
Maxim um a Posteriori Models for Cor tical Modeling:
Feature Detec tor s, Topograph y and Modularity

vorgelegt von
Diplom Physiker
Cornelius Weber

aus Bielefeld

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Günter Hommel
1. Berichter: Prof. Dr. rer. nat. Klaus Obermayer
2. Berichter: Prof. Dr. sc. nat. Fritz Wysotzki

Tag der wissenschaftlichen Aussprache: 1. Mai 2001

Berlin 2001
D 83

Depar tment of Computer Science
Technical Univer sity of Berlin

Neural Information Processing

Maxim um a Posteriori Models for Cor tical Modeling:
Feature Detec tor s, Topograph y and Modularity

PhD Thesis by Cornelius Weber, Berlin, July 31, 2000
Defense on Mai 1, 2001

Content s

1 Intr oduction 4

2 The Cor tex 8
2.1 Modularity . 8
2.2 Hierarchy . 13
2.3 Development . 20

3 Theor y 22
3.1 Stochastic neurons . 22

3.1.1 Boltzmann distribution I . 23
3.1.2 Boltzmann distribution II . 25

3.2 Generative models . 26
3.2.1 Bayes theorem . 27
3.2.2 Maximum likelihood . 28
3.2.3 Helmholtz free energy . 29
3.2.4 Marginalization . 31

3.3 Maximum entropy . 33

4 Models 35
4.1 Non-linear Kalman filter model . 36
4.2 A hierarchical Kalman filter model 39

4.2.1 Relaxation dynamics in a flexible hierarchy 40
4.3 Boltzmann machine . 43

4.3.1 Restricted Boltzmann machine 46
4.3.2 Sparse restricted Boltzmann machine 46
4.3.3 Gibbs sampling . 47
4.3.4 The mean-field approximation 48
4.3.5 Overview of energy functions used by the Boltzmann machine 54

4.4 Helmholtz machine and the wake-sleep algorithm 54
4.5 Priors . 56

4.5.1 Prior on the activities: sparse coding 56
4.5.2 Prior on the weights: weight constraint 59

2

/margaux0/cweber/text/ppr/uebz/logo-TU.eps

4.5.3 Priors for topographic mappings 61
4.6 Maximum entropy model . 63

4.6.1 Approximation by a maximum likelihood model 64

5 Results 68
5.1 Methods . 68

5.1.1 Preprocessing of images 68
5.1.2 Appropriate weight constraints 69
5.1.3 Suppressing divergence (Kalman filter model) 71

5.2 Feature detectors . 72
5.2.1 Localized edge detectors 72
5.2.2 Auditory feature detectors 73

5.3 Running the Boltzmann machine 74
5.3.1 Learning in the clamped and in the free-running phase 74
5.3.2 Non-convergence of weights 75
5.3.3 Non-convergence of activities 76
5.3.4 The effect of the inverse temperature / weight length 77
5.3.5 Generation of images . 78
5.3.6 Sparse coding in the Boltzmann machine and Kalman filter model 79

5.4 Topographic mappings . 79
5.5 Modularization . 83

5.5.1 Generation of parallelly and of hierarchically organized data . 83
5.5.2 Results from the Kalman filter model 84
5.5.3 Results from the Helmholtz machine 86
5.5.4 Effect of initialization . 92

6 Discussion 93

7 Summar y 106

3

1 Intr oduction

x x1 20

axonsomadendrite

x

axon collaterals

synapse

Figure 1: Schematic illustration of an example neuron. Information flow is from the
dendrites, left, to the axon collaterals, right.

V(x)1 V(x)2V(x)0

t tt t0 t00t0 0 0

-70meV -70meV

1ms 1ms

Figure 2: Membrane potential vs. time at three different positions marked in Fig. 1.
If a dendrite receives a depolarizing current

���������
at

�	�
,
 � , then this disturbation

travels along the dendrite (
���

) and broadens to finally reach the soma. If the sum
of these depolarizing potentials reaches a threshold at the soma, then the axon is
triggered to carry spikes (

��
). These stereotyped impulses propagate rapidly without

attenuation over long distances towards the synapses on the axon collaterals. The
behavior of a cell is quantified by its size, shape and membrane properties and the
types of neuro-transmitters used at synapses determine the influence to and from
other cells.

Figs. 1 and 3 show cartoons of the smallest and the largest parts of the brain.
The whole brain contains about ��� ��� to ��� �� cells. Each of these use only the type
of signals described in Fig. 2, and thus a single neuron carries as little information
as whether a spike occurs within one milli-second or not. The complex behavior of
this system arises only from the connectivity between cells. This is specified by an

4

/margaux0/cweber/text/art/5diss/fig/neuron_potentials.eps
/margaux0/cweber/text/art/5diss/fig/neuron_neuron.eps

thalamus

corpus callosum

cerebral cortex

cerebellum
hypo-
thalamus

brain stem

striatum

spinal
 cord

Figure 3: Schematic illustration of the human brain, drawn from a cross section [33]
and a cartoon [43]. The spinal cor d controls movement and receives sensory infor-
mation from parts of the body other than the head.
The brain stem consists of three parts, the medulla, pons and midbrain. It controls
movement and receives sensory information from the head. It also contains several
collections of cell bodies, called cranial nerve nuclei, where each is specialized to
convey information of distinct regions or senses. The reticular formation regulates
levels of arousal and awareness. The medulla oblongata, which lies directly above
the spinal cord, controls vital autonomic functions as digestion, breathing and heart
rate. The pons conveys information to the cerebellum. The cerebellum modulates
via inhibitory output only the force and range of movement and improves motor skills.
The midbrain contains the tectum (superior colliculus) and controls sensory and mo-
tor functions such as eye movement and coordination of visual and auditory reflexes.
The thalam us contains the LGN and pulvinar. It relays most information which
reaches the cerebral cortex. The hypothalam us regulates autonomic, endocrine
and visceral function. The (corpus) striatum contains the caudate nucleus and the
putamen. Together with the globus pallidus, they make up the basal ganglia and are
important for controlling movement. The corpus callosum interconnects the cere-
bral cor tices of the two hemispheres. Description taken from [35].

even larger number of parameters. If we assume an address of a cell to be 4 bytes
long (which can address ��� �� ������� ��� � cells) then the connectivity information of

5

/margaux0/cweber/text/art/5diss/fig/brain.eps

the whole brain sums up to approximately

��� ��� [cells]
� �!�"� [connections]

[cell]

�#�
[bytes]

�$�%� ��� �� [bytes]

or 4 tera-bytes. Therefore, connectivity cannot be a result of a direct description by
(a smaller number of) genes, but must emerge by self-organization. It is a goal of this
thesis to charactierize such self-organization processes in terms of how they work
and how they make use of data through learning. They are tested against which of
the known structures of the brain they can explain.

At an intermediate scale, in general, we do not find very distinctive structures,
e.g. that a cluster of 10 to 100 cells would perform its own computations independent
of other cells. Connectivity is instead diffuse and often links local and distant targets
in combination. In addition, recurrency causes loops, which can be observed at all
scales, at the smallest of which are connections from one cell to itself via “autapses”.
But again, loops are not clearly confined because of the diffuse connectivity.

However, there are certain principles observed throughout brain structures.& Grey matter (densely packed cell bodies) can be distinguished from white mat-
ter (long-range axons). The grey matter makes up the organs of the brain or
parts of them. The white matter can be organized into nerve bundles thereby
maintaining functional specificity between the interconnected regions.& In many organs, cells arrange in layers and connectivity between cells is depen-
dent on layers and cell types.& Every cell as well as the whole brain has a clearly defined input and output.
Information is processed in more or less well defined “pathways”.& Topographic mappings display a high degree of parallel processing of equivalent
features.& Serial arrangements between topographic map can be considered to form a
hierarchy.

These properties provide a scaffold on which models of the brain can be tested.
Developmental models may predict these properties based on simple developmental
mechanisms. Functional models may predict physiological properties (as obtained
e.g. by optical imaging or FMRI) based on the observed anatomy. In this thesis, we
will explore, which architectures can emerge in developmental models but also, which
functional properties these models have.

Outline of the thesis

Section 2 summarizes biological findings about the cortex. We will consider its areas,
connectivity between these and resolve these down to layers. As a consequence,

6

we will confine to which degree intrinsic mechanisms and activity dependent mecha-
nisms govern development.

Section 3 provides the theoretical foundation for the models used. We assume
that the Bayesian maximum likelihood underlies cortical function. Accordingly, the
function of the cortex is to represent the real world so that the learned stimuli can be
generated autonomously.

Section 4 presents the models which implement the theoretical principles. We
show that certain Bayesian priors lead to corrections to the learning rules which re-
flect intrinsic mechanisms.

Section 5 presents simulation results. We will present feature maps, topographic
maps and the organization of modules as the results of developmental mechanisms.
Additionally we will demonstrate how the activations develop during the relaxation
procedures.

7

2 The Cor tex

The cortex is the largest organ of the human brain. However, a mammal can survive
without a cortex and lower animals do not even have a cortex. Essential functions
like controlling inner organs and instincts reside in other parts of the brain (see Fig.3
caption). So what does the cortex do? An other way to pose this question is: what
can the lower animals not do? If lower animals cannot learn a complex behavior we
may infer that they cannot understand a complex environment. In other words: the
cortex may provide a representation of a complex environment to mammals.

This suggests that the cortex is a highly organized structure. Indeed, in the ab-
sence of input it can generate dreams and imagery from intrinsic spontaneous activ-
ity. Recurrent connectivity may be the key to these capabilities. Neurons in the cortex
receive signals from other neurons rather than directly from sensory inputs. The re-
sponses to inputs are thereby context dependent and thus cannot be fully described
by the direct connection to the sensory input via the receptive field only.

On a macroscopic scale, the cortex can be structurized into some dozens of areas.

2.1 Modularity

Cortical areas are hard to be distinguished by one criterion alone. Instead, the fol-
lowing criteria may be combined:& Architecture: different structure revealed by staining. This method is reliable

only for a few areas [20].& Connectivity "fingerprint", the connectivity pattern to other cortical areas. Com-
ment: if two areas had same connectivity patterns, then they would be the
same.& Topographic organization w.r.t. the visual field in visual cortical areas: half of all
visual areas show a measurable degree of topography [20].& Recent findings suggest that a “neurochemical fingerprint” [23] determines the
earliest compartmentalization in corticogenesis [18].

Data

In the following, we will first collect some data from cortical areas and their mutual
connectivity. The question arises, what is the distance between these areas as de-
fined by their connections. Visualization techniques like non-metric multi dimensional
scaling (NMDS) as well as simple models will help to answer this question.

Areas and connections The number of cortical areas is 65 in the cat [52] and
73 in the macaque [72]. The number of connections reported between these is 1139

8

auditory

frontolimbic

somatomotor

visual

Figure 4: The cortico-cortical connection matrix of the cat. On both axes, the 65
cortical areas are arranged into the four complexes, visual system, auditory system,
somato-sensory system and fronto-limbic system. Connections along the horizontal
axis are afferent, and those along the vertical axis are efferent. Strong connections
are depicted dark, weaker connections are depicted in a lighter grey, missing connec-
tions white. Self connections (diagonal) are omitted. Data were taken from [52].

in the cat (Fig. 4) which represents 27.4% of all possible connections (only cortico-
cortical, but no contralateral connections are considered). The number of reported
connections in the macaque is 758 which represents 15% of all possible connections.

Most of the connections are bidirectional: they consist of axons going into both
directions. The number of one-way connections is 136, i.e. 18% of all connections
(macaque). Together there is a mean of approximately 10 input- and 10 output-
connections per area (macaque).

Comple xes of areas The cortex can be divided into 4 complexes (macaque) [72]
with different functionality and sizes: visual cortex 55%, somato-sensory 11%, motor
8%, auditory 3% ' rest 23% [20].

The number of areas in the visual system of the macaque is 25 plus 7 visual-
association areas. The number of connections is 305, i.e. 31% of all possible con-
nections. There are 3 non-reciprocal projections: no V4t ' V1, no V2 ' FST, V4t' MSTI [20]. An “intermediate” example: the projection from V1 to V4 is robust, but
the back-projection from V4 to V1 is weak and occasional, possibly dependent on
eccentricity. The somato-sensory/motor system has 13 areas with 62 connections,
i.e. 40% of all possible connections. Thus, connectivity between areas within one
complex is higher than average.

9

/margaux0/cweber/text/cococo/cocomatrix/cococat_inverse_complexes.eps

Quantitative aspects The connection strengths between areas (i.e. density of
fibers) comprise two orders of magnitude [20]. Only 30-50% of connections may be
"robust". Sizes of areas: the visual cortex of the macaque has the size of a medium-
sized cookie, 8cm diameter, a whole hemisphere of the cortex is the size of a large
cookie, 12cm. Areas V1 and V2 take 12% of the surface area, smallest areas are
50-times smaller. Note: there is a 2-fold variability of single areas from one brain to
the next [20].

Finally, it should be noted that every visual area is connected to (a) noncorti-
cal area(s). The number of these connections may outrange the number of cortico-
cortical connections.

Simple models for the connections data

Let a model [52] assume all neighboring areas to be connected (“nearest neighbor
model”, Tab. 1). It predicts too few connections, but most of them are indeed observed
in biology. Let another model assume areas to be connected to their neighbors and
to the second nearest neighbors. Then there are many wrong guesses, especially
between different complexes, i.e. in areas away from the diagonal in the connection
matrix. Tab. 1 shows the scores of these models.

nearest neighbor model nearest + 2nd nearest neighbor
% of real connections right guesses real connections right guesses

predicted by model by model predicted by model by model
visual 26.1% 77.2% 56.6% 61.1%
auditory 27.9% 70.6% 61.6% 64.6%
global 19.5% 68.9% 47.8% 51.4%

Table 1: Explanation capabilities of simple geometrical models. Data are taken
from [52].

The errors of these models are systematic in that they ignore the influence of
activity and function: the models predict connections between functionally dissimilar
but neighboring areas. The author notes that through activity based refinement these
missing neighbor connections should be correctly predicted. The developmental
mechanisms which underly the principles stated by these models are suspected to
fulfill the following goals: minimizing genetic information, minimizing metabolic costs
and minimizing the total wiring volume.

Visualization methods

A number of different methods have been applied in order to make the connections
data less abstract.

10

NMDS The connection matrix does not supply a metric on the areas. A metric (is
define by the following axioms: (i) (���*),+-� � �/. � � +

, (ii) (��+0)1�2� � (���*),+3� and
(iii) (���*)145�76 (���*),+-�*8 (��+2)145� . The last condition is not met, e.g. if areas

�
and

+
are linked and areas

+
and

4
are linked but if area

�
is not linked to

4
.

Non-metric multi dimensional scaling (NMDS) describes a class of algorithms
which projects high dimensional data onto a low dimensional surface. Applied to the
connection matrix (Fig. 4) the result should be a graph on 2 dimensions (where there
is a metric) where the original proximities between the areas in high-dimensional
space are conserved.

The input to the algorithm is an 9;:<9 matrix which contains the distances =?>A@
between points (note: distance = inverse proximity). The goal is to fit the distances=B>A@ with distances (�>A@ in a low-dimensional C -space, e.g. C � � . Then there is a
metric. The ansatz is to minimize a cost function:D � E >GF @ � (H>A@JIK=B>A@ � E >GFL@ (>A@
where (�>M@ is expressed by points in K-space: (L>A@ �ON EQPR ��� > R I � @ R � �OS �#T� >�I T� @ � .
The cost function

D
is now minimized w.r.t. the parameters

T� > by an iterative process:T��U!V�W> � T�	XZYA[> I]_^ � (D2` (T� > � . The solution for the primate visual system is shown in
Fig. 5.

A desired property of the results is the following: if distances =a>A@ and = YMb in the
high-dimensional space are similar, then distances (�>A@ and (YMb in the low-dimensional
space should either be similar. In order to yield this property, the energy function can
be complemented by a correction term, if they are not similar. This is termed the "tied
approach". Its strongest effect is on the many zero-entries: they “push” each other
away. In the solution, thus, areas are arranged on a ring, following from the large
proportion of non-connections.

The observation that a few connections pass across the central region, whereas
most pass around the rim has led to the interpretation of a dorsal and a ventral stream
of processing. Accordingly, information flow re-converges rostrally, in the frontal lobe.
Also, from the tied approach it can be nicely seen that early and late visual areas
are segregated. In comparison, the untied solution gives a “lower bound”: the least
possible degree of segregation between areas.

When tracers were injected into a cortical area in order to observe a certain den-
sity of labeling at other cortical areas then it was observed that 70% were not con-
nected. Proximity between most areas is thus low if only a nearest neighbor basis is
considered. Connecting only few nearest neighbors of a large distribution on a disk,
then one easily arrives at a distribution of connections as on a ring.

Seriation analysis An algorithm is implemented which orders the rows of the con-
nection matrix such that the cumulative mismatch between all neighboring rows is
minimized. As a result, all areas align in a line which can be closed to a ring. The
algorithm finds multiple orderings because of local minima [73].

11

Figure 5: Visualization of areal relationships in the primate visual system through
NMDS (untied approach). Lower visual areas are on the left, areas which belong
to the dorsal stream are on the top, the ventral stream areas are placed toward the
bottom. Figure taken from [73].

Dissimilarity of connection pattern A new distance matrix is defined according to
the following criterium: "areas are similar when they are connected to similar areas".
I.e. the number of different entries between rows c and d of the connection matrix is
summed up. This defines a new distance between areas c and d , which is non-metric.
Then, "untied" NMDS can be applied to yield results which will resemble the previous
NMDS results [73].

Flattening of cor tex Visualization of a curved sphere on a flat paper is not possible
without changes of the surface area or angles if no cuts should be introduced. The
following procedure provides a good approximation [13]:

1. Sampling of sections of the macaque brain as line drawings and digitizing of
contours.

2. Reconstruction: an algorithm connects neighboring nodes. Furthermore, noise
of reconstruction and sampling is reduced: nodes are smoothed by a relaxation
procedure. Now the section can be displayed as a 3-dimensional lattice.

3. Unfolding: (i) reference lengths and angles are saved. (i) A recursive flatten-
ing procedure is applied where external forces make a node coplanar with its

12

/margaux0/cweber/text/cococo/bilder/VisNMDSUntiedYoung.ps

neighbors while internal, longitudinal and torsional forces maintain similarity to
the reference grid. (ii) Finally, the nearly flat grid is projected onto a plane "par-
allel to it".

4. Visualization. The flattened image is of good quality if the distortion ratio for
each tile is close to 1:

distortion ratio
� area of a tile in the final map

reference area (prior to unfolding)

2.2 Hierar chy

So far, connections between cortical areas were termed symmetric because if area
“I” projects to area “II”, then, in general, area “II” projects to area “I”, too. Upon further
scrutiny, this symmetry is broken: the cortical sheet (grey matter) consists of six
distinguishable cell layers (Fig. 8). Connections which link areas “I” and “II” may have
different layers of origin and different layers of termination (Fig. 6 a)). This asymmetry
suggests a directional order of information processing. Based on a well established
but rough notion of hierarchical information processing, those areas which lie close to
the input are arranged at the bottom of the hierarchy projecting “forward” to areas in
anterior cortex which are taken as "higher". While in a hierarchical model the vertical
dimension is meaningful, the horizontal dimension is still arbitrary.

Acquisition of data The following steps are made to obtain a hierarchy for the
macaque connection data:

1. observe individual laminar patterns by labeling techniques. Anterograde label-
ing: inject at cell bodies, observe tracer chemicals at synaptic targets. Ret-
rograde labeling: axonal processes terminate at injection site, observe tracer
chemicals at cell bodies. Typical tracer patterns are shown in Fig. 6 and are
described in Tab. 2. The observed connectivity patterns can be irregular across
subregions of an area, e.g. patches of columnar pattern can alternate with
patches of multilaminar pattern (as in the projection from MT to V4).

2. matching origins and terminations. Here, origin-termination mismatches can be
observed, e.g. an S pattern (Tab. 2) which terminates in an M pattern (as from
area 46 to STPp and vice versa).

3. assigning reciprocal relationships. Here, reciprocity mismatches are observed,
e.g. a connection which is ascending based on the anterograde pattern but
which is descending based on the retrograde pattern. However, 9 of 10 of these
irregular cases are questionable due to uncertainties in earlier steps like areal
and laminar uncertainties.

13

a) b)

Figure 6: Tracer patterns of connections between area "I" and area "II". Each box de-
notes a slice of the grey matter which includes the six cortical layers, superficial layers
at the top. Pyramids denote cell-bodies, the cite of origin of the connections. Stippling
denotes fiber terminations, their targets. a) Forward (ascending) connections from "I"
to "II" and backward (descending) connections from "II" to "I". b) Symmetric (lateral)
organization. Figure taken from [74].

anterograde retrograde
ascending F "layer four, forward" termi-

nations are densest in layer
4 but invade also layer 3

S "supra-granular, superfi-
cial": at least 70% of labeled
cells in supra layers

descending M "multilaminar" avoid layer
4, occasionally preference
for superficial layers

I "infra-granular": at least
70% of labeled cells in infra
layers

lateral/ambiguous C "columnar" fashion, uni-
form density also within layer
4

B "bilaminar": 30-70% of la-
beled cells in supra and infra
layers. This labeling is com-
patible with all 3 hierarchical
relations.

Table 2: Typical tracer patterns as defined in [20].

4. setting up a constraint chart. This table contains information about which area
is lower / lateral / higher than others. It is inferred solely on their direct link-
ages. Erroneous assignments can occur, e.g. TF must be lower than FST, but
repositioning would lead to even more inconsistencies.

The resulting hierarchy of the visual system shows 33 linkages with irregularities.
In the retrograde labeling studies, patterns of bilaminar origin are less specific and
traverse only few levels whereas projections of more specific unilaminar origin tra-
verse more levels. In the anterograde labeling studies, mixed termination patterns
(C/M, C/F) traverse only 0.8 levels in average. Thus, structure may be only quasi-
hierarchical, especially between “nearby” areas or the methods of anatomical analy-
sis may be noisy. Fig. 7 shows differing results of hierarchical arrangements for the
cat visual system from two authors.

Note that single neurons can project to more than one target area, and the number
of target areas is greater for descending pathways (cat). While V1 is linked to 9 areas
"only", V4 is linked to 21 areas, which are 2/3 of all visual areas.

14

/margaux0/cweber/text/cococo/bilder/TracerPattLateralZeki.ps
/margaux0/cweber/text/cococo/bilder/TracerPattAscDescZeki.ps

Figure 7: Hierarchy of cat visual areas, taken from left: Van Essen (1991) [20] and
right: Young (1995) [52]. Van Essen depicts 16 areas on 8 hierarchical levels and 62
connections. Young also takes into account the limbic system and depicts 22 areas
on 14 hierarchical levels and 224 connections.

Areas which are topographical neighbors are separated by not more than one
level.

Cor tical cir cuitr y Fig. 8 shows a more detailed model of cortical circuitry (see
[39],[71],[10],[50] for reviews). Between hierarchically organized areas we distinguish
forward and backward connections. The forward projection exits the lower area in
layers 2/3 and enters the higher area in layer 4. The backward projection exits the
higher area in layers 5 and 6 and enters the lower area mainly in layer 6 and layers
2/3 (see also Fig. 6).

Within an area the direction of a projection can be derived on the basis of its
origin and termination w.r.t. the entries and exits of inter area connections. Input-
receiving cells in layer 4C are exclusively (spiny?) stellate cells [J.Lund]. Thus, spiny
and smooth stellate cells which project from layer 4 to layers 2/3 are the inner area
constituents of the forward projection. An additional processing step which is not
depicted in Fig. 8 is situated within layers 2/3: layer 3 is the main recipient zone
and projects to layer 2 via all cell types, while mainly layer 2 sends axons to other

15

/margaux0/cweber/text/cococo/bilder/HierarchyVisCatYoung.ps
/margaux0/cweber/text/cococo/bilder/HierarchyVisCatEssen.ps

I
II
III

IV

VI
V

tdr-r

r(t+1)

smooth stellatepyramidals spiny stellate

p1 i1 p3 p4 p5 p6
c1 c2 c3

s2h1

Figure 8: The six cortical layers, cells and connections. Cell types are pyramidal cells
and spiny stellate cells, both excitatory, and smooth stellate cells, inhibitory. Three
cortical areas are depicted where the hierarchical levels rise from left to right. The
hierarchical relationships between the areas are determined by the zones of origin
and termination of the long-range connections which consist of pyramidal axons ex-
clusively [20][74]. These are distinguished from spiny stellates by an apical dendrite
which points to the surface, whereas the axon shows to the white matter [16]. Hori-
zontal connections (h1) are made up of pyramidal cells as well as spiny stellate cells
in layers 2 and 3 [11]. All other features are taken from [35].

areas [J.Lund]1. The backward projection does not need to be linked within an area,
because it both enters and exits an area in layer 6.

In summary, the forward projection covers layers 2/3 and 4 while the backward
projection occupies layer 6. Both pathways need to be joined: input from the forward
projection into the back projection is mediated mainly through one pathway, pyra-
midal cells from layers 2/3 to layer 5. The influence of the back projection to the
forward projection is mediated via several pathways: (i) terminals of the inter area
back projection arrive not only in layer 6 but also in layer 2. Within an area, (ii) layer 6
pyramidals project to smooth stellate cells in layer 4 and (iii) layer 5 pyramidals project
to layers 2/3 (with side branches in layer 6).

Areas are laterally connected and thus on the same level of a hierarchy, if the
zones of origin and of termination of their mutual connection do not differ (Fig. 6,
right). The most prominent lateral connections within one area are within layers 2/3.

As already noted above [20], the hierarchical relation between two areas is rather
a continuous property which scales from zero (lateral relation) to a clear hierarchical
relation. The expression of hierarchical characteristics is more pronounced with the
number of levels traversed: V1 receives few “untypical” back projections from layers
2/3 of V5, but more 2/3 back projections from areas V3 and even more from V2.

1personal communication

16

/margaux0/cweber/text/art/5diss/fig/layers-hier.eps

The proportion of “typical” back projections from layers 5/6 decreases from V5 to V2
[J.Lund]. This renders V2 an area which is more laterally connected to V1 than V5.

