ELEMENT AddTypeRes (incarnation)>
<!ELEMENT DescribeTypeRes (if_name, propdescs, super_types, (masked |
unmasked), incarnation) >

Evangelos K. Ouzounis

 234

<!ELEMENT masked EMPTY>
<!ELEMENT unmasked EMPTY>
<!ELEMENT MaskTypeRes EMPTY>
<!ELEMENT UnmaskTypeRes EMPTY>
<!ELEMENT RemoveTypeRes EMPTY>
<!ELEMENT ListTypesRes (types)>

<!-- SOA -->
<!ELEMENT SOAMessage (SOARequest+ | SOAResponse)>

<!-- SOARequest -->

<!ELEMENT SOARequest (ExportOffer | DescribeOffer | ModifyOffer |
WithDrawOffer)>
<!ATTLIST SOARequest RequestId ID #REQUIRED>
<!ELEMENT ExportOffer (type, agent, properties)>
<!ELEMENT DescribeOffer (offerid)>
<!ELEMENT ModifyOffer (offerid, delete?, modify?)>
<!ELEMENT WithDrawOffer (offerid)>

<!-- SOAResponse -->

<!ELEMENT SOAResponse (VMPException | ExportOfferRes | DescribeOfferRes |
ModifyOfferRes | WithDrawOfferRes) >
<!ATTLIST SOAResponse RequestId ID #REQUIRED>
<!ELEMENT ExportOfferRes (offerid)>
<!ELEMENT DescribeOfferRes (type, properties, agent)>
<!ELEMENT ModifyOfferRes EMPTY>
<!ELEMENT WithDrawOfferRes EMPTY>

<!-- SOR -->

<!ELEMENT SORMessage (SORRequest+ | SORResponse)>
<!-- SORRequest -->
<!ELEMENT SORRequest (Query)>
<!ATTLIST SORRequest RequestId ID #REQUIRED>
<!ELEMENT Query (type, constraint?)>

<!-- SORResponse -->

<!ELEMENT SORResponse (QueryRes | VMPException)>
<!ATTLIST SORResponse RequestId ID #REQUIRED>
<!ELEMENT QueryRes (offers)>

<!-- VMPException ->

<!ELEMENT VMPException (reason)>
<!ELEMENT reason (#PCDATA)>

<!-- Specification of Common Entities Used in the DTD VMP FILE -->

<!ELEMENT if_name (#PCDATA)>
<!ELEMENT propdescs (propdesc*)>
<!ELEMENT propdesc (prop_name, (normal | readonly | mandatory |
readonly_mandatory), (string | integer | float | boolean | stringseq |
integerseq | floatseq | booleanseq))>
<!ELEMENT prop_name (#PCDATA)>
<!ELEMENT normal EMPTY>
<!ELEMENT readonly EMPTY>

Chapter 13: ANNEX

 235

<!ELEMENT mandatory EMPTY>
<!ELEMENT readonly_mandatory EMPTY>
<!ELEMENT string EMPTY>
<!ELEMENT integer EMPTY>
<!ELEMENT float EMPTY>
<!ELEMENT boolean EMPTY>
<!ELEMENT stringseq EMPTY>
<!ELEMENT integerseq EMPTY>
<!ELEMENT floatseq EMPTY>
<!ELEMENT booleanseq EMPTY>
<!ELEMENT super_type (#PCDATA)>
<!ELEMENT super_types (super_type*)>
<!ELEMENT types (type*)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT since EMPTY>
<!ELEMENT all EMPTY>
<!ELEMENT incarnation (low, high)>
<!ELEMENT low (#PCDATA)>
<!ELEMENT high (#PCDATA)>

<!ELEMENT properties (property*)>
<!ELEMENT property (pname, pvalue)>
<!ELEMENT pvalue (((string | integer | float | boolean), value) | (stringseq |
integerseq | floatseq | booleanseq), seq_value))>
<!ELEMENT seq_value (value+)>
<!ELEMENT pname (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT offerid (#PCDATA)>
<!ELEMENT delete (prop_name*)>
<!ELEMENT modify (properties)>
<!ELEMENT offers (offer*)>
<!ELEMENT offer (properties, agent)>
<!ELEMENT agent (#PCDATA)>
<!ELEMENT constraint (#PCDATA)>

Business Process Definition Language Specification in XML-DTD
<!-- Entry point for business process definition in XML -->

<!ELEMENT business-process-definition (process-definition | condition-
definition | parameter-definition)*>

<!-- Generic class for representing a business process definition -->

<!ELEMENT process-definition (process-name, comment?, in-data*, out-data*,
(atomic-process | composite-process))>
<!ELEMENT process-name (#PCDATA)>

<!ELEMENT atomic-process (external-task-name)>
<!ELEMENT external-task-name (#PCDATA)>

<!ELEMENT composite-process (composite-process-element+, exception-handling-
process-element*)>
<!ELEMENT composite-process-element (precondition-name?, sub-process-name,
time-allowed-to-complete?, (is-remote | to-be-negotiated)?, in-data*, out-
data*)>
<!ELEMENT exception-handling-process-element (exception-source+, sub-process-
name, time-allowed-to-complete?, (is-remote | to-be-negotiated)?, in-data*,
out-data*)>

Evangelos K. Ouzounis

 236

<!ELEMENT precondition-name (#PCDATA)>
<!ELEMENT exception-source (#PCDATA)>
<!ELEMENT sub-process-name (#PCDATA)>
<!ELEMENT is-remote EMPTY>
<!ELEMENT to-be-negotiated EMPTY>
<!ATTLIST to-be-negotiated method (directly | vmp) #IMPLIED>
<!ELEMENT in-data (#PCDATA)>
<!ELEMENT out-data (#PCDATA)>
<!ELEMENT time-allowed-to-complete (#PCDATA)>
<!ATTLIST time-allowed-to-complete
 unit (seconds | s | minutes | m | hours | h | days | d) #REQUIRED
 trials CDATA "1">

<!-- Generic class for representing a condition definition -->

<!ELEMENT condition-definition (condition-name, comment?, (atomic-condition |
composite-condition))>

<!ELEMENT condition-name (#PCDATA)>

<!ELEMENT rule (rule-language, rule-body)>
<!ELEMENT rule-language (#PCDATA)>
<!ELEMENT rule-body (#PCDATA)>

<!ELEMENT composite-condition (is-not?, (is-or | is-and), branch-condition-
name+)>
<!ELEMENT is-not EMPTY>
<!ELEMENT is-or EMPTY>
<!ELEMENT is-and EMPTY>
<!ELEMENT branch-condition-name (#PCDATA)>

<!ELEMENT atomic-condition (((is-not?, process-status?) | rule), external-
condition-name)>
<!ELEMENT process-status (process-name)>
<!ATTLIST process-status process-state (running | notStarted | suspended |
aborted | terminated | completed) #REQUIRED>

<!-- Generic class for representing parameter definition -->

<!ELEMENT external-condition-name (#PCDATA)>

<!ELEMENT parameter-definition (parameter-name, comment?, parameter-type,
parameter-value)>
<!ELEMENT parameter-name (#PCDATA)>
<!ELEMENT parameter-type (#PCDATA)>
<!ELEMENT parameter-value (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

Inter Domain Ontology Specification in XML-DTD Format
(request
 ...
 :protocol fipa-request
 :conversation-id request1
 :content "
 <?xml version=\"1.0\">

Chapter 13: ANNEX

 237

 <!DOCTYPE action SYSTEM \"idwfmml1.dtd\">
 <action command=\"run\">
 <contextId>SLA-1</contextId>
 <process>
 <processid>Build</processid>
 <paramater>
 <parameter-name>serviceName</parameter-name>
 <paramater-type>String</parameter-type>
 <parameter-value>ILLP</parameter-value>
 </parameter>
 <paramater>
 <parameter-name>customer</parameter-name>
 <paramater-type>String</parameter-type>
 <parameter-value>BNT</parameter-value>
 </parameter>
 <paramater>
 <parameter-name>supplier</parameter-name>
 <paramater-type>String</parameter-type>
 <parameter-value>NT</parameter-value>
 </parameter>
 ...
 </process>
 </action>"
)

"I want you to run the provisioning process for this SLA"

(request
 ...
 :protocol fipa-request
 :conversation-id request2
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE action SYSTEM \"idwfmml1.dtd\">
 <action command=\"resume\">
 <contextId>SLA-1</contextId>
 <processId>Build</processId>
 </action>"
)

"I want you to resume (suspend | abort | terminate) process SLA-1:Build"

(not-understood
 ...
 :protocol fipa-request
 :conversation-id request3
)

"I don't understand request3"

(refuse
 ...
 :protocol fipa-request

Evangelos K. Ouzounis

 238

 :conversation-id request2
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE reason SYSTEM \"idwfmml1.dtd\">
 <reason>Don't want to!</reason>"
)

"I refuse to perform request2, and here's a reason"

 (failure
 ...
 :protocol fipa-request
 :conversation-id request2
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE reason SYSTEM \"idwfmml1.dtd\">
 <reason>Failed miserably</reason>"
)

"Although I agreed, I failed to perform request2, and here's a reason"

(agree
 ...
 :protocol fipa-request
 :conversation-id request1
)

"I agree to perfrom request1"

(inform
 ...
 :protocol fipa-request
 :conversation-id request1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE status SYSTEM \"idwfmml1.dtd\">
 <status state=\"running\"/>"
)

"The process for request1 is now running, as requested"

(inform
 ...
 :protocol fipa-request
 :conversation-id request1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE status SYSTEM \"idwfmml1.dtd\">
 <status state=\"suspended\"/>"
)

Chapter 13: ANNEX

 239

"The process for request1 is now suspended (resumed | aborted | terminated), as requested"

(query
 ...
 :protocol fipa-request
 :conversation-id query1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE status SYSTEM \"idwfmml1.dtd\">
 <status>
 <contextId>SLA-1</contextId>
 <processId>Build</processId>
 </status>"
)

"I wish to query the status of process SLA-1:Build"

(not-understood
 ...
 :protocol fipa-request
 :conversation-id query2
)

"I don't understand query2"

