
 

 

 

 
Final Report 

 
 

DFN-Project 
 

“GRIDWELTEN: User Requirements and 
Environments for GRID-Computing” 

 
5/30/2003 

 
Peggy Lindner1, Thomas Beisel1, Michael M. Resch1, Toshiyuki Imamura2, 

Roger Menday3, Philipp Wieder3 Dietmar Erwin3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
___________________________________ 
1 High Performance Computing Center Stuttgart (HLRS), Germany 
2 Japan Atomic Energy Research Institute (JAERI), Japan and High Performance 
Computing Center Stuttgart (HLRS), Germany 
3 John von Neumann Institute for Computing (NIC), Germany 



 2 

 
GRIDWELTEN 
 

Abstract 
 

The GRIDWELTEN project aims to evaluate and make recommendations 
regarding the use of high performance computing resources accessible 
through Grid software and architectures. The metric for this comparison will 
be the expectations and requirements of the user situated at the sites of the 
project partners and at other HPC-centers throughout Germany. 
 
Typical user groups will come from many areas of science, and we must be 
careful to incorporate the expectations of each into a set of common 
requirements. With this in mind, a survey of the end users was conducted. 
The findings of other relevant research in the area of Grid usability will also 
be discussed. 
 
Select Grid middleware and supporting software will be reviewed. In 
particular, we match and consolidate between the end user expectations and 
the features of some popular Grid infrastructures. For this, we consider the 
four Grid systems, Globus, UNICORE, AVAKI and TME. 
 
In the report we also examine the implications of the Open Grid Services 
Architecture (OGSA) proposed by the Global Grid Forum, on the operation 
and future interoperability of the evaluated systems.  
 
The final project documentation will be presented in three main sections: 
firstly, a summary of user requirements for Grid computing, secondly, an 
evaluation of selected Grid computing environments, and thirdly a detailed 
analysis. 
 
The GRIDWELTEN project is commissioned by the German DFN (Deutsches 
Forschungsnetz). 
 



 3

Table of contents 
 

Purpose & Motivation ........................................................................................................... 4 
Introduction ........................................................................................................................... 5 

Types of Grid..................................................................................................................... 6 
Architecture of a Grid........................................................................................................ 7 
Business interest in Grid Computing............................................................................... 10 

User Requirements .............................................................................................................. 11 
Introduction ..................................................................................................................... 11 
Survey.............................................................................................................................. 11 
Analysis of Results .......................................................................................................... 12 

Tools .................................................................................................................................... 23 
Introduction ..................................................................................................................... 23 
Globus ............................................................................................................................. 23 
UNICORE ....................................................................................................................... 26 
AVAKI ............................................................................................................................ 31 
TME................................................................................................................................. 34 

Installation and Test of Tools .............................................................................................. 39 
Introduction ..................................................................................................................... 39 
Summary of features available within the tested tools .................................................... 46 

Summary and Conclusions .................................................................................................. 48 
Introduction ..................................................................................................................... 48 
Summary of Systems....................................................................................................... 49 
Conclusions from the Questionnaire ............................................................................... 52 
Standardization and Interoperability ............................................................................... 52 
Executive Summary......................................................................................................... 54 

Appendices........................................................................................................................... 56 
A Bibliography and References....................................................................................... 56 
B Terminology................................................................................................................. 59 
C Questionnaire ............................................................................................................... 60 



 4 

Purpose & Motivation 
 
In defining a starting point, the project faced two challenges which defined the methodology 
taken for the whole project. 
 

• Despite the publicity, different users have a different understanding of the meaning of 
Grid computing and how they could use it to their benefit.  

• Grid computing is a rapidly developing field. 
 
Grid Computing is seen as a means to provide access to distributed compute resources, 
instruments and databases as well as know-how. We must gain an understanding of the user 
community in order to get a precise picture of the requirements of the people and groups 
working in the field. The reader should always be aware that this report refers to German 
users, although experiences from other countries are integrated due to affiliations and 
collaborations of the team of authors. 
 
For this project, we evaluate the user’s understanding, requirements and expectations 
regarding Grid computing. We achieve this through the distribution of a questionnaire, and 
we provide an analysis and summary of the results.  
 
An evaluation of Grid software is also included. It is important that we are mindful of the user 
requirements as we proceed with this evaluation phase. Given the limited amount of time and 
resources, the evaluation of software environments is focused on four packages: 
 

• GLOBUS  Argonne National Laboratories, USA  
• AVAKI AVAKI Corporation, USA  
• TME  Japan Atomic Energy Research Center, Japan 
• UNICORE UNICORE Forum e.V., Germany 

 
By choosing these we believe we have selected the most important environments in the field 
from the US, Japan and Europe. This should allow to get a general and thorough picture of the 
available functionality and potential in the field. In addition to an in-depth evaluation of these 
four packages we will also consider further environments. However, no further evaluation in 
terms of practical work will be done in this report. Wherever possible, practical experience of 
other groups and users both from research and industry will be included in this report. 
 



 5

Introduction  
 
The evolution of the Grid within the research community initially came from a ‘globalization’ 
of scientific practices and collaborations. This included: 
 

• Information exchange within globally dispersed groups.  
• Accessing and aggregating remote computing resources. 
• Storing of data in large distributed data stores.  

 
This led to the definition of the Grid, as “resource sharing and coordinated problem solving in 
dynamic, multi-institutional virtual organizations (VO’s).” [1] 
 
Within the research community and business, there is a demand for increasingly large, 
complex and resource-intensive applications. It is a common observation that single 
computational resources often fail to meet the demand of those applications. However, wide 
area networking improvements make it possible to aggregate distributed resources in various 
collaborating virtual organizations and to form a Computational Grid. 
 
Whether the user accesses a single or multiple resources (aggregated as a coordinated ‘virtual 
supercomputer’), the Grid allows users to interact with the resources in a uniform way, 
providing a comprehensive platform for distributed computing.  
 
From the end-users perspective, it is very important to provide an easy to use interface to this 
underlying infrastructure. Even if the basic middleware and Grid technologies that support the 
infrastructure are complex and sometimes not yet fully mature, the fundamental idea is to 
present to the end user a virtual computing environment with an uniform way to use a 
collection of distributed resources.  
 
Grid computing implies more than just cycle scavenging on underused workstations or 
aggregating super-computers. Rather, Grid computing is the sum of these use-cases, and 
others. The wide ambitions for Grid computing include new environments, working practices 
and resource utilization. 
 
However, at present very many of the people experimenting and using Grid technologies are 
based at computer centers, and have some background in high performance computing. Thus, 
the people invited to take the survey mainly come from such institutions and are either users 
or developers of applications running on large scale computer infrastructures and have a 
background in distributed and parallel computing. 
 
The relationship between High Performance Computing and Grid technologies can be viewed 
from two angles, as reported in [5] “some eminent players believe that distributed ubiquitous 
computing resources will ultimately dispose of large HPC facilities. However, on the 
contrary, it can also be argued that Grid technologies will enhance their effectiveness by 
providing seamless access, interactivity and user friendliness to distributed clusters of 
powerful, tightly coupled systems”. 
 
For the formulation of the questionnaire, the following questions are typical of those arising 
that we felt should be evaluated from the perspective of the expectations of users keen to 
exploit a Grid, and administrators keen to deploy a Grid. 
 

• Is the Grid available for a computer centre to handle all its resources?  
• Regarding future expandability, how open is the system? 
• For coupled simulations, is there support for dependencies, workflow models, etc? 



 6 

• For normal applications, how is the support for applications on different hosts at the 
same time? Is there any scheduling support? 

• Are parameter sweep studies supported? 
• Taking the following application types; 1. Parameter sweeps, 2. Coupled applications, 

3. Normal applications, how is the transfer of files handled? 
• Is there a distributed file system? Is a resource automatically added to the Global file 

system? If so, is there a Global view of the distributed files?  
• How do you use the system? 
• Security. Which access mechanism is used? Does the system support different 

usernames on different machines? How does the system interface with the security 
mechanism in place at the local sites? 

• Is there any guarantee of integrity of the resources available? How does this work?  
• How might one administrate the economic charging for resources consumed on the 

Grid?  
• What is the relationship between High Performance Computing (HPC) and the Grid? 

 
These themes and some others provided the subjects to be included in the survey, and helped 
to formulate the questions of the questionnaire itself. 
 
Regarding similar work of this project, we refer the reader to the Enacts project, especially the 
report entitled ‘Grid Service Requirements’ [7]. 
 

Types of Grid 
 
A recent analysis of Grids states [17] “Initially it was thought that the Grid would be the most 
useful in extending parallel computing paradigms from tightly coupled clusters to 
geographically distributed systems. However, in practice, the Grid has been utilized more as a 
platform for the integration of loosely coupled applications - each component of which might 
be running in parallel on a low-latency parallel machine - and for linking disparate resources 
(storage, computation, visualization, instruments)”. This is interesting. It shows that the 
general perception of the scope for Grid computing has widened. Currently, Grid technology 
is being applied, or there is at least discussion of it being applied, to solve many different 
problems or to enable completely new scenarios. 
 