Inhibitor y cells Inhibitory neurons, as a group, are scattered fairly evenly through-
out V1. They comprise smooth and sparsely spined stellate cells. Basket and chan-
delier cells belong to them named after the shape of their axonal terminations. In-
hibitory contacts tend to cluster on soma and proximal dendrites, the localized nature
of their axonal distribution often leads to terminations within the area of the cells
own dendrites. Chandellier cells each go to axon initial segments of pyramidal cells
[J.Lund]. Basket cells inhibit everybody else: other basket cells, pyramidals, other in-
hibitory inter-neurons [J.Lund]. Bipolar smooth stellate cells can also make excitatory
contact with a recipient cell [29]. Inhibitory inter-neurons are faster than pyramidal
cells because they have simpler dendrites [J.Lund].

A smooth stellate cell in layer 4 is depicted (i1) which projects to layer 2/3 [35]. Henry [29]
depicts a sparsely spinous stellate cell in layers 2/3 which projects to layer 5, Lund [Lund et
al.; J.Comp.Neurol.276:1-29,1988] depicts cells in layer 6 which project to layer 4C as well
as [Lund, Yoshioka; J.Comp.Neurol.311:234-258,1991] cells in layer 3B/4A which project to
layer 4C and 6 and furthermore [Lund; J.Comp.Neurol.257:60-92,1987] cells throughout layer
4B and C which project to layer 6. Furthermore, there are inhibitory cells between the M and
the P pathway, namely from layer 4C e to 4C f and vice versa [J.Lund].

Features specific to V1 Fig. 9 shows cortical circuitry which is specific to V1. As
it is at the bottom of the cortical hierarchy, it receives bottom-up input and sends top-
down projections from/to the thalamus instead of other cortical areas (shown left).
Even more striking is that V1, especially layer 4, is thicker than other cortical areas.
The M-pathway is a miniature model of the forward projection 4C ' 2/3 ' higher
areas, but fully situated within layer 4C g , 4B (Fig. 9, middle and right). Unlike other
areas, 4B receives a back projection from higher areas and, reminiscent of layers
2/3, layer 4B hosts extensive lateral connections. Concerning the part of the back
projection which arrives at layers 5/6, the M-stream slightly prefers lower layer 6 while
the P-stream prefers upper layer 6, but this separation is not clearly distinct [11].

Visual streams Even within single areas, different streams of parallel information
processing can be distinguished. The two major visual streams, the fast M stream and
the fine P stream, are displayed in Tab. 3. Within the P stream, the color sensitive P-B
stream is a further subdivision. However, there is cross talk between the two streams
within a single layer, in the ascending or descending connections. E.g. V5 projects
back mostly to the thick stripes of V2 (from where it receives input) but also to thin-
and inter-stripes.

While the two streams are arranged in parallel (horizontally), each of them form
hierarchically advanced stages of processing. The stages are:

17

I
II
III

IV

VI
V

s1 p2h2 p9p7 p8 LGN2LGN1

Figure 9: Specific features of V1. On the left , connections from and to the thalamus
are shown: axons from the interlaminar zones of the LGN project directly to the blobs
in layers 2/3 of V1 (LGN1). A pyramidal cell in layer 6 (p7) projects to the LGN or to
the claustrum and a pyramidal cell in layer 5 (p8) projects to the superior colliculus,
the pons or the pulvinar.
Middle and right , the M-pathway: LGN input arrives in layer 4C g (LGN2). From
there, a spiny stellate cell (s1) projects to 4B and a pyramidal cell (p2) in layer 4B
projects to higher visual cortical areas. Horizontal connections (h2) in layer 4B spread
even further than those in layers 2/3 (h1) [J.Lund]. Feedback connections from layer
2/3 and 5/6 in areas V2, V3 and V5 arrive in layer 4B of V1 (p9). These, too, are the
largest back-projections (larger than those to layers 5/6) [J.Lund].

1. Retina: retinal ganglion cells have concentric receptive fields, with an antagonis-
tic center-surround organization that allows them to measure the light intensity
in the receptive field center relative to the surround [35].

2. LGN: cells have the same functionality as in the retina but M and P pathways
as well as ON-center and OFF-center cells segregate into different layers [35].

3. V12: within this area there is a gradual "sharpening of selectivity for" direction,
orientation, length, binocular disparity and spatial frequency. Starting from a
weak expression of these properties in the main input layer 4C, they emerge
more pronounced in the other layers:& There is a small population of direction selective cells in upper 4C g while

the principal population of direction selective cells lies in layer 4B [6].& Many cells in layer 4C lack orientation selectivity (the proportion of orienta-
tion selective cells increases from 4C h to 4C g) while orientation selective
cells are prominent in all other layers above and below layer 4C (except in

2visual area 1 (= Brodmann’s area 17) is also called “striate cortex”, because it contains a promi-
nent stripe of white matter in layer 4 consisting of myelinated axons from the LGN and other cortical
areas [35].

18

/margaux0/cweber/text/art/5diss/fig/layers-V1.eps

magnocellular stream parvocellular stream
retina M (g) ganglion cells (10%) P (h) ganglion cells (80%)
LGN M-layers P-layers
V1 layer 4C gi' 4B layer 4C hj' 4A, 2/3;

segregation into parvo-blob
(P-B) / parvo-interblob (P-I)

V2 thick stripes thin stripes (P-B) / interstripes
(P-I)

higher V3, MT=V5, MST and V4t, V3A V4; P-B / P-I
to parietal lobe (upper posterior

head-wall)
infero-temporal cortex

properties high temporal resolution, high
conduction velocity, high con-
trast sensitivity, low threshold,
transient (phasic) response

small receptive fields, high
spatial resolution, sustained
(tonic) response, spectrally
opponent receptive fields
(color selective)

functions direction of motion, computing
trajectory, perception of (i) depth
by way of motion parallax (ii)
shape by way of structure from
motion (iii) texture by way of dy-
namic reflectance changes (as
in a rippling surface)

P-B: wavelength selective
cells;
P-I: orientation selective
cells ' pattern and form
recognition [74]

damage to parietal cortex temporal cortex
impairments visuo-spatial recognition

dorsal stream ventral stream

Table 3: The two main visual streams. Retina: The remaining 10% of retinal ganglion
cells project to the superior colliculus and have different physiological properties [6].
LGN: There are 1.3 million LGN cells, which are roughly as many as afferent reti-
nal ganglion cells. Only 10-20% of the presynaptic connections onto LGN cells are
from retinal ganglion cells. The majority are from other subcortical regions and from
primary visual cortex [35].

the blobs of layers 2/3) [6]. Orientation preference denotes a cells prefer-
ence to a certain orientation of a visual stimulus. Additionally, quantizing
these properties on V1 one finds characteristical patterns such as orienta-
tion preference bands and pinwheels and ocular dominance stripes.& Many orientation selective cells in layer 4B are simple cells which have re-
ceptive fields clearly defined by ON and OFF zones and which respond to a
bar with the edge at a certain position. Layers 2 and 3 contain populations
of complex cells which distinguish less the position of a bar and may be

19

considered to integrate the outputs of several simple co-aligned cells [6].& Cells in layer 4C are almost exclusively monocular (driven by one eye only)
while cells in other layers are predominantly binocular with some prefer-
ence to one eye [6].& Cells in the blobs of layer 2 and 3 are markedly color specific, however,
these get direct input from the interlaminar LGN cells [6].

4. V2: cells prefer angles and arcs, some significantly, but bars are not signifi-
cantly preferred [28]; cells are responsive for subjective "virtual" contours (con-
tour bridging gaps).

5. MT: cells are selective for motion of a complex pattern rather than individual
components.

6. Infero-temporal cortex: cells are selective for faces or other complex patterns.

During these hierarchical processing stages, receptive field sizes w.r.t. the visual field
increase gradually. The degree of topography (retinotopy) hereby decreases gradu-
ally.

Somato-se nsor y hierar chy The somato-sensory system has 13 areas, which is
less than one half of the number as in visual cortex and 62 connections. There
are, however, 9 levels, which is nearly as many as in the visual cortex. Ascending
anterograde patterns within the motor cortex terminate in layer 3 rather than layer 4.
It lacks the granular layer 4 characteristics as it does not receive sensory input.

2.3 Development

Cells – genesis The period in which cells are born can be divided into 3 phases:
(i) symmetrical cell divisions which produce only progenitor cells, (ii) progenitors pro-
duce post-mitotic neurons and (iii) time of (post-mitotic) neuron origin.

While the number of founder population cells is roughly the same in monkey and
mouse [14] there is a 360 times larger amplification factor in the monkey to yield
the greater sized cortex. This can be explained by more time which the monkey
spends for development [48]. The surface of the cortex ranges from 3-5 cm

in small

insectivores to 1100 cm

in humans.

Cells – movement and diff erentiation – layers The new born cells move along
glia cells at approximately 0.1 mm per day. Like an amoeba, the cell attaches to a
process somewhere, the nucleus flows towards this point, and so on [16]. The cells
always move until they reach the marginal zone. The result is a chronotopic ordering
of layers: older layers reside inside, younger ones outside (superficial). The layers
together form the cortical plate. Cell differentiation depends on the time at which they

20

receive signals to become pyramidal, basket or stellate cells. Spiny stellate cells start
with an apical dendrite during development (as to become a pyramidal cell), but shed
it later [J.Lund]. As a rule of thumb: large cells and those with long axons emerge
earlier than the small local ones.

Connections The emergence of a connection between the thalamus and the cortex
can be divided into the following phases:

1. Axons sprout, growth cones search target areas. Mechanisms involved are
that growth cones stick to adhesive surface [55], and that growth cones follow
concentration gradients of chemical markers which is evidenced in the retino-
tectal projection [24].

2. The following axons (from other cells) form bundles. Hereby, they maintain their
relative positional order. Thalamo-cortical and cortico-thalamic fibers meet on
their way. During this "handshake", the oldest axons meet first resulting in a
chronotopic ordering [41].

3. Extension of collaterals (vertical and horizontal). Before collaterals enter the
cortical plate, there is a waiting period in the subcortical plate where they can
interact also with cortico-cortical fibers [48].
The growth of developing axonal arbors is specific for layers 2/3, 4, 5 and 6
from the outset and apparently dependent on cues intrinsic to the cortex, but
sub-laminar specificity arises by later organization only [11].

4. Refinement. Initially exuberant development leads to a later reduction of synapse
numbers [34]. 3-5 weeks young macaque spiny stellate cells have many more
spines than numbers in the adult which are reached at an age of 9 months
[J.Lund]. This could mean an initially higher activation level, however, synaptic
efficiacies may be weaker than in the adult or activation may spread out less
specifically and thus less effectively.
Refinement occurs earlier in layer 4 than in layer 2/3 and later in higher, more
frontal areas which may reflect a role of the input. Furthermore, refinement oc-
curs earlier in layer 4C g than in 4C h , as M-axons develop earlier than P-axons
[J.Lund].

The following features can be regarded as a result of connections: (i) topography, (ii)
areas as defined by the connection matrix and even (iii) folding of the cortex and thus
its overall form [56].

Areas As a result of connectivity, areas will emerge. The question remains, to which
extent this is due to intrinsic or to activity dependent mechanisms.

If by a successful mutation a new sensory organ evolves, but there is no corre-
sponding part on the cortex, then the mutation would not be successful. The muta-
tion would have to happen very often until by chance the cortex mutates accordingly.

21

Therefore, it seems reasonable that the cortex should always make use of an increase
of input dimension. It should act as uniform and universal information processing tis-
sue which adjusts to its input.

Following enucleation, V1 is present but smaller. This implies that V1 is genetically
described and additionally, its size is regulated by in-growing fibers. Looking at barrels
(which may not be regarded as proper areas), these do not emerge if their input is
taken away by cutting the corresponding whisker.

Summar y Tables 4 and 5 give a summary on intrinsic and activity dependent mech-
anisms. We will associate intrinsic mechanisms with early development and activity
dependent mechanisms with late development. Key words on a time scale are: cell
genesis, migration, differentiation; layers – cell number, synapse number – volume,
surface area – connections, waiting period – folding – Hebbian learning.

intrinsic activity dependent
what is meant genetic description learning
mechanisms chemical markers Hebbian learning
target cell movement and differ-

entiation, connections
connections

when does it appear early development late development
reliability maintainance across

species and by manipula-
tions

changed by in-growing ax-
ons

result cortical layers, areas(?) LGN layers, barrels, OD-
patches, areas(?)

Table 4: Intrinsic and activity dependent growth mechanisms. Areas are hardly at-
tributed to one class of mechanisms alone.

3 Theory

3.1 Stoc hastic neur ons

A real neuron responds to its input with a change in its spiking output. Measurements
cannot avoid noise. In a rate coding model neuron the spike rate represents the out-
put activity. This leads to a deterministic neuron model: its output k of is a stereo-
typed response to the neurons net input l such as k �;m � l � . The non-deterministic
spiking behavior of a real neuron is lost.

Deterministic neurons are also insufficient in neural network models, if probability
distributions have to be set up, i.e. if each network activation state should appear
with a certain probability. The flaw of deterministic networks can be envisioned if an

22

markers seem to be weak markers seem to be strong
thalamic fibers show no selectivity for
certain cortical areas

axons cross the midline

if the input is manipulated then the
size of an area changes

but e.g. V1 does not vanish totally

the connection matrix obeys simple
principles

areas arise at the same positions (e.g.
ventral and dorsal pathway are never
inverted)

exuberant growth; connection and cell
death of improper connected cells

axons tend to grow in bundles

direct evidence [2]: gradients of
increasing semaphorin concentra-
tions elicit stereotyped responses
from cortical growth cones (repul-
sive, Semaphorin3A and attractive,
Semaphorin3C)

Table 5: Evidence for chemical markers to guide the developing connections on the
cortex.

energy landscape exists for the activation states: gradient descent then leads to only
one state which corresponds to a minimum (which may not be the global minimum).

The use of a stochastic search procedure on this energy landscape has two ad-
vantages: (i) any state can be reached and a probability for this state may be assigned
and (ii) activations can escape from a local minimum.

In particular, neurons are able to become active spontaneously, i.e. without any
input. This allows for testing (or even training) of the network in the absence of
data or other external input. Besides, parameters which control the noise enrich the
functional properties of neurons.

3.1.1 Boltzmann distrib ution I

A recipe to assign different occurrence probabilities to different activation states in a
unique way is the following: we assign each state

Tn a real number, the energy valueoqprXZYMsut �vTn � , which will be given in the next paragraph. We determine the probability
for each state according to this number, e.g. the larger

owpxXyYMsut �vTn � the smaller the
probability for the corresponding state.

A unique assignment from energy values to the occurrence probability follows
from the following three conditions:

23

1. The entropy of the distribution z|{} of activation states is maximal:~��?� z�{}1� �<� � I�� � {}�� z�{}���� z�{} �� ��� �
(1)

This condition tends to distribute the states broadly.

2. The distribution is normalized:� �v�?� z�{}1� �<� � � � {}�� z�{} I$� � � (2)

Demand of these two points already yields a unique solution (homogenous dis-
tribution) if the number of activation states is finite.

3. We can mould the shape of the resulting distribution if we impose a further
constraint making use of the energy values

o�prXZYMsut �vTn � . Each state
Tn is assigned

an energy
o {} . The mean energy is given:� ��?� z�{},� ��� � � � {}�� z

� {}�� o prXZYMsut �vTn � I o b_V���U � � (3)

The mean energy
o b_V���U

certainly can only be chosen to lie within the bound-
aries of the maximum and the minimum possible energy. We find the homoge-
nous distribution as a solution if

o�b�V���U � � o�b��,� I o�b > U � ` � and if there is a
homogenous prior on states

Tn w.r.t. the energy.

Ps

meanE Eboltz

Figure 10: The Boltzmann distribution is an exponential function which is normalized
between minimum and maximum energy values (dotted vertical lines).

We use the method of Lagrange multipliers to find the extreme values of Eqn. 1
under the constraints of Eqs. 2,3. It assumes that the gradient of the function which
is to be maximized and the gradient of the constraints is parallel:

� � T��~ 8 �2� T� � �Q8 �3 T� �
24

/margaux0/cweber/text/art/4bm/vortragSS98/BoltzmannDistnegative.eps

For each coordinate � this yields

� � I ��� z R I$� 8 �2��8 �- o R
or z R �����B Z¡ �#¢ �¤£y¥§¦¨� �ª© ���¤£y¥�¦
After normalization (Eqn. 2) we have the maximum entropy distribution:

z R � � � £ ¥§¦
E R¬« � � £ ¥ ¦ «

or if states
Tn are continuous we have:

 �vTn � � � ��£y¥�® {}x¯° {} « � �¤£y¥�® {} « ¯ (Tn�± (5)

Thus the solution is the Boltzmann distribution (see standard literature, e.g. [25]),
as depicted in Fig. 10. The inverse temperature

��
we will denote h in the following.

Note that the probability is defined on the states
Tn but not on the energy valuesoqprXZYMsut �vTn � . In the case of multiple states with degenerate energy we will observe the

corresponding energy value more frequently. In the limit of an infinite number of states
(but finite dimensionality) the sum over the states can be replaced by an integral.

Energy function We define the energy function which we use to set up the Boltz-
mann distribution as follows:

o prXyYMsut �vTn)�²O� � I ��
³� >

³� @µ´ >A@ n @¶ ·¬¸ ¹l�>
n > (6)

The energy is low if large pre-synaptic cell activities n @ and large receipient cell ac-
tivities n > are paired with large weights ´ >M@ . Corresponding activation states are
assigned high probabilities according to the Boltzmann distribution. The energy
can be regarded as a sum of single neuron energies: local energies I�l!> n > withl�> � E ³@ ´ >A@ n @ on each neuron.

3.1.2 Boltzmann distrib ution II

If we want to use the Boltzmann distribution practically, we need a neuron update
dynamics which results into states that underly this distribution. Here we show that
the Boltzmann distribution as an equilibrium distribution will result from the following
two conditions:

25

& The neuron state transition from state n > to n ±> occurs according to the difference
in the energy º o

between these two states:

z � n >2' n ±> � � �� 8 � ¡§»�¼2¥ (7)

This condition is met by some stochastic transfer functions, while º o
can be

related to a neurons input.& In equilibrium, the detailed balance principle holds:z � n > � z � n >2' n ±> � � z � n ±> � z � n ±> ' n > � (8)

This means that a transition from state n > to state n ±> can be observed as often
as the inverse transition.

Eqn. 8 implies:z � n > �z � n ±> �
� z � n ±> ' n > �z � n >0' n ±> �
7
� � 8 � »�¼2¥

� 8 � ¡�»�¼0¥ � � »�¼0¥�½ � ¡�»�¼2¥ 8 ��¾� 8 � ¡§»�¼0¥ � �!»�¼2¥
(9)

This is true if z �vTn ��¿ ��¡�»�¥À� �Á ��¡�»�¥
(10)

(which can be seen if Eqn. 10 is inserted into the left hand side of Eqn. 9). The
partition sum

Á
normalizes the probability distribution to the integral of 1:Á � � {}

��¡�»�¥Â�
(11)

Summar y The distribution of activity states obeys the Boltzmann distribution, if
there is an appropriate energy function and if the maximum entropy principle holds.
Using a neuronal state transition function as in Eqn. 7, we can set up the Boltzmann
distribution with stochastic neurons.

3.2 Generativ e models

We have the idea of a model which generates its input data. Fig. 11 shows the
architecture of a recurrent model. A data point

T�
is generated from hidden neuron

activities
Tk via feedback weights

�
:T� � TÃ � � � Tk � (12)

where the transfer function
Ã � is usually assumed to be linear. The generation of the

data point
T�

can then be interpreted as a linear superposition of "basis functions"

26

x u

V

W

Figure 11: Architecture of a recurrent model. Ä input units with activations
T�

are
fully connected to

~
hidden units which have activations

Tk . Recurrent weights are
depicted as separate feed-forward weights

²
which set up a recognition model and

feedback weights
�

which set up a generative model. There is no lateral connectivity.

(columns
T´ > of

²ÆÅ
) using coordinates k�> . Weight vectors

T´ > (projective field of
hidden neuron c) are interpreted to be possible causes of all data points

�0T� � , while
activations k3> determine which causes generate a particular data point

T�"Ç
.

The feed-forward weights are used to recognize the data and infer the hidden codeTk : Tk � TÃ#È � ² T� �
(13)

with various possible forms of
Ã�È

.
This simple model does not contain lateral connections among the input units or

among the hidden units.

Likelihood The probability for the model to generate this data measures the qual-
ity of its representation of the environment. Let z ¡ �#T�	Ç§�

denote the probability for
the model to generate the data point

T� Ç
. (Data may originally be generated by a

distribution z ¢
.) Our model should learn to generate its input data, i.e.:z ¡ �Z�2T� Ç �ÊÉ � � �� high

�
(14)

For a set of statistically independent data points it makes sense to assign a probability
to a single data point z ¡ �#T� Ç É � �

(15)

and the likelihood of generating all data becomesz ¡ �?�2T� Ç �7É � � � Ë Ç z ¡ �!T� Ç É � �
(16)

3.2.1 Bayes theorem

Given: data distribution
�0T��Ç � drawn from a distribution z ¢� . The model generates

the data using its parameters
�

. Bayes theorem is:

z �?� É �2T� Ç � � � z �?�2T� Ç �7É � � z �?�Ì�
z �?�2T� Ç � � (17)

27

/margaux0/cweber/text/konf/98goett/vortragTFH/recurrent-model.eps

where z �?�Í�
is the prior over the weights, z �Z�2T�ªÇ �ÊÉ � �

is the likelihood (Eqn. 14),z �?�2T�	Ç � � is the evidence and z �?� É �2T�5Ç � � is the posterior probability distribution
over model parameters

�
.

Log-likelihood It is usual to regard the evidence z �Z�2T�5Ç � � of Eqn. 17 as a normal-
ization constant and to neglect it. Furthermore, for mathematical convenience, the
logarithm is taken to yield:��� z �?� É �2T� Ç � � � ��� z �?�0T� Ç �ÊÉ � �¶ ·¬¸ ¹ 8 ��� z �?���

(18)

The underbraced term is the log-likelihood, Î . Assuming independence of the gen-
erated data points (Eqn. 16), we write:Î �?�2T� � � � � Ç �Ï� z ¡ �#T� Ç �

(19)

For simplicity we will denote this term z ¡� . The minus sign as upper index means
that activations

��Tk)ªT�2� emerge by some random process intrinsic to the network with-
out influence by the environment. In the following sections we will call this the free run-
ning phase (Boltzmann machine) or the sleep phase (Helmholtz machine). z ��Tk É �Í�
can be regarded as a prior probability of a hidden state vector

Tk to occur.

Maxim um a posteriori With Bayes theorem, one obtains the whole posterior distri-
bution over the model parameters. In practice, however, one is often interested in the
“best” network only, i.e.:� X�Ð�s �

arg ÑÓÒ#ÔÕ Ö z �Z� É �0T� Ç � ��× �
arg ÑÓÒ#ÔÕ Ö ��� z �?� É �2T� Ç � ��× (20)

3.2.2 Maxim um likelihood

The task of a data generating model is to make z ¡� equal to the true data distribution
which we denote z ¢� . In other words, the Kullback Leibler divergence between the
two distributions z ¡� and z ¢� should be minimized by adjusting the model parameters:

ØqÙ�Ú�ÛrÙ�Ü � � Ç �Ï� z ¢ �#T� Ç �
z ¡ �#T� Ç � � � Ç ��� z ¢ �#T� Ç �

¶ ·¬¸ ¹ I � Ç �Ï� z ¡ �#T� Ç �
(21)

The underbraced term is not dependent of model parameters. Thus, for a derivation
of the learning rules it will be omitted and in the remaining term we recognize the
negative likelihood that will be minimized by learning the parameters.

If activation states are discrete then the sum over all data points
T�ÝÇ

of Eqn. 19
can be replaced by a sum over all possible states

T� > :Î �?�2T� Ç � � � � Ç �Ï� z ¡ �#T� Ç � � � {�1Þ z ¢ �#T� > � �Ï� z ¡ �#T� > � (22)

28

The term z ¢ �!T� > � is introduced to weigh the occurrence of data point
T� > among the

dataset
�0T��Ç � .

In the limit of an infinite number of states we can assume continuous states (also
for discrete states and with use of the Dirac distribution):

Î � ¢ {� � � ß {� ¢ ���2� �Ï� ¡ �#T�0� (T�
This will constitute our energy function for the weights (neglecting the prior), as the
weights will be adjusted to shape z ¡� to approach z ¢� . Maximizing this log-likelihood
is equivalent to minimizing the Kullback-Leibler divergence between z ¡� and z ¢� .

3.2.3 Helmholtz free energy

In the following we will see that the probability of generating a data point can be ex-
pressed as the negative Helmholtz free energy. This will show that the likelihood to
generate the true data is under-estimated but not over-estimated if a wrong genera-
tive model is used for data generation. In practice, this will provide a substitute for the
wake phase of the Boltzmann machine. The Helmholtz machine [17] is defined [32]
as a (stochastic) generative model which learns to minimize the free energy.

We will first have a closer look at the Boltzmann distribution for the clamped phase,
Eqn. 50, which is the conditional probability of a hidden state

Tk given data
T�
:

z ��Tk É T�à)���� � � ¡§»�¥�® {È�á {� á Õ ¯E {È « � ¡�»�¥�® {È « á {� á Õ ¯ (23)

Comparing this equation with Bayes rule

z ��Tk É T�*)���� � z �#T� É Tk)��Í� z ��Tk É ���E {È « z ��Tk ± É �Í� z �#T� É Tk ±)���� � z �#T�Â)âTk É �Í�E {È « z �#T�*)�Tk ± É ���
we can define a Helmholtz energy for an activation state

Tk as:h oqã ��Tk)ªT�Â)����<� � I ��� ½ z �#T� É Tk)B��� z ��Tk É ��� ¾ � I �Ï� z �#T�Â)âTk É �Í�
(24)

With ��¡�»�¥ªä*® {È�á {� á Õ ¯ 24
� z �#T�Â)5Tk É ��� 48

á
49� � ¡�»�¥ªåâ® {È�á {� á Õ ¯Á � ��¡�»�¥ å ® {È�á {� á Õ ¯ ¡ªæèçÝé

it is I ��� Á%�?�Ì� � IÊh o ãê�#T�*)�Tk)��Í�À8 h oqë �#T�Â)âTk)��Í� �
or with temperature ì , using h � �Å :o ã �#T�Â)âTk)��Í� � o ë �#T�Â)5Tk)��Í�À8 ì �Ï� Á%�Z��� �

(25)

The Helmholtz energy differs from the Boltzmann energy by a constant, ��� Á
, which

does not depend on the state
��Tk)5T�2� but which still depends on the weights.

o ë
corresponds to an unnormalized probability,

o ã
to a normalized probability.