(refuse
 ...
 :protocol fipa-request
 :conversation-id query1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE reason SYSTEM \"idwfmml1.dtd\">
 <reason>Don't want to!</reason>"
)

"I refuse to perform query1, and here's a reason"

 (failure
 ...
 :protocol fipa-request
 :conversation-id query1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE reason SYSTEM \"idwfmml1.dtd\">
 <reason>Failed miserably</reason>"
)

"Although I agreed, I failed to perform query1 , and here's a reason"

Evangelos K. Ouzounis

 240

(inform
 ...
 :protocol fipa-request
 :conversation-id query1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE status SYSTEM \"idwfmml1.dtd\">
 <status state=\"running\"/>"
)

"The process queried in query1 is now running (notStarted | suspended | completed | aborted |
terminated)"

(inform
 ...
 :protocol fipa-request
 :conversation-id inform1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE status SYSTEM \"idwfmml1.dtd\">
 <status state=\"running\">
 <contextId>SLA-1</contextId>
 <processId>Design</processId>
 </status>"
)

"I want you to know that the state of process SLA-1:Design has changed to running
(notStarted | suspended | completed | aborted | terminated)"

 (inform
 ...
 :protocol fipa-request
 :conversation-id inform1
 :content "
 <?xml version=\"1.0\">
 <!DOCTYPE status SYSTEM \"idwfmml1.dtd\">
 <status state=\"completed\">
 <contextId>SLA-1</contextId>
 <process>
 <processid>Build</processid>
 <paramater>
 <parameter-name>QoS</parameter-name>
 <paramater-type>Integer</parameter-type>
 <parameter-value>76</parameter-value>
 </parameter>
 ...
 </process>
 </status>"
)

Chapter 13: ANNEX

 241

"I want you to know that the state of process SLA-1:Build has changed to completed and that
the output is 76 for QoS"

Negotiation Ontology Specification in XML Format
cfp-message (send by the requester)
 (cfp
 :protocol fipa-contract-net
 :conversation-id cfp1
 :reply-by 19991101T120000+0100
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE process SYSTEM \”idwfmml1.dtd\”>
 <process>
 <processId>processX</processId>
 <parameter>
 <parameter-name>parameterA</parameter-name>
 <parameter-type>…</parameter-type>
 <parametervalue constraint=\”equal\”>
 </parameter-value>
 </parameter>
 <parameter>
 <parameter-name>parameterB</parameter-name>
 <parameter-type>…</parameter-type>
 <parameter-value>…
 </parameter-value>
 </parameter>
 <parameter>
 <parameter-name>parameterC</parameter-name>
 <parameter-type>…</parameter-type>
 <parameter-value constraint=\”lessequal\”>…
 </parameter-value>
 </parameter>
</process>
”
)

“I want you to make an offer to the business process ‘processX’ with some parameter-values
and constraints in this specific time-out-period. ParameterA and ParameterB should be equal
to the specified value, ParameterC should be less than the specified value.”

not-understood-message (send by the provider)

When the provider can’t understand the cfp-message it sends a not-understood-message back.
(not-understood
 :protocol fipa-contract-net
 :conversation-id cfp1
 :
)

“I didn’t understand your call for proposal”

refuse-message (send by the provider)
 (refuse

Evangelos K. Ouzounis

 242

 :protocol fipa-contract-net
 :conversation-id cfp1
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE reason SYSTEM \”idwfmml1.dtd\”>
 <reason>Don’t want to!</reason>”
)

“I refuse to make an offer and here’s a reason”

propose-message (send by the provider)
 (propose
 :protocol fipa-contract-net
 :conversation-id cfp1
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE process SYSTEM \”idwfmml1.dtd\”>

<process>
 <processId>processX</processId>
 <parameter>
 <parameter-name>parameterA</parameter-name>
 <parameter-type>…</parameter-type>
 <parametervalue>…</parameter-value>
 </parameter>
 <parameter>
 <parameter-name>parameterB</parameter-name>
 <parameter-type>…</parameter-type>
 <parameter-value>…</parameter-value>
 </parameter>
 <parameter>
 <parameter-name>parameterC</parameter-name>
 <parameter-type>…</parameter-type>
 <parameter-value>…</parameter-value>
 </parameter>
 <parameter>
 </process>
”
)

“Here is the offer to the cfp1 for the processX with the following concrete parameter-values
…”

reject-proposal-message (send by the requester)
 (reject-proposal
 :protocol fipa-contract-net
 :conversation-id cfp1
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE reason SYSTEM \”idwfmml1.dtd\”>
 <reason>Not happy with your proposal</reason>”
)

“I reject to make an offer and here’s a reason”

accept-proposal-message (send by the requester)

Chapter 13: ANNEX

 243

 (accept-proposal
 :protocol fipa-contract-net
 :conversation-id cfp1
)

“I accept the proposal …”

failure-message (send by the provider)
 (failure
 :protocol fipa-contract-net
 :conversation-id cfp1
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE reason SYSTEM \”idwfmml1.dtd\”>
 <reason>…</reason>”
)

“Although I proposed to offer a service and you accept on it, I
failed to perform the service, and here’s a reason”

inform-message (send by the provider)
 (inform
 :protocol fipa-contract-net
 :conversation-id cfp1
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE status SYSTEM \”idwfmml1.dtd\”>
<status state=\”running\”>
<contextId>SLA-5</contextId>
</status>”
)
“The service is running, as proposed by me and accepted by you”

cancel-message (send by the requester)
 (cancel
 :protocol fipa-contract-net
 :conversation-id cfp1
 :content “
 <?xml version=\”1.0\”?>
 <!DOCTYPE reason SYSTEM \”idwfmml1.dtd\”>
 <reason>I’ve changed my mind</reason>”
)

“The service that you proposed and I accepted is cancelled and here’s a reason”

Contract Repository Specification in XML-DTD Format

<!-- Contract Repository -->
<!ELEMENT contract (Contract_ID, DateOfIssue, RequestorSection,
SupplierSection)>

<!-- Contract Characteristics -->

Evangelos K. Ouzounis

 244

<!ELEMENT Contract_ID (#PCDATA)>
<!ELEMENT DateOfIssue (day_entity)
<!ELEMENT day_entity (day, month, year)>
<!ELEMENT day (#PCDATA)>
<!ELEMENT month (#PCDATA)>
<!ELEMENT year (#PCDATA)>

<!-- Contract Main Entities -->

<!ELEMENT RequestorSection (Technical_Section, Administrative_Section,
Pricing_Section)>
<!ELEMENT Supplier Section (Technical_Section, Administrative_Section,
Pricing_Section)>

<!-- Contract Technical section specification -->

<!ELEMENT Technical_Section (agentName, FIPA_Address, Ontology, Protocol)>
<!ELEMENT agentName (#PCDATA)>
<!ELEMENT FIPA_Address (#PCDATA)>
<!ATTLIST Technical_Section Ontology (Inter-Domain | Intra-Domain) 'Inter-
Domain' #REQUIRED>>
<!ATTLIST Technical_Section Protocol (Request-Response | Query-Response |
Contrat-Net) 'Request-Response' #REQUIRED>>

<!-- Contract Administrative section specification -->

<!ELEMENT Administrative_Section (DomainName, Address, telephone, fax, e_mail)>
<!ELEMENT DomainName (#PCDATA)>
<!ELEMENT Address (address_entity)>
<!ELEMENT address_entity (street, city, zipcode, country)
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT zipcode (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT e-mail (#PCDATA)>

<!-- Contract Pricing section specification -->

<!ELEMENT Pricing_Section (price, paymentMethod, paymentDateline, BankZIp)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST pricing_Section paymentMethod (visa | eu-card | bank-transfer) 'visa'
#REQUIRED>>
<!ELEMENT paymentDateline (day_entity)>
<!ELEMENT BankZip (#PCDATA)>

Business Process Specification Example in XML

<?xml version="1.0"?>
<!DOCTYPE business-process-definition SYSTEM "bp.dtd">

<business-process-definition>
<process-definition>
<process-name>BOOK_ORDER</process-name>
<in-data>BOOK_TITLE</in-data>
<in-data>AUTHOR</in-data>

Chapter 13: ANNEX

 245

<in-data>ISBN</in-data>
<in-data>PUBLISHER</in-data>
<in-data>CUSTOMER_NAME</in-data>
<in-data>STREET</in-data>
<in-data>ZIPCODE</in-data>
<in-data>CITY</in-data>
<in-data>EMAIL</in-data>
<in-data>CREDITCARD_NUMBER</in-data>
<in-data>CREDITCARD_TYPE</in-data>
<out-data>AVAILABILITY</out-data>
<out-data>PRICE</out-data>
<out-data>DELIVERY_DATE</out-data>
<out-data>PAYMENT_STATUS</out-data>
<composite-process>
<composite-process-element>

<precondition-name>toStartLookup</precondition-name>

<sub-process-name>LOOKUP</sub-process-name>
<in-data>BOOK_TITLE</in-data>
<in-data>AUTHOR</in-data>
<in-data>ISBN</in-data>
<in-data>PUBLISHER</in-data>
<out-data>AVAILABILITY</out-data>
<out-data>PRICE</out-data>
</composite-process-element>
<composite-process-element>

<precondition-name>ready-to-deliver</precondition-name>

<sub-process-name>DELIVERY</sub-process-name>
<in-data>CUSTOMER_NAME</in-data>
<in-data>STREET</in-data>
<in-data>ZIPCODE</in-data>
<in-data>CITY</in-data>
<in-data>EMAIL</in-data>
<out-data>DELIVERY_DATE</out-data>
</composite-process-element>

<composite-process-element>

<precondition-name>ready-to-pay</precondition-name>

<sub-process-name>PAYMENT</sub-process-name>
<in-data>CREDITCARD_NUMBER</in-data>
<in-data>CREDITCARD_TYPE</in-data>
<in-data>PRICE</in-data>
<out-data>PAYMENT_STATUS</out-data>
</composite-process-element>
</composite-process>
</process-definition>
<process-definition>
<process-name>LOOKUP</process-name>
<in-data>BOOK_TITLE</in-data>
<in-data>AUTHOR</in-data>
<in-data>ISBN</in-data>
<in-data>PUBLISHER</in-data>
<out-data>AVAILABILITY</out-data>
<out-data>PRICE</out-data>
<atomic-process>