We can summarize some of the current thinking of what types of Grid are possible and what 
can be achieved over such infrastructures. To agree on some common usage patterns [56] now 
will be useful later when we discuss the findings of the survey 
 
• Distributed supercomputing  

This means the coupling of multiple potentially distributed computing resources. 
Normally, such an infrastructure is composed of HPC resources. Often there is a 
dedicated network between contributing computer centers. Consequently, as the 
environment is considered to be constructed of ‘friendly’ components the security is not 
as high a priority as with other Grid environments.  

• High-Throughput Computing 
This is the acquisition of available and accessible computing resource to solve 
collectively many independent parts of a large scale problem. Such resources are often 
many underused desktop computers, and this has led to the expression ‘cycle scavenging’.  
Such an approach was popularized by the SETI@home [36] project. Other more general 
software exists, for example, the Condor [41] and Entropia [37] software. High 
throughput computing also encompasses the division and scheduling of parameter space 
type problems over a number of the under-used desktop resources.  



 7

• Desktop Supercomputing 
This model of usage refers to making super-computers easily available to more users, i.e. 
seamless remote access, from the desktop, and without requiring in-depth knowledge of 
system configuration in order to run a job on the resource. This classification does not 
imply and should not be confused with the usage model of ‘cycle scavenging’, which is 
the aggregating of unused resources of many desktop machines together.  

• Data-Intensive Computing  
This is the integration of data from multiple, distributed file systems, to form a large 
distributed data storage. This enables numerical simulations or the gathering and storage 
of experimental results at a massive scale.  

• Collaborative Environments  
This is enabling and enhancing human interactions to solve a single, tightly coupled 
problem. The nature of a virtual organization often includes the coordination of human 
resources. Collaborative environments allow participants at multiple sites to engage in the 
control and observation of a Grid-wide activity.  

• On-Demand Computing 
This is providing access to advanced capabilities to fulfill a short term demand. This 
mode of operation has an obvious parallel with the electric power grid, where power 
stations on the Grid are kept with the express purpose of generating power on demand, 
and at short notice.  
 

Architecture of a Grid 
 
A good starting point for discussing Grid architecture is the ‘hourglass model’ [20]. This 
model summarizes many of the core concepts common to all Grid architectures. The width of 
the base of the hourglass illustrates the number and variety of the physical resources which 
comprise the Grid. There is a thin neck of the hourglass, which represents the integration 
layer of the Grid middleware. This is the homogeneous layer of services on top of the 
heterogeneous resources which make up the Grid. The width of the top of the hourglass 
represents the number and functionality of the user-level (or higher level) services, 
applications, etc. 
 
There are many viewpoints on the finer architectural description of a Grid, for example [13], 
[], [24], [38]. We take a commonly used description of the architecture, as described in [38], 
and adapt it a little. This particular model reflects our view of the Grid from a user perspective 
as taken in this report. 
 
Therefore, in the next section, we shall use this model as a basis when we introduce the whole 
architecture which will make up a Grid enabled infrastructure. Figure 1 shows the various 
layers which make up the Grid infrastructure. At the system level we shall have the Grid 
fabric (the physical resources which make up the Grid) and the types of local services, such as 
resource managers, which are needed. Next, the security infrastructure which is essential for 
safe operation on the Grid. Then the core and higher level Grid services [31], which must be 
provided for the Grid to be useful. Finally, there are the Grid programming environments and 
applications, assisting the ease of use of the Grid. In practice we can only speak generally of 
the functions of the different layers, as there is some ‘blurring’ between the layers in all 
current implementations. We have applied the categorization that Grid Applications tend to 
have some kind of visual interface and have some characteristic of remote access, whereas a 
programming environment for a Grid lacks a visual interface. Sometimes a particular piece of 
software has components in both layers. 
 



 8 

 

 
 

 
 

 
 
 

 

 

 

 

 
 

 

 
Figure 1: Layers of Grid architecture 

 
It is useful to establish a context from which to base subsequent discussions of the software 
components making up the Grid infrastructure. 
  

Layers of Architecture 
  
Fabric 
 
These are the resources which already exist, but which we wish to be aggregated in the Grid 
infrastructure. This includes compute and data resources, and other more specialized 
resources such as monitoring and measuring equipment. Such resources are under the control 
of a local manager such as LoadLeveler, LSF, PBSPro, and OpenPBS. Such managers may 
also provide more advanced functionality such as advanced reservation capability, which in 
turn can be exploited by the high level Grid infrastructure in order to co-allocate multiple 
resources. 
 
Security Infrastructure 
 
The security infrastructure layer in the Grid architecture is positioned directly above the fabric 
layer, and below the core and high-level services layer, as it is a built upon the local security 
policies of the fabric. It is required for the Grid services layer to operate. 
 
Authorization and authentication are essential functions of any distributed environment. The 
problem of providing these security services over a Grid are even more complex, as a Grid 
aggregates resources controlled by a number of independent organizations, each with its own 
security policy. Therefore, a key requirement of Grid security is the interaction with local 

User Level 

Grid Applications 
Applications, Web portals 

System level 

User-level Middleware 
Resource management and scheduling services 

Core Grid Middleware 
Job Submission, storage access, info services 

Security Services 
Single sign-on, authentication, secure communication 

Grid Fabric 
PC’s, clusters, networks, software, databases, devices + associated resource managers 

 

Grid Programming Environments and Tools 
Languages, interfaces, libraries, compilers, parallelisation tools 

 



 9

security without change to the policy and its administration. In current systems this commonly 
involves mapping from the Grid security mechanism onto each local security mechanism, i.e. 
a local user name. 
 
Actually, in addition to local security measures, community security services can also be 
deployed in a typical Grid. For example, the main basis for the security of UNICORE is in the 
form of such a service. An alternative example is that of the Community Authorization 
service of Globus.  
 
An important and possibly controversial technique used is that of credential delegation. In 
order to support a dynamically changing job and the utilizations of resources at run-time, a 
resource on the Grid must be able to grant permission to a resource enabling it to act on behalf 
of the original resource, i.e. the first resource can make a signed request on behalf of the 
original resource to another resource. This method of credential delegation forms the basis of 
security infrastructure of Globus.  
 
Core Grid Middleware 
 
This is concerned with the management of individual resources in a Grid, and the integration 
services provided by the components of this layer makes it similar to the Resource layer as 
described in [1]. The aim of this layer is to provide a layer of abstraction on top of the 
underlying resources. Fundamental ideas to these aims include the following:  
 
• Resource Management - services providing a homogenous and secure interface across the 

geographical and administrative domains for accessing the underlying resources, i.e. job 
submission. On a single resource, such services are responsible for negotiation with local 
policies and scheduling systems.  
 

• Information services - service collecting and publishing data about the status of the 
resource (computing power, networks, storage systems, etc.). This information is used by 
a wide range of other services Aggregate Information services, i.e. containing information 
from multiple resources are classified as user-level middleware, and discussed in the next 
section. 
 

• Data Transfer - services enabling secure, authenticated and authorized data transfer across 
administrative heterogeneous domains in the Grid. 

 
User-level Middleware 
 
Middleware in this section provides services across multiple nodes of the Grid. This includes 
information services, resource brokers and schedulers:  
 
• A Grid information system, to store and provide information about the status of the entire 

Grid (individual resources, virtual organizations, networks...) 
• Seamless allocation mechanisms for all the Grid resources provided by a high-level (user-

level) standard mechanisms and languages for resources request specification 
• Dynamic allocation of resources, including co-allocation and co-reservation mechanisms, 

for distributed parallel applications running on different machines 
• Services providing virtualized access to distributed data stored throughout the Grid. 
 
 
 
 



 10

It is quite tricky to cleanly categorize the remaining software associated with a Grid, and in 
the literature there does not seem to be a consensus on either the definitions, for example 
“Problem Solving Environment” (PSE), or classification of software. In [1], the following is 
defined, “workload management services and collaboration frameworks – also known as 
problem solving environments – provide the description, use and management of multi-step, 
asynchronous, multi-component workflows”. In [29], there is a more general description; “the 
terms – PSE, framework, workbench – are used to describe a wide variety of tools for 
developing and executing applications”. 
 
Grid Programming Environments and Tools 
 
These provide a layer between applications and low-level Grid services, or the Grid enabling 
of applications, or indeed it is a toolkit for constructing Grid applications. They provide a 
programming environment for exploiting the resources of the underlying infrastructure.  
 
This often happens through Grid-enabling of familiar programming environments. This can 
happen at various level of granularity. As an example of a low-level environment, MPICH-G2 
offers the Message Passing Interface functionality over a Globus Grid.  
 
A higher-level programming approach is provided by the CoG kits for Globus, where an 
application-level API is provided. This allows a programmer to use a familiar programming 
environment such as Java to construct a workflow of Globus tasks.  
 