29

Analogy to thermod ynamics Eqn. 25 is reminiscent of the relation between ther-
modynamic potentials: the free energy can be obtained from the inner energy by a
Legendre transformation w.r.t. the entropy (thermodynamics: entropy

� D
):

free energy
�

inner energy I ì �
entropyí � î I ì � D

(26)î � n � , í � ì �
and

D � î �
are thermodynamic potentials, i.e. they are energy functions if

they are given as functions of their “natural variables”. Taking the partial derivatives of
the energy functions w.r.t. the “natural variables”, while fixing the values of the other
variables, we can obtain the values of all other variables:ï îï D � ì) ï íï ì � I D) ï Dï î � �ì �
The other “natural variables” of these potentials are the volume ð and the number of
particles in the system. Other state variables are obtained, e.g. the pressure :ï îï ð � I) ï íï ð � I) ï Dï ð � ì �
Our neural nets do not have a volume or a pressure but weights

� ´ >M@ � and activations� n > � for which the following relations can be obtained (cf. Eqs. 52,25,57 and also
[51]): ï o ëï ´ >A@

� I n > n @) ï o ãï ´ >M@
� I n > n @) ï ��� Áï ´ >A@

� ñ�n > n @vòì �
Note that while that partial derivatives of one of the potentials

o ë
,
o ã

or ��� Á
is

taken, the other potentials have to be fixed.

Relation to the log-likelihood Making use of the Helmholtz energy, Eqn. 24, we
can reformulate the log-likelihood (Eqn. 19). Omitting dependencies on

�
for clarity

we write:��� z �#T�0� � � {È z ��Tk É T�0� �Ï� z �#T�0�
� I � {È z ��Tk É T�0� �Ï� z ��Tk �%8 � {È z ��Tk É T�2� ��� z �#T� É Tk �

I�� {È z ��Tk É T�0� �Ï� z ��Tk � I � {È z ��Tk É T�2� �Ï� z �!T� É Tk �ó8 � {È z ��Tk É T�0� z �#T�0�
� � {È z ��Tk É T�0� ��� � z ��Tk � z �#T� É Tk ��� I � {È z ��Tk É T�0� �Ï� z �!T� É Tk � z ��Tk �z �#T�0�

Eqn. 24� I � {È z ��Tk É T�0� h oôã ��Tk)5T�2� I � {È z ��Tk É T�0� ��� z ��Tk É T�0�
30

Using z�{È � z ��Tk É T�Â)��Í�
for simple notation, we can write:

�Ï� z �#T� É �Ì� � I � {È z¨{È h o ã {È I � {È z¨{È ��� z¨{È (27)

or with h � �Å and a flipped sign (and the notation: entropy
� ~

):

I ��� z �#T� É ��� � ñ o ã ò!{È I ì � ~ {È �
In analogy to Eqs. 25,26, the left term corresponds to the Helmholtz free energy from
thermodynamics. It is the difference between the Helmholtz energy averaged over
the hidden code (with input

T�
) and ì times the entropy of the hidden code.

For computational reasons the correct distribution z �#T� É ���
which is generated by

our generative model may be untractable because all states of the system have to
be considered. Instead it may be easier to replace the correct distribution zà{È by
an (incorrect) approximation õÌ{È . In our case, õö{È will be drawn from a separate
recognition model. The difference to Eqn. 27 can be seen from the following:

�Ï� z �#T� É �Ì� � I � {È õ�{È o ã {È I � {È õ�{È ��� õ�{È 8 � {È õ�{È ���ö÷ õ�{Èz¨{Èùø¶ ·¬¸ ¹ (28)

The underbraced term is the Kullback-Leibler divergence between the correct and
the approximated probability distribution. The Kullback divergence is always positive
or zero. Thus, if we compute the free energy, Eqn. 27, with the incorrect distributionõ , then we know that the true free energy must be smaller or equal, i.e. we have
obtained a lower bound for the true likelihood.

3.2.4 Marginaliz ation

A stochastic net generates data autonomously: an activity distribution on all states
can be defined, e.g. with use of the Boltzmann distribution. The marginal distribution
which considers only the activations

T�
of the input neurons defines the probability of

generating any data point by the model.
Another marginal distribution considers only the activations

Tk of the hidden neu-
rons. In order to compute the likelihood, Eqn. 14, it is necessary to marginalize over
the hidden neuron states, because we are only interested in the occurrence of input
activations

T�
but not in the “working parameters”

�ÂTk Ç � . For example, different statesTk which lead to the same (probabilities for) input unit activities
T�

should not appear
as separate terms of the likelihood.

Eqn. 15 remains independent of the hidden unit activations
�ÂTk � if we marginalize

over them:

z ¡ �#T� Ç É � � � � � {È � z �#T� Ç) Tk É � � � � � {È � z �!T� Ç É Tk) � � z ��Tk Ç É � �
(29)

31

or in an integral version:

z ¡ �#T� Ç É � � � ß {È z �#T� Ç É Tk) � � z ��Tk É � � (Tk
where z �?�2Tk � � is the prior over the model states.

The learning procedures will have to take into account the different natures of the
model parameters. The model states

�2Tk � depend on the weights
�

,
²

and their
distribution ¡� will change instantaneously if the weights are changed. Therefore,
each time that weights are changed in a slow dynamics, the necessary terms such
as ¡� have to be computed by a fast dynamics.

Marginalization maximization In practical situations we often want to find the hid-
den variable distribution which maximizes the probability to generate a certain data
point. For simplicity, the hidden state distribution, Eqn. 29, can be approximated by
the contribution of the most effective value only:ÑÍÒ�Ô z ¡ �#T� Ç É � � ú ÑÓÒ�Ô{È z �#T� Ç É Tk) � � z ��Tk �
The hidden state where the likelihood is maximal is:Tk X�Ð�s á Ç � �

arg ÑÓÒ�Ô{È z �#T� Ç É Tk) � � z ��Tk ��
arg ÑÓÒ�Ô{È � �Ï� z �#T� Ç É Tk) � � 8 �Ï� z ��Tk �¬� (30)

Note that here, even in a purely generative model, a hidden state
Tk X�Ð,s á Ç is dependent

on the data index û . A neural net architecture which considers this dependency
thus needs (in addition to generative weights) recognition weights which mediate the
influence of the data towards the hidden units.

Drawbac ks of “Mar ginali zation maximization” To approximate the integral over
the hidden code, Eqn. 30, means that an incorrect hidden variable distribution is used
to generate the data. This insight motivates the use of the “Helmholtz approximation”,
Eqn. 28, to estimate the resulting loss in the likelihood [44]. In case of a factorial
distribution, õ ��Tk � � Ë

> õü> � k0> � (31)

the entropy becomes~�ý � � > ~�ý Þ � I � >
ß õü> � k3> � �Ï� õ�> � k0> � (Ýk0>

Use of Eqn. 30 means that õê> � k0> � � = � k0>�I<k X�Ð�s> �
and thus~þý ú I � > ��� õ�> � k X�Ð�s> �

the entropy becomes minus infinity which reflects the fact that the volume information
of the distribution is lost.

32

3.3 Maxim um entr opy

ÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿ
���

��

��
���	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	f(h)

1

h

1
u

hx

W

V

1

p (x) p (h)+

-p (x)
p (h)

-

+

p (u)

p (u)
-

+

1

u

u

u

u

u

Figure 12: Probability distributions of the data,
��� � , the hidden variables,
������ � ,
and the second hidden variables,
���� � . The transformation from data space to hidden
variable space is done via � , and backwards via � , whereas the transformation from
hidden variable space to the second hidden variable space is done via the transfer
function ������� � . If the parameters are optimal and if the prior
�������� � can be mapped
to the data
����� � by a linear transform, then the black, thick curves are transformed
to each other and the colored, thin curves do not exist.
In the maximum-entropy case, if the parameters � are not optimal, then
 � �� � will
be mapped to
�������� � and
�� �!� � which does not have the maximum entropy. The
difference to the optimal distribution
��"�!� � is indicated by the horizontally striped
area and contributes to the Kullback divergence in Eqn. 32.
In the maximum-likelihood case, if the parameters � are not optimal, then
#������� � will
be mapped to
$�"�� � which does not have maximum likelihood. Wrong predictions
of
 � �� � are indicated by the vertically striped area and contribute to the Kullback
divergence in Eqn. 34.

Maximum likelihood is only one possible basis for unsupervised learning. Another
idea is to maximize the entropy of the hidden variable activity distribution. This seems
reasonable in order to avoid redundancy and use resources as efficient as possible.
In the following we will demonstrate the close relation between these two paradigms.

The infinitely broad homogenous distribution has maximum entropy. Thus we
should not maximize the entropy of a variable that may grow infinitely large. For this
reason, the inner activation �#� of a hidden neuron is fed through a bounded transfer
function to obtain its outer activations � . Therefore the transfer function may in this
context be termed a “squashing function”. This mapping is based on the prior
%�&����� �

33

/margaux0/cweber/text/art/5diss/fig/WkeitsTransformation.eps

and is defined by � ' ������� �)(' *,+.-�0/
 � ����1� �32 ��1�
which ensures 4657�85 9 . Samples taken from the exact prior distribution
 � ����� �
will be mapped onto a homogenous distribution
 �� �!� � :
 � ����� � �;:�<>= + -@?AB
 �� �!� �)(' C 9 4D5E�F5G94 else

The distribution
 �� �!� � is bounded on the interval H�4#I>9KJ (hypercube) and has the
maximum possible entropy given this bound (which is zero).

To minimize the negative entropy
~ � is equivalent as to minimize the Kullback

divergence between
3�L��� � and
 �� �!� �M ~ �G' * �N
 � �!� �PORQ
 � ��� �S2 �T UWV X M * �N
 � �!� �YORQ
 �� �!� �#2 � ' Z)�[
 � �!� �;\
 � �!� ���
(32)

because the right term (not underbraced) is zero (because
 �� �!� � ']9 in the intervalH�4SI^9KJ). The hidden and second hidden variable distributions can be transformed into
each other:
������ �32 ���_'
���� �S2 �
which implies the transformations
������ � '
��!� � 2 �2 ��� '
��!� � 2 ������� �2 ��� I
��!� � '
������ � 2 ���2 � '
������ � 2 � � � �!� �2 �
The transformations in both directions, ��� � �!� � and ������� � , are strictly monotonously
increasing functions, thus minimizing Eqn. 32 means to minimize the Kullback diver-
gence in hidden variable spaceZ)�[
 � ����� �;\
 � ����� ��� ' *
 � ����� �YO[Q
 � ����� �32 ��� M *
 � ����� �YO[Q
 � ����� �32 ���

(33)
Input- and hidden variable distributions are transformed into each other:
��� �S2 '
������ �32 ���
by linear transformations
��! � '
������ �&``` 2 ���2 ``` '
������ �"a � a I
������ � '
��� �"``` 2 2 ��� ``` '
��! �ba � a
We can thus express the Kullback divergence in data space (Eqn. 21):Zc�[
 � �� �;\
 � �� ��� ' *
 � �� �PORQ
 � �� �#2 M *
 � �� �YO[Q
 � �� �#2 T UWV X (34)

34

This was shown to be equivalent to maximizing the likelihood because the left term
(not underbraced) is not affected by the model parameters.

In summary, the underbraced terms of Eqs. 32 and 34 denote what is maximized
in each paradigm. Maximum likelihood means to shape
#�"�� � as close as possible
to the true data distribution (Eqn. 21) using the prior
d�&����� � (this implies that ef� g
obeys the hypercube distribution
 �� ��� �):
 � ����� � hM B
 � �� � ij
 � �! �
The parameters to optimize are those of a generative model, � .

In contrast, maximum entropy means to shape
 � ����� � as close as possible to the
chosen prior using the data:
 � �� � kM B
 � ����� � ij
 � ����� �
This is equivalent to shape
3����� � as close as possible to the hypercube distribution
 �� �!� � which means at the same time that the entropy of
#�L��� � will be maximized.
The parameters are those of a recognition model, � .

4 Models

This section describes how the theory is applied in the form of computational models.
A variety of models can be derived from one theory like the maximum likelihood
theory. The way down from an abstract theory to a detailed model implementation
allows many possibilities:

1. Approximations within the theory. Instead of computing the whole posterior dis-
tribution over model parameters it is usual to select the parameters with maxi-
mum posterior probability only. This is usually done for the weights (as in all our
models) as well as the hidden code (as in the Kalman filter model).

2. Different internal models. This is expressed in different architectures, e.g. some
models assume a hierarchical organization, some do not. In particular, weight
symmetry is introduced in order to make the recognition model and the genera-
tive model dependent (Kalman filter model, Boltzmann machine).

3. Approximations within the computation. The optimal hidden code within the re-
current models described here can only be obtained by iterative computations.
These have to be prematurely terminated. Even more, the mean-field approxi-
mation involves the use of deterministic neurons instead of stochastic neurons.

4. Different parameterization. Finally, there is a choice of parameters. Some affect
the priors which are used for the model parameters, some affect the learning
procedure.

35

Thus, from the maximum likelihood theory one can arrive at a variety of algorithms
which can be used for various purposes. It is desirable to make approximations (items
1 and 3) as weak as possible so that different approximations do not lead to different
results. Then one can study the effect of different internal models (item 2) as well as
different parameters (item 4) on the internal representation of data which may also
provide further insight into the structure of the data.

| { }u -1,0,1

W = V

opt

W = -V T W = V -1

µ |

T

p(x ,u V)du = p(x ,u V)

Kalman filter ICA

Π Πp(x V) = p(x V) = p(x ,u V)du{ }|µ µ
µ µ| µ |

W,V separate

Maximum likelihood

Boltzmann machine Helmholtz machine
(wake-sleep algorithm)

Figure 13: Approximations used to arrive at different models.

Fig. 13 displays how to arrive from the maximum-likelihood equations 16,29 to the
models used here.

4.1 Non-linea r Kalman filter model

Instead of correctly marginalizing over the hidden states according to Eqn. 29, this
model3 takes only the optimal hidden state, Eqn. 30, which maximizes the posterior
probability of an observed data point. Also, only the most probable weights for the
data set are interesting, Eqn. 20.

Using these approximations, Eqs. 18,19 yield:�ml�npo&' arg qsr^th u vxw ORQ *�y� z �f{ w a {� I � � z �^{� �#2 {�T UWV X|�} = y~x�$� h ? � O[Q z ��� ���
If the underbraced term, z � �>{ w a � �

, is approximated using the optimal hidden vector
3With a Gaussian prior over the hidden states the model was related to a Kalman filter [49]. The

dynamics of a Kalman filter optimally estimates a current system state �� which relate to an observed
process through ������ ����,� , where � is Gaussian noise. Because of the non-Gaussian prior on
the recognition states �� , we term our model a nonlinear Kalman filter. (Inofficially, it is known in the
community as the “Olshausen-model”.)

36

/margaux0/cweber/text/art/5diss/fig/maximum_likelihood_models.eps

only, Eqn. 30, then we have��l�npo&' arg qsrfth u vpw ORQ z �f{ w a {� l�npo�� w I � � � ORQ z ��� ���
(35)

Eqs. 30 and 35 lead to a 2-step learning procedure:� fast dynamics (activity relaxation): for each pattern � find {� l�npo�� w � { w � which
maximizes the likelihood to generate { w at fixed � .� slow dynamics (weight learning): with every {� l�n�o�� w � { w � found by fast dynamics
modify � slowly to find � l�npo .

Even though the ansatz was purely generative, the hidden code {� l�n�o�� w � { w � depends
on the input. For this reason we need a recognition model with parameters � . With
the simple model architecture of Fig. 11, we set � '���� .

f (x,y)
 0.85
 0.6

 0.35
 0.1

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.5

1

Figure 14: The Likelihood function 36 (� -axis) assumes Gaussian noise on the inputs. - and � -axis denote the error { w M {�� {� w I � � in the reconstruction of the data point
along two arbitrarily selected input dimensions. The Likelihood is maximal where the
error is small.

The Learning Rules Neglecting the priors over the model parameters, we will first
consider the terms only which satisfy the likelihood. The learning rules for activities
and weights depend on the chosen probability functions. The Likelihood function
assumes Gaussian noise on inputs (Fig. 14). This leads to a punishment according
to the squared distance.z �f{ w a � I {� w � j 9�D� ���;� � = y~ � � y� � � h ? (36)

37

fig_collect/Gaussfunction.eps

where � w �f{ w I {� w I � � (' 9 �f{ w M {�� {� w I � ����¡
and

� ']� ¡£¢� ��¤¦¥ ¡ is a normalizing constant.
On-line learning by gradient ascent yields connectionist neuron like activation and

learning:� fast dynamics: find {� l�n�o � { w � . The activity �¦§ of hidden neuron ¨ (e.g. a cell at
V1 location ¨) is modified iteratively according to:© �¦§6' ªx� «« �$§ O[Q z �f{ w a � I {� w � ' ªp� ¬ v®�¯ �� w�¯ M �¯ � � I {� w ��� ° v�¯ §T UWV X

feed-forward activation

(37)

or in vector notation (with � '��±�):© {� ' ªx� ¬²�f{ w M { � � I {� w ��� �{� is modified until the reconstruction error � { w M { ���LI {� w ��� is minimized by{� l�npo � { w � . The activation update corresponds to the feed-forward activation of a
connectionist neuron, with small deviations: (i) the input is not the data but the
prediction error on the input, (ii) the activation update is not performed in one
pass but instead, incremental.� slow dynamics: find � l�npo using {� l�npo � { w � which is obtained after completion of
the fast dynamics:©

v § ' ª v «« v § ORQ z �f{ w a � I {� l�npo�� w � ' ª v ¬³�� w M � {� l�npo�� w I � ���T UWV X
post

° � l�n�o�� w§T UWV X
pre

(38)
This rule is a Hebbian learning rule which may ideally be repeated until the
reconstruction error w y´ M y´ � {� l�npo�� w I � � 'µ4 .

The slow dynamics optimizes the weights w.r.t. the solution {� l�npo � { w � of the fast
dynamics no matter whether this is really the optimal solution. This is a desirable
property if the fast dynamics can find only an approximate solution, e.g. through an
interrupted relaxation procedure. The major drawback of this model is shown in the
following.

Drawbac ks of “Mar ginaliz ation maximization” In order to see what gets lost
when the integral over the hidden code is approximated by the optimal value only,
let us rearrange the quadratic terms of the mean expected energy, Eqn. 36, which is

38

to be minimized [44]. For simplicity, we let ¶��!� � ' ·±§£�!�$§ � (cf. Eqn. 31) and regard
the hidden code and the data as scalars:¸ ��¹ ' ¸ �� M ��� � ¡ ¹ ' * ¶��!� � �� M �m� � ¡ 2 �' ¡ M m� * ¶���� � � 2 � � � ¡ � * ¶��!� � � 2 � � ¡ � � ¡ * ¶���� � � ¡ 2 �M � ¡ � * ¶��!� � � 2 � ��¡ �

* ¶��!� � 2 �T UWV X � ¡ � * ¶���� � � 2 � ��¡' �� M � * ¶���� � � 2 � � ¡ � � ¡ * ¶��!� � �!� M * ¶��!� 1 � � 1 2 � 1 � ¡ 2 �' �� M � ¸ � ¹ � ¡ � � ¡ ¸ �!� M ¸ � ¹ � ¡ ¹ (39)

With ·±§��!�$§ � '»º#�!�$§ M � l�npo§ �
we have �¼' ¸ � ¹ and the right term of the right hand side

of Eqn. 39 is zero. Without this approximation, the variance on the hidden activations� given a data point would not vanish and the latter term would punish large weights� . There would be a growth limiting term for the weights. Because this term is
missing in the approximation, it will be necessary to introduce a separate weight
decay term.

4.2 A hierar chical Kalman filter model

In a generative model with two hierarchical levels, the activations {� � of the first hidden
layer are generated by the activations {� ¡ on the second hidden layer. Reminiscent of
Eqn. 29, we have z ��{� �;a � � ¡ � ' * z �^{� �;a {� ¡ � z �^{� ¡ � 2 {� ¡
where z �^{� ¡ � is the prior over the activations on the second level. Together with
a prior over activations on the first level, z �^{� � � , which is independent of the other
terms, we obtain z ��{� �½a � � ¡ � ' z �^{� � � * z �^{� �;a {� ¡ � z �^{� ¡ � 2 {� ¡
The likelihood to generate a data point { w then is:

z �f{ w a � � ' * z �>{ w a {� � � z �^{� � � * z �^{� �>a {� ¡ � z �^{� ¡ � 2 {� ¡ 2 {� � (40)

For computational reasons, the integrals may be evaluated at the corresponding
maximal values, as in Eqn. 30. Then, the inner integral (over {� ¡) can only be maxi-
mized if {� � is known. In order to maximize the outer integral (over {� �), however, the
inner integral must be known.

An approximation to resolve this dilemma, is to collect the single terms without
the integrals and maximize them together using to an iterative procedure to find the

39

optimal hidden code �^{� l�npo�� w� I#{� l�npo�� w¡ �
. We adapt the joint vector �^{� � I3{� ¡ � to perform

gradient descent on an energy landscape obtained by taking the negative logarithm
of the single terms:© �^{� � I3{� ¡ � ' «« �^{� � I�{� ¡ �¿¾ O[Q z �f{ w a {� � � � ORQ z �^{� � � � ORQ z �^{� �;a {� ¡ � � ORQ z �^{� ¡ �#À
This leads to the following system of equations which has to be solved and which is
stationary if the maximum values have been found:Á{� � ' ¬s� � N%Â N � «« {� � O[Q z �^{� � � � �Ã9 M ¬ � ��� � ¡ {� ¡ M {� � �T UWV XÁ{� ¡ ' �^{� � M � � ¡ {� ¡ �T UWV X � «« {� ¡ O[Q z �^{� ¡ � (41)

where Â N ' { w M � N � {� � and � � N ' �Ä�N � . The logical information flow in these
equations starts at the input with the data { w . This corresponds to determining {� l�npo�� w�
before {� l�npo�� w¡ in Eqn. 40 because the representation on the first hierarchical level
depends more directly on the data. In this spirit, in the system of equations 41, {� �
will be replaced by � � N%Â N where it communicates with the higher level, i.e. in the
underbraced terms.

4.2.1 Relaxation dynamics in a flexib le hierar chy

In the case of a hierarchical model, the hidden representation spans more than one
layer. Several layers are arranged hierarchically [49][36]. In a typical maximum like-
lihood setting, the activation of a given neuron then not only adjusts to minimize the
reconstruction error on the lower level but also to match the feedback (“prediction”)
from a higher level representation.

Concatena tion of levels In a model for the evolution of a two-level hierarchy [65]
all hidden neurons have to choose whether to take the computational role of the first
hidden layer, the second hidden layer, or both. Here we concatenate the first and the
second hidden layer which renders weights between them lateral weights (Fig. 15).
Different activations on these units, however, can belong logically either to the first
hidden layer, {� � , or to the second hidden layer, {� ¡ . An activity-dependent weight
constraint introduces competition between all incoming weights of a hidden neuron
(besides preserving sparse coding). This encourages a hidden neuron to receive
input from the input neurons via � � N or from other lateral neurons via � �Z�

but not
both.

Distinguishing the modules Our idea is that neurons possess different intrinsic
functional properties in different regions of the cortex. Upon learning, the neurons
should code for those elements of the data which its function is best adapted to.

40

x

W11
V

V01W10

11

1,2u

a) c)b)

Figure 15: Three different model architectures. In each of them the activations {
on the input units are represented by hidden unit activations {� . � are recognition
weights, � are generative weights, indexed with the number of the layer of termination
and origin. Left: architecture of our model. The lateral weights � �Z�

and � �Z� (top)
allow each hidden neuron to take part in a representation {� � on a lower and {� ¡ on
a higher hierarchical level. Dependent on the structure of the data training will result
in one of the two other architectures shown: mid dle: parallel organization and right:
hierarchical organization of hidden units which are segregated into two areas.

In our net the hidden neurons are distinguished into two classes, one with highly
active neurons, the other with sparsely active neurons. This property is scaled by a
real valued parameter of the neuronal transfer function (see Fig. 39, below). Hereby
neurons are expected to specialize on data elements which are less or more sparsely
distributed.

Relaxa tion of activ ations In each training step, a data point { is presented on the
input layer and hidden unit activations are initialized with zero. Then activations relax
iteratively until a sufficiently good hidden representation on all layers has been found.

In order to implement Eqs. 41, the following computations are done in the input,
the logically first hidden layer and the logically second hidden layer. First, the negative
reconstruction error Â N in the input neurons is computed as the difference between
the data { and the reconstruction from the hidden code {� � via feedback weights � N � :Â N �x
 � ' { M � N � {� � �x
 ��Å (42)

The negative reconstruction error measured in the logically first layer is the difference
between the bottom-up input and the top-down reconstruction:Â � �r
 � ' � � N%Â N �x
 � M � �Z� {� ¡ �x
 ��Å (43)

We term the top-down weights � �Z� instead of � � ¡ because they are connections within
one layer of neurons. Analogeously, we use � �Z� '��Ä��Z� instead of � ¡ � . Activities {� �
and {� ¡ , however, have to be separated even though they are also on the same layer.

41

/margaux0/cweber/text/konf/00EmerNet/recurrent-models.eps

The hidden code vector {� � is the hidden units’ representation of the data on the
first hierarchical level. It is adjusted (i) to account for the negative error Â N via recog-
nition weights � � N and (ii) to account for the prediction from the next higher level
activations {� ¡ via generative weights � �?� :{� � �x
 � ' {� � �x
 � � Æ �0��¬D� � N0Â N �x
 � M �W9 M ¬ � Â � �x
 ���' {� � �x
 � � Æ �0��� ¬ M 9 � � � N0Â N �x
 � � �W9 M ¬ � � �Z� {� ¡ �x
 ���{� � �x
 � 9 � ' {��� {� � �x
 ��� (44)

where Æ � is the update step size, ¬ handles the tradeoff between bottom-up and
top-down information and � is the the transfer function which transfers the inner acti-
vations {� � to the hidden code at the next time step
 � 9 .