Evangelos K. Ouzounis

 246

<external-task-name>RPALookup</external-task-name>
</atomic-process>
</process-definition>
<process-definition>
<process-name>DELIVERY</process-name>
<in-data>CUSTOMER_NAME</in-data>
<in-data>STREET</in-data>
<in-data>ZIPCODE</in-data>
<in-data>CITY</in-data>
<in-data>EMAIL</in-data>
<out-data>DELIVERY_DATE</out-data>
<atomic-process>
<external-task-name>RPADelivery</external-task-name>
</atomic-process>
</process-definition>
<process-definition>
<process-name>PAYMENT</process-name>
<in-data>CREDITCARD_NUMBER</in-data>
<in-data>CREDITCARD_TYPE</in-data>
<in-data>PRICE</in-data>
<out-data>PAYMENT_STATUS</out-data>
<atomic-process>
<external-task-name>RPAPayment</external-task-name>
</atomic-process>
</process-definition>

 <condition-definition>
 <condition-name>toStartLookup</condition-name>
 <atomic-condition>
 <process-status process-state ="notStarted">
 <process-name>LOOKUP</process-name>
 </process-status>
 <external-condition-name>toStartLookup</external-condition-
name>
 </atomic-condition>
 </condition-definition>

 <condition-definition>
 <condition-name>lookup-end</condition-name>
 <atomic-condition>
 <process-status process-state ="completed">
 <process-name>LOOKUP</process-name>
 </process-status>
 <external-condition-name>lookup-end</external-condition-
name>
 </atomic-condition>
 </condition-definition>

 <condition-definition>
 <condition-name>deliver-not-started</condition-name>
 <atomic-condition>
 <process-status process-state="notStarted">
 <process-name>DELIVERY</process-name>
 </process-status>
 <external-condition-name>deliver-not-started</external-
condition-name>
 </atomic-condition>
 </condition-definition>

 <condition-definition>

Chapter 13: ANNEX

 247

 <condition-name>ready-to-deliver</condition-name>
 <composite-condition>
 <is-and/>
 <branch-condition-name>lookup-end</branch-condition-name>
 <branch-condition-name>deliver-not-started</branch-
condition-name>
 </composite-condition>
 </condition-definition>

 <condition-definition>
 <condition-name>deliver-end</condition-name>
 <atomic-condition>
 <process-status process-state ="completed">
 <process-name>DELIVERY</process-name>
 </process-status>
 <external-condition-name>deliver-end</external-condition-
name>
 </atomic-condition>
 </condition-definition>

 <condition-definition>
 <condition-name>payment-not-started</condition-name>
 <atomic-condition>
 <process-status process-state="notStarted">
 <process-name>PAYMENT</process-name>
 </process-status>
 <external-condition-name>payment-not-started</external-
condition-name>
 </atomic-condition>
 </condition-definition>

 <condition-definition>
 <condition-name>ready-to-pay</condition-name>
 <composite-condition>
 <is-and/>
 <branch-condition-name>deliver-end</branch-condition-name>
 <branch-condition-name>payment-not-started</branch-
condition-name>
 </composite-condition>
 </condition-definition>

<parameter-definition>
<parameter-name>BOOK_TITLE</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>AUTHOR</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>ISBN</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>PUBLISHER</parameter-name>
<parameter-type>STRING</parameter-type>

Evangelos K. Ouzounis

 248

<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>CUSTOMER_NAME</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>STREET</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>ZIPCODE</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>CITY</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>EMAIL</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>CREDITCARD_NUMBER</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>CREDITCARD_TYPE</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>AVAILABILITY</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>PRICE</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>DELIVERY_DATE</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
<parameter-definition>
<parameter-name>PAYMENT_STATUS</parameter-name>
<parameter-type>STRING</parameter-type>
<parameter-value/>
</parameter-definition>
</business-process-definition>

Chapter 13: ANNEX

 249

 251

Chapter 14: References

ACTS-MIAMI Project (1999) http://www.fokus.gmd.de/research/cc/ecco/miami/

Adams, T. Dworkin 1997 "Workflow Interoperability Between Businesses". In: Lawerence P.
(ed.) WfMC Workflow Handbook. John Wiley & Sons, New York, 1997, pp 211—221.

ADEPT-Next Generation Workflow Management Systems Project (1998)

Alliance Technical Specification (1998) http://www.extricity.com/products/alliance_3zero.html

Alonso, G. Agrawal, D. El Abbadi, A. Mohan, C. Günthör, R. Kamath, M. (1995)
“EXOTICA/FMQW: A Persistent Message -based Architecture for Distributed Workflow
Management” In IFIP/WG8.1 Working Conference on Information System Development for
Decentralised Organisations, Trondheim, Norway, August 1995.

Alonso, G. Fiedler, U. Lazcano, A. Schuldt, H. Schuler, C. Weiler N. (1999) “WISE: An
Infrastructure for E-Commerce.” Proceedings of the Informatik'99 Workshop "Enterprise-wide
and Cross-enterprise Workflow Management: Concepts, Systems, Applications. Paderborn,
Germany, October 6, 1999.

Alzaga, A., Martin, J. (1999), A Design Process Model to Support Concurrent Project
Development in Networks of SMEs, in Infrastructures for Virtual Enterrises. Networking
Industrial Enterprises. IFIP TC5 WG5.3 / PRODNET Working Conference for Virtual
Enterprises (PRO-VE'99), Porto, Portugal, 27-28 October 1999,pp. 307-318.

Ambrosch,W. D., et.al.: (1989), “The Intelligent Network“, A Joint Study by Bell Atlantic, IBM
and Siemens, ISBN:0-387-50897-X, Springer-Verlag, Heidelberg

Ambros-Ingerson, J. Steel, S (1988) “Integrating planning, execution and monitoring” In
proceedings of the seventh National Conference on Artificial Intelligence (AAAI 88),
Mineapolis

Applegate, L M, Holsapple C W, Kalakota R, Radermacher F J and Whinston A B (1996)
Electronic Commerce: Building Blocks of New Business Opportunity. Journal of
Organizational Computing and Electronic Commerce vol. 6, no. 1. pp. 1-10.

Evangelos K. Ouzounis

 252

Assiss Silva, F.M., Krause, S., Loyolla, W., Magedanz, T., Mendes, M. (1996)"Agent Skills and
their Roles in Mobile Computing and Communications", Mobile Communications -
Technology, tools, applications, authentication and security, pp. 181-204, ISBN: 0-412-75580-
7, Chapman&Hall, 1996

Banahan, E., Banti, M. (1999), Report on Workshop on Legal Aspects of Virtual Organisations,
Brussels, 30 November 1999, http://www.ispo.cec.be/serist/

Barbuceanu, M. Singh N., Syed M. (1995) “COOL: A Language for Describing Coordination in
Multi-Agent Systems” Proceedings 1st International Multiagent Systems (ICMAS 95),
AAAI/MIT press, Cambridge, Mass., p. 17.24

Bargainfinder homepage (1998), http://bf.cstar.ac.com

Barry, J. Aparicio, M. Durniak, T, et. al. (1998) “NIIP-SMART: An investigation of Distributed
Object Approaches to support MES development and deployment in a Virtual Enterprise” 2nd
IEEE International Enterprise Distributed Computing Workshop (EDOC 98), Nov. 98

Bäumer, C., Magedanz, T. (1999), “Grasshopper - An Agent Platform for Mobile Agent-based
Services in Fixed and Mobile Telecommunications Environments“, in "Software Agents for
Future Communication Systems", A.L.G. Hayzelden and J. Bigham (Eds), pp. 326-357, ISBN:
3-540-65578-6, Springer Verlag, April 1999

BEA MessageQ (1999) “Technical Specifications” http://edocs.bea.com/tuxedo/msgq/index.htm

Beam, T. Carrie, W. Segev J. (1996) “Electronic Catalogs and Negotiations” CITM Working
paper 96-WP-1016, available at http://haas.berkeley.edu/~citm/wp-1016-summary.html

Bellifernine, F. Rimassa G. Poggi A. (1999) “JADE: A FIPA compliant Agent Framework”,
Proceedings fourth international conference and exhibition on the Practical Applications of
Intelligent Agents and Multi-Agent systems (PAAM 99), London

Berners-Lee T, Cailliau R, Luotonen A, Nielsen H F and Secret A (1994) “The World-Wide
Web” Communications of the ACM vol. 37, no. 8. pp. 76-82.

Bichler, M. Kumar, M., Jhingran, A. (1998) „Multi-Attribute competive Bidding”, IBM T.J.
Watson Reserach Report, August 98

Billington C (1994) “Strategic Supply Chain Management” OR/MS Today, April 1994. pp. 20-
27.

BizTalk Framework, http://www.biztalk.org/

Block, M. Pigneur, Y. (1995) “The extended enterprise: a descriptive framework, some enabling
technologies and case studies in Lotus Notes environment” Proceedings of the 2nd International
Conference on Network Organisations Management, June 95

Bolcer, G. A. Kaiser, G. (1999) “SWAP: Leveraging the Web to Manage Workflow” IEEE
Internet Computing Jan/Feb 1999

Borenstein, N.S. (1992) "Computational Mail as Network Infrastructure for Computer-
Supported Cooperative Work", CSCW´92 Proceedings, Toronto

Borenstein, N.S. (1994) "EMail with a Mind of its own: The Safe-Tcl Language for Enabled
Mail", ULPAA, Barcelona

Borghoff UM, Bottoni P, Mussio P, Pareschi R. (1997) "Reflective Agents for Adaptive
Workflows". In: Proceedings of the Second International Conference on the Practical
Application of Intelligent Agents and Multi-Agent

Chapter 14: References

 253

Botspot Homepage (1998) http://www.botspot.com

Bradshaw, J. M., (Eds) (1997) ‘Software Agents’ MIT Press, ISBN 0-262-52234-9.