An example of an even higher-level programming environment is the Grid Portal 
Development Kit (GPDK), which uses the Java CoG kit, but is itself a toolkit for constructing 
web-based portals.  
 
Grid Applications 
 
As discussed above, we consider Grid Application as one often having a visual interface. 
Software in this section allows a user to focus on their own problem domain, and their 
application/portal deals with the interface to the underlying infrastructure.  
 

Business interest in Grid Computing 
 
Grid computing is an example of a predominantly academic research initiative making a jump 
into the commercial world. Like the adoption of the internet from a core user base in the 
scientific community, the business case for Grid computing is growing quickly. This is no 
surprise as exactly the same factors and pressures, such as formation of Virtual Organizations 
(VO's), where coordination of distributed resources both within and across organizations is 
increasingly important in a business context.  
 
However, the structure and nature of the business community is such that, its participants may 
not be eager to openly share resources without security and renumeration guarantees. 
Additionally, the process to standardize the core Grid protocols is well underway, and the fact 
that businesses have become involved has motivated some of the new research, directions, 
use-cases, etc. Thus some factors which are not so important in scientific research, find a new 
momentum in the commercial world, and this drives new research and development.  
 
Many companies are very active in the area of Grid computing and similar, offering 
commercial Grid solutions and contributing to open-source Grid solutions, including IBM, 
AVAKI, Sun, Platform, Entropia, Pallas etc. 



 11

User Requirements 
 

Introduction 
The survey was made available on the internet and the user base of German HPC centers was 
asked to fill in the form. Potential respondents were contacted via email, and after a brief 
introduction were invited to complete the questionnaire. The request for feedback was sent 
out to roughly 500 users. Of these 63 completed the questionnaire. A return rate of 13% is 
rather high for such a survey. 

Survey 
 
The questionnaire consists of 47 questions. In order to improve the quality of the analysis, we 
can divide the 47 questions in the survey into the following topic areas.  
 
Awareness and Perceptions (questions 1-17) 
 
Initially, the questions establish a grounding of the general awareness of the surveys audience, 
from which the remainder of the questionnaire stems. The following questions in this group 
attempt to gauge how respondents feel about the future impact of Grid computing in a wider, 
more general sense, including its impact on society itself. Some of the more sensational 
reporting in both the IT and non-IT press claim that the widespread acceptance and adoption 
of Grid computing will bring about the same evolutionary jump as did the World Wide Web. 
This is a typical statement for which we wish to gauge opinion.  
 
We can safely assume that the great majority of the respondents will be connected or have 
some interest in High Performance Computing, and thus the questions in this section also 
address the future of HPC and HPC centers. As we have already mentioned, Grid computing 
is not the exclusive preserve of the HPC community, but this has been the test-bed for most 
Grid experiences to date.  
 
Current Usage and Network Requirements Appraisal (question 18-29) 
 
This section evaluates the current mode of usage (directly dealt with in question 18), and the 
network requirements of current applications and tasks. This includes requirements for file 
staging and post-processing, performance profiling and debugging support, and preferable 
Quality of Service (QoS) parameters for network latency and bandwidth 
 
Future Expectations and Requirements (question 30-48) 
 
In this section we attempt to gauge what the respondents realistically think they could expect 
from a Grid system. It discusses what is available today, and thus would also expect to be 
available in a production Grid environment. Finally, it attempts to evaluate the level of need 
for high-level or user-level services currently available in some Grid software, such as 
seamless access, resource brokering, graphical interfaces and Grid programming models. 



 12

Analysis of Results 
In this section we review the results of the questionnaire, following the three sub-sections 
defined above. There were 63 completed questionnaire returned. The following summarizes 
the roles of the questionnaires respondents: 

43  users 
18  developers 
1  Grid administrator 
1  Grid developer 

 
The majority of people are already either users or programmers of applications, who are either 
currently using or would be interested in how Grid computing could benefit them in the 
future.  
 
Awareness and Perceptions (questions 1-17) 
 
First of all the majority of the respondents were familiar with the expression “Grid” (Question 
1, “Are you aware of the term ‘Grid’?”). This is a good start. Only 6 of those questioned 
were not familiar.  
 
Question 2, “Name 5 terms that you associate with the term Grid?”, takes a straw poll of 
expressions commonly associated with “the Grid”. The results can be summarized as follows: 
 
• Common responses: as simple to use as a PC, coordinated, flexible, cheap, usage of a 

super computer 
• Rare responses: consistent, reliable, secure, widely spread 
 
These answers are the expressions for ‘commonly associated’, and not ‘implemented 
features’. It shows some of the common understanding of when the Grid is mentioned. There 
is a clear message. The most publicized aspects of Grid computing are commonly associated, 
and conversely in areas such as topics which have proved difficult in the development of 
computing and distributed computing for a long time, there is less association. It has to be 
said that these qualities are notorious in their ability to leave people unconvinced. 
 
Computer security is one such topic where current applications and Grid computing 
infrastructures are somewhat unproven. Security in a Grid is a highly complicated problem, 
addressing issues such as security across wide area networks, distinct administration domains 
and multiple local security mechanisms. This is compounded with the fact that most Grid 
middleware has had the majority of its use so far in relatively safe research environments. 
 
Questions 3 and 4 deal with awareness of the term Problem Solving Environment (PSE) – 
“Are you aware of the term PSE?” and “If so, does the Grid in your opinion represent a 
PSE?”. Overall, we can conclude that ‘PSE’ is not a particularly well recognized expression, 
and of those who do recognize it, opinion is divided to whether the Grid represents a PSE. 
 
The following taken from [40], summarizes the role of a PSE very nicely, "a PSE is a 
computer system that provides all the computational facilities needed to solve a target class of 
problems. These features include advanced solution methods, automatic and semiautomatic 
selection of solution methods, and ways to easily incorporate novel solution methods. 
Moreover, PSEs use the language of the target class of problems, so users can run them 
without specialized knowledge of the underlying computer hardware or software. By 
exploiting modern technologies such as interactive color graphics, powerful processors, and 
networks of specialized services, PSEs can track extended problem solving tasks and allow 
users to review them easily. Overall, they create a framework that is all things to all people: 



 13

they solve simple or complex problems, support rapid prototyping or detailed analysis, and 
can be used in introductory education or at the frontiers of science." 
 
Actually, a Grid provides the ‘backend’ services on which a PSE depends. Through a PSE a 
user is presented with a user-friendly view of these services, and the user only needs to be 
vaguely aware of the underlying infrastructure on which the problem PSE depends. Perhaps 
this is a case of well known functionality with a little known name. Maybe  that the currently 
available technology is not well understood, and that more information and promotion change 
its lack of recognition and reputation. Certainly, the functionality which a PSE provides 
would appear compelling to facilitate the usage of resources available on Grids.  
 
Question 5 is “What role will Grid computing in your opinion play in the future?”. 
Obviously, those questioned are more critical and careful about this technology than those 
working in the Grid marketing divisions of the businesses selling Grid software or support. 
Marketing materials commonly say that as the World Wide Web offers global information 
dissemination, the Grid will provide a global environment for computing, collaboration, and 
communication, and that Grid computing technology matures and becomes widely available, 
we are promised a revolution in technology and in society. Our respondents only partially 
concur with these bold claims, and a good proportion of the answer believe the Grid will be 
“not so important“. It would be very interesting to conduct a similar survey in 5 or 10 years 
time, and observe how attitudes have shifted.  
 
The remainder of the questions in the “Awareness and Perception Section” (questions 6-17) 
are summarized in Figure 2. These questions share the same choices of answer, ranging from 
“I totally agree” to “I do not agree at all”. In general, respondents tended not to agree with 
broad, sweeping statements about great possibilities for Grids. Respondents did agree with 
statements that placed the value of Grids in a very limited context. 
 
Questions 6 and 7 relate to some of the statements from the popular press with regard to Grid 
computing, and evaluate the respondent’s opinion on the degree to which they are accurate. 
 
Question 6, “In the future Grid computing will provide computing power just like today’s 
electric Grid” has become the classic statement one reads in conjunction with Grid 
computing. Similarly, question 7, “Grid computing is a bubble that will soon burst”, gauges 
the opinion to how Grid computing is currently ‘sensationalized’ through hype and marketing. 
For both questions, the middle answer, “partially agree”, is the most popular.  
 
It could be said that the answers to these general questions are particularly dependent on the 
personalities of the respondents; we can expect varying levels of cynicism, pessimism or 
indeed optimism from the respondents. As reported in [6], “Cynics reckon that the Grid is 
merely an excuse by computer scientists to milk the political system for more research grants 
so they can write yet more lines of useless code.” However, we are pleased to report that, 
although it looks as if the replies are tempered with some degree of healthy caution, there is 
an impression that the Grid is an infrastructure worth having! 
 
Questions 10 and 16 assess the general perception of Grid computing from the users 
perspective, and how it will change their working practices. For both questions “Grid 
computing will make life easier for the user” and “Grid computing constrains the user more 
than it helps him”, the results of the survey are inconclusive.  
 