The hidden code {� ¡ is the hidden units’ representation on the logically second
hierarchical level. It adjusts to the code {� � on the first level via the lateral recognition
weights � �Z�

but has no feedback from a higher hierarchical level.{� ¡ �x
 � ' {� ¡ �x
 � � Æ �²� �Z� Â � �x
 �{� ¡ �x
 � 9 � ' {��� {� ¡ �x
 ����Å (45)

The transfer function �½§£����§ � for a hidden neuron ¨ adds the corrections which
are enforced by the priors z �^{� � � and z �^{� ¡ � (see section “Priors”, Eqn. 69). After
relaxation of Eqs. (42,43,44,45) towards a stationary state we have found the optimal
code {� � � ¡ to reconstruct the data point, under a sparseness prior on the hidden unit
activations from which the sparseness constraint can be derived [46].

We train recognition weights Ç § � N from input neuron È to hidden neuron ¨ and lat-
eral recognition weights Ç §ÊÉ�Z� from hidden neuron Ë to hidden neuron ¨ by the following
on-line update rules:© Ç § � N ' Æ>Ì ¾ � § � Â N M Í Ì aÏÎ� § a Ç § � N \ {Ç § \ ¡ À© Ç §ÐÉ�Z� ' Æ>Ì ¾ � § ¡ Â É � M Í Ì aÏÎ� § a Ç §ÊÉ�?� \ {Ç § \ ¡ À (46)

where Æ;Ì is the learn step size. The second-level weights learn to predict the con-
tribution of the activation of the first level units which originates from the input units.
They do not learn the averaged activation which take into account the back projection
nor the value which is sparsified by the transfer function.

The first term on the right hand side of Eq. (46) implements Hebbian learning.
The second term which is scaled by Í Ì is a soft activity dependent weight constraint.\ {Ç § \ ¡ '7Ñ ¤Ò ��Ç § Ò� N � ¡ � ÑFÓÒ �!Ç § Ò�Z� � ¡ is the sum of the squared weights to all Ô input
units and all

~
hidden units and

aÕÎ� § a ' a � § � a � a � § ¡ a is the mean of absolute values of
the inner activations of hidden neuron ¨ at the final relaxation time step. The weight
constraint scales the length but does not change the direction of a hidden neuron
weight vector. It is local in the sense that it does not depend on any weight of any
other hidden neuron. Generative weights are made symmetric to the recognition
weights, i.e. � N � '�� �� N and � �?� '�� ��?� .

42

4.3 Boltzmann machine

In the Boltzmann machine which is a stochastic net there is some probability for
"spontaneous" emergence of any activation state �^{��IS{ � of hidden unit activatons {�
and input unit activations { . After some time one can then observe a probability
distribution z �� ~ , the Boltzmann distribution (cf. Eqn. 5), on all states:

z � �^{��I#{ � ' z �y} ' � ���;�0ÖR×�ØÕÙÛÚ = y} ?ÑÝÜ y} ¯ßÞ � �%�;� ÖR×�ØàÙáÚ = y} ¯ ? (47)

The marginal activity distribution which shows up on the input neurons (Eqn. 29)
is
 � y~ ' *�y�
 � y~ y� 2 {� ' 9� *�y� � �&â�ãä ã-å 2 {� (48)

where �µ(' * y~ y� � �"â ãä ã-å 2 { Å (49)

The probability
 � y~ of generating a data point by the model is used to calculate the
likelihood (Eqn. 14) of generating the whole data set.

The minus sign as upper index in term z �~ denotes the free running phase of
the network, which means that activations �^{� I#{ � emerge by some random process
intrinsic to the network without influence by the environment. According to the likeli-
hood principle z �~ should equal the true data distribution z �~ . The plus sign denotes
the clamped phase in which the activation of the input neurons is given by the data
distribution.

When the input units are clamped we have:

z � �^{� a { � ' z �y~ � y� ' � �%�½� Ö[×�ØàÙÛÚ = y~ � y� ?ÑæÜ y� ¯ Þ �%�%�½� Ö[×�ØàÙÛÚ = y~ � y� ¯ ? (50)

with the partition function as denominator taking care of the normalizing condition.
The distribution z �y~ � y� of the clamped phase follows if a data point { fixes the activation
values of the input neurons.

In our work we take the simple recurrent architecture of Fig. 11 to underly a Boltz-
mann machine. Without lateral connections input unit activations { are purely deter-
mined by hidden unit activations {� and hidden unit activations {� are determined by
input unit activations { . This is reminiscent of Eqs. 12 and 13, but the output of each
neuron is computed by a stochastic transfer function from its net input. The energy
function eqn. 6 becomes:�èç l Ò oÐé �@{ê I;� � (' � y~ y� ' M 9 ¤v Óv § Ç §>�¦§T UWV X� M 9 Óv § ¤v Çë§ T UWV X��§ �$§ (51)

43

which can again be regarded as a sum of local single neuron energies M � on
input neurons and M �S§ì�$§ on hidden neurons. With Ç²§ '8Ç § we have:« � y~ y�« Çí§ ' M �¦§f (52)

which will later constitute the Hebbian learning term in the learning rule.
The Boltzmann machine in its standard definition has permanently active neurons

with activations � 9 or M 9 . We will introduce it here with a further activation state,4 . Furthermore, we make this state degenerate. This means that it consists out of
many states which, however, cannot be distinguished. Alternatively, one can regard
this as one state which can have a high prior probability to occur on the hidden units.
In order to make this a general framework we can set the degeneracy (probability) of
the zero-state to zero by which we obtain the classical Boltzmann machine.

High degeneracy of the zero-state on the hidden neurons will render most neurons
inactive during the process of generating the data. The data are “sparsely coded”.
We will motivate the necessity of this coding paradigm in the following “Priors” sec-
tion. Only by sparse coding, when the visual system is modeled, edge detectors will
emergence.

Model and notation The model is depicted in Fig. 11. Where convenient we will
concatenate the Ô -dimensional activation vector { on the input neurons and the

~
-

dimensional activation vector {� on the hidden neurons to an Ô � ~
-dimensional state

vector {ê ' �f{"I3{� � for all neuron activations. Recognition weights � are symmetric
to the generative weights � : � '�� �
Identities The following identities are used for the derivation of the Boltzmann learn-
ing rule: « �« Çë§ ' 9î * y~ y� � â�ãä ã-å « � y~ y�« Çë§ 2 { 2 {� (53)

 � y~ y� ' 9�D� â ãä ã-å (54)

 � y~
 � y~ V.XWT.U
 � y~ y� '
 � y~
 � y~ V XWT U
 � y~
 � y� � y~ '
 � y~
 � y� � y~ '
 � y~
 � y� � y~ '
 � y~ y� (55)* y~
 � y~ 2 { ' 9 (56)

44

Deriv ation of the learning rule The learning rule for the weights of the Boltzmann
machine is derived in the standard literature (e.g. [27]). We will recapitulate the
derivation in a compressed form to make sure that the result is not dependent on
the number of possible activation states of a neuron. Moreover, it is even valid for
continuous activations. The likelihood (Eqn. 22) is maximized by gradient ascent:© Çë§ ' ª «« Çë§ * IR ï
 �~ ORQ
 �~ ��� � 2 { ' ª * y~
 �

y~
 � y~ «
 �
y~« Çí§ 2 {

At first we will look at ð n } ãäð ÌSñ�ò .«
 � y~« Çë§ (48),(49)' 9� î * y� � â ãä ã-å « � y~ y�« Çí§ 2 {� M 9� ¡ « �« Çí§ * y� � â ãä ã-å 2 {�
For the left term we have9� î * y� � âóãä ã-å « � y~ y�« Çí§ 2 {� (52)' 9î ° 9� * y� � âóãä ã-å �¦§f 2 {� (54)' 9î * y�
 � y~ y� �¦§^ 2 {�
We develop the right term using9� « �« Çë§ (53), (52)' 9� î * y~ y� � â�ãä ã-å �¦§^ 2 { 2 {� (54)' 9î * y~ y�
 � y~ y� �¦§^ 2 { 2 {� (57)

So the right term can be written using Eqn. 48 as9� u * y� � â ãä ã-å 2 {� � 9� « �« Çë§ '
 � y~î * y~ y�
 � y~ y� �$§^ 2 { 2 {�
Together «
 � y~« Çë§ ' 9î *�y�
 � y~ y� �¦§f 2 {� M
 � y~î *�y~ y�
 � y~ y� �¦§f 2 { 2 {�

Insertion into the learning rule yields© Çí§ ' ªî * y~
 �
y~
 � y~ * y�
 � y~ y� �¦§^ 2 { 2 {� M ªî * y~
 � y~ * y~ y�
 � y~ y� �¦§^ 2 { 2 {�

(55),(56)' ªî u * y~ y�
 � y~ y� �¦§f 2 { 2 {� M * y~ y�
 � y~ y� �¦§^ 2 { 2 {� �' ªî ¾ ¸ �$§� ¹ � M ¸ �¦§� ¹ � À ' © Ç §
For the case of no lateral connectivity within input- or hidden layer the rule for the

remaining weights yields:© Çë§ ' ª udv Ü y~ Þ v Ü y� Þ z �y~ y� �¦§^ M v Ü y~ Þ v Ü y� Þ z �y~ y� �¦§f � (58)

45

The factor ª is the learning step size. Each of the two terms is the expectation value
of the correlation between activations ��§ and of neurons connected by ÇY§ . In
the first term, z �y~ y� means that the input data distribution determines the occurrence
of activations e¦{&g . In the second term, z �y~ y� and thus all neuron activity probabilities
are purely determined by the Boltzmann distribution. The learning rule constitutes
Hebbian (clamped phase) or anti-Hebbian (free running phase) learning and thus
leads to symmetric weights.

4.3.1 Restricted Boltzmann machine

A Boltzmann machine without lateral weights among the hidden units (Fig. 11) is
called “restricted” and is a special case of a product of experts in which each expert
is one hidden neuron [31]. In such a model, each expert generates a data point with
a certain probability, independently of the other experts. The total probability that a
data point is generated is a product of the individual probabilities of each expert to
generate it as we will show in the following.

An input neuron activation is generated according to the Boltzmann distribution
using the energy

� . The probability that one input unit is switched to e.g. activation
“1” is:

z � �� '_9 � ' � �%�½� ò� ' 9� � � + ò ~ ò ' 9� � ��ô ñ ÌSñ�ò � ñ ~ ò' 9� öõ § � � ÌSñ�ò � ñ ~ ò
where

� normalizes over all activation states of input neuron È . Thus generation of
the input corresponds to a product of contributions �S§ from each hidden unit ¨ . Note
that Çí§ 'EÇ § was used.

The main advantage of this architecture shows up in the clamped phase of train-
ing. When data are shown, the activation of each hidden neuron depends only on the
data without influence by other hidden neurons. We will show that “inference” of the
hidden code given the data can be done exactly by taking the expected value of the
hidden neuron activation.

4.3.2 Sparse restricted Boltzmann machine

In the following we will make the hidden neurons code the data by sparse activation
[61][62]. Fig. 16 shows the simple modification of hidden neuron activations: add to
the states � 9 , M 9 several (÷) zero-states (with degenerate energy value). It is be-
cause of their numerousness that neuron activities prefer the zero-states over active
states.

Formally, there are two possibilities to deal mathematically with the situation of
multiple states with identical activations. First, all states are distinguished (by some
label different from activations). Then the Boltzmann distribution (Eqn. 47) remains

46

Boltzmann machine

-1 0 1

sparse Boltzmann machine

-1 0 1

Figure 16: Prior density for the activation of one hidden neuron. The neuron can have
activations M 9 , � 9 , and 4 , the latter value is ÷ -times (here: ÷8'ùø) more probable
than an active state.

unchanged. The sum in the denominator (partition function) counts all states once
(by the label which distinguishes them all).

Instead to distinguish states with similar activation values another possibility is
to take into account multiplicity of states by a prior probability z } n �@{ê � for a sparse
activation. The Boltzmann distribution becomes

z y} ' z } n �@{ê � � �%�;�0ÖR×�ØàÙáÚ = y} ?ÑæÜ y} ¯à¯ Þ z } n �@{ê 1ú1 � �%���;� ÖR×�ØÕÙÛÚ =
y} ¯û¯ ? (59)

where in the partition function the sum extends over states {ê 1ú1 with different activation
values only.

Fig. 16 can thus be interpreted as a prior function for the activation values of one
neuron. The Fisher-kurtosis of the prior for a hidden neuron activation � isÑ Ü � Þ z } n ��� � �¦ü� Ñ Ü � Þ z } n �!� � � ¡ � ¡ Mþý ' = � � ?Ðÿ� � ¡ � ��� N ÿ� � ¡ � � ÿ� � ¡� = � � ?��� � ¡ � ��� N �� � ¡ � � �� � ¡ � ¡ Mþý ' ÷ � Mþý ' ÷ M

(60)
It has been argued that distributions with kurtosis larger than zero are suited for in-
dependent component analysis [7] and that distributions with large kurtosis produce
sparse code [46]. We obtain a positive kurtosis for ÷ � ø . From this point of view
the standard Boltzmann machine is not suited for sparse coding because its neuron
activity distributions have a negative kurtosis.

4.3.3 Gibbs sampling

The probability for a hidden neuron ¨ to have activity �0§ is

z �!�¦§ � ' 9� § � ��� ô �ò ÌSñ�ò ~ ò � ñ
47

/margaux0/cweber/text/art/4bm/vortragSS98/dist1D_newBoltzPrior.eps
/margaux0/cweber/text/art/4bm/vortragSS98/dist1D_BoltzPrior.eps

0

0.5

1

0

P(u=-1) + P(u=0)

P(u=-1)

h

Figure 17: z �!�¦§�' M 9 � , left curve, and 9 M z �!�d§�' � 9 � , right curve, as a function
of the net-input � . The vertical distance between both curves is the probability for 0
activation.

The probability for a hidden neuron ¨ to have activity � 9 or 4 is

z �!�$§b'	� 9 � ' 9� § ��
 � ô �ò ÌSñ�ò ~ òz �!�$§¦'µ4 � ' ÷� §
(cf. Eqn. 59) where the normalizing constant considers its possible values M 9 , ÷ -
times zero and � 9 : � § ' � ��ô �ò Ì0ñúò ~ ò � ÷ � � �%��ô �ò ÌSñ�ò ~ òFig. 17 shows these functions which correspond to transfer functions of stochastic
neurons.

Because Eqn. 7 does not hold, we show directly that the Boltzmann distribution is
realized also with the redundant zero-state:z �!�¦§¦'G9 �z �!�¦§b'E4�É � ' �� ñ � ��� + ñ�� ñ ' � �%� + ñ
where Ë� e 9�I Å;Å;Å I.÷ g is one of the ÷ zero-states. The Boltzmann distribution is here
defined on the single states and distinguishes the otherwise degenerate zero-states.
If these were concatenated to one undistinguishable state, then a different distribution
would result.

4.3.4 The mean-field appr oximation

The Boltzmann learning rule has an ill-reputation for not to be computationally tractable.
If a neuron has ÷ �

possible activation states, then a net with Ô neurons would
have �!÷ � �£¤

possible activation states. If Ô is of the order of 100 or larger as in
biological modeling then z �y~ y� cannot be computed repeatedly even for ÷ 'µ4 .

48

fig_collect/gibbs_trans_fkt2.eps

The mean-field approximation involves computing the expectation values
¸ ê É ¹ of

the activation ê É of each neuron Ë . However, in an attractor net with symmetric
weights and no thresholds the energy function is symmetric with respect to ê § B M ê § .
As a consequence,

¸ ê É ¹ �F'_4 for a freely relaxing net. Furthermore, our input data
has zero mean, thus

¸ ¹ � 'E4 .
In order to solve this problem we will find an expectation value

¸ ê § ¹ w � which is
“local” in one data point, i.e. the mean will be taken for each clamped data point { w .
There are, however, no data points during the free-running phase. As a substitute we
take local maxima when finding

¸ ê § ¹�� � by the mean-field relaxation procedure which
we describe in the next paragraph. The index � denotes one such entity.

Formally, we derive our on-line like learning rule from the standard Boltzmann
learning rule. Using z �y~ y� ' z �y~ z �y� � y~ the first term of the learning rule, Eqn. 58, can
be written as ª v Ü y~ Þ z �y~ v Ü y� Þ z �y� � y~ �$§ ' vpw ª v Ü y� Þ z �y� � y~.� �$§ w
The sum over activations e¦{"g which are weighted by z �y~ is replaced by summing
actual occurrences � of data points on the right hand side.

Equivalently, using z �y~ y� ' z �y~ z �y� � y~ the second term of Eqn. 58 yieldsª v Ü y~ Þ z �y~ v Ü y� Þ z �y� � y~ �$§^ ' v � ª v Ü y� Þ z �y� � y~�� �$§ �
Analogously to above, the sum over activations e¦{"g which are weighted by z �y~ is
replaced by summing occurrences � of data points which are generated by the free
running system. (After successful learning these should equal the true data.) Defining¸ �¦§f ¹ w � (' v Ü y� Þ z �y� � y~x� �¦§^ w and

¸ �d§f ¹ � � (' v Ü y� Þ z �y� � y~�� �¦§^ �
the learning rule writes as© Çí§ ' ª udv w ¸ �¦§f ¹ w � M v � ¸ �¦§f ¹ � � � (61)

This is an on-line rule: we make a learn step for each data point { w and for each
entity {ê � .

From Eqn. 61 we start with the mean-field approximations. First, the average of
correlations between activation states is replaced by a correlation of averages:¸ �$§® ¹ w � B ¸ �¦§ ¹ w � ¸ ¹ w � and

¸ �d§® ¹ � � B ¸ �$§ ¹ � � ¸ ¹ � �
The mean activation for our three-state hidden neuron is¸ �¦§ ¹ ' z � M 9 �&° � M 9 � � ÷ ° z ��4 �"° 4 � z � � 9 ��° � � 9 �

49

0

0.5

1
f0 (x)

f10 (x)
0.5 * x

h

Figure 18: Transfer functions �pr Q�� ��� � (solid line) and the sparse mean-field transfer
function �P��� � (dashed, curved line), here for ÷ ' 9>4 . Only the positive half-axes
are shown and both functions are scaled such that they intersect the identity function
(dotted line) at 0.5. A single-neuron dynamics � �x
 � 9 � '	�pr Q�� � �r
 � leads for large
time
 to the following stationary solutions: a stable fix-point is 4 Å�� , an unstable fix-
point is 0.0. The dynamics � �r
 � 9 � ' �L���x
 � features stable fix-points at 4 Å 4 and�P��� � 'µ4 Å�� , an unstable fix-point is 0.5.

Secondly, we make the assumption that the probability (according to the Boltzmann
distribution) for a neuron activation depends only on the mean of its inner activation��§ (' Ñ ¤ Çë§ for a hidden neuron or � (' ÑFÓ§ Ç §[�¦§ for an input neuron. The
error we make here is small if the net is large. Then the neuron activation ��§ will have
only a minor effect on the average activities of other neurons. We obtain¸ �¦§ ¹ ' � ��� + ñ � M � ����� + ñ �� ��� + ñ � � ÷ � � ����� + ñ � ' (���3� ¸ ��§ ¹ � (62)

The effective transfer function ��É is depicted in Fig. 18. For ÷ ' 4 the transfer
function becomes �pr Q�� ¸ ��§ ¹ .

For the input neurons we choose the linear/identity mean-field transfer function¸ ¹ ' � ~ � ¸ � ¹ � ' ¸ � ¹ (63)

so that the data are not distorted. In particular in the clamped state the data are
unchanged. This transfer function can be deduced if we assume a (infinite) homoge-
neous prior on whatever continuous or equidistantly spaced discrete input activations.
Then it results from the linear superposition of ��r Q�� -functions:O�� q "! / 9# v$: N % �pr Q�� ¸ � ¹%
In the limit the majority of terms will be indexed by % � % N for arbitrary but fixed% N . Considering the Taylor expansion% �pr Q�� ¸ � ¹% ' ¸ � ¹ M % ý u ¸ � ¹% �'& � Å>Å½Å

50

/margaux0/cweber/text/art/4bm/vortragSS98/mult-state_mean-transfkt.eps

one finds that within a fixed range of
¸ � ¹ these terms approximate the linear identity

function if % N is chosen sufficiently large.

Resting activity It was shown by theoretical and experimental work [37][38] that
endogenously active cells are required to maintain robust low, steady firing. Besides
the “OFF”-states with degeneracy ÷ , we will now assign each hidden neuron a pos-
itive resting activity, i.e. an “ON”-state with degeneracy % . The probability that a
hidden neuron ¨ is switched “ON” by its input �0§ is:

z ���¦§b'G9 � ' ¸ �¦§��>{ � ¹ ' � + ñ � %� + ñ � % � ÷ ' (�)(� �f{ � (64)

Having only states 4 and 9 , the mean activation equals the probability to be 9 .
Fig. 19 left, indicates that a network state which features both, highly and weakly

active neurons is not robust. Highly active states alone, Fig. 19 right, are more stable,
but they lead to highly active states in other neurons, too. The same is true for weakly
active neurons. The parameter regime where both states co-occur robustly increases
with % [37].

However, it has not been shown that Eq. 64 can lead to a Boltzmann distribution
and we have run the Boltzmann machine with % 'µ4 only.

0

0.5

1

0 0.5 1

f(x)
x

0

0.5

1

0 0.5 1

f(x)
x

g(x)

Figure 19: Left: Sparse positive-only mean-field transfer function with resting activity,� (� , as a function of a one-dimensional input . There are three intersections with the
identity function (dotted line), the left and the right one correspond to stable fix-points.
The parameter regime which features three fix-points, however, is narrow. Right: If
neurons are active within an attractor, then they are connected to active neurons with
strong weights. This leads to a steeper effective transfer function with only one stable
fix-point at high activation (upper curve). Outside of an attractor, input arrives via
weak weights, leading to a narrow effective transfer function with only one stable fix-
point at low activation (lower curve). Without resting activity (% ' 4), this point is
closer to zero.

51

/margaux0/cweber/text/art/4bm/vortragSS98/mult-state_mean-transfkt_resting-2extremeweights.eps
/margaux0/cweber/text/art/4bm/vortragSS98/mult-state_mean-transfkt_resting-activity.eps

Attractor dynamics of contin uous mean-field neur ons The mean neuron activa-
tions are determined by Eqs. 62 and 63, respectively. Writing down these equations
for all neurons they constitute a system of nonlinear equations. Inserting arbitrary
values for all neuron activities, the equations need not be consistent. We will solve
the system of equations by relaxating for each neuron Ë the estimate *�$É of its inner
activations mean

¸ ��É ¹ . We obtain estimates * '+� ~ �,*� � ' *� and *�d§b'-���3�,*��§ � for
input and hidden neuron activations, respectively. The relaxation dynamics is defined
by: 9. 2 *��§2
 ' ¤v Çë§ * M *��§ or

9. 2 *� 2
 ' Óv § Ç § *�$§ M *� (65). is the update step size. . ' 9 leads to fix-point iteration. If after many repetitions
equilibrium is reached then the sum of the weighted input of each neuron equals its
inner activation.

In the case of many neurons which are strongly interconnected by positive weights
activations behave like ferromagnetic dipoles: all neurons together behave the same
as if there was one neuron which is connected to itself only . Above update dynamics
reveals three stable fix-points (see Fig. 18): a positive non-zero value, its negative
counterpart and the fix-point zero. The latter is the result of the sparse coding ansatz.
It would be an unstable fix-point if we used the ��r Q�� transfer function which we obtain
for ÷ 'µ4 as in the standard Boltzmann machine.

The relaxation procedure is simple for the clamped phase: the activations of the
input neurons are set by the data. They do not respond to the feedback. Thus hidden
neurons always see the clamped input data through the feed-forward weights. There
is no contribution by lateral weights. Thus one iteration gives us the hidden activations
as in a purely feed-forward architecture.

relaxE

Eboltz

ss

E

Figure 20: Energy functions for the activations which are in an abstract manner rep-
resented on the x-axis.: the Boltzmann energy

� ç l Ò oÐé is used to set up the probability
distribution on the (discrete) activations e {/ g . The mean-field energy function

� (10 Ò32 ~
is maximized when finding the continuous vector

¸ {/ ¹ .
52

/margaux0/cweber/text/art/4bm/vortragSS98/EboltzErelax_minima.eps

Free relaxation requires a lot of iterations, because each time that activities change
in one layer, activities on the other layer have to be corrected, too. It is not obvious
that this procedure converges. But it can be shown that continuous relaxation (in the
limit of small step size .) according to Eqs. 65 minimizes an energy function for the
activity states:� (10 Ò32 ~ ' M Óv § ¤v Çí§ *�¦§ * �

¤v *54~ òN � � �~ ���1 � 2 �1 � Óv § *64� ñN � � �� �!�$1 � 2 �$1
The equilibrium points 7 4� ñ7 o ' 4 8 7 �7 o ' 4 are the only attractors, because the
energy cannot decrease eternally.

As this energy function is not minimized by gradient ascent, we give two conditions
to show that the energy is minimized:� � (10 Ò32 ~:9<;

, i.e.