Breugst, M., Hagen, L., Magedanz; T. (1998a) ”Impacts of Mobile Agent Technology on Mobile
Communication System Evolution”, pp.56-69, IEEE Personal Communications Magazine,
Vol. 5, No. 4

Breugst, M., Magedanz, T. (1998b), “On the Usage of Standard Mobile Agent Platforms in
Telecommunication Environments”, pp. 275-286, in: Lecture Notes of Computer Sciences
1430, Intelligence in Services and Networks: Technologies for Ubiquiteous Telecom Services,
S. Trigila et al. (Eds.), ISBN: 3-540-64598-5, Springer Verlag 1998

Breugst, M., Magedanz, T. (1998c), ”Mobile Agents - Enabling Technology for Active
Intelligent Networks”, IEEE Network Magazine, pp. 53-60, Vol. 12, No. 3, Special Issue on
Active and Programmable Networks, May/June 1998

Breugst, M., Magedanz, T., (1998d) ”Mobile Agents - Enabling Technology for Active
Intelligent Networks”, IEEE Network Magazine, pp. 53-60, Vol. 12, No. 3

Breugst, M., Magedanz, T., (1998e) GRASSHOPPER - A Mobile Agent Platform for IN
Environments”, pp. 279-290, ISBN: 0-7803-4905-9, IEEE Catalog No.: 98TH8364, IEEE IN
Workshop 1998, Bordeaux, France, May 10-12, 1998

Cai, T. Gloor, P. Nog, S. (1996) “DartFlow: A Workflow Management System on the Web
using Transportable Agents” Technical Report PCS TR 96-283. Department of Computer
Science, Dartmouth College, USA

Camarinha-Matos, L. M., Afsarmanesh, H., (eds) (1999a), Infrastructures for Virtual Enterrises.
Networking Industrial Enterprises. IFIP TC5 WG5.3 / PRODNET Working Conference for
Virtual Enterprises (PRO-VE'99), Porto, Portugal, 27-28 October 1999, Boston: Kluwer
Academic Publishers

Camarinha-Matos, L.M., Afsarmanesh, H. (1999b), “The PRODNET Demonstrator” in
Infrastructures for Virtual Enterrises. Networking Industrial Enterprises. IFIP TC5 WG5.3 /
PRODNET Working Conference for Virtual Enterprises (PRO-VE'99), Porto, Portugal, 27-28
October 1999, Boston: pp. 279-290

Camarinha-Matos, L.M., Afsarmanesh, H. (1999c), “The Virtual Enterprise Concept” in
Infrastructures for Virtual Enterrises. Networking Industrial Enterprises. IFIP TC5 WG5.3 /
PRODNET Working Conference for Virtual Enterprises (PRO-VE'99), Porto, Portugal, 27-28
October 1999, Boston: pp. 3-30.

Carr J (1996) Intranets Deliver. InfoWorld vol. 18, no. 8. pp. 61-63.

CBL Specifications, http://www.commerceone.com/xml/cbl/docs/components.html

Ceri, S. Grefen, P. Sánchez, G. (1996) “WIDE - A Distributed Architecture for Workflow
Management” RIDE 97, UK

Chabernaud, C., Vilain, B. (1990), ”Telecommunication Services and Distributed Applications”,
IEEE Network Magazine, November 1990

Chess, D. (1995) ”Itinerant Agents for Mobile Computing”, IEEE Personal Communications
Magazine, Vol.2, No. 5, pp. 34-59

Chess, D., Harrison, C.G., Kershenbaum, A. (1998) „Mobile agents: Are they a good idea?“, in
G. Vigna (ED.), Mobile Agents and Security, LNCS 1419, pages 25{47. Springer Verlag,
1998.

Evangelos K. Ouzounis

 254

Choy, S., Breugst, M.,Magedanz, T. (1999), “Beyond Mobile Agents with CORBA - Towards
Mobile CORBA Objects“, 6th ACTS Conference on Intelligence in Services and Networks
(IS&N), pp. 168-180, H. Zuidweg et.al (Eds.), IS&N 99, LNCS 1597, ISBN: 3-540-65895-5,
Springer-Verlag, 1999

Christopher M (1993) Logistics and Supply Chain Management. Pitman Publishing: London.

Chung, P.E. Huang, Y. Yajnik, S. Liang, D. Shih, J.C. Wang, C.-Y. and Wang, Y.-M. (1999)
“DCOM and CORBA Side by Side, Step by Step, and Layer by Layer.”www.bell-
labs.com/~emerald/dcom_corba/Paper.html.

Ciacarini, P. (1998) “Coordinating Multiagent Applications on the WWW: A Reference
Architecture” IEEE Transactions in Software Engineering (special issue on mobility and
network aware computing) Vol 24, No 3, 1998, pp.362-366

Ciara Byrne (1999) “FACTS and Fiction: Agents in the Electronic Travel Market”,
Communicate, Vol 4, issue 2,

CIMOSA Association (1998) “Enterprise Engineering and Association: Why and How”
CIMOSA e.V.

CommerceNet homepage (1998) http://www.commerce.net/

Communications of the ACM Journal (1994) "Intelligent Agents", Vol.37, No.7, July 1994

Control and Coordination of Complex Distributed Services Project (1999-2001)
http://www.inria.fr/Themes/

Cost, R. (1998) “Jackal: A Java-based Tool for Agent Development” Working Notes of the
Workshop on Tools for Developing Agents, WS-98-10, AAAI TR 73-82.

Crossflow Project (1998) “ESPRIT Project 28635 Cross-Organisational Workflow
Management”, The Crossflow Consortium, http://www.crossflow.org

CXML specifications, http://www.cxml.org/home/

Davis T (1993) Effective Supply Chain Management. Sloan Management Review, Summer
1993. pp. 35-73.

Debenham (1998) "An Experimental Agent-based Workflow System". Proceedings of the Third
International Conference on the Practical Application of Agent Technology (PAAM98),
London, UK, 1998. The Practical Application Company Ltd, pp 101-109.

DOM Specifications, http://www.w3c.org/DOM/

Doz, Y.L., Hamel, G. (1998), “Alliance Advantage. The Art of Creating Value through
Partnering”, Boston: Harvard Business School Press.

Durfee, E. (1995) “Blissful ignorance: Knowing just enough to coordinate well”. In proceedings
of the first International Conference on Multiagent systems (ICMAS 95), pp. 406-413
California USA

Ebay Homepage (1998) http://www.ebay.com

Eder, J. Liebhart W. (1996) “Workflow Recovery” In Proceedigns of the 5th IFCIS International
Conference on Cooperative Information Systems (CoopIS 96), IEEE Computer Society Press,
Brussels, Belgium 1996

Eder, J. Liebhart, W. (1995) “The Workflow Activity Model WAMO” In proceedings of 3rd
International Conference on Cooperative Information Systems, pp. 87-98, Vienna, Austria,

Chapter 14: References

 255

May 1995

ELSEWISE Project Homepage, http://www.lboro.ac.uk/elsewise/

Enterprise Java Beans –EJB Specification (1999) http://java.sun.com/products/EJB

ESPRIT (1998), AgentLink home page http://www.AgentLink.org/

Etzioni, E., Weld, D.(1994) "A Softbot-Based Interface to the Internet", pp.72-76,
Communications of the ACM, Vol.37, No.7, July 1994

EvE, an Event-Driven Distributed Workflow Execution Engine Project,
http://www.ifi.unizh.ch/dbtg/Projects/EVE/eve.html

Fenster, M. Kraus, S. Rosenschein J. (1995) “Coordination without communication:
Experimental validation of focal point techniques”. In proceedings of the first International
Conference on Multiagent systems (ICMAS 95), pp 102-108 California USA.

Fielding R. (1998) “Support for the Virtual Enterprise: web-based Development of Complex
Information Products” Communications of the ACM, Vol. 41, No 8, August 1998, pp. 84-92

Filos, E., Ouzounis, V. (2000) “Virtual Organisations: Technologies, Trends, Standards and the
Contribution of the European RTD Programmes” International Journal of Computer
Applications in Technology, Special Issue: “Applications in Industry of Product and Process
Modeling Using Standards”

Finin, F. Labrou, Y., Mayfield, J. (1995) “KQML as an Agent Communication Language” in
Software Agents. J. Bradshaw (ed) MIT Press, Cambridge, 1995

Finin, T. et.al. (1994) "KQML as an Agent Communication Language", 3rd International
Conference on Information and Knowledge Management (CIKM´94), ACM Press

FIPA (1998a) – Part 1: Agent Management (V.2.0).

FIPA (1998b) – Part 2: Agent Communication Language (V.2.0).

FIPA (1998c) – Part 3: Agent/Software Integration (V.2.0).

FIPA(1999) http://www.fipa.org/spec/FIPA98.html.

Fisher M L, Hammond J H, Obermeyer W R and Raman A (1994) Making Supply Meet
Demand in an Uncertain World. Harvard Business Review, May-June 1994. pp. 83-93.

Foundation for Intelligent Physical Agents (FIPA) home page: http://www.fipa.org/.

Fowler, J. (1995) “STEP for data management, exchange and sharing” UK, Technology
Apparaisals, 1995, ISBN 1-871802-36-9

Franklin, S. Graesser, A. (1996) “Is it an Agent or just a Programm?: A taxonomy for
Autonomous Agents” Proceedings of the 3rd International Workshop on Agent Theories,
Architectures, and Languages. Springer Verlag, 1996

Frederix, F.L.M. (1998), “Agility and Human Factors in the Virtual Enterprise, in Innovation,
Agility, and the Virtual Enterprise” Proceedings of the 10th International IFIP WG 5.2/5.3
Conference, PROLAMAT 98, Trento, Italy, 9-12 September 1998, pp. 737-748.