As discussed in the analysis for questions 6 and 7, there is a degree of negative response 
regarding the impact of Grid computing. Evidently it is too early in the game to make 
conclusive comments regarding the Grid and the user experience. We can conclude however, 
that the feedback is not completely negative, and in the fullness of time we shall see to what 
extent the Grid computing will satisfy the requirements of its users.  



 14

Figure 2: Questions 6-17 

 
Questions 12 and 13 are general questions regarding commercial and economic influences on 
the future development of Grid computing. From question 12, there is a slightly greater level 
of disagreement with “Grid computing will be a standard in the future which will be driven 
by large software companies,” than agreement. 
 
Until reasonably recently Grid computing has been a phenomenon largely developed and 
exploited by those in the research community. The evolution of Grid computing is similar to 
that of the World Wide Web, initially within the research institution, and later on adopted by 

I totally
agree

I rather
agree

agree
partly

agree
less

I don't
agree at

all

17. In the future computing pow er w ill
mainly be provided by local computers. 

16. Grid computing constrains the user
more than it helps him.

15. Computer centres w ill be re-evaluated
through Grid computing because

computers are used more centrally again. 

14. Application Service Providers (ASP)
are the future of  super computing.

13. Grid computing w ill be a standard in
the future w hich w ill be driven by large

sof tw are companies. 

12. Grid computing w ill be a commercial
success because above all it is

interesting to the economy. 

11. Grid computing is limited to problems
w hich are simple to parallelise, such as

high energy physics.

10. Grid computing w ill make life easier
for the user.

9. Computer centres w ill lose their
importance due to Grid computing.

8. Grid Computing w ill replace super
computing in general.

7. Grid computing is a bubble that w ill
soon burst.

6. In the future Grid computing w ill provide
computing pow er just like today's electric

Grid.

1013
26

95

3
2021

13
6

2222
14

23 28
18

953

82019
12

4

6111623
7

6
25

1116
5

5
2421

10
3

101824
74

4
2122

11
5

5
28

1017
3

611201412



 15

the commercial sector. In the case of the World Wide Web, the standards have been 
controlled through an organization such as the W3C consortium [35]. Building upon the 
initial genesis of the ideas, the stewardship of standards through organizations such as the 
W3C has been very successful, and the web has consequently exploded because it is open. It 
has developed so rapidly because the creative forces of thousands of organizations companies 
are building on the same platform, and whilst some companies may wish to introduce 
propriety mechanisms in order to bind its customers to their particular platform or system, in 
practice, the drive to remain interoperable is too strong.  
 
For Grids, there is currently a committed drive towards the standardization [14] of the 
required protocols needed in order to build a Grid. This is discussed in detail later in the 
report, but so far this would appear to be a relatively harmonious partnership between 
interested parties, including both research communities and commercial companies, with the 
result of the derivation of a set of open standards for the operation of a Grid.  
 
So, Grid computing is a subject initially evolved within the research community, and more 
recently commercial enterprises are beginning to exploit the technology too as well as with 
the Internet before it, the Grid infrastructure and standards are being developed in a relatively 
open manner, and not necessarily driven by large software companies. This is reflected in the 
answers to question 13, and indicates that respondents belief in the honesty and openness of 
this process. 
 
Question 12 asks, “Grid computing will be a commercial success because above all it is 
interesting to the economy”. Overall, there is some disagreement with this statement. 
 
During a phase of commercialization a new idea, particularly in the computer industry, there 
is a great deal of investment, excitement and business generated. Often the new approach is 
marketed as a ‘paradigm shift’. Customers have to decide whether they believe the promises 
have value, or they will contribute to a bubble economy without substance. With Grid 
computing, the industry recently has certainly witnessed lots of publicity. This is at a time 
when the economy is not at its most buoyant, suggesting that there is a real belief in the value 
of Grid computing. 
 
On one hand, Grid computing encourages more efficient usage of resources. This statement 
does not imply just cycle scavenging on desktop computers, but usage of super-computers to 
their full capacity and potential, and the coordinated usage of multiple resources. Crucially, 
the implication is also the enabling of human resources as opposed to machine resources, and 
their collaborations and communities – often referred to as Virtual Organizations. 
 
Often, the businesses marketing and promotion of Grid technologies are also involved the 
selling of computer hardware, such as IBM, HP, Sun. Assuming that Grid technologies 
encourage the more efficient use of existing resources, it would appear the activities of selling 
Grid technologies and computer hardware are incompatible. However, these companies claim 
to understand that what they are selling is really a suite of tools designed to make companies 
more effective, efficient, or innovative. In these sense there is a move towards the selling of 
“services” and “service solutions” rather than hardware. The investment of large computer 
hardware vendors in Grids suggest that these companies believe Grids will result in better 
services to sell to their customers. 
 
We think that Grid computing shows a lot of promise, and that it will make the more efficient 
use of resources possible, as well as the dynamic creation of virtual organizations. Such 
initiatives should prove to be effective, and thus be commercially successful. However, there 
are a number of driving forces behind Grid computing, and economics is only one of them.  
 



 16

Questions 8, 9, 15 and 17 relate to the future computing infrastructures, particularly the future 
of super-computers and computer centers [8]. 
 
The consensus of respondents to the statements of questions 8 and 9, “Grid computing will 
replace super computing in general” and “Computer centers will lose their importance due to 
Grid computing”, is that the Grid will not spell the end for computer centers or High 
Performance Computing in general. What is more likely to happen is that the demand grows 
to make use of the newly added capability and there is an opening of new channels through 
which these resources can be exploited and used to their full potential. So, for example, an 
application which previously ran at a single site on one supercomputer may now be 
distributed across multiple supercomputers. 
 
One of the many arrangements utilizing the Grid infrastructure building-blocks is the creation 
of ‘cycle scavenging’ Grids or high throughput systems [41]. These are typically constructed 
from lots of desktop computing resources, to exploit the unused capacity of the machines. 
This aggregated computing power can provide a good source of computing or storage 
capacity.  
 
However, many problems require tightly coupled computers, with low latencies and high 
bandwidth communication. “Embarrassingly parallel” applications and parameter studies 
which do not require much communication between processors are good candidates for 
computation over a “cycle scavenging” Grid of workstations. However, tightly integrated 
parallel applications will run most efficiently on super-computers. Hence, the consensus was 
that HPC and computer centers will have an important role in the future.  
 
The results from question 11, “Grid computing is limited to problems which are simple to 
parallelize such as high energy physics”, are interesting in this regard. There is some level of 
agreement with this statement. We note that there seems to be some lack of awareness for the 
scope of Grid computing. Grid computing enables all of the following: parallel processing 
across geographically distributed, (super) computing resources, collaboration of participants 
in virtual organizations, sequencing a process requiring multiple resources (including, for 
example, specialist visualization resources) and utilizing otherwise unused resources.  
 
It is true that the Grid allows the extending of parallel computing paradigms from tightly 
coupled clusters to geographically distributed systems, and due to networking properties over 
a wide-area, parallel applications with less communication (and thus simple to parallelize) 
will run more efficiently on a collection of widely distributed resources. However, this does 
not imply that Grid computing is limited to such applications. 
 
A small majority disagree with number 15, “Computer centers will be re-valued through Grid 
computing because computers are used more centrally again”. Conversely, a small majority 
thinks “In the future computing power will mainly be provided by local computers” (question 
17). The to-and-fro between using computers centrally or locally has been witnessed several 
times if one looks back through the past 3 decades of computer evolution.  
 
Certainly the widespread acceptance of Grid computing should make super-computing 
resources much more widely accessible. Indeed, one of the top answers to question 2 about 
terms associated with the Grid was “usage of a supercomputer”. Additionally, the authors feel 
that the Grid model offers a hybridized model for computer use where all resources big or 
small, offering compute power, storage or specialized devices can be all integrated through 
the Grid. This does not suggest a move to computers being used more centrally again. The 
rapid and continuing growth in the power of desktop computers, and its cheap availability, 
will ensure that the compute power of local machines will play an important role in the future 
of Grids. 
 



 17

Another direction for computer centers will include more deployments of Linux clusters, 
constructed from cheap, of-the-shelf components. In addition to super-computers, computer 
centers could become hosts for specialized devices, such as visualization equipment, 
accessible over the Grid.  
 
We think that computer centers will be positively re-valued through Grid computing, and that 
local computing resources will continue to play an important and contributory role, but 
certainly not to the exclusion of other resources.  
 
The answers to question 14 “Application Service Providers (ASP) are the future of super 
computing”, show a small majority of people disagree with this statement. Application 
Service Providers offer implementation and subsequent operations management of one or 
more networked application, on behalf of its customers. They are usually associated with 
business operations, rather than in research/academia. In the business context, this model for 
outsourcing some of their IT operations is quite attractive to small and medium sized 
businesses, as it is a viable alternative to managing such operations in-house.  
 