� (10 Ò32 ~ has a finite lower bound.
This is true for each of the two terms. The first term is bounded, because the
transfer function of the hidden units is bounded:

a ê É a 9 ; = Ë and thus�$§m' ��§�����§ � 9<;
Activations of input neurons are bounded, too, due to bounded input: f§ 5Ñ Ó§ Ç §��$§ , if � ��� � 5 >@?�÷ ê
 ° � Remember there are no lateral connections.
The second term is positive, sign � ê É �x° � � �É � ê É � � M ; = Ë�I ê ÉAþH ê $ § � I ê $ 2 ~ J .� � (10 Ò32 ~ de(in-)creases monotonously according to relaxation. The following proof
is briefly recapitulated from the standard literature [30].2 � (10 Ò32 ~2
 ' Óv § ¤v B Çí§ 2 �¦§2
 � Çë§ �¦§ 2 2
DC (66)

M Ó � ¤v É «« ê É u * }FEN � � �É � ê 1 � 2 ê 1 � « ê É«
' Óv § u ¤v Çí§ 2 �$§2
 M � � �§ �!�¦§ � 2 �¦§2
 � (67)

�
¤v u Óv § Çë§ �$§ 2 2
 M � � � �� � 2 2
 �G }IHE = }JE ? : + E' Óv § 2 �$§2
 K ¤v Çë§ � M ��§ L �

¤v 2 2
 K Óv § Çë§ �§ M � L
chain ruleÌSñ�ò : Ì0ñúò(65)' Ó � ¤v É 2 ê É2 �$ÉT UWV X� 4

2 �dÉ2
 9ª 2 �dÉ2
T UWV X� 4
Note that weight symmetry, Çí§ 'EÇ § , is essential for the proof.

53

Note that the local maxima of

� (10 Ò32 ~ do not necessarily correspond to the lo-
cal maxima of

� ç l Ò oÐé (see Fig. 20). This was not the intention, instead we want to
compute

¸ / ¹
. This state could better be expressed by the energy

¸ � ç l Ò oÐé ¹ (but not
exactly).

4.3.5 Overview of energy functions used by the Boltzmann machine� The weights should maximize the likelihood that the observed data are gener-
ated by the model ��e w g I½� �

(all data).ORQ z ��� a
 �~ � ' M±�[
 �~ a � � � O[Q z ��� �
We need this to learn the weights and it leads us to the Boltzmann learning rule.� Each activity vector is assigned a “theoretical” energy value�èç l Ò oÐé �@{ê I½� � �

� 7 §Ê< �^{� �
We need this to compute the distribution
��~ according to Boltzmann distribution� � ÖR×�ØàÙáÚ .� Each activity vector in practice (relaxation of continuous values) maximizes the
energy � (10 Ò32 ~ �@{ê I½� � �

� 7 §Ê< �^{� �
We need this to approximate
 �~ by the mean-field method.� The correction term for the weights comes to the energy function for the weights.� The correction term for the activations comes to the energy function for the
activation -> changes the Boltzmann distribution.

Note that sparseness does not enter the terms of the energy functions. Instead it
is realized by introducing more available states.

4.4 Helmh oltz machine and the wake-s leep algorithm

Eqn. 28 supplies a justification that an incorrect distribution may be used in order to
maximize the likelihood. With this justification we shall work with two different models:
(i) an original, generative model with weights � which defines z , and generates the
true output of the network, and (ii) a separate recognition model with weights �
which defines · . The goal is to train this model such that · approximates z .

Training of these two models involves two phases, one for each model: (i) the wake
phase, to learn the generative weights � so that the data are generated correctly, and
(ii) the sleep phase, to learn the recognition weights � so that the recognition model
approximates the generative model. The algorithm is as follows.

54

� wake phase:

1. initialize activations on the input layer with a data point { .

2. compute hidden unit activations {� using the recognition weights � :{�ON ' {�����PN½�QN � � {�ON � � �
where Í is the layer index and {� N is the input vector { . This procedure is
done sequentially, layer for layer starting at the hierarchically bottom-most
hidden layer up to the top-most layer.

3. activations are projected back between adjacent layers using the genera-
tive weights � : {ê N ' {�����RN½�QN � � {�SN � � �
where {ê N is the generative model’s reconstruction of the activations on
layer Í using the code on layer Í � 9 . Note that the code which was
previously obtained by the generative weights is used as the source for
each layer. The generative model thus “inverts” only one step but not more
hierarchical levels.

4. adjust the generative weights � to minimize the reconstruction error {� N M{ê N in each level of the hierarchy:© � N;� N � � j �^{� N M {ê N ��° {� N � �
Here we assume that the recognition model is correct. In this phase the gen-
erative weights � are trained to model the data distribution and to “invert” the
recognition model � .� sleep phase:

1. initialize with a code vector {� at the hierarchically top-most layer by ran-
dom.

2. compute the code vector at lower levels using the generative weights � :{ê N ' {�����RN½�QN � � {�SN � � �
3. project activations back towards the inner-most representation across ad-

jacent layers using the recognition weights � :{�ON ' {�����PN½�QN � � {�ON � � �
where {� N ' { .

4. adjust the recognition weights � to minimize the code error {ê N M {� N in
each level of the hierarchy:© � N½�QN � � j �@{ê N M {� N ��° {ê N � �

55

Here we assume that the generative model is correct, including the code. In this
phase the recognition weights � are trained to model the code distribution and
to “invert” the generative model � .

In both phases, the model which represents a data flow into the opposite direction
is “inverted” by training. The wake phase only, however, considers the data and trains
the generative model accordingly. Even as long as the generative model is bad, the
sleep phase tries to learn the recognition model to become the inverse of it and thus
does not do optimal. However, as the generative model gets better, training of the
recognition model also becomes better. Note that this algorithm is not a gradient
descent on an energy function.

4.5 Prior s

4.5.1 Prior on the activities: spar se coding

In our model architecture (Fig. 11) we recognize an auto-associator network if the
goal is to reproduce (predict) the data. In this case, its output is generated by a
hidden code which is computed from its input and this output is compared to the
input on the input units. A trivial solution for an optimal hidden code arises if the
number of hidden units equals or even exceeds the number of input units. Any data
point is perfectly coded if � equals the unity matrix and the hidden code {� equals
the data { (superfluous hidden units may be zero) and information transfer between
input and hidden units is maximal. Obviously there is a need for constraints to achieve
qualitatively useful information processing.

A popular principle to underly such a constraint is the reduction of redundancy
between hidden unit codes. Best-founded arguments for this, in our view, come from
the biological example, the recurrent LGN - V1 projection in the visual system. Rem-
iniscent of the idea of an "overcomplete basis set", more cells exist in V1 than in the
LGN.

Neurons in the input layer (layer IV) of primary visual cortex (area V1) each receive
input from a small part of the visual field only and respond to edges of a preferred
orientation. Statistics about how often such a stimulus feature occurs tells about how
often a cell should be active. So we can regard a neuron to respond only if there is
an edge within its receptive field and if the edge has the direction which this neuron is
tuned to. According to image statistics a neuron rarely encounters such a matching
edge. But once there is such an edge it fits well and the neuron will be optimally
stimulated, i.e. it has a strong input [4]. Figs. 21,22, left, display this behavior.

In summary, a localized edge-detector neuron is unlikely to be activated if an
image is shown on the retina, but once it is activated then it is activated strong. The
representation of an image within the hidden units activations is thus sparse: only a
small number of neurons are active, but these are strongly active. Accordingly, we
can impose a sparse coding constraint on hidden unit activations. We hope that a
neuron will then try to fulfill the constraint by learning to code for localized edges.

56

Activations in such a sparse context are interpreted to be independent causes,
a few of which constitute a data point [44]. A real world image hence consists of a
relatively small number of localized edges. Independence of the causes is not re-
stricted to second order statistics such as pairwise correlations. The interest lies on
statistical independence of higher order: the "basis functions" need not be orthogo-
nal. Hereby the number of causes may be larger than the input dimension allowing
for an "overcomplete basis set" [46].

The idea so far is to model the input data as good as possible given the constraint
of sparse coding on the inner representation. It underlies a growing variety of recur-
rent models [21][26][49][46][45][22]. Cardoso [12] and Olshausen [44] have shown
the equivalence of these feedback data generating models to a class of feed-forward
data analyzing models. The latter maximize the independence on the inner represen-
tation by maximizing the entropy on the hidden unit activity distribution [7][8]. Applied
to the LGN – V1 projection, they develop target neurons with localized receptive fields
and orientation preference which may theoretically be ocular dominant.

A totally different biological motivation for sparse coding is that metabolic costs
of the coding neurons need to be minimized [40]. According to this interpretation,
two conflicting goals need to be satisfied: to maximize information capacity and to
minimize metabolic costs of the coding neurons.

edges random pixels

Figure 21: Left: activation statistics of edges in a natural image, taken from [4]. The
left- and rightmost contributions to the histogram correspond to edges in the image
which are co-aligned with 9 pixels in a row. Right: activation statistics of a random
pixel pattern in the same natural image which was taken for the left diagram.

Neglecting a normalization constant, the following prior (Figs. 22,23) will enforce
sparse activations:z �^{� � ' 9T § �W9 � a � a (§ �VU -� ' � U -�DWYX =[Z ñ = � � � � � \ñ ?[? }IH ' � � U -� ô ñ W]X = � � � � � \ñ ?' õ § � � U -�_^ = � ñ ? (68)

57

/margaux0/cweber/text/konf/98goett/vortragTFH/scan_randomdot_statistics.eps
/margaux0/cweber/text/konf/98goett/vortragTFH/scan_edge_statistics.eps

activity prior

0

0.5

1

-4 -2 0 2 4

f (x)

Gaussian function

0

0.5

1

-4 -2 0 2 4

g (x)

Figure 22: Left: a sparse prior with positive kurtosis. Right: a Gaussian function.

-3 -2 -1 0 1 2 3 -3
-2

-1
0

1
2

3

0

0.5

1

Figure 23: The prior on the activities (� -axis) enforces sparse coding. - and � -axes
denote the activities of two arbitrarily selected hidden neurons. In two dimensions it
can be seen that it is not rotationally symmetric. Instead, “ridges” along the axes give
rise to activation vectors with zero components.

with / �!�$§ � ' ORQ �W9 � a � a (§ �
The parameter ` scales the kurtosis. It becomes smaller if ` is large and larger if `
is small [26]. In the limit of ` B 4 the function becomes a delta function. In all our
simulations, ` '

.
An activity-decay term adds to the fast dynamics to find {� l�npo :© �ba n 2 (a 0§ ' «« �$§ ORQ z �^{� � ' «« �¦§ ORQ � � U -� ô ñ WYX = � � � � � \ñ ? ' M Í � «« �$§ ORQ �W9 � a � a (§ �' M Í � ° ` ° a �¦§ a (� �9 � a � a (§ (: ¡' M±Í � �¦§9 � � ¡§ (69)

The parameter Í � can be seen here to scale the effectiveness of the prior.
For the models with discrete activations, see Eqn. 59 and Fig. 16.

58

/margaux0/cweber/text/konf/98goett/vortragTFH/prior_u.eps
/margaux0/cweber/text/konf/98goett/vortragTFH/dist1D_gauss.eps
/margaux0/cweber/text/konf/98goett/vortragTFH/dist1D_prior_u.eps

�&��� � atan ��� �c � 9 � �÷ � � � ' 99 � ÷ � � �
"�"�!� � 9c � � WYX = � � � � ? ' 9c �W9 � � ¡ � ÷ � � ��W9 � ÷ �%� � � ¡/ ��� � O[Q �W9 � � ¡ � � � O[Q �W9 � ÷ � � � � M ORQ �!÷ �ðð � / �!� � M �9 � � ¡ 9 M ÷ � � �9 � ÷ �%� � ' 9 M ÷ � � �9 � ÷ �%� �
Table 6: Priors and the relations: ðð � �"�!� � 'þ
"�"�!� � ' � � ^ =ß� ? .

4.5.2 Prior on the weights: weight constraint

The motivation to constrain weights to small values follows the lines of [46]. The
sparse transfer function silences many neuron activations which incurs under-estimation
of the data: they will back-project smaller input values during free-run than values
given by the data. The weights try to compensate for this by growing larger regard-
less of the scale of the input. As a result, the net input �0§ of any hidden neuron ¨ will
be larger. More neurons will take part in data generation and they will decide more
decisively for the saturating states � 9 or M 9 of their transfer function. There is no
sparse coding anymore.

-2
-1

0
1 2

-2
-1

0
1

2

0

0.5

1

Figure 24: The Prior on the weights (� -axis) makes small weights likely. - and � -
axes are the strengths of two arbitrarily selected input weights of one hidden neuron.
It is rotationally symmetric (see contour lines) and thus does not have an influence
on the direction of the weight vector.

The following Bayesian prior (Fig. 24) constrains the (receptive/projective) field
vector {Çí§ of a hidden neuron ¨ to small lengthz �b{Çí§ � j � �SdFeÿ ô ò ¯ Ì �ñúò ¯ ô ò ¯û¯ Ì �ñ�ò ¯à¯

59

/margaux0/cweber/text/konf/98goett/vortragTFH/prior_V.eps

z � {v § � j � � d vÿ ô ò ¯ v �ò ¯ ñ ô ò ¯û¯ v �ò ¯û¯ ñ2 Ì is a scaling factor. The direction of {ÇP§ (shape of the field) will not change
because z �b{Ç § � depends on its length only. Gradient ascent leads to the additive
correction term to above maximum likelihood learning rules. A weight-decay term
adds to the slow dynamics to find � l�npo :©

v 7 0gf 2ih § ' «« v § ORQ z � {v § � ' M 2kj v § v �¯ v
¡ ¯ § (70)

Relation between inverse temperature and weight length The absolute value of
the temperature does not play a role: it appears in the expression � ��� + , always mul-
tiplied by the net input � . Weights can thus compensate e.g. for a high temperature
(small ¬) by growing large. However, for successful annealing of the temperature, the
span-width (above

î <.§ � 2�Ò) can be important.
For the case of mean-field relaxation and the linear transfer function on the input

units we show that scaling the weights has the same effect on the relaxation proce-
dure as scaling the square root of the inverse temperature ¬ .

We express scaling of all entries for a given
~ l Ô weight matrix � by multipli-

cation of a diagonal Matrix m . Its diagonal values n are the scaling factors. Both of
the following operations scale the weights by n :m Ó � or � m ¤
where m Ó is a

~ lQ~
matrix and m ¤ is a Ô l Ô matrix.

In a fix-point relaxation a new hidden activation vector {� is obtained according to
Eqn. 65: {� ' {�¿��� m ¤ { �
Inserting { ' m ¤ � �³{� yields{� ' {�P��� m ¤ m ¤ � � {� �xÅ
With o ¤ ('<m ¤ m ¤ we obtain (in analogy to the above notation):{� ' {�¿�po Ó � � � {� �xÅ
The diagonal values of the diagonal matrix o ¤ or o Ó are the inverse temperature.
In short: a {Ç a B n a {Ç a 8 ¬ B n ¡ ¬

These considerations, however, ignore that the back-projected input vector {
changes if � changes but not if ¬ changes (assuming a linear transfer function
on the input neurons). It is often the case that input values are given (by data) and
hidden unit values also have desired values (by a constraint).

60

Examples: (i) If the mean activation on the input neurons is doubled, then the
weight strengths have to be doubled as to make {6'�� �²{� . Then ¬ must be divided
by 4 such that the hidden neurons will not receive a stronger net-input {� . (ii) If the
number of input neurons is doubled but mean activations remain, then weights remain
but ¬ has to be halved.

4.5.3 Prior s for topographic mappings

A shortcoming of the above mathematical theory is that it ignores spatial relations
among the target neurons. Thus, retinotopy and superimposed properties like orien-
tation preference patterns cannot be addressed. For robust topographical mappings
we need to add two biologically inspired mechanisms to the learning rule of the recur-
rent network. First, neighborhood interactions to ensure neighborhood relationships.
Second, there must be a label on source- as well as on target cells to determine the
correct polarity of the topographic map.

Neighborhood interactions can be implemented by (i) diffusive activity, (ii) diffusive
weights or (iii) a diffusive weight update step (as in the Kohonen model). It is most
elegant to consider neuronal activations to diffuse from the proper target cells towards
nearby targets.

Diffusive forwar d activ ation transf er Let ê y~ denote the number of spikes heading
to target cell at position { , and q be the number of neighbors each cell has. If z 7 is
the probability for a spike to arrive instead at any neighbor and if all neighbors receive
this spike with the same probability, then z 7@r q is the probability for a spike to reach{ instead of {� . Averaging over time (spikes) the activation � y~ will be altered by© � 7 §Ð<y~ ' M z 7 ê y~ �

sv yh�t: y~ 9q z 7 ê yh (71)

We show that this correction to the update rule for the activities can be derived by
a prior z 7 §Ê< �^{� � on the activities

z 7 §Ê< �^{� � ' õ y~ z 7 §Ê<y~ ' õ y~ � �vu dÿxw ô w ãy{z| ãä = � ãy � � ãä ? �
Note that z 7 §Ð< �^{� � factorizes into terms z 7 §Ê<y~ one for each target neuron, but that z 7 §Ê<y~contains activities of neighboring cells of { . The modification of the update rule for
activity � y~ © � 7 §Ê<y~ ' «« � y~ ORQ z 7 §Ê< �^{� � ' «« � y~ ORQ z 7 §Ê<y~ � «« � y~ v yh�t: y~ O[Q z 7 §Ê<yh

61

will take into account terms which depend on � y~ . These are the priors for the cell at
location { (left term) and its neighbors (right term). This yields© � 7 §Ê<y~ ' «« � y~ u M z 7ø@q sv yh}t: y~ �!� yh M � y~ � ¡ �T UWV XORQ z 7 §Ê<y~ � «« � y~ u sv yh}t: y~ M z 7øVq �!� y~ M � yh � ¡ �T UWV X

contribution from neighbors' z 7 q sv yh}t: y~ �!� yh M � y~ � � z 7 q sv yh�t: y~ �!� yh M � y~ �
' M z 7 � y~ � z 7q sv yh�t: y~ � yh

In the case of a 1-dimensional target layer a cell at location { has two neighbors
at locations { � 9 and { M 9 . The equation writes© � 7 §Ê<y~ ' z 7 � 9 ê y~ � � M ê y~ � 9 ê y~ � � � *' z 7 « ¡« { ¡ ê

y~
which is the discrete approximation to the second derivative in space.

Chemical repulsion term Topographic maps in the brain have a predictable po-
larity. This means that from one animal to the next, the map is never inverted or
rotated. In models, reversal of polarity corresponds to a permutation of cell indexes
and is thus natural. For biological modeling thus, a term is needed which breaks
permutation symmetry in the cell indexes.

A “chemical repulsion term” [59][60] may be used which is proportional to a graded
concentration > § � n � oy´ of hypothetical chemical markers along each axis of the input
plane and > + § 7~7 0 �y~ within the hidden units. It is reasonable to make the influence of
this term on weight growth proportional to the amount (strength) of connections which
are affected. This yields the following additive term to a weight learning rule:© Ç f + 0 $y~ y´ ' M±Í f�> § � n � oy´ > + § 7~7 0 �y~ Ç y~ y´ (72)

where Í f is a scaling factor. Fig. 25 depicts the effective value of the resulting term
for all connections.

Chemical repulsion exists in the retinotectal projection [54][3] and graded distri-
butions of membrane attached ligands and their receptors have been found in the
tectum and the retina, respectively [15][19]. However, direct evidence for chemical
guidance in the thalamocortical projection is missing and other mechanisms have
been suggested [41].

62

Figure 25: The chemical repulsion term biases weight growth to form a topographic
map of a certain polarity. Each hidden unit is depicted by a square which shows the
input layer. Concentrations of markers rise from the bottom and the left side to the
upper and the right side in both, the input and the hidden units. The product of these
values, > § � n � oy´ > + § 7~7 0 �y~ , is displayed dark.

4.6 Maxim um entr opy model

Using
�� �� � 2 ,'þ
d� ��� � 2 � 'þ
d���!� � 2 � we have
 � ��� � '
d� �� �7 �7 ~
With Eqn. 13 and
 � � {� � ' T §
 � ����§ � we have2 �2 ' 2 �2 2 �2 � ' a � a õ §
 � ����§ �
and so ~ � ' M *
 � �!� � ORQ
d���� �7 �7 ~ 2 �' M ORQ
 � �! �T UWV X � ORQ�a � a �

*
 � ��� � v § ORQ
 � ����§ � 2 �
where the underbraced term does not depend on the weights. With

ORQ
 � ����§ � 'M / ����§ � and « / ����§ �« Çë§ ' « / ����§ �« ��§ « ��§« Çë§
and Eqn. 13 we can write«« Çí§ ~ �_' ��� � � � �§ M *
 � �!� � «« ��§ / ����§ � 2 � (73)

63

/margaux0/cweber/text/konf/98goett/poster/Warbor.ps

If we choose, for example, � ��� � ' 99 � ÷ � � +
then we have according to table 4.5.1:M «« � / ��� � ' ÷ � � + M 99 � ÷ �%� + ' 9 � ÷ � � +9 � ÷ �%� + M 9 � ÷ �%� + ' 9 M �
If we are interested in an on-line rule then the integral over � is well approximated by
the occurrences of training data. The learning rule is© Çí§ j >@?0�±Çí§ a � a � �W9 M �$§ �
This algorithm was published by Bell and Sejnowski [7] and made independent com-
ponent analysis (ICA) popular. Our derivation follows closer [47]. In order to render
the matrix inversion superfluous the learning rule is multiplied by �)�d� [1]. This is
a positive definite matrix and thus does not change the direction of the gradient. With��� 'E��d� � we obtain: © � j � � �W9 M � � � � �
4.6.1 Appr oximation by a maxim um likelihood model

Olshausen [44] shows that using two simplifying assumptions, one can derive from
the maximum likelihood framework the same learning algorithm which is derived from
a maximum entropy principle.

The assumptions are: (i) The number of hidden units equals the number of input
units. Furthermore, the matrix � of the data generating process is invertible. (ii)
There is no noise on the inputs. With these assumptions, we have:z �� � ' * z �� a � � z ��� � 2 �' * º#�� M ��� � z �!� � 2 ��;: h }IH ~ ¯' * º#�� M �s� � � 1 �T UWV X z ��� � � 1 � ```` 2 ��� � � 1 �2 1 ```` 2 1~ ¯��: ~' z ��� � � � `` � � � ``
and so ORQ z �� � ' O[Q z ��� � � � � O[Q `` � � � ``�'� ��� 68' M Í � v § / ����� � � � §^ � � O[Q `` � � � ``

64

Gradient ascent w.r.t. � leads to the update rule:© ��§ �� M Í � «« �$§ / �!�¦§ � � >@?S�b��§ a � a
which equals Eqn. 73 which was obtained by entropy maximization 4. This rule has
the following advantages over the Kalman filter model:� No iterative procedure has to be done to find the optimal hidden code vector {� .� A weight constraint is not necessary, because entropy is maximized exactly

when the hidden vectors make up the prior distribution. In contrast, in the
Kalman filter algorithm, best results are obtained if the hidden vectors make
up the maximum of the prior distribution.

Illustration of entr opy maximization Figs. 26 and 27 are the two-dimensional ana-
logue of Fig. 12. They demonstrate that only after un-mixing which happens in a
transformation from Fig. 26 to Fig. 27, an input distribution of two neurons can be
transformed to a homogenous distribution which has maximum entropy.

The transformation on the data eb{"g in Fig. 26 yields a non-optimal output distri-
bution eb{� ~ g . The hidden neurons in Fig. 27 receive unmixed data: the components� � and � ¡ are made independent of each other, i.e. z � {� � ' T y § z � � § � by un-mixing
them by the weights: {� ' � { . This is the purpose of the parameter matrix � and
the target of learning.

In the maximum likelihood case (generative model) we start with the hidden ac-
tivations e {�bg and transform them directly to the data e¦{bg via the parameter matrix� . The transfer functions are irrelevant (except that they relate to the prior of the
distribution of e {�&g).

4 �x�@���I�Y� is the cofactor of �I�Y� defined by �J�_��� ���I� times the determinant of the ���A���{���R���������
matrix formed by eliminating row � and column � from � .

65

-2 -1 0 1 2

-2
-1

0
1

2

xu 1

x1

x1

x2

x2

xu 2

f()1x

f()x2

Figure 26: Data points �O�� � of two-dimensional example data, bottom left . For an
experiment of thought (but in none of the models presented) each of the data coordi-
nates are directly transformed via transfer functions ¡)¢ � �i£ and ¡)¢ �¥¤ £ to a distribution�S�¦¨§© � , top right . The output-distribution is unregular (low entropy), because the in-
puts show dependencies.

66

/margaux0/cweber/text/konf/98goett/vortragTFH/collection_mixed.eps

h

h

-2 -1 0 1 2

-2
-1

0
1

2

h

1

2

h1

uh1

u

h2

2

f()h1

f()h2

Figure 27: Bottom left: inner activations � �ª � of hidden neurons after making the
components independent through the transformation �ª « ¬ �� . These activations are
fed through the transfer functions ¡¢ ª �~£ and ¡)¢ ª ¤ £ to obtain the output-distribution�S�¦ §® � , top right , which is close to a homogenous distribution.

67

/margaux0/cweber/text/konf/98goett/vortragTFH/collection_unmixed.eps

5 Results

In this section we will first describe methods which have not yet been described. Then
we show that all of the proposed models are capable of developing feature detectors
as, for example, seen in the primary visual cortex and we will explore the model’s
behavior. Finally, in a more abstract setting, we show that a modular architecture can
self-organize.

5.1 Methods

In this section we will consider some simulation details which we did not cover in the
theory or model sections.

5.1.1 Prepr ocessing of images

For practical computation, the data have to be preprocessed and the supplementary
steps which are considered here are a collection of heuristics rather than derived from
principles. The following steps should be considered if images are used for training.

1. Select grey-scale images of natural scenes. Images should have a rich struc-
ture. In particular, monotonous structure (as in artificial environments) or iso-
frequency patterns (as grass on a lawn) should be avoided. The more images
are chosen, the less will these kind of irregularities corrupt the statistics. Im-
ages should never have been compressed (e.g. as a jpeg file) to avoid hidden
artificial structure.

2. Subtract the mean luminance of each image from its pixels. This means that
darkness is represented by negative activity or, as in our case, this negative
activity is associated with (positive) activity of LGN-OFF cells.

3. Sphere each image, i.e. scale the pixels such they have variance 1. This is a
convenient range for neuronal activations.

4. Generate each data point by selecting an image randomly and cutting out a
random part which has the size of the input layer of neurons.

5. Subtract the mean luminance of each tile from its pixels. Description of the
data will hereby be reduced to intensity differences. The biological justification
is luminance adaptation within the retina. Trained receptive fields will look less
principle component-like. This must not be done for the ICA algorithm. Note
that this operation changes the direction of the input vector.