Fuggetta, A. Picco, G.P. Vigna, G. (1998) “Understanding Code Mobility” IEEE Transactions
on Software Engineering, Vol. 24, No 5 May 1998, pp 342-361

Fünfrocken S. (1998) “Transparent Migration of Java-based Mobile Agents: Capturing and Re-
establishing the State of Java Programs” Proceedings of the 2nd International Workshop, MA

Evangelos K. Ouzounis

 256

98, Stuttgart, Germany, Sept. 98 Lecture Notes in Computer Science 1477 Springer-Verlag,
1998, pp. 26-37

Gaedke, M. et.al. (1998) “Web Content Delivery to Heterogeneous Mobile Platforms”
Workshop on Mobile Data Access at 17th International Conference on Conceptual Modeling,
Singapore 1998

Garcia-Molina, H. Gawlick, D. Klein, J. Kleissner, K. Salem, K. (1991) “Coordinating Multi-
Transaction Activities” Proceedings IEEE Spring Compcon, 1991

Gellersen, H. Gaedke, M. (1999) “Object oriented Web Application Development” IEEE
Internet Computing Jan/Feb 1999

GENIAL Project Homepage and Papers, http://cic.cstb.fr/ilc/publicat/list.htm or http://www.c-
lab.de/genial/index.html

Georgakopoulos, D. (1998) “Collaboration Management Infrastructure for Comprehensive
Process and Service Management” International Symposium on Advanced Database Support
for Workflow Management, Enschede, The Netherlands, May 19th, 1998

Georgakopoulos, D. Hornick, M. Sheth, A. (1995) “An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure” Distributed and Parallel
Databses, 3(2):119-153, April 1995

Geppert, A. Kradolfer, M. Tombros, D. (1998a) “Market-Based Workflow Management” Int'l
IFIP Conf. on Distributed Systems for Electronic Commerce, Hamburg, Germany, June 1998

Geppert, A. Kradolfer, M. Tombros, D.(1998b) “Workflow Specification and Event-Driven
Workflow Execution” SI-INFORMATIK 4:2, April 1998

Geppert, A. Tombros, D. (1998c) “Event-based Distributed Workflow Execution with EVE”
Middleware '98, The Lake District, England, September 1998

Gibon, P., Clavier, J.-F., Loison, S., (1999), “Support for Electronic Data Interchange, in
Infrastructures for Virtual Enterprises” Networking Industrial Enterprises. IFIP TC5 WG5.3 /
PRODNET Working Conference for Virtual Enterprises (PRO-VE'99), Porto, Portugal, 27-28
October 1999, Boston, pp. 187-208.

Ginsberg, M. (1991) "Knowledge Interchange Format: the kif of death", AI Magazine, Vol.5,
No.63

Goldman S L, Nagel R N and Preiss K (1995) “Agile Competitors and Virtual Organizations:
Strategies for Enriching the Customer” Van Nostrad Reinhold, New York.

Goldszmidt, G., Yemini, Y., (1995) “Distributed Management by Delegation”. In 15 th
International Conference on Distributed Computing Systems. IEEE Computer Society, June
1995.

Goldszmidt, G., Yemini, Y., (1998) “Delegated Agents for Network Management”. IEEE
Communications Magazine, Vol. 36, No. 3. March, 1998.

Grefen, J. Pernini, B., Sanchez G. (Eds, 1999) “Database support for workflow management:
The WIDE project” Kluwer Academic Publishers, ISB7923-8414-8

Grefen, J. Vonk, E. Boertjes, P. Apers, P. (1998a) “Two-Layer Transaction Management for
Workflow Management Applications” Proc. 8th International Conference on Database and
Expert System Applications, Toulouse, France

Grefen, P. (1998b) “Advanced Transaction Management in WIDE” International Symposium on

Chapter 14: References

 257

Advanced Database Support for Workflow Management, Enschede, The Netherlands, May
19th, 1998

Guilfoyle, C., Warner, E. (1994) "Intelligent Agents: the New Revolution in Software",
Technical Report, OVUM Limited

Guttman, R. Maes, P. (1998a) „Agent-mediated Integrative Negotiation for Retail Electronic
Commerce” Proceedings of the Workshop on Agent Mediated Electronic Trading (AMET 98),
Minneapolis, Minnesota, May 98

Guttman, R.H. Moukas, A.G. , Paes, P. (1998b) “Agent-Mediated Electronic Commerce: A
Survey” Knowledge Engineering Report, 1998

H. Schuldt, H.J. Schek, G. Alonso (1999) “Transactional Coordination Agents for Composite
Systems.” Proceedings of the International Database Engineering and Applications
Symposium (IDEAS'99). Montreal, Canada, August 1999.

Hamilton, S. (1997) “E-Commerce for the 21st Century” IEEE Computer, Vol. 30, No 5 May
1997, pp 44-47

Hammer, M. Champy, J. (1993) “Reengineering the Corporation: A Manifesto for Business
Revolution” HarperBusiness, New York, 1993

Hardwick, M., Spooner, D.L., Rando, T. and Morris, K.C. (1996), “Sharing Manufacturing
Information in Virtual Enterprises” Communications of the ACM, 39 (2).

Harker PT, Ungar LH. (1996) "A market-based approach to workflow automation". Proceedings
of NSF. Workshop on Workflows and Process Automation in Information Systems: State of
the Art and Future Directions. 8-10 May 1996

Harold, E.R: (1998) “XML:Extensible Markup Language”, IDG Books, Foster City, California,
USA.

Harrison, C.G. et.al. (1995) "Mobile Agents: Are they a good Idea", IBM Research Report, RC
19887

Hayzelden, A.L.G., Bigham, J. (Eds), (1999) "Software Agents for Future Communication
Systems", ISBN: 3-540-65578-6, Springer Verlag

Hoffner, Y, Schade, A. (1998) “Co-operation, Contracts, Contractual Match-Making and
Bindings” 2nd International Enterprise Distributed Object Computing Workshop (EDOC 98), 3-
5 November, San-Diego, USA

Hoffner, Y. Crawford, B. (1997) “Using Interception to Create Domains in Distributed
Systems”. Joint International Conference on Open Distributed Processing (ICODP) and
Distributed Platforms (ICDP), 27-30May 1997, Toronto, Canda

Hoffner, Y: (1999) “Supporting Contract Match-Making” IEEE 9th International Workshop on
Research Issues on Data Engineering, RIDE-VE 99, Sydney, Australia, 1999

Holland C, Lockett G and Blackman I (1992) “Planning for Electronic Data Interchange”
Strategic Management Journal vol. 13. pp. 539-550.

Hunt, I., Caskey, K., Browne, J. (1999), “SMEs in the Virtual Enterprise - LOGSME enables IT
Support, in Infrastructures for Virtual Enterprises” Networking Industrial Enterprises. IFIP
TC5 WG5.3 / PRODNET Working Conference for Virtual Enterprises (PRO-VE'99), Porto,
Portugal, 27-28 October 1999, pp. 333-342.

IBM San Francisco Technical Homepage, http://www-4.ibm.com/software/webservers/appserv/

Evangelos K. Ouzounis

 258

IEEE Network Magazine (1998), Vol. 12, No. 3, Special Issue on Active and Programmable
Networks.

IKV++ (1999) “Grasshopper: An Intelligent Mobile Agent Platform – volume 2- Programmers
Guide version 1.1.” IKV++ 1998

INDEMAND Project Homepage,
http://www.cranfield.ac.uk/sims/cim/research/research_projects/indemand/indemand_home_pa
ge.htm

ISO/IEC (1991) 9596, Information Technology, Open Systems Interconnection, Common
Management Information Protocol (CMIP) – Part 1: Specification, Geneva, Switzerland, 1991.

ISO/IEC (1994) “Information Technology – Open Distributed Processing – Reference Model –
Open Distributed Processing – Part 1- Overview and Guide to Use” ISO/IEC JTC 1/SC 21
Sept. 1994

ITU-T (1995) “Open Distributed Processing – Reference Model –Part 3- Architecture” May
1995

J. Miller, A. Sheth, K. Kochut, and D. Palaniswami (1998) “The Future of Web-Based
Workflows” International Workshop on Research Directions in Process Technology, Nancy,
France, International Workshop on Research Directions in Process Technology, position paper,
Nancy, France

Jacucci, G., Olling, G.J., Preiss, K., Wozny, M. (eds) (1998), “Globalization of Manufacturing in
the Digital Communications Era of the 21st Century. Innovation, Agility, and the Virtual
Enterprise” Proceedings of the 10th International IFIP WG 5.2/5.3 Conference, PROLAMAT
98, Trento, Italy, 9-12 September 1998, Boston: Kluwer Academic Publishers.

Jango Homepage (1998), http://jango.excite.com

Java 2 Specification and Reference Model (1998) http://java.sun.com/

Java Messaging System –JMS Specification (1998) http://java.sun.com/products/jms

Java Servlets Specification (1998) http://java.sun.com/products/servlets

Jennings NR, Faratin P, Johnson MJ, O'Brien P, and Wiegand ME.(1996) "Using intelligent
agents to manage business processes". In: Proceedings of the First International Conference on
The Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM96),
London, UK, 1996. pp 345-360.

Jennings, N. (1993) “Commitments and conventions: the foundations of coordination in multi-
agent systems” Knowledge Engineering Review, 8 (3), pp. 223-250

Jennings, N. (1995) “Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions” Artificial Intelligence, 75 (2), pp. 195-240

Jennings, N. R., Wooldridge, M. J.(eds). (1998) “Agent Technology: Foundations, Applications
and Markets”. Springer-Verlag 1998, ISBN 3-540-63591-2

Johnston H R and Vitale M R (1988) “Creating Advantage with Interorganizational Information
Systems” MIS Quarterly vol. 12, no. 2. pp. 153-166.

Judge DW, Odgers BR, Shepherdson JW, Cui Z. (1998) "Agent Enhanced Workflow". BT
Technical Journal, 16:3, 1998, pp 79-85. http://www.labs.bt.com/projects/ibsr/index.htm

Kalakota R and Whinston A B (1996) “Frontiers of Electronic Commerce” Addison-Wesley
Publishing Company, Inc.: Reading, MA.

Chapter 14: References

 259

Kalakota, R. (1998), “Joined at the Bit. The Emergence of the E-Business Community” in:
Tapscott, D., Lowy, A., Ticoll, D. (eds) (1998). Blueprint to the Digital Economy. Creating
Wealth in the Era of E-Business, New York: McGraw Hill.

Karmouch, A.(Ed.), (1998) Special Isssue on “Mobile Software Agents for
Telecommunications”, IEEE Communications Magazine, Vol. 36, No. 7

Karpinski R (1997) “Extranets emerge as next challenge for marketers” Netmarketing, April
1997. p. M-4.