Possibly a re-worded question implying ‘Grid enabled ASPs’ might have gained more 
agreement. We feel that this could be a useful future direction for ASP’s. As discussed in [1], 
a typical ASP does not provide dynamic provisioning, load balancing, or indeed interaction 
with another ASP or Storage Service Provider. These are features which a Grid enabled ASP 
would be able to provide. The EU project GRASP [4] operates in this area. This project aims 
to use GRID technology in order to realize current and future ASP business models that 
integrate distributed and heterogeneous resources. 
 
Current research directions such as Service Level Agreements for resource allocation [42], 
Quality of Service (QoS) mechanisms and economic resource brokering, and the involvement 
of businesses, for which payment mechanisms for Grid usage are necessary, are important 
services for Grid-enabled ASP’s of the future.  
 
Current Usage and Network Requirements Appraisal (question 18-29) 
 
Question 18, “What type of application do you mainly use”, evaluates the types of 
application, and which are the most common. We can summarize the most popular 
application types as follows,  
 

• Popular application types: pure batch mode, workflow/piped applications, parallel 
applications (with varying levels of communication).  

 
Steered, or controlled applications are rather specialized, particularly for simulations 
involving resources across administrative domain. This is a fairly advanced form of a 
distributed application which is being enabled through Grid technologies. At presence, current 
requirements or capabilities do not commonly point to this type of application, although we 
envisage that such requirements and capabilities will become more sought-after and requested 
in the future.  
 
Questions 19 to 29 evaluate the user’s requirements for a Grid infrastructure based on their 
present usage and priorities. Taking each question in term, the results can be summarized as 
follows 
 

19. Network requirements of applications vary widely, but the most demanding 
requirement “frequent and intensive communication between computers” is actually 
the top answer. 

20. Typical programs are normally/strongly dependent on network latency. 



 18

21. The majority of users require network latencies to be in range of 0 up to 100 
microseconds. 

22. Typical programs are strongly dependent on network bandwidth. 
23. The majority of users require network bandwidth greater than 100Mbit/s, and a good 

proportion require a bandwidth of over 1 Gbit/s.  
24. No consensus found for size of input data. It ranges from “up to 1 MB” up to “over 1 

GB”. 
25. The response to the size of output data is weighted towards to larger files, i.e. “over 1 

GB”.  
26. A majority of respondents do not, or only to some extent, use parallel I/O. The most 

popular answer was “no”.  
27. A majority of people require post-processing of generated output data, at least 

sometimes. Very few respondents never require this functionality.  
28. A majority of respondents sometimes use debugging tools on high performance 

systems. 
29. A majority of respondents sometimes use performance profiling and analysis tools on 

high performance systems. 
 
From this, we can conclude that a high performance networking infrastructure is an essential 
requirement in a Grid infrastructure. We can take the answers to questions 19-29 summarized 
above as a ‘wish list’ of network requirements when establishing a Grid infrastructure.  
 
Future Expectations and Requirements (question 30-48) 
 
The final group of questions, approach the subject of future expectations and requirements for 
Grid computing. Aware that a number of approaches can be taken to a current application and 
then make it “Grid-enabled”, this section attempts to establish a list of fundamental 
capabilities which would make it more attractive for a user to migrate their application to the 
Grid.  
 
In general, we felt that those who answered the questionnaire had a realistic and pragmatic 
attitude to the Grid, and what they could expect from it. This, no doubt reflects the 
respondents experience and knowledge of high performance and distributed computing, and 
its limitations. For example, the majority of answers did not agree that using a Grid would 
make their application easier to handle, and that their application would require some 
changes, to make it Grid enabled. This is more practical, than the vision of “plug-in” 
computational power. Evangelistic statements regarding the future of Grid computing, and the 
merging of the concepts of Grid computing, Semantic Web, and Web Services, and the 
consequent transparency of using any networked resource, seamlessly, and by any non-expert 
user, are current research topics, and the availability of such technology is some way off.  
 
As such, the responses to this section of the questionnaire evaluate the ‘near term’ future 
requirements. For example, on issues which are achievable today, we feel that the respondents 
exhibited strong convictions regarding a number of requirements for Grids which are seem as 
absolutely essential, for example Single Sign-on.  
 
Questions 30-34 cover programming models to run applications on the Grid. These are 
summarized in Figure 3. 
 
The most popular answer to Question 30 ”... your application will be easier to handle” is 
‘agree less’. We are arguably in the early adoption phase of Grid evolution. Grid users must 
now be to some extent technology orientated. As progress is made, the Grid will become 
ubiquitous, and consequently users will not need to be technical experts, as users of the World 
Wide Web are today. The deployment of the infrastructure will become easier, knowledge 
more widespread, something like running a HTTP server today. This vision for Grid 



 19

computing is currently someway off, and thus the current feeling is that applications on the 
Grid will not make applications easier to handle, although we expect this to change as the 
current software evolves, and new software developed.  

Figure 3: Questions 30-34, 37 and 38. When using a GRID you expect … 

 
Question 31 questions the users expectation “... that your application can be used completely 
without changes.” A majority do not agree with this. Our respondents expect some of 
alteration will be necessary.  
 
An overwhelming majority of people expect “... that you need to write a Batch-job script in 
order to use your application in this environment” (question 32). Batch submission of jobs to 
compute resources is an effective and proven method, and very much still in use today. 
 
Of course, the aims for the broad application of Grid computing technologies extends further 
than providing seamless access to remote resources in order to submit a batch job script. 
Nevertheless, the more realistic ambitions for Grid computing and certainly how it is most 
often used today include batch scripts as a core mechanism for resource management.  
 
In the future, an alternative to batch access is proposed by the methodology of the Service 
Oriented Architecture (SOA). This forms the basis of the thinking of the Open Grid Services 
Architecture [14], and promotes a change from thinking in terms of resources and jobs, to that 
of services. As defined in [17], “a service is a network-enabled entity that provides some 
capability.” This includes the notion of virtualization; implementation encapsulation through 
a common interface. Consequently, this also has the advantage of being able to disallow 
user’s direct access to a local account. However, such prescriptive use of a remote resource 

I totally
agree

I rather
agree

agree
partly

agree less I don’t
agree at

all

38. ... to have know  w here your input and output
data is found.

37. ... to know  w here the applications that you
w ant to use can be found.

34. ... that you need to rew rite your application by
using a specif ic GRID-API, in order to use it.

33. ... that you need to adapt a program by using a
particular GRID tool , in order to use it.

32. ... that you need to w rite a Batch-job script in
order to use your application in this environment.

31. ... that your application can be used completely
w ithout changes.

30. ... your application w ill be easier to handle. 

8
28

999

191410119

35102124

471328
11

1419
9129

718
819

11

413131518



 20

may prove too inflexible for a typical user of a compute resource, and they may require access 
to an account on a local machine and direct access to the batch scheduler in order to meet 
their particular requirements.  
 
Most people expect “... that you need to adapt a program by using a particular GRID tool, in 
order to use it” (question 33). The key word is ‘adapt’. The respondents to the questionnaire 
were unable to come to a consensus regarding the expectation “... that you need to rewrite 
your application by using a specific GRID-API, in order to use it” (question 34). However, 
we can conclude that there is understandably more reluctance to rewrite an application, than 
to simply adopt it, for use on the Grid. A good example of the approach queried in question 
33, is that of MPICH-G2 in Globus. This is a Globus-enabled implementation of the Message 
Passing Interface standard. MPI applications should port relatively easily to a Globus Grid. 
However, the programmer should be aware that the processing nodes over which the program 
runs are less likely to have the closely-coupled, high-bandwidth/low latency characteristics 
which are typical when deploying a parallel program over a cluster or super-computer. 
 
Questions 35-38 address ease-of-use, front-end requirements, seamless access (including 
automatic file staging). The results are summarized in Figure 3. 
 
Question 35 evaluates the expectation “... that you have to login per session …”. This is 
addressing the expectation that a Single Sign-on (SSO) mechanism would be in place when 
using the Grid. Not surprisingly the result is overwhelmingly in favor of SSO. Extending the 
use of a single resource to the use of multiple resources over a Grid, the obvious 
inconvenience of manually presenting a security credential to each is recognized. 
 
Question 36.” ... as an interface …” gauges if users expect to use a graphical or console 
based to perform their tasks on the Grid. Both graphical and console are the most popular 
answer, and additionally console access (only) is popular. At first glance, the popularity of 
console access is surprisingly popular, considering the user-friendly gains from using a 
graphical interface. However, console access is presently the most prevalent method of 
accessing remote resources, and additionally there is a perception perhaps that a graphical 
interface can sometimes lack the flexibility provided by console access. Choosing both 
console and graphical access gives the best of both worlds.  
 
There is no definite answer to the expectation of question 37, “... to know where the 
applications that you want to use can be found”.  Such transparency of application location 
would appear to be a useful functionality of a Grid use. In order to provide such a function, 
one could either use a dedicated PSE, where the user does not need to be aware of the 
application to be found, and this ‘virtualization’ is a function of the PSE. UNICORE provides 
such a mechanism in the form of an application specific plug-in, and the abstraction of 
software resources through the UNICORE client. Use of the Grid where the user must 
explicitly state the location of applications is possible for all Grid toolkits.  
 