6. Sphere the input vector, i.e. scale the pixels such that the pixels of the individual
tile have variance 1. This procedure was dropped for the following reason: those
tiles with only little intensity differences are strongly scaled. These are often

68

the ones where structure just touches the tile at an edge. As a consequence,
trained receptive fields show over-proportionally strong weights to the corners.

7. Reject a tile from an image if intensity differences are small, e.g. less than a
tenth of the intensity differences of the image. This speeds up training as only
data with an interesting structure are used (this should, however, used with care,
because it corrupts the statistical structure of the data).

8. With 0.25 probability, rotate the tile by 90̄ or 180 ¯ or 270 ¯ in order to obtain
more data from a given set of images (this should be omitted if properties which
are not invariant to these rotations should be observed).

9. Flip the sign of all activations in a tile (should again be used in an exploratory
phase, only). The chosen pictures seem to be rather dark with sparse but strong
bright contrasts and thus asymmetric w.r.t. brightness. If hidden neurons have
only positive activations, then, omitting this procedure leads to strong positive
weights within a small region and weaker and broader negative weights.

The principles underlying these preprocessing procedures apply to all kinds of
data: data should be rich, the whole data space should be sampled and also, one
can multiply the data if symmetries are considered. Furthermore, the data are scaled
in order to ease the change between different data sets. In particular, the learning
step size does not need to be changed between data sets if the variance of the data
in one input dimension is fixed.

5.1.2 Appr opri ate weight constraints

A weight constraint term in a learning rule can be derived by a prior on the weights.
However, different priors can be chosen. In the following, we explore heuristically
whether we should apply the weight constraint to the weight vector of a hidden neu-
ron, i.e. constrain the receptive fields of V1 cells, or whether we should constrain
the weight vector of an input neuron, i.e. constrain the receptive fields of LGN cells.
Because of weight symmetry, one of these two constraints is necessary only.

Constraint on the LGN field of a V1
cell:° ¢ �± §© £ ² ³�´SµF¶·¹¸Dº» ¼ ½ º» º¾ ¸ º¿ ¼ ½ º¿ º¾
Additive term for the slow dynamics:À ± ÁÃÂ1ÄIÅÇÆ§È §© ² ÉAÊ ¼ ± §È §©ÌË §Í ± ¤ §Í §©Î §© §È « ± §È §©

Constraint on the V1 field of a LGN
cell:° ¢ �± §È £ ² ³ ´bµJ¶· ¸ ºÏ ¼ ½ ºÐ ºÏ ¸ ºÑ ¼ ½ ºÐ ºÑ
Additive term for the slow dynamics:À ± ÁÃÂÒÄ}ÅÇÆ§È §© ² ÉAÊ ¼ ± §È §© Ë §Ó ± ¤ §È §ÓÎ §© §È « ± §È §©

69

Result: Result:

The results clearly show that the weight vector of the hidden units which spans
across the input units has to be constrained. The constraint which we use does not
change the direction of this vector. If the weight vector of the input units which spans
across the hidden units is changed then the direction of the hidden units weight vector
is changed by the constraint and the receptive fields are poor edge detectors.

A biologically more plausible strategy is to abandon weight symmetry and treat
the recognition weights and the generative weights separately. Separate weight con-
straints are then used for both weight sets. In the following we will explore two
paradigms, a “dendritic” constraint on a receptive field of a cell and an “axonic” con-
straint on the projective field of a cell. The following results are obtained.

The receptive field within the input of
a hidden neuron is constrained via the
recognition weights

¬
and

the receptive field within the hidden
units of an input cell is constrained via
the generative weights Ô .

the projective field within the hidden
units of an input cell is constrained via
the recognition weights

¬
and

the projective field within the input
units of a hidden cell is constrained
via the generative weights Ô .

These results show that the “dendritic” constraint, on the left, leads to better re-
sults than the “axonic” constraint. However, the receptive fields of the hidden neurons
are not such clean edge detectors as when symmetric weights are used.

70

fig_collect/0.0_0.0005_0.000000e+00_0.01_0.0_10_10_0_0.2_5_0_0_W_1.ps
fig_collect/0.0_0.0005_0.000000e+00_0.01_0.0_10_10_0_0.4_5_0_0_W_1.ps
fig_collect/0.0_0.0005_0.000000e+00_0.01_0.0_10_10_0_0.6_5_0_0_W_1.ps
fig_collect/0.0_0.0005_0.000000e+00_0.01_0.0_10_10_0_0.1_5_0_0_W_1.ps

5.1.3 Suppressing diver gence (Kalman filter model)

For biological modeling on a macroscopic scale, networks are usually chosen as large
as tolerable for computation. Many commonly used algorithms, however, are tested
using small nets only and have to be modified for large networks.

For a large-scale simulation of the Kalman filter model we made modifications on
both steps of the learning procedure, the fast dynamics and the slow dynamics:Õ The fast dynamics (activity relaxation) involves computation of the reconstruc-

tion error on the input units and an incremental update of the hidden unit acti-
vations (cf. Eqs. 37,69): Ö�Ø× « �Ø× É Ù �±V×ÛÚ �¦À ¦OÜ « �ÎÝÜÞÚ Ö� É ßáà ¦OÜâäã ¦ ¤Ü
The first equation computes the reconstruction error. For small nets (å âVæ�ç
Neurons in input and hidden layer)

Ù
equals

â
. Recursive update thus corre-

sponds to fix-point iteration. For large nets an overestimation of the prediction,
i.e. �±I×èÚ �¦ é �Ø× , leads to oscillating activations. This can be suppressed byÙ å â

, typically
Ù « çØê�æ

.

The second equation recalculates the internal representation �¦ . Hereby �¦ con-
verges to �¦ Âpë{Æ which maximizes the likelihood to generate �� at fixed Ô .

Convergence is not suppressed by
Ù å â

but the optimal hidden code will be
obtained later. Furthermore, for computational reasons, the number of itera-
tions are limited (5 to 10 iterations are usually performed) which impairs our
estimation of the optimal hidden code.Õ The slow dynamics is to learn the weights using our estimation of the optimal
hidden code �¦ Âpë{ÆÌì « �¦ which has been found through the fast dynamics (cf.
Eqs. 38,70): À �±V× «+í Ö��× �¦ Âpë{Æ É Ê ¼ �±V× �± ¤×
For optimal reconstruction, the recognition weights are usually set equal to the
generative weights:

¬ « Ô î (weight symmetry). Only one set of weights
is then actually trained and the “inverse” weights are hereby determined. Al-
ternatively, symmetric weights are obtained by a symmetric initialization and if
both sets are trained by Hebbian learning only. The Hebbian term is symmetric.
However, the postsynaptic constraint

Ê ¼ �±V× �± ¤× which has to be applied effects
dendritic input (of LGN cells) and destroys symmetry. For biological plausibility,
also the feed-forward weights

¬
should have a postsynaptic constraint (on the

input of V1 cells): À �ÎÝÜ «+í �� ¦ Âpë{ÆÜ É Êkï �Î¹Ü �Î ¤Ü
This gives two constraint parameters,

Ê ¼ and
Ê�ï

, which can differ if we assume
that LGN and V1 cells behave differently.

71

Choosing
Ê ¼ é Êkï

leads to weights �±ð× smaller than weights �Î�Ü and thus makes
the prediction �±,×:Ú �¦ smaller. This furthermore prevents oscillating behavior
because it reduces overestimation of the data.

Applying both modifications on the algorithm and using a smaller learning stepí
than usual, we are able to learn nets of size ñ çòç (input) ó¨ô ç�ç (hidden neurons).

However, this scale is not suited for parameter explorations because computation
time increases too much.

5.2 Feature detector s

For computational modeling of cortical features, we will concentrate on the LGN-
V1 projection. First, because the input data are simple, consisting of only weakly
preprocessed natural images. Secondly, cell properties of neurons in the input layer
(layer IV) of primary visual cortex (area V1) are well described. The most striking
characteristics of V1 cells on which we concentrate here are orientation preference
and a topographic arrangement w.r.t. the visual field (see chapter “The cortex”).

5.2.1 Localiz ed edge detector s

Fig. 28 on the following page shows a large scale Boltzmann machine which has
developed edge detector shaped receptive fields.

As usual, weights have been initialized with small random values which were
homogeneously distributed within an interval around zero. Learning (Eqn. 58 on
page 45) consists of two parts: one clamped "relaxation" was done with an image,
which consisted of one feed-forward sweep (Eqn. 13 on page 27 with the mean ac-
tivation transfer function Fig. 17 on page 48). The free-running relaxation was done
with 15 relaxation iterations and again the mean transfer function for the hidden units
but the linear function for the input units. With the resulting activations an update of
all weights was performed. The learn step

í
for the weight update was set to

çõê[ç�ç�æ
(cf. Eqn. 58 on page 45).

The number of relaxation steps is not crucial for the results, even though the
minimum of the energy function will not be reached, because sparseness is mediated
to the activity state by the derivative of the transfer function of the hidden neurons:
the smallest activations have a stronger tendency to decrease than larger values.
Sparseness is thus imposed on the net even if the relaxation procedure does not
converge.

The number (degeneracy) of zero-activity states of a hidden neuron is ö « â@ç
(cf. Eqn. 62 on page 50). This leads to a Fisher kurtosis (Eqn. 60 on page 47) of ÷
for the activity prior on a neuron. Finally, the constraint on the weights is scaled byÊkï « çõê�ø�æ

(cf. Eqn. 70 on page 60).
Fig. 28 on the following page shows the network after training on natural images.

The characteristics of the receptive fields changes with the length of the weight vec-
tors. The largest vectors cover the entire input field with low frequency and a weak

72

Figure 28: The weight matrix of a Boltzmann machine after training. Each square
shows the receptive field of one of the

âVø ó â@ç
hidden neurons, black indicating

negative, white positive weights to one of the
âVç ó â@ç

input neurons. Fields are
ordered left-to-right, top-to-bottom in the order of the length of the weight vector.
A larger number of hidden neurons than input neurons allow for an overcomplete
representation of the input. Left half: brightness values are linearly proportional to
weight values. Right half: brightness values are obtained through piecewise linear
functions. Strong weights look black or white and weights weaker than 10 percent
of the maximum weight value are not distinguished from zero. The zero value is
brightened.

tendency for localization. The majority of smaller vectors form higher frequency edge
detectors which are well localized within the input field. Together, the space of posi-
tion, orientation and scale is roughly homogeneously filled by weight vectors.

5.2.2 Auditor y feature detector s

Fig. 29 on the next page shows the network (sparse Kalman filter) after training on
auditory signals. Signals were 24 sounds which were each decomposed into 30
frequency bins at 90 time steps.5 Input to the network was then a ÷ ç óù÷ ç vector which

5I thank Holger Prante for giving me these data.

73

fig_collect/Wrecep_1_right.ps
fig_collect/Wrecep_4_left.ps

Figure 29: Left: an example auditory stimulus. Brightness codes the amplitude of a
frequency. The frequency axis is from left (low frequencies) to right. Time advances
from top to bottom. The input to the network is a randomly chosen time slice. Middle:
the weight matrix after training on auditory signals. Strong weights are black, negative
weights are white, zero weights grey. Right: an example receptive field (from bottom
left of the map). Within each field, time advances from top to bottom, frequency from
left to right.

represented the amplitudes of the 30 frequencies at 30 consecutive time steps. The
mean of the input values was subtracted for each data point and values were divided
by their standard deviation. The receptive fields show more pronounced contours
than the original stimulus and a relatively large number of weights is zero.

5.3 Running the Boltzmann machine

5.3.1 Learning in the clamped and in the free-running phase

Fig. 30 on the following page, top row, shows some receptive fields of a training result
if only the clamped phase is used for learning. Hidden neurons do not interact in this
phase. As all of them see the same data their weight vectors will learn the same
direction (except for the sign), i.e. identical fields develop. It is known (see standard
literature, e.g. [27]) that the linear Hebbian neuron learns the first principle compo-
nent of the data. Fig. 30 on the next page, top right item, shows the corresponding
result which we obtained by training one linear hidden neuron using only the clamped
phase. Similarity of both results demonstrates that the clamped phase corresponds
to simple Hebbian learning of linear neurons.

74

/margaux0/cweber/text/konf/98goett/vortragTFH/cw30_30x30x8x8_2000_0_5e-06_0_0.01_0_10_5_1_part.ps
/margaux0/cweber/text/konf/98goett/vortragTFH/cw30_30x30x8x8_2000_0_5e-06_0_0.01_0_10_5_1.ps
fig_collect/piece30_6.ps

Figure 30: Top: a row of receptive field of a net which had been trained by the
clamped phase only. Top, right: the receptive field of an alone-standing linear neuron
for comparison. Bottom: a row of fields of a net which had been trained by the free-
running phase only.

The last row of Fig. 30 shows a training result if only the free running phase is
used for learning. Note that this does not involve any data. In order to prevent all
weights from converging to zero we changed the correction to the learning rule for
constraining the weights to À Î"ÁÃÂÒÄIÅÃÆ�ú1ûÜ3× ² ã Êkï ÎÝÜü×ý × û Î ¤Ü3× û
Using

Ê�ï « çØê�ø�æ
, maximum weight values of the trained net were slightly larger than

for the normally trained net.
The field-vectors of hidden cells were maximally different, i.e. perpendicular. The

average scalar product between normalized weight vectors 6 was well below
çØê[ç�ç�ç�â

if
as many hidden neurons as input dimensions were chosen and after

Ù
was reduced.

The obtained value was
çõê�ç ÷�÷�ñkô â for overcomplete coding of above architecture. For

a normally trained net we obtained
çõêþâ ÷�ÿ âVøòæ and for the net which was trained by the

clamped phase the overlap was
â�ê�ç

.

5.3.2 Non-con vergence of weights

After receptive fields reach their mature appearance there is still fluctuation in the
weights. In order to rule out the influence of stochastic fluctuation in the data we
trained the net for a test with a fixed set of 1000 data points. The total weight change
upon showing the full set each time is plotted over time in Fig. 31 on the next page. It
shows that the weight change does not converge to zero (solid, top line).

If the algorithm is “split” into the two phases one can see that the net which is
trained by only the clamped phase does converge (dotted, lower line). Learning by
the free-running phase, however, does not lead to a stable state; weights change
continuously at a baseline level after initial maturation (dashed, middle line).

An interpretation of this phenomenon is the following: every attractor in the free
phase will be weakened by anti-Hebbian learning. Other attractors will emerge. Every
possible state thus should at some time become an attractor. Our net has ÷�� ���

6We define the average mutual overlap of normalized receptive fields by:����	��
 ���� ���� � ��
 ��������� ����������� � �� � ��� � �� � � ! �� � ��� .
75

fig_collect/2001_0.0_0.0005_0.0000_10.00_0.5_0.25_0_0_0.0_30_1.0_0.6_W_4_oneline.ps
fig_collect/2003_0.0_0.0001_0.0000_10.00_0.5_1.00_0_0_0.0_30_1.0_0.3_W_onelinear_4.ps
fig_collect/2001_0.0_0.0005_0.0000_10.00_0.5_1.00_0_0_0.0_30_1.0_0.3_W_4_oneline.ps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000

free
clamped

both

Figure 31: Total squared weight change
ý Ü#" × ¢ Î Ä%$ ïÜ3× É ÎÝÜ3× £ ¤ over time. Î Ä&$ ïÜ3× are the

weights after an always repeating set of data is once shown for training. Solid line
(top): learning by the complete algorithm; dashed line (middle): learning by the free-
running phase only; dotted line (bottom): learning by the clamped phase only leads
to convergence. The same learning step size

í
has been used in all three cases.

possible different states, which are many more than relaxations can be done. In this
case we will hardly observe weights to return to former values.

The effectiveness to weaken existing attractors should depend on the effective-
ness to reach them in the free-running phase. For example, a mean-field relax-
ation procedure with simulated annealing would reliably find the optimal attractor.
This would happen repeatedly until it finally vanish to be the glogal optimum by anti-
Hebbian learning, independent of the learning step size

í
.

This “try-something-new” principle of anti-Hebbian learning continues in the pres-
ence of the clamped phase with Hebbian learning. Even when the task to generate
certain data constrains the weights, the optimal setting is still ambiguous: for exam-
ple hidden neurons can exchange their weights (as if the indices of two neurons are
exchanged). The “try-something-new” principle tells them to do so continuously.

5.3.3 Non-con vergence of activities

It takes many iterations to relax activations ¢('�*) '¦ £ to reach a fix-point such that
Eqs. 62 on page 50 and 63 on page 50 are consistent. For computational reasons
the estimations for the mean activations are taken from an interrupted relaxation pro-
cedure. The above result was obtained with 15 iterations only for each data point or
free relaxation procedure.

Relaxation interruption does not impede the effects of sparse coding: already the
tendency of smallest activations to decrease fastest due to the mean-field transfer
function (not taking into account very large values in the saturation regime) enforces
sparse coding.

Fig. 32 on the following page plots the summed activation updates over time for

76

collectfigs/observe_deltaW_all.eps

net 30 iter
net 10 iter
net 3 iter

0 103

5000

30

100

200

0 250 500

net 10 iter
net 30 iter

net 3 iter

Figure 32: Summed absolute values of activation changes averaged over 70 relax-
ation entities over the relaxation progress. Three nets were relaxated which have
been trained using different total relaxation times in the free running phases: 3 iter-
ations (solid line), 10 iterations (dashed line) and 30 iterations (dotted line). Right:
same as left but over longer time and with a different scaling.

three nets, each have been trained using different relaxation times: 3, 10 and 30
iterations. There is a tendency for nets which are trained with many iterations to
relaxate slow at the beginning and to converge later. Therefore it seems impossible
to extend the relaxation time used for learning until convergence.

The weights seemingly adapt to the time of the interruption of the relaxation proce-
dure: the data should be best modeled after the number of iterations which are used
for learning. Some hidden unit activations tend to relax towards zero, others towards
“extreme” values in the saturation regimes of their transfer function. It seems, how-
ever, more favorable to model the continuous valued input data with a broad range of
hidden unit activations. The weights develop such that hidden unit activities have not
converged at the number of iterations which are used for learning.

5.3.4 The effect of the inverse temperature / weight length

As shown previously, weight length and inverse temperature are dependent parame-
ters for the case of recurrent computations with the mean-field approximation. Setting
these parameters properly leads to the following dilemma: (i) Small weights (small +)
lead to underestimation of the data. In order to reconstruct the gain of the data the
receptive fields will shape like the first principal components upon learning. (ii) Large
weights (large +) leads to a data reproduction using small hidden activations. Such
values are non-stationary by the relaxation dynamics.

In the case of Gibbs relaxation of the Boltzmann machine , + and - are indepen-
dent. It is now possible to decrease + (make the net prefer “zero”-states) without
underestimating the data as with too small feedback weights.

77

fig_collect/observe_delta_act_3_10_30_xr500_yr250.eps
fig_collect/observe_delta_act_3_10_30_xr30_yr7500.eps

5.3.5 Generation of imagesç çõê�æ â ø â@ç â@ç�ç�â@ç�çòç

Figure 33: Each row represents the development of activations on the input sheet.
The numbers which mark the columns give the iteration number in multiples of the
relaxation time which was used for learning, starting with initial random activation at
iteration 0. Images are generated by: top ten rows: a normally trained net; second
last row: a net trained by the clamped phase only; last row: a net trained by the free
running phase only.

Activations '� of input neurons of a trained net during ten test relaxations are de-
picted in Fig. 33, top. One can clearly see that activations continue to change after
the number of iterations used for training, some considerably. During early times ac-
tivations differ, still influenced by the random initialization. Finally they converge to
a small number of attractors (we can count three different states in the last column).
They are to be compared with image patches from the training data.

The net which has been trained in only the clamped phase generates images, the
development one of which is shown in the second last row of Fig. 33. Certainly, as
they are composed of weight vectors (projective fields) which all resemble the first
principle component of the data, they have this appearance.

Fig. 33, bottom row, shows images which are generated by the net trained in the
free-running phase. The observations are (i) activation strengths converge towards
zero and (ii) qualitatively, the appearance of the activation pattern (direction of the

78

fig_collect/observe_images_0.6_4_oneline.ps
fig_collect/observe_images_0.3_4_oneline.ps
fig_collect/observe_images_0.0_4.ps

vector) changes only little. The latter observation emphasizes that learning by free-
run clears must have cleared away strong attractors and thus supports there to be a
greater variety of attractors, i.e. nearly every state is an attractor.

5.3.6 Sparse coding in the Boltzmann machine and Kalman filter model

In order to run the Kalman filter model using the discrete activations � É â) ç) â � for
the hidden units as in the Boltzmann machine, we chose the prior to consist of three
Gaussian functions, Fig. 34 on the following page, top right. The figure also depicts
the corresponding transfer function and the observed distribution of hidden unit acti-
vations. The observed distributions of the sparse Boltzmann machine are shown in
Fig. 35 on page 81.

We see that the regular Kalman filter model distribution corresponds to the con-
tinuous distribution of the mean-field Boltzmann machine. However, the Boltzmann
machine does not allow activity values larger than 1. The distribution of the Kalman
filter model with three Gaussian functions as a prior corresponds closely to the dis-
tribution of the regular (stochastic) Boltzmann machine. However, for two reasons,
other values than the three maximum values of the Gaussians still do occur. First,
the relaxation procedure is prematurely terminated, so that the optimal values are not
found. Second, it is not the prior distribution of the hidden states which is maximized
but the posterior given a data point. Thus, the prior and the likelihood together are to
be maximized.

5.4 Topographic mappings

It has been shown by the author and others [69],[70],[57],[58],[68],[9] that the mech-
anisms proposed in section “Priors for topographic mappings” can account for ro-
bust topographic mappings even under experimentally altered conditions. In these
models, the most important factor during refinement of the topographic maps was
observed to be neural activity.

The models were bottom-up approaches to understand the system and the equa-
tions were thus heuristic. Nevertheless, the terms in the growth equations were care-
fully selected to yield a description which is as small and as simple as possible. As a
consequence, simple growth terms were additively combined to yield the full growth
equation. They were: (i) an intrinsic fiber-target interaction which formulates chemo-
specific adhesion between afferent fibers and target cells, (ii) an activity-dependent
fiber-fiber interaction which implements correlation-based Hebbian learning, (iii) con-
straints on the synaptic weights. These consist of a constant growth term and of
pre-synaptic as well as postsynaptic decay. Finally, (iv) in order to simulate one ex-
periment which has been done on the retino-tectal projection only, there has been
introduced an intrinsic fiber-fiber interaction which describes mutual selective adhe-
sion between the afferent fibers.

79

priors on hidden unit activations

0

0.05

0.1

0.15

0.2

0.25

0.3

-3 -2 -1 0 1 2 3

f (x)

0

0.05

0.1

0.15

0.2

0.25

0.3

-3 -2 -1 0 1 2 3

f (x)

transfer functions

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

x + 0.25 * fs (x)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

x + 0.1 * fs(x)

observed distributions of hidden unit activations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-3 -2 -1 0 1 2 3

old

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-3 -2 -1 0 1 2 3

old_3gaus

relaxations of activations

hidden units

input units

Figure 34: Kalman filter model. Left: sparse prior. Right: 3 Gaussians as prior.

80

fig_collect/old_3gaus_R_clam_1.ps
fig_collect/old_R_clam_1.ps
fig_collect/old_3gaus_T_clam_1.ps
fig_collect/old_T_clam_1.ps
fig_collect/old_3gaus_obs_distr.ps
fig_collect/old_obs_distr.ps
fig_collect/old_3gaus_transfunc.ps
fig_collect/old_transfunc.ps
fig_collect/old_3gaus_prior.ps
fig_collect/old_prior.ps

observed distributions

0

2000

4000

6000

8000

10000

12000

14000

-3 -2 -1 0 1 2 3

bm_gibb

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-3 -2 -1 0 1 2 3

bm_mean

relaxations of activations, free run

hidden units

input units

relaxations of activations, clamped phase

hidden units

input units

Figure 35: Boltzmann machine. Left: Gibbs sampling, right: mean-field approxima-
tion.

In this work, we use maximum-likelihood derived algorithms in the sense of a top-
down approach. We have seen that activity dependent mechanisms, i.e. Hebbian
learning, coincide with information theoretic goals. In addition, recurrent and feed-
forward models with learning rules derived by a maximum-likelihood or a maximum-
entropy principle develop target neurons with orientation preference. In contrast, neu-
rons in the abovementioned models develop circularly symmetric receptive fields.
Thus it will be interesting in the case of non-symmetric receptive fields how these
fields will arrange if they are driven to form a topographic map.

We used the recurrent Kalman filter model as a basis for topographical modeling
(Fig. 11 on page 27). For each image vector which is presented on the input layer,
first the algorithm iteratively relaxates activities (Eqn. 37 on page 38) to obtain the
optimal hidden code to predict the image, given a prior on the activities for sparse
coding which is scaled by

ß Å .
We add two biologically inspired mechanisms to the learning rule for the weights:

(i) A diffusion term [42] of each weight to its neighboring cells in V1. The noise in the

81

fig_collect/bm_mean_R_clam_1.ps
fig_collect/bm_gibb_R_clam_1.ps
fig_collect/bm_mean_T_clam_1.ps
fig_collect/bm_gibb_T_clam_1.ps
fig_collect/bm_mean_R_free_1.ps
fig_collect/bm_gibb_R_free_1.ps
fig_collect/bm_mean_T_free_1.ps
fig_collect/bm_gibb_T_free_1.ps
fig_collect/bm_mean_obs_distr.ps
fig_collect/bm_gibb_obs_distr.ps

precision of wiring due to this effect is expressed by the term
ß/. Ú10 ½ ï º¾ ºÐ0 §© ½ . The effect of

this term is comparable to the effect of activity diffusion (Eqn. 71 on page 61) but it is
faster to compute if activations have to relax in several steps. (ii) A chemical repulsion
term (Eqn. 72 on page 62, Fig. 25 on page 63) proportional to graded concentrations
of chemical markers along each axis of the LGN (243&5��) and V1 (27698) accounts for
the polarity of the topographic projection. The soft constraint on the weights which is
scaled by

ß ï « â@çõê�ç
is added to Eqn. 38 on page 38:

À ÎÝÜ3×;: ÉAß ï ÎÝÜ3× ý × û Î ¤Ü3× û .