Katzy, B. Obozinski, V. (1999) “Designing the Virtual Enterprise” Proceedings of ICE 99, 5th
International Conf. On Concurrent Engineering, The Hague, Netherlands, Mar 99, ISBN 0
9519759 8 6

Khare, R., Rifkin, A. (1998) “Capturing the state of Distributed Systems with XML” World
WideWeb Journal Special Issue on XML, Vol. 2, Number 4, Pages 207-218

Khare, R: Rifkin, A. (1997) “XML: A Door to Automated Web Applications” IEEE Internet
Computing, Vol. 1 No4. July/August, 1999, pp 78-87

Kiniry, J., Zimmerman, D. (1997) “A Hands-On Look at Java Mobile Agents”, IEEE Internet
Computing, pp. 21-30.

Klingemann, J. Wäsch, J. Aberer, K. (1999a) “Adaptive Outscourcing in Cross-Organisational
Workflows” Proceedings of 11th Conference on Advanced Information Systems Engineering,
Heidelberg, Germany, June 1999

Klingemann, J. Wäsch, J. Aberer, K. (1999b) “Deriving Service Models in Cross-Organisational
Workflows” Proceedings of RIDE-Information Technology for Virtual Enterprises, Sydney,
Australia, 1999

Kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S, Cybenko, G. (1997) “AGENT TCL: Targeting
the Needs of Mobile Computers”. IEEE Internet Computing, July - August, 1997. pp.58-67.

Kraus, S. Sycara K. Evenchik, A.(1998) “Reaching Agreement through negotiations: a logical
model and implementation” Artificial Intelligence, 104 (1-2), 1-69

Krause, S., Magedanz, T. (1996) "Mobile Service Agents enabling "Intelligence on Demand" in
Telecommunications", IEEE Global Telecommunications Conference (Globecom 1996),
pp.78-85, IEEE Catalog No.96CH35942, ISBN: 0-7803-3336-5, IEEE Press, 1996

Krause, S., Magedanz, T. (1997) "MAGNA - A DPE-Based Platform for Mobile Agents in
Electronic Service Markets", IEEE International Symposium on Autonomous Decentralized
Systems (ISADS), pp.93-102, IEEE Catalog No.97TB100111, ISBN: 0-8186-7785-6, IEEE
Press, 1997

Krishnakumar, N. Sheth, A. (1994) “Specifying Multi-System Workflow Applications In
METEOR” Technical Report TM-24198, Bellcore, May 1994

Kuokka D. Harad L.(1995) “A Communication Infrastructure for Concurrent Engineering”
Journal Artificial Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM)

Lange, D. Chang, D.T. (1996) “IBM Aglets Workbench – Programming Mobile Agents in Java
– A White paper” IBM Corporation, Sept. 96

Lee H L and Billington C (1992) “Managing Supply Chain Inventory: Pitfalls and
Opportunities.” Sloan Management Review, Spring 1992. pp. 65-73.

Evangelos K. Ouzounis

 260

Lee H L and Billington C (1993) “Material Management in Decentralized Supply Chains.
Operations” Research vol. 41, no. 5. pp. 835-847.

Lee H L, Billington C and Carter B (1993) “Hewlett-Packard Gains Control of Inventory and
Service through Design for Localization” Interfaces vol. 23, no. 4. pp. 1-11.

Lee J, Gruninger M, Jin Y, Malone T, Tate A, Yost G. (1997) "PIF: Process Interchange Format
v.1.2". PIF Working Group.

Lee, R.M. (1998) “Towards Open Electronic Contracting Using Electronic Trade Scenarios” 1st
Conference on Electronic Commerce for Small and Medium Sized Enteprises, Venice, Italy,
26-27 February.

Leichsering, A.L. (1998) “Development of a Basic Agent Communication Service for
Grasshopper Platform” Diplomarbeit, Technical University of Berlin, Berlin 1998

Levesque, H. Cohen, P. Hunes, J. (1990) “On acting together” In proceedings of the Eight
National Conference on Artificial Intelligence (AAAI-90), Menlo-Park, California, USA.

Lin F (1996a) “Reengineering the Order Fulfillment Process in Supply Chain Networks: A
Mutliagent Information Systems Approach” Ph.D. Thesis, University of Illinois at Urbana-
Champaign.

Lin F, Tan G W and Shaw M J (1996b) “Multi-Agent Enterprise Modeling” University of
Illinois at Urbana-Champaign, College of Commerce and Business Administration, Office of
Research, Working Paper 96-0134.

Lingnau, A. Drobnik, O. (1996) “Making Mobile Agents Communicate: A Flexible Approach”
in Proceedings of the 1st Annual Conference on Emerging Technologies and Applications in
Communications (etaCOM96) USA, May 1996

Lomet, D. (1993, ed) “Special Issue on Workflow and Extended Transaction Systems” IEEE
Data Eng. Bull, June 1993.

M. Reichert, C. Hensinger, P. Dadam (1998) “Supporting Adaptive Workflows in Advanced
Application Environments” Proc. EDBT Workshop on Workflow Management Systems,
Valencia, March 1998, pp. 100 - 109

M. Reichert, P. Dadam (1997) “A Framework for Dynamic Changes in Workflow Management
Systems“ Proc. 8th Int'l Workshop on Database and Expert Systems Applications, DEXA '97,
Toulouse, France, September 1997, pp. 42-48

Maes, P (1994a) “Agents that reduce work and information overload.” Communications of
ACM.Vol.37. No.7. 1994. pp. 31-40

Maes, P. (1994b) “Modeling Adaptive Autonomous Agents”, Artificial Life Journal, eds by
C.Langton, Vol. 1, No 1&2, pp. 135-162, MIT Press

Magedanz, T. (1995) "On the Impacts of Intelligent Agent Concepts on Future
Telecommunication Environments", in: Lecture Notes on Computer Science 998 - "Bringing
Telecommunication Services to the People - IS&N'95", pp. 396 - 414, A. Clarke et al. (Eds.),
ISBN: 3-540-60479-0, Springer Verlag, 1995

Magedanz, T. (1999a), Telecommunications Information Networking Architecture Conference
1999 (TINA99), Oahu, Hawaii, USA - 12-15 April 1999, Tutorial P: IN Evolution - Impact of
Internet, CORBA, TINA, and Mobile Agent Technologies, available through
http://www.tinac.com/conference/tutorials.htm

Magedanz, T. (Ed.), (1999b) Special Issue on “Mobile Agents in Intelligent Networks and

Chapter 14: References

 261

Mobile Communication Systems“, in Computer Networks Journal, ELSEVIER Publisher,
Netherlands, vol. 31, No. 10, July 1999

Magedanz, T. Karmouch, A. (Eds.), (2000) Special Issue on Mobile Agents for
Telecommunication Applications, Computer Communications Journal, Elsevier Publishers,
Vol. 27, No.1

Magedanz, T., Glitho, R. (Eds.) (1999c), Special Issue on “Mobile Agent-based Network and
Service Management“ in Journal of Network and Service Management (JNSM), Vol. 7, No. 3,
Plenum Press, New York, 1999

Magedanz, T., Krause, K. (1997) "Mobile Agents - Basics, Technologies, Standards, and
Applications", Invited Tutorial at 1st International Workshop on Mobile Agents, Berlin,
Germany, April 1997

Malone T W and Crowston K (1990) What is Coordination Theory and How Can It Help Design
Cooperative Work Systems? In Proc. CSCW '90. pp. 375-388.

Malone T W and Rockart J F (1991) Computers, Networks, and the Corporation. Scientific
American vol. 265, no. 3. pp. 128-136.

Malone T W, Yates J and Benjamin R I (1987) Electronic Markets and Electronic Hierarchies.
Communications of the ACM vol. 30, no. 6. pp. 484-497.

Malone, T. Crowston, K. (1991) “Towards an interdisciplinary theory of coordination”.
Technical Report CCS RT #120 SS WP#3294-91-MSA, Massachusetts Institute of Technology
(MIT)

Manola F. (1999) “Technologies for a Web Object Model” IEEE Internet Computing Jan/Feb
1999

Mardesish, J. (1996) “Onsale Takes Auction Gavel Elections” Computer Reseller News, July 8,
1996

Mark E. Nissen (1999) “Supply Chain Process and Agent Design for E-Commerce” In Proc.
33rd Hawaii Int'l Conference on System Sciences (HICSS-33), Maui, Hawaii, January 1999.

Martensson, N., Mackay, R., Björgvinsson, S., (eds) (1998), “Changing the Ways We Work.
Shaping the ICT-Solutions for the Next Century” Proceedings of the Conference on Integration
in Manufacturing, Göteborg, Sweden, 6-8 October 1998, Amsterdam: IOS Press.

McCaffer, R., Garas, F. (eds) (1999), “eLSEwise: European Large Scale Engineering Wide
Integration Support Effort, Engineering Construction and Architectural Management,” Special
Issue, 6 (1), ISSN 0969 9988.

McCutcheon D M, Amitabh S and Meredith J R (1994) “The Customization-Responsiveness
Squeeze” Sloan Management Review, Winter 1994. pp. 89-99.

Merrick, P. Allen, C. (1997) “Web Interface Definition Language (WIDL)” W3C Note, World
Wide Web Consortium 1997, available at: http://www.w3c.org/TR/NOTE-WIDL

Merz, M. Lamersdorf, W. (1996) “Agents, Services, and Electronic Markets: How do They
Integrate?” in Proceedings of the IFIP/IEEE International Conference on Distributed
Platforms, Dresden, 1996

Merz, M., Liberman, B. Müller-Jones, K. (1996) “Interorganisational Workflow Management
with Mobile Agents in COSM” in Proceedings of the PAAM 96, London April 1996

METEOR Project http://lsdis.cs.uga.edu/proj/meteor/meteor.html

Evangelos K. Ouzounis

 262

Meyer, K., Erlinger, M., Betser, J., Sunshine, C., Goldszmidt, G., Yemini, Y. (1995)
“Decentralising Control and Intelligence in Network Management.” Integrated Network
Management IV, Chapman & Hall, 1995. Ed. Sethi et al. pp. 4-15. ISBN 0412715708.