The results to “... to have to know where your input and output data is found” (question 38) 
are marginal, but weighted in favor of some agreement. This result is quite surprising as 
having not to be overly concerned with location of the input and output data provides easier 
operation for the user of the Grid.  
 
Questions 39-42 deal with resource selection, resource brokering and scheduling.  
 
There is a agreement with the statements 39, 41 and 42 “…that you can explicitly choose the 
resources (hardware and software), which you wish to use”, “... that the GRID automatically 
selects the best resource for you.” and “... that the GRID offers both options (automatic and 
user controlled search for resources)”. These questions cover two scenarios for resource 
selection on the Grid; explicit and automatic or assisted selection.  



 21

 
The first scenario is where the user of the Grid directs a job to a specific machine. This is the 
simplest mode of job submission and as such is supported by almost all Grid systems.  
 
The second scenario involves the use of resource brokering functionality. Referring to Figure 
1, such services exist in the user-level middleware. The four systems we have evaluated have 
varying degrees of support for this mode of operation. In the case of Globus, such 
functionality is not provided by the core middleware, but there is good support by additional 
global-enabled brokering and super-scheduling software. Currently the support for resource 
brokering in UNICORE is limited, but improving through the results of the EuroGrid project 
[9]. This is providing assisted, but not automatic resource selection.  
 
For both scenarios, the questionnaires respondents would expect that such functionality would 
be available, and that automatic resource selection must have a ‘manual override’ facility.  

Figure 4: Questions 39-47 When using a GRID you expect… 

 
Question 40 reads “… to have to select these again each time you use the GRID resources”, 
and ‘rather do not agree’ is the most popular answer to this. It seems to be on the users “wish 
list” to have a saving method for the whole run of their jobs, including some information 
about the used resources. For instance, UNICORE supports the user in this area: a job 

I totally
agree

I rather
agree

agree
partly

agree
less

I don’t
agree at

all

47. ... that the above mentioned tools
can be used in the same w ay as in

non-GRID environments.

46. ... Performance Prof iling and
Analysis Tools for the tuning of  your

application in this environment.

45. ... a debugging tool, w hich you
can use in the GRID environment.

44. ... that each application compiled
by you must be transported to each

resource.

43. ... that in the usage of  dif ferent
types of  resources, your application

has to be re-compiled for each.

42. ... that the GRID of fers both
options (automatic and user

controlled search for resources)

41. ... that the GRID automatically
select the best resource for you

40. ... to have to select these again
each time you use the GRID

resources

39. ... that you can explicitly choose
the resources (hardw are and

sof tw are), w hich you w ish to use.

0882126

1025
1585

4121621
10

0072234

101291913

28
171053

2481930

2551932

515161215



 22

description can be saved and edited off-line if necessary, where the job description includes 
the resources for the jobs, and then this can be opened and re-used. 
 
Questions 43-47 cover compilation and debugging issues. 
 
Question 43 asks the respondents do they expect “… that in the usage of different types of 
resources, your application has to be re-compiled for each”, and the majority of people 
disagree with this statement. In practice, given the heterogeneous nature of the resources on 
the Grid, this is hard to achieve. What is achievable is the abstraction of compiler tasks for 
each platform. Application migration becomes possible when compiled applications can be 
freely moved between resources. The ‘write once, run anywhere’ promise of Java, where 
applications run within a virtual environment, recommends it for providing this desirable 
quality for application execution. However, Java is somewhat unproven as a programming 
language for HPC, and there are often complaints of poor performance in HPC applications 
written in Java. 
 
A strong majority of people do not expect “... that each application compiled by you must be 
transported to each resource” (question 44). This aspect of seamless use of resources on the 
Grid would appear to be high on the list of requirements from users, and is a functionality of 
some currently available Grid software. Connected to this requirement is the seamless staging 
of input and output data files.  
 
In the answers to both questions 45 and 46, “... a debugging tool, which you can use in the 
GRID environment” and “... Performance Profiling and Analysis Tools for the tuning of your 
application in this environment” the respondents displayed strong agreement. On this 
evidence we can conclude that these are desirable tools which should be available with a Grid 
infrastructure.  
 
However, the respondents expectations were inconclusive regarding the expectations “... that 
the above mentioned tools can be used in the same way as in non-GRID environments” 
(question 47).  In order to minimize the effort required to migrate an application to the Grid, it 
is clear that keeping current operational and developmental practices as un-changed as 
possible would be preferable. We suspect that many respondents to this question will in 
practice expect that this will not be possible, and that some adjustment will be necessary.  



 23

Tools 

Introduction 
 
In the first chapter we introduced a general model for Grid architecture, and described the 
primary functionalities of the various layers. For the remainder of this chapter, we will discuss 
the principles and features of the following Grid systems: UNICORE, Globus, AVAKI and 
TME.  
 

Globus 
 
Globus is an open-source initiative to produce a standard Grid architecture for distributed 
resources. In recent years, a Grid middleware standard de facto has emerged in the form of the 
Globus Toolkit.  
 
The choice of Globus as a Grid middleware provides functionality in the Security 
Infrastructure and Core Grid middleware layers, and some components in the User-Level 
middleware layer. Essentially, this is the extent of the Globus software – it is not an end-to-
end solution. However, these integration services at the neck of the hourglass architectural 
model provide a homogenous and secure interface across the geographical and administrative 
domains for accessing the underlying resources, on top of which the higher level services can 
be built. Additionally, it is possible to use the Globus command line utilities to interact with 
the core middleware layer directly. 
 
However, when installing Globus, it is usual to install some additional, higher and lower level 
packages. These provide additional services built around the core middleware, and although 
not ‘official’ Globus components these additional services are often present in typical Globus-
based Grids. These include batch systems at the lower layer, and often include Grid portals or 
PSEs at the upper layer. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 5 Globus Architecture

Client 

GRAM 
Gatekeeper

+ 
GRAM  

Job Manager 

Batch System 

GRAM 
Client 

GASS Client 
GSI 

GASS Server GSI 

Remote site 

grid-proxy-init 

X509 X509 Proxy 

Remote site 

GridFTP 
Server 

GSI

Remote site 

GridFTP 
Server 

GSI 

GridFTP Client 

MDS 



 24

 
A conceptual overview of the Globus architecture is shown in Figure 5. As Globus services 
can be deployed relatively independently on each node in the Grid, a large number of 
deployment options are available.  
 

Fabric 

 
The Globus Resource Management service co-operates with local scheduling systems, for 
example LoadLeveler, LSF, PBSPro and OpenPBS. In order to support co-scheduling of 
resources, advanced reservation must be provided as a additional service. Some modern 
schedulers provide such capabilities, or an additional software component such as the Maui 
software can add such functionality. Alternatively, the experimental Globus GARA service 
provides advanced reservation capabilities, if the local schedulers do not support these 
features.  
 
Security Infrastructure 
 
The Globus security infrastructure is called the Grid Security Infrastructure (GSI). This works 
using the mechanism of delegated credentials. This allows the construction of new capacities 
dynamically and transparently from distributed services, an often stated requirement for a 
Grid. Credential delegation allows a resource to access further resources by using the 
temporary credentials from the client, almost as if the client made the request directly. 
 
Core Grid Middleware 
 
Most of the Globus components are present at this level. As per the Globus documentation, 
there are three ‘pillars’ of services, all built upon the security of the GSI. These pillars are: 
 
• The first pillar provides Resource Management, which involves the allocation of Grid 

resources. It includes such packages as the Globus Resource Allocation Manager 
(GRAM), and the Globus Access to Secondary Storage (GASS). GRAM enables users to 
schedule and manage remote computations, whilst GASS facilitates the staging of 
executables and files.  
 
Globus provides a number of command line interfaces to the GRAM Resource Manager. 
Specifically, GRAM services allow users to submit jobs, bind to already submitted jobs, 
and cancel jobs on remote computers. Other services allow users to determine whether 
they can submit jobs to a specific resource (through a Globus gatekeeper) and to monitor 
the job status.   
 
Clients first connect to the Globus gatekeeper to initiate a Job Manager and user job. 
Communications then take place from the client and the JM to manage the job, stage data 
and/or executables, and return job output to the client. These connections are initiated in 
both directions. 
 
Prior to Globus version 2.2, the Globus client had to explicitly initiate the transfer of 
necessary files to the remote machine. This is the function of the GASS services, enabling 
transfer input/output files and executables between the client and the remote resource. 
Globus releases after version 2.2 added automatic file staging to Globus resources. This 
makes the regular operation of Globus less long-winded. 
 



 25

• The second pillar is the Information Services, which provide information about the Grid 
resources. In Globus this is undertaken by the Monitoring and Directory Service (MDS), 
providing the Grid Resource Information Service (GRIS) and the Grid Index Information 
Service (GIIS). The MDS Globus component is based on the Lightweight Directory 
Access Protocol (LDAP).  