Figure 36: The resulting map where the chemical term was active,
ß Á é ç

, but
without diffusion term,

ß<. « ç
. Green indicates positive, red negative connection

strengths to the input neurons. Receptive fields are mostly topographically arranged
edge detectors but there are discontinuities from one V1 cell to its neighbors.

Figs. 36 and 37 on the next page show the map after training on natural images
where each square shows the receptive field of a hidden neuron. A larger number
of hidden neurons,

â@ç ó âVæ
, then input neurons,

â@ç ó â@ç
, form an overcomplete

representation of the input.
The properties of the receptive fields of the target neurons, retinotopy and orien-

tation preference, change more or less continuously along space impeded mainly by
the small net size. The map in Fig. 36, however, was obtained without a diffusion
term, i.e.

ß=. « ç
. Only the chemical repulsion term was present,

ß Á « øõê[ç
ini-

tially, but it decreased linearly towards zero during the simulation. Surprisingly, even
without direct neighbor interaction, the properties of the receptive fields change con-
tinuously across space in large areas. There are discontinuities, as well. A possible
explanation for this result is the following: while

ß Á é ç
was decreasing, more and

more connections could survive. The continuity of this process follows the continuity
of the chemical repulsion function.

In the case with diffusion, the receptive fields seem to be superimposed by neigh-
boring fields which adds noise to the elsewise Gabor-like receptive fields.

82

fig_collect/2401_2.0_0.0005_0.000000e+00_0.01_0.0_10_10_0_0.3_5_0_1_W_3.ps

Figure 37: The resulting map with
ß Á as above and with diffusion,

ß>. « æ Ú âVç ´@? .
The properties of the receptive fields change continuously in a pattern which seems
to be larger than that observed above. There are no marked discontinuities, but
“superposition” of receptive fields impairs maturation of “clean” edge detectors.

5.5 Modularization

5.5.1 Generation of parallell y and of hierar chicall y organiz ed data

a)

b)

Figure 38: Examples of stimuli �� used for training. a) Stimuli generated by two models
in parallel. b) Stimuli generated by a hierarchical model.

Artificial data are generated by two different paradigms. First, in a non-hierarchical
manner, data consist of discrete, sparsely generated elements. These elements are
lines of 4 different orientations on a

æ ó æ
grid of input units resulting in a total num-

ber of 20 different elements. For the first experiment each line is chosen with a fixed
probability independently of any other. Thus there is no structure among the code el-
ements. For the purpose of structuring our network into two distinct groups of hidden
neurons we form two groups of the elements. One group, horizontal and ñ æ ¯ lines are
generated with probability

çõêþâ
whereas the other group, vertical and

â ÷ æ ¯ lines are
generated half as often, with probability

çõê[ç�æ
each. Fig. 38 a) shows example data.

For the second experiment data is generated in a hierarchical manner [32]. First,
one of 4 orientations are chosen, which represents a decision process within a higher

83

fig_collect/data_hier/n_h_4.ps
fig_collect/data_hier/m_h_4.ps
fig_collect/data_hier/f_h_4.ps
fig_collect/data_hier/d_h_4.ps
fig_collect/data_hier/1_h_4.ps
fig_collect/data_hier/8_h_4.ps
fig_collect/data_hier/7_h_4.ps
fig_collect/data_hier/3_h_4.ps
fig_collect/data_hier/2_h_4.ps
fig_collect/data_hier/y_h_4.ps
fig_collect/data_hier/o_h_4.ps
fig_collect/data_hier/l_h_4.ps
fig_collect/data_mix/z_4.ps
fig_collect/data_mix/u_4.ps
fig_collect/data_mix/s_4.ps
fig_collect/data_mix/e_4.ps
fig_collect/data_mix/7_4.ps
fig_collect/data_mix/t_4.ps
fig_collect/data_mix/o_4.ps
fig_collect/data_mix/b_4.ps
fig_collect/data_mix/3_4.ps
fig_collect/data_mix/f_4.ps
fig_collect/data_mix/c_4.ps
fig_collect/data_mix/2_4.ps
fig_collect/2401_2.0_0.0005_5.000000e-06_0.01_0.0_10_10_0_0.5_5_0_1_W_3.ps

hierarchical level. Then, on the lower level, lines from the formerly chosen orientation
only are generated with probability

çØê ÷ each, i.e. for each of the 5 positions on the
input array a line is switched ON with this probability. Fig. 38 on the preceding page b)
shows example data.

5.5.2 Results from the Kalman filter model

Weights were initialized with small random values with mean zero. Then the following
on-line learning procedure was repeated

æ Ú â@ç ? times. A data point was shown to the
input neurons and Eqs. (44 on page 42, 45 on page 42) were iterated 10 times after
initialization of hidden unit activations with zero to obtain an approximate estimate for
the best hidden code. Using these values the weights were trained according to Eqs.
(46 on page 42).

0

1

2

0 1 2

λ = 0.4

net input

ac
tiv

at
io

n (highest level)
λ = 0.2

(middle level)

Figure 39: The transfer functions of the hidden units with different sparsity parametersßáà
.

Distinguishing the modules Fig. 39 displays the transfer function (Eqn. 69 on
page 58) for two different sparseness values

ßØà
. The solid line shows the transfer

function of neurons which are designed for the hierarchically higher level. The func-
tion displayed as a dashed line is intended for middle layer neurons. Higher level units
fire more often because one of the four orientations occurs more often in the data set
as one of the four ó five lines. The sparsity parameters in the simulations are chosen
as:

ß¥à « çØê�ø
for one half of the hidden neurons,

ßkà « çõê ñ for the others.
Other parameters are: step-size for the update of activations A à « çØê�â

, tradeoff for
bottom-up/top-down input + « çõê ô , learning step-sizes A ïCB 8 « çõê[ç ÷ , A ï 8D8 « çõê�ç�ç ÷ ,
constraint on the weights

Ê�ï « çõê[ç ÷ .

Areas organiz e in parallel The net which had been trained on the parallel data ex-
tracted all lines from the data. Fig. 40 on the following page a) shows some example

84

/margaux0/cweber/text/konf/00IJCNN/trans_fkt.eps

¬ 8 B ¬ 8D8
a)

b)

Figure 40: Left: the recognition weight matrices
¬ 8 B and right: the lateral recogni-

tion weight matrices
¬ 8D8 after training. Each square of the weight matrices shows

the receptive field of one of the
æ óÌÿ hidden neurons, black indicating negative, white

positive weights. Middle , weights to one of the
æ ó æ

input neurons and right , lateral
weights. A larger number of hidden neurons than input neurons allow for an over-
complete representation.
a) Parallel organization of areas: weights

¬ 8 B to the inputs concentrate on
ç ¯ andñ æ ¯ lines in the lower half and on ô ç ¯ and

â ÷ æ ¯ lines in the upper half. b) Hierarchi-
cal organization of areas: neurons in the upper half code for the input via

¬ 8 B while
neurons in the lower half organize the code from the upper units via

¬ 8D8 . Neurons
which code for lines of ñ æ ¯ orientation are marked by a frame.

data and the weights after training. Each code element (one of the
æ ó ñ possible

lines) is represented by a weight vector of the matrix
¬ 8 B . Due to overcomplete

coding a small number of neurons is not connected to the input and some lines are
represented by two hidden neurons. The bottom half of the hidden neurons which
have stronger activations (

ß�à « çõê�ø
) specialize on the input features which occur

more often (lines of
ç ¯ and ñ æ ¯). The upper neurons which have weaker activations

85

/margaux0/cweber/text/konf/00IJCNN/obs_W_1_1__4_hier_big.ps
/margaux0/cweber/text/konf/00IJCNN/obs_W_1_0__4_hier_big.ps
/margaux0/cweber/text/konf/00IJCNN/obs_W_1_1__4_mix.ps
/margaux0/cweber/text/konf/00IJCNN/obs_W_1_0__4_mix.ps

(
ßáà « çõê ñ) specialize on the rare features (lines of ô ç ¯ and

â ÷ æ ¯). On both layers,
there are a small number of exceptions from the rule.

If prior knowledge that the data has no hierarchical structure was assumed then�¦S¤ would not have to be computed by Eq. (45 on page 42). For consistency with
the next experiment, however, we included the second hierarchical level and �¦ 8 takes
into account �¦O¤ . Hereby lateral weights

¬ 8D8 emerge through which in general the
activation �¦S¤ of one neuron supports the activation �¦ 8 of an arbitrary other neuron.
The core result of this experiment as described above is unchanged if a second
hierarchical level is omitted (results not shown).

Areas organiz e hierar chicall y The net shown in Fig. 40 on the preceding page b)
was trained on the hierarchical data set. It has structure among the weights

¬ 8 B to
the input in the area with less active neurons, and has structure among the lateral
recognition weights

¬ 8E8 in the area with stronger activation. The former neurons
have not discovered single lines as input elements because a larger number of them
were presented which have the same direction compared to the first experiment (the
average number of lines in each stimulus is 1.5 in both settings). Thus, elementary
features could as well be the dark lines in between. Another argument for a different
representation is that the less active neurons form an undercomplete representation
of the input.

Neurons in the more active area join together those neurons in the less active
region which code for the same orientation by the lateral weights

¬ 8D8 . As the more
active neurons they code for the orientation of a stimulus because one of four orien-
tations is statistically chosen more often than a single line.

We did not adjust the sizes of the areas to the expected outcome which we could
have done by setting the parameters of exactly four neurons to have strong activa-
tions. As a consequence of a too large number of highly active neurons more neurons
redundantly represent the second hierarchical level.

5.5.3 Results from the Helmholtz machine

Concatena tion of hierar chical levels Our model is a Helmholtz machine with two
hidden layers. However, from the architecture or the algorithm only, the two hidden
layers cannot be distinguished. The two layers are concatenated to one hidden layer
(Fig. 11, top). Lateral weights, both recognition

¬ 8D8 and generative Ô 8E8 , as well as
possibly missing (zero-value) weights to the input allow some neurons to represent
the code of other hidden neurons and thus to belong logically to a second hierarchical
level.

Recognition of data involves two consecutive steps which distinguish the two hid-
den layers: activations �¦ 8 evoked from data �� via input weights

¬ 8 B are assigned
to the first (lower) layer. Activations �¦�¤ evoked from �¦ 8 via lateral weights

¬ 8D8 are
assigned to the second (higher) layer.

86

Data generation also distinguishes two hidden layers: a hidden code �FÒ¤ on the
logically higher hidden layer evokes via lateral, generative weights Ô 8D8 a hidden code�F 8 on the logically lower layer. Reconstructed data �F B is then generated via Ô B 8 using�F 8 .

Note that a neuron can be active at both times consecutively. In order to dis-
courage this during recognition, an activity-dependent weight constraint (Eq. 82 on
page 89) introduces competition between all incoming weights of a hidden neuron.
This encourages a hidden neuron to receive input from the input neurons via

¬ 8 B or
from other lateral neurons via

¬ 8D8 but not both.

0

0.5

1

-2 0 2 4 6 8

m=0, n=10

m=6, n=40

pr
ob

ab
ili

ty
 o

f
ac

tiv
at

io
n

net input

(middle level)

(highest level)

Figure 41: The binary stochastic transfer functions �¡ ï " ÅG with two different sets of
parameters ö and H which are used in the two subgroups of the hidden neurons.
Given an input (x-axis) they represent the probability (y-axis) that a neuron is “ON”.
This is also the mean output value used in �¡ ï " ÅI . The dotted line shows the transfer
function of neurons which are designed for the hierarchically higher level. There is
a prominent resting activity (H « ÿ) but a weak gain (ö « ñ ç , i.e. high sparsity of
firing). The function displayed as a solid line is intended for middle layer neurons.
There is no resting activity (H « ç

) but a stronger gain (ö « âVç
). In the wake phase,

these latter values were used for the function �¡ ïI for all neurons.

Distinguishing the modules The idea to distinguish the hidden neurons to form
two modules takes advantage of data generation in the sleep phase: higher-level
neurons do not receive any input, but lower-level neurons receive input from the
spontaneous activity of the higher-level neurons. Thus, a neuron which tends to
be spontaneously active is well suited for the hierarchically highest level. In contrast,
a neuron which becomes strongly active from input only is well suited to represent
the lower level. Two stochastic transfer functions which display these differential be-
haviors are depicted in Fig. 41 (Eq. 74). Underlying are three states a hidden neuron
can choose from stochastically: an “ON”-state evoked by its input

ª Ü , an “ON”-state
evoked spontaneously with degeneracy H and an “OFF”-state with degeneracy ö .

87

/margaux0/cweber/text/konf/00ICONIP/fig/trans_fkt.eps

It was shown that degenerate “OFF”-states introduce sparse coding which is used
to let feature detectors emerge in a stochastic net [63]. On the other hand, sponta-
neous (resting) activity was shown to be necessary in attractor nets [37] as well as in
vitro [38] to maintain robust low frequency firing. Our model functions accommodate
both features, “OFF”-states with degeneracy ö and spontaneous “ON”-states with
degeneracy H . The probability that a hidden neuron J is switched “ON” by its inputª Ü is (cf. Eq. 64 on page 51):° ¢ ¦OÜ « â £ « ³ ®LK ã H³ ®LK ã H ã ö « ì ¡ I ¢ ª Ü £ (74)

The corresponding stochastic transfer function which assigns the two binary values
is denoted by ¡ G . The corresponding mean-field transfer function is ¡ I .

Wake-sleep algorithm The detailed processing steps of the wake-sleep algorithm
on the flexible architecture are as follows. Wake phase, inferring the hidden code
from a data point �� : �¦ ï 8 « �¡ ïID¢ ¬ 8 B �� £�¦ ï ¤ « �¡ ïID¢ ¬ 8D8 �¦ ï 8 £ (75)

Reconstruction of the input: �F ï 8 « Ô 8D8 �¦ ï ¤�F ï B « Ô B 8 �¦ ï 8 (76)

Update of the generative weights:À Ô 8E8 « A 8D8 ¢}�¦ ï 8 É �F ï 8 £ Ú ¢}�¦ ï ¤ £ îÀ Ô B 8 « A B 8 ¢V�� É �F ï B £ Ú ¢}�¦ ï 8 £ î (77)

Sleep phase, initiation of the hidden code at the hierarchically highest level:�FVÅ¤ « �¡ ÅG ¢ ç £ (78)

Generation of an input code: �FIÅ 8 « �¡ ÅG ¢�Ô 8D8 �FIÅ¤ £�FIÅB « Ô B 8 �FIÅ 8 (79)

Reconstruction of the hidden code:�¦bÅ 8 « �¡ ÅIè¢ ¬ 8 B �FVÅB £�¦bÅ¤ « �¡ ÅI ¢ ¬ 8D8 �FVÅ 8 £ (80)

88

Update of the recognition weights:À ¬ 8 B « A 8 B ¢��FIÅ 8 É �¦bÅ 8 £ Ú ¢��FIÅB £ îÀ ¬ 8D8 « A 8E8 ¢��FIÅ¤ É �¦bÅ¤ £ Ú ¢��FIÅ 8 £ î (81)

Note the choice of mean activation functions �¡ I and stochastic binary functions�¡ G . Where possible, �¡ I was chosen, for efficacy reasons. In the sleep phase, initia-
tion of the hidden code must be done stochastically, using �¡ G .

The wake-sleep algorithm is not a gradient descent in an energy space and easily
gets stuck in local minima. The following weight constraints were applied to improve
the solutions found: (i) generative weights Ô B 8 and Ô 8D8 as well as lateral recognition
weights

¬ 8D8 were rectified, i.e. negative weights were set to zero. (ii) a soft weight
constraint was applied to the recognition weights in order to preserve sparse coding
and to enforce competition between coding on the two hierarchical levels. It adds
to Eq. 81 and treats positive and negative weights separately. With the use of the
Heaviside function M ¢ � £ « â

, if � é ç
, otherwise

ç
, it can be written as:À Î . $gÁON ÓÜ3× « ß ï ª Ü M ¢ Î¹Ü3× £ ÎÝÜ3× Ë × û M ¢ Î¹Ü3× û £ Î ¤Ü3× û (82)

where �ª « �¦ ï 8 ã �¦ ï ¤ ã �¦ Å 8 ã �¦ Å¤ is the sum of all activations which have been induced
by the recognition weights. The indices P) P!Q extend over all input and hidden units.

The algorithm often gets stuck in suboptimal solutions. During learning, single
weights temporarily get very strong. We could obtain good results faster if maximal
weight values were clipped at the values which were later maximal.

Note that the second-level weights learn to predict the contribution of the activation
of the first level units which originates from the input units. They do not learn the
averaged activation which take into account the back projection nor the value which
is sparsified by the transfer function.

Training Weights were initialized with small positive random values. On-line learn-
ing was performed with

æ Ú â@ç ? randomly generated data points. For each data point,
Eqs. (75) to (82) were computed, where the sleep phase was repeated 8 times in
order to obtain an average of the stochastic functions, Eqs. (78,79).

One third of the hidden neurons (upper third in Figs. 42,43,44) were designed
to code on the highest hierarchical level (see the caption of Fig. 41 for description),
the other two thirds for the lower level. Other parameters were: learning step sizesA B 8 « A 8 B « çõê�çØâ

, A 8E8 « çØê[ç�çØâ
, both were decreased linearly to zero in the second

half of training. Weight decay parameter
ß ï « çõê�çØâ

.

Areas organi ze in parallel After training on parallelly organized data we find that
neurons in the upper third (Fig. 42) predominantly represent the more frequent stim-
uli (lines of ô ç ¯ and

â ÷ æ ¯) while neurons in the lower two thirds represent the less

89

¬ 8 B ¬ 8D8

–

Figure 42: The recognition weight matrix
¬ 8 B (left) and the lateral recognition weight

matrix
¬ 8E8 (right) after training on parallelly organized data. Each square of the

weight matrices shows the receptive field of one of the
æ ó ÿ hidden neurons; left ,

weights from the
æ ó æ input neurons and right , lateral weights. Negative weights are

brighter than the background (frame), positive weights are darker (left). For lateral
weights (right), zero weights are white (there are no negative weights).
Areas have organized parallelly: weights

¬ 8 B to the inputs code for ô ç ¯ and
â ÷ æ ¯

lines in the upper third and predominantly for
ç ¯ and ñ æ ¯ lines in the lower two thirds.

frequent stimuli (lines of
ç ¯ and ñ æ ¯). Fig. 42 shows an exemplary result of the

trained recognition weights
¬ 8 B , and also lateral recognition weights

¬ 8E8 which have
been included for consistency with the next experiment and which have not learned
a meaningful structure here.

This result is surprising, because we would expect the neurons in the upper third to
code for the less frequent stimuli, because they are less susceptible to input. Instead,
it seems to be substantial that they are more active spontaneously and when input is
low (Fig. 41, H « ÿ , ö « ñ ç). This is the case in the initial phase of learning when
the weights have not organized. The neurons which are more active will now learn
faster the most frequent stimuli.

We repeated this simulation ten times with different initial random values which
changes the initial weights as well as the randomly generated stimuli. Table 7 shows
the scores. Because there are more frequent lines than there are neurons in the
upper third, some neurons in the lower two thirds, too, code for frequent lines. Alto-
gether, there are four more neurons than stimulus types and so some receptive fields
remain empty.

Areas organiz e hierar chicall y The net shown in Fig. 43 was trained on the hier-
archical data set and has self-organized accordingly. Neurons in the upper third are
more active spontaneously and four of them have vanishing connections

¬ 8 B to the
input neurons. Instead, they code on the higher level by integrating via lateral weights

90

/margaux0/cweber/p/results/ICONIP00/23mixcutW/W_1_1__1_out.ps
/margaux0/cweber/p/results/ICONIP00/23mixcutW/W_1_0__1_out.ps

ç ¯ , ñ æ ¯ ô ç ¯ , â ÷ æ ¯ none
upper third 10% 70% 20%
lower two
thirds

56% 28% 16%

Table 7: The neurons from the two regions and the stimulus classes which they
choose to code for in the parallel setting. The percentage states how often a neuron
selects a class. Numbers are averaged over ten runs and over all neurons within
each region. ¬ 8 B ¬ 8D8

–

Figure 43: Same as Fig. 42, but trained on hierarchically organized data (same ini-
tialization of weights). Areas have organized hierarchically: neurons in the lower two
thirds code for the input via

¬ 8 B while four neurons in the upper third each integrate
via

¬ 8D8 units from the lower two thirds which code stimuli of one direction. Neurons
which code for lines of ñ æ ¯ orientation are marked by a frame.¬ 8D8 neurons from the lower level which code for the same orientation.

These higher-level neurons were never observed to have weights to other neurons
in the upper third even if these had matching orientation. This would not be a flaw if
only four neurons had been given the proper parameters for the higher level. In some
experiments, however, only three neurons in the upper third managed to code on the
higher level while the others were connected to the input neurons. Then one neuron
within the lower two thirds was superfluous and did not code on the higher level.

Areas organiz e from intrinsic noise Without data (�� set to zero), only intrinsic
stochastic neuronal dynamics remains for training. As the generative weights Ô B 8
towards the input become zero, also the recognition weights

¬ 8 B will decay in order
to “invert” the generative model. Prevalently low activation values favor neurons in
the upper third (Fig. 44) to develop lateral recognition weights

¬ 8D8 because these
have stronger resting activity. The resulting structure, however, is not reflected in the

91

/margaux0/cweber/p/results/ICONIP00/draw23hiercutW/W_1_1__1_out.ps
/margaux0/cweber/p/results/ICONIP00/draw23hiercutW/W_1_0__1_out.ps

¬ 8 B ¬ 8D8

–

Figure 44: Same as Fig. 42, but trained with zero-valued data. Neurons in the upper
third receive input via

¬ 8E8 from the units in the lower two thirds. Weights
¬ 8 B to

the input neurons are much smaller but still visible in the lower two thirds because of
normalization of the brightness scale.

generative weights Ô 8E8 (not shown), because in the wake phase, when these are
trained, parameters of both regions do not differ.

5.5.4 Effect of initialization

In separate experiments with the Kalman filter model we have perceived a strong in-
fluence of developmental constraints when the sparsity parameter

ß�à
was unchanged

across the hidden neurons (results not shown). In the parallel setting, a hidden area
where neurons are initialized with larger weights and where weights grow faster will
look at those input features which occur more often. Likewise, in the hierarchical set-
ting, a desired relationship between areas can be induced by a strong initialization
and faster growth of favored weights.

Similar can be observed with the Helmholtz machine, with constant parametersö and H across the hidden neurons: in the parallel setting, a hidden area where
weights grow faster will look at those input features which occur more often (results
not shown). This effect parallels the effect of stronger activity at low input which am-
plifies only the Hebbian learning term. Likewise, in the hierarchical setting, a desired
relationship between areas can be induced by a strong initialization and faster growth
of favored weights. This renders our model a model for the influence of topological
neighborhood.

92

/margaux0/cweber/p/results/ICONIP00/23zeroincutW/W_1_1__1_out.ps
/margaux0/cweber/p/results/ICONIP00/23zeroincutW/W_1_0__1_out.ps

6 Discu ssion

Boltzmann machine

With the generation of localized edge detectors on a large array of cells we have
shown that the Boltzmann machine is suited for biological modeling.

Appr oximations used for the Boltzmann machine

Using the architecture of a restricted Boltzmann machine, the clamped phase of the
learning rule can be computed exactly by activating each neuron only once. However,
we had to use several approximations along the way to calculate the correlationsR ¦ ÜÇ�Ø×�S ´ during free run.Õ The discrete states which obey a Boltzmann distribution were rendered by the

mean-field approximation into discrete states which follow a trajectory towards
a stationary mean value which is used for learning.Õ The temperature remains constant during relaxation. The global maximum for
the mean-field relaxation can be guaranteed to be found, if the technique of sim-
ulated annealing is used. This involves scaling a temperature parameter slowly
towards a final value during relaxation. We did not introduce this parameter
which has the effect of having a constant non-zero temperature value. In effect
we do not generally find the global maximum of T úD$VU	N © but get stuck in one of
its numerous local maxima.Õ Fix-point iteration (the new activations are directly inserted) rather than contin-
uous update of activities with small learning steps is performed. Step sizes are
thus very large but the direction of the gradient is followed.Õ Early stopping of the relaxation procedure in general does not even allow the
local optimum to be reached.

For our modeling purpose, the approximations which we used were not crucial to
learning. The task is not to calculate

R ¦ÞÜþ�Ø×7S ´ once perfectly. Instead, many repeti-
tions of the relaxation procedure and the weight update are performed. Remembering
that

À ÎÝÜü× ² É R ¦ Ü �Ø×7S ´ , not reaching the global maximum during one free relaxation
means that the corresponding point in state space remains an imprinted memory
item. It will be reached more easily in a following relaxation procedure. Thus, if the
optimal representation is missed and a weight update performed, then this represen-
tation is more likely to be hit for the next update.

93

The two phases of the Boltzmann machine

Gradient descent on the maximum likelihood energy function leads to the Boltzmann
machine learning rule which consists of two terms. Each term in isolation does not
have a mathematical justification.

It is tempting to identify the clamped phase of the Boltzmann learning rule to awak-
eness and the free-running phase to sleep and dreaming. We have investigated both
phases under the conditions of our simulations: (i) symmetric feed-forward-/feedback
weights but no lateral connectivity and (ii) mean-field approximation on single data
points. Awake learning only makes neurons react monotonously to the input – there
is no crosstalk and thus no decorrelation between them. Sleep induces variety: on
the one hand the number of attractors increases, on the other hand weights change
continuously.

Whether there can be two kinds of learning for given connections in the cortex
will be difficult to determine. A list of some dozen of sleep associated chemical sub-
stances [35] encourages the idea. The control of the two phases may be served by
the thalamus. Thalamic LGN cells exhibit two distinct responde modes [53]: a relay
mode, which we associate to the wake phase, in which cells replicate retinal input
more or less faithfully, and a burst mode, which we associate to the sleep phase, in
which cells burst in a rhythmic pattern that bears little resemblance to the retinal input.

Comparison of the Boltzmann machine and the Kalman filter model

A most powerful form of the maximum-likelihood principle is that our model generates
the whole dataset freely, that is each data point with its corresponding probability.
Neurons have to become active when no input arrives, which can be determined in a
computationally expensive manner from the Boltzmann distribution.