Milgrom, P. (1989) “Auctions and Bidding: A Primer” Journal of Economic Perspectives,
Summer 1989, pp. 3-22

Milgrom, P. Weber, R (1982) „A Theory of Auctions and Competitive Bidding” Econometrica,
Sept. 1982, pp.1089-1122

Miller M J (1996) “Your Own Private Internet” PC Magazine vol. 15, no. 5. p. 29.

Milner R.(1995) "Communication and Concurrency". Prentice Hall, 1995.

Milosevic, Z. (1995) “Supporting Business Contracts in Open Distributed Systems” 2nd
International Workshop on Services in Distributed and Networked Environments (SDNE 95),
Whistler, Canada, June 1995

MISSION Project Homepage, http://www.ims.org/project/projinfo/mission.htm

Mitrovic, D., Hunter, I. Male, S. (1999), “Characteristics of Networked Enterprise in Global
Construction” in Proceedings of ICE’99, International Conference on Concurrent Enterprising,
The Hague, The Netherlands, 15-17 March 1999, Nottingham: University of Nottingham,
ISBN 0 9519759 86 pp. 447-454.

Mohan Kamath, Krithi Ramamritham “Pragmatic Issues in Coordination Execution and Failure
Handling of Workflow in Distributed Workflow Control Architectures” Oracle Corp.
Technical Report.

MQSeries Specification, Reference Architecture (1998) http://www-
4.ibm.com/software/ts/mqseries/

Muller, H.J. (1996) „Negotiation Principles”, chapter 7, Foundations of Distributed Artificial
Intelligence, John Wiley and Sons, 1996

NIIP (1996) “The NIIP Reference Architecture”, available at http://www.niip.org

Nwana H, Ndumu D, Lee L, Collis J.(1999) "ZEUS: A Toolkit for Building Distributed Multi-
Agent Systems". In: Applied Artifical Intelligence Journal, Vol 13, Number 1, 1999.
http://www.labs.bt.com/projects/agents/index.htm

Nwana HS.(1996) "Software agents: an overview". The Knowledge Engineering Review, 11(3),
1996, pp 205-244.

OASIS, Resources http://www.oasis-open.org/html/goldfarb.htm

Object Space (1997) “Voyager Core Technology User Guide – Version 1.0.0” Object Space Inc.
1997

Oliver, J. (1996) “On Artificial Agents for Negotiation in Electronic Commerce”, Ph.D. thesis,
Wharton, 1996

Oliver, J.R. (1997) “A Machine Learning Approach to Automated Negotiation and Prospects for
Electronic Commerce”, in http://opim.wharton.upenn.edu/~oliver27/papers/jmis.ps

OMG (1994-2000), Object Management Group, Common Object Request Broker Architecture
Specification, Version 2.0

OMG (1994-2000), Object Management Group, Common Object Request Broker Architecture
Specification, Version 2.0

Chapter 14: References

 263

OMG CORBA (1994-2000) ”Common Object Request Broker Architecture and Specification”,
Revision 2, August 1995

OMG MASIF (1997), “Mobile Agent System Interoperability Facility (MASIF) specification”
November 1997, ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

OMG, CORBA “Asynchronous Messaging and QoS Service Control” (1999),
www.omg.org/docs/orbos/98-05-05.pdf.

OMG, CORBA Component (1999), www.omg.org/docs/orbos/99-02-05.pdf.

OMG, CORBA Facilities Architecture Specification (1998), www.omg.org/corba/cf2.html.

OMG, CORBA Interoperable Naming Service (1998), www.omg.org/docs/orbos/98-10-11.pdf.

OMG, CORBA Objects-by-Value (1998), www.omg.org/docs/orbos/98-10-06.pdf.

OMG, CORBA Scripting (1998), www.omg.org/docs/orbos/98-12-08.pdf.

OMG, CORBA Services Specification (1998), www.omg.org/corba/sectran1.html.

OMG, CORBA/IIOP 2.3 Specification (1998), www.omg.org/docs/ptc/98-12-04.pdf.

OMG, Interworking between CORBA and TC Systems (1997), www.omg.org/docs/telecom/97-
12-06.pdf.

OMG, Java Language to IDL Mapping (1998), www.omg.org/docs/orbos/98-04-04.pdf.

OMG, Minimum CORBA (1998), www.omg.org/docs/orbos/98-08-04.pdf.

OnSale homepage (1998) http://www.onsale.com

Orfali, R. Harkey, D. and Edwards J. (1996) “The Essential Distributed Object Survival Guide”
John Wiley & Sons.

Ouzounis, V (1998a) “Electronic Commerce Commercial Scenarios, Business Models and
Technologies for SME’s”, invited paper, European Multimedia, Microprocessor Systems and
Electronic Commerce Conference and Exposition (EMMSEC 98), Bordeaux, France 28-30
September

Ouzounis, V. (1998b) “An Overview of Advanced Electronic Commerce Platforms and
Architectures”, invited paper, Information Society Technologies (IST) 98, Vienna, Austria, 2-4
December

Ouzounis, V. (1998c) “Electronic Commerce and New Ways of Work – An R&D RoadMap”,
European Commission –Directoral General III

Ouzounis, V. (2000b) “Managing Dynamic Virtual Enterprises using FIPA Agents“ submitted as
a chapter in the book „Managing the Virtual Web Organization in the 21st Century: Issues and
Challenges" authored by Ulrich Franke, Cranfield University

Ouzounis, V. Tschammer V. (1998d) “Plattformdienste zur Unterstützung virtueller
Unternehmen im elektronischen Handel”, Praxis Informationverarbeitung und Kommunikation
(PIK) Jul-Sep 1998, Volume 3

Ouzounis, V. Tschammer V. (1998e) ”Integration of Electronic Commerce Business Processes
in Virtual Enterprises” European Multimedia, Microprocessor Systems and Electronic
Commerce Conference and Exposition, (EMMSEC 98) Bordeaux, France, 28-30 September

Ouzounis, V. Tschammer V. (1999a) “A Framework for Virtual Enterprise Support Services”,
32nd International Conference on Systems and Sciences (HICSS32) Maoui Hawaii, 3-5 January

Evangelos K. Ouzounis

 264

1999

Ouzounis, V. Tschammer V. (1999b) “Iuk –Dienste zur Unterstützung virtueller
Organisationen”, Handbuch Electronic Commerce, Springer Verlag, ISBN 3-540-660008-9

Ouzounis, V. Tschammer, V. (2000a) “Einsatz mobiler intelligenter Agenten zur Unterstützung
virtueller Organisationen” to appear in “Virtuelle Organisationen in der Praxis”, Springer
Verlag,

Parsons, S. Sierra, C., Jennings, N. (1999) “Agents that Reason and Negotiate by Arguing”
Journal of Logic and Computation, Vol. 2. pp. 34-43, 1999

Perdikeas, M.K., Chatzipapadopoulos, F.G., Venieris, I:S., Marino, G. (1999) "Mobile Agent
Standards and Available Platforms", Computer Networks Journal, Special Issue on “Mobile
Agents in Intelligent Networks and Mobile Communication Systems“, ELSEVIER Publisher,
Netherlands, vol. 31, issue 10

Pereira Klen, A.A. Rabelo, R.J. Spinosa, L.M. (1999) “Distributed Business Process
Management” in Infrastructures for Virtual Enterrises. Networking Industrial Enterprises. IFIP
TC5 WG5.3 / PRODNET Working Conference for Virtual Enterprises (PRO-VE'99), Porto,
Portugal, 27-28 October 1999, Boston: pp. 241-258

Petrie, Charles J.,(1996) “Agent-Based Engineering the Web and Intelligence”, IEEE Expert,
December 1996, also http://cdr.stanford.edu/NextLink/Expert.html

Pozzi, G. Ceri, S. (1998) “Exception Management in WIDE” International Symposium on
Advanced Database Support for Workflow Management, Enschede, The Netherlands, May
19th, 1998

R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, G. Zhou. (1999) "Declarative
Workflows that Support Easy Modification and Dynamic Browsing” Proc. Int. Joint Conf. on
Work Activities Coordination and Collaboration, 1999.

R. Hull, F. Llirbat, J. Su, G. Dong, B. Kumar, G. Zhou. (1998) "Adaptive Execution of
Workflow: Analysis and Optimization". Bell Labs Technical Report, November, 1998.

Raiffa, R. (1982) “The art and science of negotiation” Harvard University Press, Cambridge,
USA

Redlich, J.-P. Suzuki, M. and Weinstein, S. (1998) “Distributed object technology for
networking” IEEE Communications Magazine, Vol. 36, No. 10, October, pp. 100 –111.

Reichert, Dadam (1998) “ADEPTflex - Supporting Dynamic Changes of Workflows Without
Loosing Control” Journal of Intelligent Information Systems (JIIS), Special Issue on Workflow
Management Systems, Vol. 10, No. 2, pp.

Reinhardt, A. (1994) "The Network with Smarts", BYTE Magazine, pp. 51-64, October 1994

Rosenschein, J. Zlotkin, G. (1994) “Rules of Encounter: Designing Conventions for Automated
Negotiations among computers”, MIT Press, 1994

Rubin, H., Natarajan, N. (1994), ”A Distributed Software Architecture for Telecommunication
Networks”, IEEE Network, Vol.8, No.1, January/February 1994

Russell, S. J., Norvig, P.(1995) “Artificial Intelligence: A Modern Approach. Englewood Cliffs,
NJ: Prentice Hall, 1995.

Sandholm, T. (1995) “Issues in Automated Negotiation and Electronic Commerce: Extending
the Contract Net Framework” First International Conference on Multi-Agent Systems

Chapter 14: References

 265

(ICMAS-95), San Francisco, CA. USA. 1995

Searle, J. (1969) “Speech Acts - An essay in the Philosophy of Language” Cambridge University
Press, U.K.

Sheth A.(1998) "Changing focus on interoperability in information systems: from system,
syntax, structure to semantics" In Interoperating Geographic Information Systems goodchild,
M., Egenhofer M., Fegeas R., Kottman C. (eds.), Kluwer.

Sheth, A. (1997) "From Contemporary Workflow Process Automation to Adaptive and Dynamic
Work Activity Co-ordination and Collaboration". Proceedings of the Workshop on Workflow
Management in Scientific and Engineering Applications, Toulouse, France, September 1997.