 
The MDS simplifies Grid information services by providing a single standard interface 
for the many different information services and sources used within a Virtual 
Organization (VO). The MDS provides a mechanism for publishing and accessing both 
static and dynamic system and application data for the Grid. A key feature is that the 
MDS supports a dynamically changing Grid, where the information services reflecting 
these changes.  
 
The information stored in a GRIS is extensible. Local systems may have a number of 
information gathering mechanisms, and through the MDS ‘provider’ mechanism, these 
can be plugged in to a GRIS. For example, the Globus GRAM reporter provides 
information from a GRAM service, such as queue information from a local queuing or 
scheduling system such as LSF or PBS. Alternatively, Ganglia [11] can be integrated as 
an information provider for a cluster installation.  

 
The information service for a single resource is the GRIS, and a collection of GRIS’s for 
a VO can be aggregated as a GIIS. This aggregated information service is considered as a 
user-level service, and covering the next section. 

 
• The third pillar is Data Management and provides facilities to access and manage data in 

a Grid environment. These are the facilities provided by GridFTP service. 
 

The GridFTP service provides a secure way to transfer files in a Grid environment. 
It extends the standard FTP protocol and supports third-party control of data transfer. 
Thus, files can be moved directly between servers while the user controls the transfer 
from a third machine.  
 

 
User-level Middleware  
 
Another component of the MDS is the Grid Index Information Service (GIIS). This is an 
aggregated information service. An individual GRIS is responsible for registering itself with a 
GIIS. Each individual GRIS contains static and dynamic information for the resource it is 
monitoring. The GIIS consequently gives a picture of static and dynamic information across 
the resources it is federating. This is a powerful concept. For example, it allows a client to 
query the GIIS for details of resources matching hardware requirements, and also dynamic 
information criteria, such as current CPU load.  
 
Higher-level resource scheduling and allocation across multiple nodes can be handled by 
some Grid schedulers such as Nimrod/G  and Condor-G which are both integrated with the 
GRAM and MDS modules of Globus.  
 
Additionally, the DUROC Globus component can fulfill a similar role. Much like the GRAM 
service, the DUROC accepts an RSL request, detailing resource requirements. DUROC 
furnishes the RSL with details of resources satisfying the criteria, and then allocates the 
multiple resources.  



 26

Grid Programming Environments and Tools 
 
Due to the ‘bag of services’ approach taken by Globus, and the availability of technologies, 
this is an area where Globus is particularly strong, and where a wide choice is available to the 
developer. In many cases, this has involved the ‘Globus enabling’ of familiar programming 
environments.  
 
There is a version of the Message Passing Interface (MPI) operating over a Grid, as 
implemented by MPICH-G2. As discussed in [25], while MPICH-G2 can be considered as a 
high-level programming model, it does offer a number of desirable features. Not least, it is a 
compliant implementation of the MPI standard, and as such parallel programs developed 
using MPI should be able to run using MPICH-G2 without excessive modification.  
 
It is also possible to link to the Globus libraries and develop applications directly using the 
Globus API’s. The Globus Commodity kits provide a higher-level application level API for 
developing an application integrating available Grid resources, using common programming 
languages such as Java or Python.  This application level API allows the construction of 
workflows of Globus services using familiar high level programming languages. 
 
The Grid Portal Development Kit (GPDK) [44] is layered on the services of the Java CoG kit 
and allows the construction of web-based Grid portals.  
 
Grid Applications 
 
Computational science portals are emerging as useful and necessary interfaces for performing 
operations on the Grid. The Grid Portal Development Kit (GPDK) facilitates the development 
of Grid portals and provides several key reusable components for accessing various Grid 
services. A Grid Portal provides a customizable interface allowing scientists to perform a 
variety of Grid operations including remote program submission, file staging, and querying of 
information services from a single, secure gateway. Still, Globus is middleware, and creating 
an application that uses Globus, or “Globus-enabling” an existing application, requires a lot of 
work. 
 

UNICORE 
 
The UNICORE software is a well established Grid solution which allows users to design 
complex componentied High Performance Computing jobs [32]. Using a GUI interface to 
capture the workflow of the job from user; the user can then run this job at any of their 
accounts on multiple, heterogeneous UNICORE-enabled resources.  
 
Key features of UNICORE are:  
 
• Full control over the jobs through a graphical user interface 
• Construction of a workflow of tasks described in an target system independent form 
• Abstraction of system functions, commands, and user actions to achieve system and 

installation independence 
• The automatic staging of files 
• Job monitoring and steering through the UNICORE client 
• A plug-in architecture providing custom-built interfaces for individual applications 
 



 27

The UNICORE Gateway component authenticates connection requests through application 
and server certificates, and can co-operate with firewalls comfortably. Support for file transfer 
using GridFTP is added using results from the GRIP[18] and EUROGRID[9] projects. 
 
UNICORE can be alternatively described as possessing a ‘stovepipe’ architecture, or as a 
vertical integration environment for a Grid. The most ‘visible’ component of UNICORE is the 
graphical user interface, and it is the “World Wide Web browser” of the UNICORE Grid. 
Additionally, the remainder of the vertical architecture comprises of security filtering and 
middleware server components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: UNICORE architecture 
 
The UNICORE architecture is also shown in Figure 6. This is shown in the form of a typical 
configuration. As will be discussed below, for a typical UNICORE Grid deployment, each 
administrative domain is protected by a Gateway component, and the name given to this 
collection of resources is a Usite (UNICORE site). A Usite can contain a number of Vsites 
(Virtual site). The Vsite on the left in Figure 6 shows a more detailed view of the components 
which are present.  
 
The UNICORE client constructs an abstract workflow of jobs to be submitted, and assigns 
each job to a (possibly difference) machine. This job description is in an abstract form called 
an Abstract Job Object (AJO). This is submitted to a Network Job Supervisor (NJS) 
component, which is responsible for incarnating each job into a form which can be executed 
of on the specified target system, and for distributing other jobs in the workflow to other 
Vsites.  
 
Following the Grid architecture of Figure 1, we can describe how the UNICORE components 
fit into the various layers of Grid architecture [33]. Due to the stovepipe nature of the 
UNICORE architecture, its components can be found in most of the layers. 
 

Usite 

Vsite 

Usite 

Vsite 
TSI TSI 

NJS 
NJS 

TSI 

NJS 

Vsite 

NJS 

Gateway 

TSI 
shepherd 

TSI worker 
TSI worker 

Gateway 

UNICORE Client 

UUDB 

IDB 

Batch System 



 28

Fabric 
 
The Target System Interface (TSI) is the UNICORE component present in the Fabric layer of 
the architecture. This receives commands from the NJS, which are in their incarnated form 
and ready for execution. The TSI is implemented as a shepherd process which forks a new 
process for each job submission. It interfaces with the batch systems present on the target 
system, and provides job monitoring information to the NJS and also arranges data transfers. 
 
Security Infrastructure 
 
The UNICORE security infrastructure is based on X.509 certificates, which are used to sign a 
job to be submitted. The temporary proxy certificate created by the GSI of Globus is not used 
with UNICORE. The resources to be used by a multi-site workflow are specified and signed 
by the user before submission.  
 
The first UNICORE component dealing with security is the gateway. Before we discuss its 
operation, we emphasize that this aspect of the UNICORE architecture does not fit in neatly 
with our scheme for discussing Grid architecture, due to the differences between a security 
policy enforced at the resource itself, or having security policy enforced by a single 
component for a number of resources (usually all the resources in a local network). 
Specifically, authentication occurs at a ‘door-man’ service called the Gateway, whilst 
authorization occurs at the resource itself.  
 

• Authentication 
The task of the UNICORE Gateway component is to act as a ‘filtering’ service for 
authenticating requests of the UNICORE Grid. This component ideally sits within a 
Demilitarized Zone (DMZ) around a network protected with a firewall, or similar. 
This Gateway component effectively acts a filter, assuring that requests from clients 
can pass through, if the certificate used to sign the job is issued by a recognized 
Certificate Authority. 

 
• Authorization 

The second security activity performed by UNICORE occurs in the NJS. Using the 
UNICORE User Database (UUDB), the credentials of a signed job are checked for 
authorization permission. The UUDB maps the subject obtained from the users 
certificate, on to a Unix account. In contrast to the Gateway, this procedure occurs at 
the resource itself.  
 

The differences between the Globus security based on credential delegation and the model 
used by UNICORE is briefly discussed in [31], “… the need for delegation depends on the 
underlying concept of the site-integration. A trust model based on a strongly connected web 
of trust as used in the UNICORE project would allow to avoid the general delegation”.  
 
Thus the extent of the ‘web of trust’ is defined by the UNICORE Gateway component. Once 
a request for a resource has passed through the Gateway component, the user must be 
configured in the each UUDB to access each resource. In this sense it can be said that the 
UNICORE model allows some limited form of credential delegation.   