The Kalman filter model is computationally modest because the distribution over
hidden states, Eqn. 29, is approximated by only one optimal state, Eqn. 30. In order
to find this state, a data point must be given. This data generating model thus has
the goal to reconstruct a data point while it is its actual input. Neurons are inactive
without input.

For the reconstruction of a known data point �� , the optimal hidden neuron activa-
tions �¦ can be found by minimizing the squared reconstruction error:

T « âø ¢I�� É ¬ î �¦ £ î ¢V�� É ¬ î �¦ £ (83)

Gradient descent with respect to �¦ leads to an update dynamics for the activations in
time W�¦ « Ù ¬ ¢I�� É ¬ î �¦ £
with learn step

Ù
. This equation characterizes the model as follows: (i) input neurons

carry the reconstruction error �� É ¬ î �¦ . If the data point is perfectly recognized then
input neurons become inactive. (ii) Feed-forward weights

¬
transfer the remaining

94

activations to the hidden units and (iii) feed-forward and feedback weights are “sym-
metric” but with opposite sign. It is a goal of the model not to generate but rather to
extinguish a given data point.

For simple comparison we compare the learning rules which are used by the data
reconstructing model and the Boltzmann rule in the convergent state. The energy
function of the first model, Eqn. 83 on the page before, has a minimum ifË4X �� X « ËLX ¬ î �¦ ÂpëiÆ�¦ ÂgëiÆ is the hidden activation vector which is optimal to reconstruct the data point �� X .
Multiplying both sides by this value yieldsË X ¢}�¦ Âpë{Æ £ î �� X « Ë X ¢}�¦ ÂgëiÆ £ î ¬ î �¦ Âpë{Æ
In our case, learning is complete if Eqn. 61 on page 49 yieldsË4X R ¦OÜI�Ø×YS X � « Ë7Z R ¦ ÜI��×7S Z ´

While in the upper equation an activation vector �¦ Âpë{Æ is used which is optimal for
reconstruction the latter equation uses a mean activation.

Two circumstances make it a harder goal to satisfy the latter equation. First, any
activation value which is used for learning has to settle by a free relaxation procedure
without the use of input. As we have seen, however, the fix-points are not “sparse”,
instead all neurons tend to take either strong or zero activations. Secondly, the set of
free relaxation entities should reflect the data set. This is achieved by the relaxation
procedure to converge to different local minima. The first problem is herby seemingly
solved if fix-points alterate between strong values only and zero values only. This
satisfies Eqn. 61 on page 49 because strong values cancel out zero values and thus
leads to convergence of mean-field learning.

Biological considerations

There is a fundamental difference in the interpretation of the network architecture be-
tween the recurrent models which we have used. The Boltzmann machine generates
data through positive feedback projections, i.e. feedback weights have the same sign
as feed-forward weights. The Kalman filter model extinguishes a given data point
by subtraction of its prediction. Feedback weights have opposite sign compared to
feed-forward weights.

Biological evidence for symmetry or anti-symmetry of weights is difficult to obtain.
Long range cortico-cortical and cortico-thalamic projections are made up of pyramidal
cell axons which are thought to be excitatory. In general, however, they do not contact
the input neurons (layer 4 of cortex) directly but via cells in superficial layers and layer

95

6 as well as cells with local arborization in layer 4. Inhibitory cells are among these
populations.

Physiological observations support the Boltzmann machine. First cortical and tha-
lamic neurons are active even during sleep, that is when no input data arrive. Another
observation is that an expected stimulus is more likely to be seen than an unexpected
stimulus. A feedback prediction thus should rather generate than extinguish the ex-
pected pattern.

An interpretation to the Kalman filter model is that an unexpected stimulus evokes
further interest because non-predicted activation remains on the input. This is an
attractive theory especially for the superior colliculus which is attributed to defining
the focus of attention [5]. However, it may govern the function of the cortex during
awakeness.

Topographic maps

We have shown that within an information theoretic theory it is possible to make bio-
logical modeling. More precise, Bayesian priors can introduce the mechanisms which
are needed to obtain functionally specific neurons and topographic mappings. The
results are promising to parallel orientation patterns observed in cats and primates if
net sizes are chosen larger.

Modularization

We have shown that a net trained according to a maximum likelihood framework can
organize in a) two parallelly or b) two hierarchically organized areas dependent on
statistics of the data. Parameters are unchanged between these experiments. The
hidden area with more frequently active neurons a) looks at input features which occur
more often or b) takes the function of the hierarchically higher area in our setting.

We take this as a model for the development of connection patterns and relations
between cortical areas like the parallel segregation of the visual stream into a lateral
and a dorsal pathway or the hierarchical relation between V1 and V2. Different func-
tional properties, e.g. in a spike coding model the refractory period or burst duration,
could be varied across areas, to account for a broader parallel organization and for
more hierarchical stages.

In contrary to models which are based on neighborhood only [52], however, we
model activity based and data driven growth and refinement of connections. The
results on parallel and hierarchical organization are similar to those obtained by our
previous work [66]. They show that simple parameter changes within a neural net-
work can conduct the data flow to structure the network via Hebbian learning to form
an adequate representation of the data.

The Helmholtz machine is advanced w.r.t. the Kalman filter model because of its
biologically plausible activation dynamics. Its stochastic neurons are activated rem-
iniscent of a synfire chain, whereas in the Kalman filter model, each hidden neuron

96

has to keep track of two activation values at a time. Also, internal structuring without
any data can to a certain degree be done using the Helmholtz machine.

For simplicity we have neglected many additional learning mechanisms of the bi-
ological system. Most important are topographic constraints which favor neighboring
cortical areas to be connected [52]. These determine however the gross connectiv-
ity pattern between cortical areas only. Within an area a topographic constraint can
force a minority of neurons to code conform with the majority. Such a constraint could
eliminate the outliers in our results. Time behavior like a possible flow of a stimulus
induced signal from the back of the cortex towards the front could alternatively or as
an additional mechanism give rise to hierarchical relationships.

By our approach which omits as much as possible internal mechanisms we could
display a large potential which the data has in the organization of structure. On a high
level of abstraction it demonstrates how much influence the structure of the data may
have on the emerging structure of the brain.

Connectivity

I
II
III

IV

VI
V

2 2u =f(h)

V u11 2

W x10 0

u =f(h)1 1x 0

11VW10

11 1W u

Figure 45: Proposed computations of neurons. The notation is the same as in the
model description of the hierarchical Kalman filter model and the Helmholtz machine.
The connections within the six cortical layers as well as hierarchical relationships are
as in Fig. 8 (section The Cortex). The area depicted to the left corresponds to the
input layer and does not have sub-layers in the models.

Fig. 45 demonstrates how the architecture and the computations of a model can
be identified with the neural circuitry of the cortex (cf. [36]). Model weights are iden-
tified with inter area connections. The figure shows only connection which terminate
in the middle area, bottom-up connection

¬ 8 B and top-down connections Ô 8D8 (which
are not termed Ô 8 ¤ only because in our model a hierarchy evolved instead of be-
ing fixed). Computations which are local in the model are identified to computations
within a cortical “column”. This means that they are localized along the surface of the
cortex but extend through the six layers.

97

/margaux0/cweber/text/art/5diss/fig/layers_theory.eps

We identify layer 4 as the locus of bottom-up information receival to capture the
values �ª 8 « ¬ 8 B �� B . Layer 6 (as well as upper layer 2) is the locus of top-down
information receival to receive Ô 8D8 �¦b¤ . Layers 2/3 integrate both of these inputs (in
a model-dependent way) and are the source of the (sparsified) outputs �¦ 8 . These
values go directly to a higher area and via layer 5 (not considered in the model) to a
lower area.

This identification also displays restrictions of the model: only the main streams
are considered, lateral connections are omitted. Furthermore, according to the model,
no learning takes place within a cortical “column”.

Both models, the Kalman filter model and the Helmholtz machine, can be iden-
tified with this connection scheme and the notations of the model equations can be
applied to Fig. 45. Both models use basic computations like the scalar product of
the inter-area weights with the activations from the source area of an input. These
computations follow directly from the anatomy.

The differences of the models lie in the way how bottom-up and top-down input
is integrated within one area. The input to the neurons in layers 2/3,

ª 8 and
ª ¤ , is

different. In the Kalman filter model, it is a difference taken from both input streams
and furthermore, the current activations, ¦ 8 and ¦O¤ are considered to compute acti-
vations at the next time step. In the Helmholtz machine, there is no integration of the
bottom-up and the top-down stream for the computation of the activations but only for
the learning rules, the difference is taken.

Finer differences between the two models, of course, cannot show up in the con-
nection scheme: the time when computations are made, the initialization of activities
and the learning rules.

98

Ackno wledgmen ts

This work was done within the neural information processing group at the Technische
Universität Berlin which was founded in 1995 and which developed prosperously un-
der the direction of Prof. Klaus Obermayer who spent an overwhelming effort into this
task. Traces of this effort were surely delegated to all group members and teaching
and organization of tutorials was hard but rewarding work through which I acquired
founded knowledge on neural nets. A high-level scientific environment was supplied
which allowed international visitors to be heard on-site as well as visits to interna-
tional collaborators as well as conferences. Prof. Obermayer let me freely choose my
own subjects of interest even though the promising “Goldfish project” suffered from
my ignorance.

Prof. Jennifer Lund gave talks in Berlin and in London and answered patiently to
any questions. Her talks were at the same time introductory and in depth to cortical
biology and contributed to advancing the biological section of this dissertation. Hauke
Bartsch was open to frequent and extensive discussions on any aspects. In particular,
his instructions to better programming eased interactive programming and testing
significantly. Discussions with Thore Graepel served for a better understanding and
elaboration of the theory part of this dissertation. In our very busy group it was difficult
to find colleagues to read and correct my publications. Gregor Wenning gave away
some of his time to correct an earlier version of this long manuscript. It should also
be noted that the computer network within the computer science department was
maintained very well by the service team so that it was permanently possible to run
simulations on several UNIX SUN-workstations in parallel.

99

References

[1] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal
separation. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in
Neural Information Processing Systems 8, pages 757–763. MIT Press, 1996.

[2] D. Bagnard, N. Thomasset, M. Lohrum, A.W. Püschel, and J. Bolz. Spatial dis-
tributions of guidance molecules regulate chemorepulsion and chemoattraction
of growth cones. J. Neurosci., 20(3):1030–1035, 2000.

[3] H. Baier and F. Bonhoeffer. Axon guidance by gradients of a target-derived
component. Science, 255:472–475, 1992.

[4] H. Barlow. Large Scale Neuronal Theories of the Brain., chapter What is the
computational Goal of the Neocortex?, pages 1–22. MIT Press, 1994.

[5] M.A. Basso and R.H. Wurtz. Modulation of neuronal activity in superior colliculus
by changes in target probability. J. Neurosci., 18(18):7519–7534, 1998.

[6] Ute Bauer. Computational Models of Neural Circuitry in the Macaque Monkey
Primary Visual Cortex. PhD thesis, Universität Bielefeld, 1999.

[7] A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neur. Comp., 7(6):1129–1159, 1995.

[8] A.J. Bell and T.J. Sejnowski. Edges are the ’independent components’ of natural
scenes. In Advances in Neural Information Processing Systems 9, 1996.

[9] B. Bentzien, C. Weber, and K. Obermayer. Analysis of a model for the devel-
opment and regeneration of the retinotectal projection. In Forum of European
Neuroscience, Proceedings, 1998.

[10] G.G. Blasdel and J.S. Lund. Termination of afferent axons in macaque striate
cortex. J. Neurosci., 3(7):1389–1413, 1983.

[11] E.M. Callaway. Local circuits in primary visual cortex of the macaque monkey.
Annu. Rev. Neurosci., 21:47–74, 1998.

[12] J.F. Cardoso. Infomax and maximum likelihood for blind source separation. IEEE
Letters on Signal Processing, 4(4):112–114, 1997.

[13] G.J. Carman, H.A. Drury, and D.C. Van Essen. Computational methods for re-
constructing and unfolding the cerebral cortex. Cerebral Cortex, 5:506–517,
1995.

[14] V.S. Caviness, T. Takahashi, and R.S. Nowakowski. Numbers, time and neocor-
tical neuronogenesis: a general developmental and evolutionary model. Trends
in Neurosci., 18(9):379–383, 1995.

100

[15] H.J. Cheng, M. Nakamoto, A.D. Bergemann, and J.G. Flanagan. Complemen-
tary gradients in expression and binding of ELF-1 and Mek4 in development of
the toppographic retinotectal projection map. Cell, 82:371–381, 1995.

[16] W.M. Cowan. Die entwicklung des gehirns. Spektrum der Wissenschaft: Gehirn
und Nervensystem, 8:100–110, 1987.

[17] P. Dayan, G. E. Hinton, R. Neal, and R. S. Zemel. The Helmholtz machine. Neur.
Comp., 7:1022–1037, 1995.

[18] M. J. Donoghue and P. Rakic. Molecular evidence for the early specification
of presumptive functional domains in the embryonic primate cerebral cortex. J.
Neurosci., 19(14):5967–79, 1999.

[19] U. Drescher, C. Kremoser, C. Handwerker, J. Löschinger, M. Noda, and F. Bon-
hoeffer. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal
protein related to ligands for Eph receptor tyrosine kinases. Cell, 82:359–370,
1995.

[20] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex, 1:1–47, 1991.

[21] P. Földiák. Forming sparse representations by local anti-Hebbian learning. Biol.
Cybern., 64:165–170, 1990.

[22] C. Fyfe and R.J. Baddeley. Finding compact and sparse-distributed representa-
tions of visual images. Network, 6:333–344, 1995.

[23] S. Geyer, M. Matelli, G. Luppino, A. Schleicher, Y. Jansen, N. Palomero-
Gallagher, and K. Zilles. Receptor autoradiographic mapping of the mesial motor
and premotor cortex of the macaque monkey. J. Comp. Neurol., 397:231–250,
1998.

[24] A. Gierer. Directional cues for growing axons forming the retinotectal projection.
Development, 101:479–489, 1987.

[25] H. Haken. Synergetics. An Introduction. Springer-Verlag, 1982.

[26] G. Harpur. Development of low entropy coding in a recurrent network. Network
– Computation in Neural Systems, 7(2):277–284, 1995.

[27] S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan College
Publishing Company, 1994.

[28] J. Hegdé and D.C. Van Essen. Selectivity for complex shapes in primate visual
area v2. J. Neurosci., 20(5):1–6, 2000.

[29] G.H. Henry. Neural processing in cat striate cortex. IEEE Transactions on Sys-
tems, Man and Cybernetics, SMC-13(5):888–900, 1983.

101

[30] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the theory of neural compu-
tation. Addison Wesley, 1991.

[31] G. Hinton. Products of experts. In C. von der Malsburg, W. von Seelen, J. C.
Vorbruggen, and B. Sendhoff, editors, Proceedings ICANN, pages 1–6, 1999.

[32] G. E. Hinton, P. Dayan, B. J. Frey, and R. Neal. The wake-sleep algorithm for
unsupervised neural networks. Science, 268:1158–1161, 1995.

[33] E. Hunziker and G. Mazzola. Ansichten eines Hirns; Aktuelle Perspektiven der
Hirnforschung. Birkhäuser, 1990.

[34] G.M. Innocenti. Exuberant development of connections, and its possible permis-
sive role in cortical evolution. Trends in Neurosci., 18(9):397–402, 1995.

[35] E.R. Kandel, J.H. Schwartz, and T.M. Jessell. Principles of neural science.
Prentice-Hall, 1991.

[36] M. Kawato, H. Hayakawa, and T. Inui. A forward-inverse optics model of recipro-
cal connections between visual cortical areas. Network, 4:415–422, 1993.

[37] P.E. Latham, B.J. Richmond, P.G. Nelson, and S. Nirenberg. Intrinsic dynamics
in neuronal networks. I. Theory. J.Neurophysiol., 83:808–827, 2000.

[38] P.E. Latham, B.J. Richmond, S. Nirenberg, and P.G. Nelson. Intrinsic dynamics
in neuronal networks. II. Experiment. J.Neurophysiol., 83:828–835, 2000.

[39] J.B. Levitt, J.S. Lund, and T. Yoshioka. Anatomical substrates for early stages
in cortical processing of visual information in the macaque monkey. Behavioral
Brain Reseearch, 76:5–19, 1996.

[40] W.B. Levy and R.A. Baxter. Energy efficient neural codes. Neur. Comp.,
8(3):531–543, 1996.

[41] Z. Molnar and C. Blakemore. How do thalamic axons find their way to the cortex?
Trends in Neurosci., 18(9):389–396, 1995.

[42] J.D. Murray. Mathematical Biology. Springer-Verlag, 1987.

[43] W.J.H. Nauta and M. Feirtag. Die architektur des gehirns. Spektrum der Wis-
senschaft: Gehirn und Nervensystem, 8:88–98, 1987.

[44] B.A. Olshausen. Learning linear, sparse, factorial codes. A.I. Memo 1580, Mas-
sachusetts Institute of Technology., 1996.

[45] B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field proper-
ties by learning a sparse code for natural images. Nature, 381:607–609, 1996.

102

[46] B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete basis set:
A strategy employed by V1? Vision Research, 37:3311–3325, 1997.

[47] B.A. Pearlmutter and L.C. Parra. A context-sensitive generalization of ICA. In
Proc. ICONIP, 1996.

[48] P. Rakic. A small step for the cell, a giant leap for mankind: a hypothesis of neo-
cortical expansion during evolution. Trends in Neurosci., 18(9):383–388, 1995.

[49] R.P.N. Rao and D.H. Ballard. Dynamic model of visual recognition predicts neu-
ral response properties of the visual cortex. Neur. Comp., 9(4):721–763, 1997.

[50] K.S. Rockland and J.S. Lund. Intrinsic laminar lattice connections in primate
visual cortex. J. Comp. Neurol., 216:303–318, 1983.

[51] S.M. Rüger. Aspekte Neuronalen Lernens, volume M-08 of Reihe Mathe-
matik, chapter Effizientes Lernen und Schließen in dezimierbaren Boltzmann-
Maschinen. Fakultät für Mathematik, Naturwissenschaften und Informatik, Bran-
denburgische Technische Universität Cottbus, 1996.

[52] J.W. Scannell, C. Blakemore, and M.P. Young. Analysis of connectivity in the cat
cerebral cortex. J. Neurosci., 15(2):1463–1483, 1995.

[53] S.M. Sherman and C. Koch. The control of retinogeniculate transmission in the
mammalian lateral geniculate nucleus. Exp. Brain Res., 63:1–20, 1986.

[54] B. Stahl, Y. von Boxberg, B. Müller, J. Walter, U. Schwartz, and F. Bonhoef-
fer. Directional cues for retinal axons. Cold Spring Harbor Symp. Quant. Biol.,
55:351–357, 1990.

[55] E. Tanaka and J. Sabry. Making the connection: Cytoskeletal rearrangements
during growth cone guidance. Cell, 83:171–176, 1995.

[56] D.C. Van Essen. A tension-based theory of morphogenesis and compact wiring
in the central nervous system. Nature, 385(23):313–318, 1997.

[57] C. Weber, H. Ritter, K. Obermayer, and J. Cowan. A model for intrinsic and
activity dependent mechanisms underlying the regeneration of the retinotectal
map in goldfish. In ICANN’95 Proceedings, Vol. 2, pages 491–496. International
Conference on Artificial Neural Networks, 1995.

[58] C. Weber, H. Ritter, K. Obermayer, and J. Cowan. Topographic and disturbed
development of the retino-tectal projection of goldfish: a computational model.
In 1. Kongress der Neurowissenschaftlichen Gesellschaft, 1996.

[59] C. Weber, H. Ritter, J. Cowan, and K. Obermayer. Development and regenera-
tion of the retinotectal map in goldfish: A computational study. Phil. Trans. Roy.
Soc. Lond. B., 352:1603–1623, Nov 1997.

103

[60] C. Weber and K. Obermayer. Retinotopic orientation maps emerge by diffuse
connectivity in a framework derived by maximum-likelihood. In New Neuroethol-
ogy on the Move (Proceedings of the 26th Göttingen Neurobiology Conference),
page 490, 1998.

[61] C. Weber and K. Obermayer. Orientation selective cells emerge in a sparsely
coding Boltzmann machine. In Proceedings of the 27th Göttingen Neurobiology
Conference, page 499, 1999.

[62] C. Weber and K. Obermayer. Orientation selective cells emerge in a sparsely
coding Boltzmann machine. In C. von der Malsburg, W. von Seelen, J. C. Vor-
bruggen, and B. Sendhoff, editors, Proceedings ICANN, pages 286–291, 1999.

[63] C. Weber and K. Obermayer. Orientation selective cells emerge in a sparsely
coding Boltzmann machine. In C. von der Malsburg, W. von Seelen, J. C. Vor-
bruggen, and B. Sendhoff, editors, Proceedings ICANN, pages 286–291, 1999.

[64] C. Weber and K. Obermayer. Emergence of modularity within one sheet of
intrinsically active stochastic neurons. In Proceedings ICONIP, pages 732–37,
2000.

[65] C. Weber and K. Obermayer. Structured models from structured data: emer-
gence of modular information processing within one sheet of neurons. In Pro-
ceedings IJCNN, 2000.

[66] C. Weber and K. Obermayer. Structured models from structured data: emer-
gence of modular information processing within one sheet of neurons. In Pro-
ceedings IJCNN, 2000.

[67] C. Weber and K. Obermayer. Emergent Neural Computational Architectures,
chapter Emergence of modularity within one sheet of neurons: a model compar-
ison, pages 53–76. Springer-Verlag Berlin Heidelberg, 2001.

[68] C. Weber, H. Ritter, J. Cowan, and K. Obermayer. Development and regenera-
tion of the retinotectal map in goldfish: A computational study. Phil. Trans. Roy.
Soc. Lond. B., 352:1603–1623, Nov 1997.

[69] C. Weber, H. Ritter, and K. Obermayer. A model for the development of the
retinotectal projection in goldfish. In Tagungsband zur 23. Göttinger Neurobiolo-
gentagung, page 90. Göttinger Neurobiologentagung, 1995.

[70] C. Weber, H. Ritter, K. Obermayer, and J. Cowan. A model for the regeneration
of the retinotectal projection in goldfish. In Snowbird Abstracts, 1995.

[71] T. Yoshioka, J.B. Levitt, and J.S. Lund. Independence and merger of thalam-
ocortical channels within macaque monkey primary visual cortex: Anatomy of
interlaminar projections. Vis. Neurosci., 11:467–489, 1994.

104

[72] M.P. Young. The organization of neural systems in the primate cerebral cortex.
Proc. R. Soc. Lond. B, 252:13–18, 1993.

[73] M.P. Young, J.W. Scannell, M.A. O’Neill, C.C. Hilgetag, G. Burns, and C. Blake-
more. Non-metric multidimensional scaling in the analysis of neuroanatomical
connection data and the organization of the primate cortical visual system. Phil.
Trans. R. Soc. Lond. B, 348:281–308, 1995.

[74] S. Zeki and S. Shipp. The functional logic of cortical connections. Nature,
335:311–317, 1988.

105

Maxim um a Posteriori Models for Cor tical Modeling:
Feature Detec tor s, Topograph y and Modularity

PhD Thesis by Cornelius Weber, Berlin 2000

7 Summ ary

The thesis shows in a top-down modeling approach that unsupervised learning rules
of neural networks can account for the development of cortical neural connections.

Sections 1, “Introduction”, and 2, “The Cortex”, comprise biological foundations
about the cortex: its areas and their mutual connectivity, cell layers and the mecha-
nisms which govern the development of neural connections. These data supply the
goal of modeling as well as the motivation for the methods which are used.

Sections 3, “Theory”, and 4, “Models”, describe the theory and how to derive mod-
els from it. In a maximum likelihood framework, the model cortex learns to represent
the real world. With neuronal activation states that follow the Boltzmann distribution,
the model can then generate the incoming stimuli by itself. Using Bayesian priors on
the model parameters, the learning rules are modified to account for biologically ob-
served developmental mechanisms so that biologically observed structures develop.

Section 5, “Results”, presents simulation details and results and in section 6, “Dis-
cussion”, the models are compared and related to the biological findings [67].

In this work it is demonstrated that using a sparsely coded Boltzmann machine,
neurons emerge which have localized and orientation selective receptive fields like
those observed in primary visual cortex [62]. Another highlight is the demonstra-
tion of a high adaptability of model structures to the environment. Either parallelly or
hierarchically organized modules will arise as an appropriate adaptation to the orga-
nization of the training data set. This is shown using two different models, a non-linear
Kalman filter model [65] and a Helmholtz machine [64].

	Introduction
	The Cortex
	Modularity
	Hierarchy
	Development

	Theory
	Stochastic neurons
	Boltzmann distribution I
	Boltzmann distribution II

	Generative models
	Bayes theorem
	Maximum likelihood
	Helmholtz free energy
	Marginalization

	Maximum entropy

	Models
	Non-linear Kalman filter model
	A hierarchical Kalman filter model
	Relaxation dynamics in a flexible hierarchy

	Boltzmann machine
	Restricted Boltzmann machine
	Sparse restricted Boltzmann machine
	Gibbs sampling
	The mean-field approximation
	Overview of energy functions used by the Boltzmann machine

	Helmholtz machine and the wake-sleep algorithm
	Priors
	fast Prior on the activities: sparse coding
	gen Prior on the weights: weight constraint
	Priors for topographic mappings

	Maximum entropy model
	Approximation by a maximum likelihood model

	Results
	Methods
	Preprocessing of images
	Appropriate weight constraints
	Suppressing divergence (Kalman filter model)

	Feature detectors
	Localized edge detectors
	Auditory feature detectors

	Running the Boltzmann machine
	Learning in the clamped and in the free-running phase
	Non-convergence of weights
	Non-convergence of activities
	The effect of the inverse temperature / weight length
	Generation of images
	Sparse coding in the Boltzmann machine and Kalman filter model

	Topographic mappings
	Modularization
	Generation of parallelly and of hierarchically organized data
	Results from the Kalman filter model
	Results from the Helmholtz machine
	Effect of initialization

	Discussion
	Summary