Sierra, C. Faratin, P. Jennings, N. (1997) “A Service-oriented Negotiation Model between
Autonomous Agents” Proc. 8th European Workshop on Modeling Autonomous Agents in a
multi-agent world (MAAWAW 97), Ronneby, Sweden, pp 17-35

Smith R G and Davis R (1988) “Frameworks for Cooperation in Distributed Problem Solving”.
In Readings in Distributed Artificial Intelligence, Ed. Alan H. Bond and Les Gasser, Morgan
Kaufmann Publishers, Inc.: San Mateo, CA.

Smith, R.G. (1980) “The Contract Net Protocol: High Level communication and control in a
distributed problem solver” In Reading in Distributed Artificial Intelligence, Morgan
Kaufmann, San Mateo, California

Snapp C D (1990) “EDI Aims High for Global Growth” Datamation, March 1, 1990. pp. 77-80.

Spinosa, L.M., Rabelo, R., Klen, A.P. (1998), “High-level Co-ordination of Business Processes
in a Virtual Enterprise”, in Innovation, Agility, and the Virtual Enterprise, Proceedings of the
10th International IFIP WG 5.2/5.3 Conference, PROLAMAT 98, Trento, Italy, 9-12
September 1998, pp.725-736.

Srinivasan K, Kekre S and M and Mukhopadhyay T (1993) “Impact of Electronic Data
Interchange Technology on JIT Shipments” Graduate School of Industrial Administration,
Carnegie Mellon University.

Stamos, J.W., Grifford, D.K. (1990): "Implementing Remote Evaluation", IEEE Transactions on
Software Engineering, Vol.16, No.7, pp. 710-22

Stricker, C. Riboni, S. Kradolfer, M. and Taylor. J. (2000) “Market-based Workflow
Management for Supply Chains of Services.” In Proc. 33rd Hawaii Int'l Conference on System
Sciences (HICSS-33), Maui, Hawaii, January 2000.

Stricker, C. Riboni, S. Kradolfer, M. Taylor J. (1999) “Market-Based Workflow Management
for Supply Chains of Services” In Proc. 33rd Hawaii Int'l Conference on System Sciences
(HICSS-33), Maui, Hawaii, January 1999

Swaminathan J M, Smith S F and Sadeh N M (1994) “Modeling the Dynamics of Supply
Chains” The Robotics Institute, Carnegie Mellon University.

Tambe, M. (1997) “Towards Flexible Teamwork” Journal of Artificial Intelligence Research, 7,
83-124

Taubes, G. (1998) “Taming Virtual TaskMasters” Network Series, IBM Research Vol. 36, No3,
1998 pp. 7-9

TEAMS Project Homepage, http://cewww.eng.ornl.gov/team/int.html

The ACE-FLOW Project (1999) http://www.ifi.unizh.ch/dbtg/Projects/ACEFLOW/index.html

Evangelos K. Ouzounis

 266

The ProcessLink Project http://www-cdr.stanford.edu/ProcessLink/

The SEAMAN Project http://www.ifi.unizh.ch/dbtg/Projects/SEAMAN/seaman.html

Thompson, S.G. Odgers, B.R. Shepherdson, J.W. (1999) “Cross Organisational Workflow
should be Co-ordinated by Software Agents” Workshop on Cross-Organisational Workflow
Management and Co-ordination February 22nd 1999, San Francisco

Tigue, J. Lavinder, J. (1998) “WebBroker: Distributed Object Communication on the Web”
W3C Note, World Wide Web Consortium 1998, available at:
http://www.w3c.org/TR/1998/NOTE-webbroker

Timmers, P., Stanford-Smith, B., Kidd, P.T., (eds.) (1998), “Electronic Commerce: Opening Up
New Opportunities for Business” Macclesfield: Cheshire Henbury.

Tombros, D. (1999) “An Event- and Repository-Based Component Framework for Workflow
System Architecture” University of Zurich, 1999

Tombros, D. Geppert, A.(2000) “Building Extensible Workflow Systems using an Event-Based
Infrastructure”, Proc. 12th Conf. on Advanced Information Systems Engineering, Stockholm,
Sweden, June 2000

TRAMS Project http://www.ifi.unizh.ch/dbtg/Projects/TRAMs/trams.html

Tschammer, V, Mendes, Ouzounis V. (1997) “SSEECCCCOO –– Support Environment for Electronic
Commerce”, author, Cost 237 Workshop, Lisboa, Portugal, December 15-19, 1997

Tschammer, V. Ouzounis, V. (2000) “Dynamic Virtual Enterprises– a Prospect of Collaborative
Commerce Between SMEs”, 2nd South Eastern European Conference on e-Commerce, 24 – 26
Oct., 2000, Sofia, Bulgaria

UMBC Knowledge Sharing Effort, http://www.cs.umbc.edu/kse or
http://www.cs.umbc.edu/agents/

Unified Modelling Language (UML) Specification, http://www.rational.com/uml/index.jtmpl

VEGA Project Homepage and Papers, http://cic.cstb.fr/ilc/publicat/list.htm

Veloso, M. Pollack, M. Cox, M. (1998) “Rationale -based monitoring for planning in dynamic
environments”. In proceedings of Artificial Intelligence Planning Systems (AIPS-98) Pittsburg,

VENTO Project Homepage, http://www.cas-software.de/CAS/EU-Vento-Kurz-Architecture.htm

Vickerey, W.(1961) “Counterspeculation, Auctions, and Bidding” Journal of Finance, March
1961, pp 8-37

Violino B (1996) “Your Worst Nightmare” Information Week, Feb. 19, 1996. pp. 34-36.

VIVE Reference Model (1999) http://www.ceconsulting.it/VIVE/Results/default.html

Walles, M.G. (1999) “WIDL: Interface Definition for the Web” IEEE Internet Computing
Jan/Feb 1999

Walton, J. Whicker, L. (1996) “Virtual Enterprises: Myth and Reality”, J. Control, Oct. 96

Weitzel, T. Buxmann P. Westarp F. (1999) “A Communication Architecture for the Digital
Economy - 21st Century EDI” In Proc. 33rd Hawaii Int'l Conference on System Sciences
(HICSS-33), Maui, Hawaii, January 1999

WfMC Terminology and Glossary (WfMC-TC-1011, Feb 1999, 3.0) available at
http://www.wfmc.org/

Chapter 14: References

 267

White J.E. (1994) "Telescript Technology: The Foundation for the Electronic Marketplace",
General Magic White Paper

White, J. E. (1997) “Mobile Agents”. In Bradshaw, J. M., (Editor) (1997) ‘Software Agents’.
MIT Press, ISBN 0-262-52234-9. Chapter 20. pp437-472.

WIDE Project http://dis.sema.es/projects/WIDE/

WISE Project http://www.inf.ethz.ch/department/IS/iks/research/wise.html

Wognum, N., Thoben, K.-D., Pawar, K. S. (1999a), Proceedings of ICE’99, International
Conference on Concurrent Enterprising, The Hague, The Netherlands, 15-17 March 1999,
Nottingham: University of Nottingham, ISBN 0 9519759 86.

Wognum, P.M., Faber, E.C.C. (1999b), “A Framework for Improving the Quality of Operation
in a Virtual Enterprise” in Infrastructures for Virtual Enterrises. Networking Industrial
Enterprises. IFIP TC5 WG5.3 / PRODNET Working Conference for Virtual Enterprises (PRO-
VE'99), Porto, Portugal, 27-28 October 1999, p. 365-376.

Wood L. (1999) “Programming the Web: The W3C DOM Specification” IEEE Internet
Computing Jan/Feb 1999

Wooldridge, M and Jennings, N. R. (1995a) “Intelligent Agents: Theory and Practice” The
Knowledge Engineering Review. Vol. 10. No. 2. 1995. pp.115-152.

Wooldridge, M., Jennings, N (1995b) Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review 10(2). pp.115-152. 1995.

Workflow Management Coalition (1993-2000) Interoperability Abstract Specification, October
1996, available at: http://www.wfmc.org

Wurman, P. Wellman, et.al. (1999) “A Control Architecture for Flexible Internet Auction
Servers” First IAC Workshop on Internet-based Negotiation Technologies, New-York, USA,
1999

XML Resources and Papers, http://www.w3c.org/xml/ or
http://www.xml.org/xmlorg_resources/index.shtml

Yemini Y., Goldszmidt G., Yemini S., (1991) “Network Management by Delegation”,
Proceedings of the 2nd International Symposium on Integrated Network Management, pp. 95-
107.

Zapf, M., Herrmann, K., Geihs, K., (1999) „Decentralised SNMP Management with Mobile
Agents“, in Integrated Network Management VI, Sloman, Mazumdar, Lupu, eds., pp. 623-635,
IEEE.

Zarli, A. Poyet, P. et. al. (1997) “Integrating Emerging IT paradigms for the Virtual Enterprise:
the VEGA Project” Proceedings of ICE 97, 4th International Conf. On Concurrent Engineering,
Nottingham, UK, Oct 97,

Zarli, A., Poyet, P. (1999), “A Framework for Distributed Information Management in the
Virtual Enterprise” The VEGA Project, in Infrastructures for Virtual Enterrises. Networking
Industrial Enterprises. IFIP TC5 WG5.3 / PRODNET Working Conference for Virtual
Enterprises (PRO-VE'99), Porto, Portugal, 27-28 October 1999, pp. 293-306.

Zeng, D. Sycara, K. (1996) “How Can agents learn to negotiate?” Intelligent Agents III: Agent
Theories, Architectures, and Languages (Proceedings of ECAI 96), LNCS. Springer, August
1996

Evangelos K. Ouzounis

 268

Zeng, Dajun, Sycara (1996) „Bayesian Learning in Negotiation“ Working Notes of the AAAI
1996 Stanford Spring Symposium Series on Adaptation, Coevolution, and Learning in Multi-
agent systems, also at http://www.cs.cmu.edu/~zeng

Zhang, T., Magedanz, T., Covaci, S. (1998) ”Mobile Agents vs. Intelligent Agents -
Interoperability and Integration Issues”, 4th International Symposium on Interworking, Ottawa,
Canada