 29

 
Core Grid Middleware 
 
As well as its higher-level role directing components of a workflow to various Vsites, the NJS 
is also responsible for marshalling an ‘atomic’ job unit, through the incarnation process, and 
on to its execution at the TSI, and subsequent monitoring of the execution. Referring again to 
the hourglass model of Grid architecture, this aspect of the concepts of UNICORE 
functionality corresponds to the neck of the hourglass in the model.  
 
UNICORE goes a long way to achieve the aim of seamless access to computational resources. 
Seamlessness is achieved at two levels. Firstly, there is the issue of diverse scheduling 
mechanisms on different resources. UNICORE offers a layer of abstraction on top of this, and 
this is also true of Globus. Secondly, the IDB can contain site or system specific information, 
for example compiler options, specific software resources, etc. Through a process of 
incarnation, Abstract Jobs are then translated in concrete commands for each target system. 
 
User-level Middleware  
 
Using the UNICORE client, a job workflow is defined which is a description of a group of 
interdependent jobs to be performed on a collection of sites. A UNICORE job, or more 
precisely job group, is a recursive structure which can contain other job groups. 
 
During the process of submitting the job the UNICORE client constructs an Abstract Job 
Object (AJO), from the job description. The AJO can include of other sub-AJO’s. As its name 
implies, the AJO is abstract, and does not include site or system specific information, e.g. 
paths to executables, etc. The client submits the AJO to the destination of the highest level 
AJO (the NJS of the primary Vsite).  
 
The responsibilities of the NJS places both, the core and user-level middleware categories. 
The NJS of the primary Vsite examines the received AJO and sends any sub-AJO’s to their 
respective destinations. This functionality of the NJS is to act as a type of resource 
aggregator, dispatching jobs to various UNICORE Vsites, and as such classifies this 
component of the NJS as user-level middleware. The other role of the NJS is only concerned 
with the resources on the particular machine that it is supervising, in other words this part of 
the NJS is fulfilling the role of core middleware. 
 
Grid Programming Environments and Tools 
 
With UNICORE there was a deliberate intension not to support tightly coupled meta-
computing or application level development explicitly. When initially conceived, the target 
users had existing applications that did not use Metacomputing environments. Moreover, 
these applications were frequently provided by third parties. 
 
The UNICORE plugin mechanism provides some measure of a programming environment for 
the underlying Grid. However it is quite limited in its ability to let the programmer directly 
interact with the Grid infrastructure underneath it. However, in the UNICORE Plus project 
[34], [57] work was done to integrate PACX-MPI [55] into UNICORE. The integration was 
assisted through the use of a client plugin. During the UNICORE Plus project some work on a 
super-scheduler for UNICORE working on CCS was also undertaken.  
 
On the whole due to its original motivations and design of the system, support for meta-
computing, and provision of a programming environment for a UNICORE Grid, are areas 
where UNICORE is weak in comparison to some other Grid middleware and Globus in 
particular. 
 



 30

Grid Applications 
 
The server-side UNICORE components form the UNICORE Grid. The UNICORE client 
allows remote access to the UNICORE Grid, with authorized access provided by the 
UNICORE Gateway component.  
 
Whilst the UNICORE model from the perspective of the client conforms to the 3-tier of portal 
architecture (the middle tier is the Gateway and NJS services, and the underlying Grid 
resources form the bottom-tier). However, UNICORE uses a ‘thick’ java application client, 
instead of a HTML based client. The advantage of this approach over a thin-client, is that 
more functionality can be pushed to the client, resulting in less communication with an 
application server. The result is also that the client can be used for job preparation whilst 
offline. 
 
There are a number of layers of ‘virtualization’ present in the operation of the UNICORE 
client. The lowest level of virtualization is witnessed in the submission of batch scripts 
through the UNICORE interface. This is provided to allow existing applications to be 
integrated instantly into a UNICORE job flow. A medium level of virtualization is enabled by 
the use of the abstract task descriptions which are incarnated for each target platform, such as 
the compile task. Finally, a high level of virtualization is achieved through the principle of 
site abstraction in conjunction with the use of custom-built interfaces supplied as plugins. 
 
It can be said of UNICORE that there is a tight-coupling between the various layers of the 
architecture (for example, storing the job workflow as java serialized objects). For 
comparison, taking for example Globus, each service tends to use different but well-known 
protocols at their interfaces. Furthermore, the issue of closed communication channels 
between the components is more evident in UNICORE due to its layered stovepipe 
architecture, whereas the horizontal architecture of Globus has a single layer providing 
homogeneous access to underlying resources at a single layer in the Grid middleware.  
 
However, on this point it is important to note that, as with other Grid software, UNICORE is 
an evolving Grid infrastructure. The original UNICORE project and its follow-on project 
UNICORE Plus [57], have both completed. For the most part, the scope of this initial project 
was to architect, plan and implement the core UNICORE software, which was achieved. 
 
Currently, important initiatives regarding on-going development of UNICORE include the 
EUROGRID and GRIP projects. EUROGRID aims to provide a European Grid network of 
leading HPC centers, deploying the UNICORE software. Included in the work packages are 
enhancements to the software in the form of GridFTP integration as an alternative file transfer 
mechanism for UNICORE, and the development of a resource brokering functionality. 
Additionally, the project aims to demonstrate the feasibility of the proposed work through the 
integration of a number of large scale applications in areas such as bio-molecular simulations 
and weather prediction, into the UNICORE system, including the development of UNICORE 
plug-ins to the client, providing user-friendly, custom-built interface to the application, within 
the UNICORE graphical user interface. During the course of this project, the maturing of the 
core UNICORE environment has been witnessed, and its competency satisfying the original 
aims of the software demonstrated. 
 
The GRIP project implements interoperability between UNICORE and Globus, at the 
middleware level. The intention is not to embed the Globus services and protocols throughout 
the UNICORE architectural stack. Instead, the aims of the project are to provide 
interoperability with the minimum of interference to the existing systems. The integration 
occurs at the ‘integration’ layer of the two architectures. Namely, the number of potential 
UNICORE target systems is enlarged by providing access to Globus resources, through the 
deployment of a special Globus Target System Interface (TSI). Briefly, the mechanism of this 



 31

Globus TSI is: the job is specified in the client as a script task, and this is submitted. After the 
abstract job description is incarnated in the NJS and handed to the TSI for execution. At the 
Globus TSI, there is a module translating UNICORE requests for job submission, output 
retrieval, and status queries to the corresponding Globus constructs. Additionally, there is the 
issue of different security mechanisms in Globus and UNICORE. This is solved by installing 
a small plugin into the UNICORE client to initialize a Globus proxy credential. This is passed 
to the Globus TSI through the secure UNICORE communication channels.  
 
Through the standardization of Grid middleware which is currently receiving much attention, 
UNICORE stands to benefit greatly from ‘opening up its interfaces’ through adoption of 
relevant new standards, but without losing sight of the merits of the UNICORE architecture. 
The results from the GRIP project are proving to be instrumental for the future evolution of 
UNICORE. Central to the focus of the project is the participation and contribution to the 
activities of the Global Grid Forum (GGF). Of direct importance to the project are 
information services, resources management, security, applications, computing environments, 
and Grid architectures. One of the results of the GGF process is the Open Grid Services 
Architecture (OGSA). Exposing the functionality of the UNICORE system through web 
service interfaces and following the OGSI specification, is the instinctive path for GRIP to 
follow in order to enable further interoperability, which is indeed a core topic for the focus of 
the project. 
 
 

AVAKI 
 
AVAKI is an object-based operating system for Grids which was started in 1993. AVAKI 
originates from the Legion project from the University of Virginia. Following 
commercialization of the software, AVAKI is now the corporate distributor of this product, 
and all future development and marketing of the software occurs through AVAKI.  
 
AVAKI attempts to hide the complexities of distributed Grid resources (scheduling, data 
transfer, communication, etc), from the user through adding a layer of abstraction, creating 
the impression of global virtual computer. It addresses the technical and administrative 
challenges faced by organizations such as research, development, and engineering groups 
with computing resources in multiple locations, on heterogeneous platforms, and under 
multiple administrative jurisdictions. 
 
AVAKI provides three different software products: the “AVAKI Data Grid”, the “AVAKI 
Compute Grid”, and a combination of both - the “AVAKI Comprehensive Grid”. In this 
report we only examine the AVAKI Compute Grid as we mainly want to consider GRID 
computing environments. 
 
AVAKI Grid software is composed of three services (Figure 7): 
 
• The Grid Protocol layer, which provides protocol adapters, security, and naming and 

binding. 
• The Systems Management Services layer, which provides capabilities for implementing 

and managing distributed solutions. 
• The Applications Services layer, which provides high-level services that can be used to 

construct file sharing, collaboration, and high performance computing applications. 
 
 
 
 



 32

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: AVAKI Grid software layer 

The AVAKI Data Grid as well the new version (Version 3.0) of the Compute Grid are written 
in Java to ensure a better portability to an heterogeneous environment. 
 
Fabric 
 
AVAKI interoperates with native file systems, creating a layer on top of the native file system 
in order to build a single uniform operating environment – the AVAKI Grid.[48]. For the user 
this means a simplification of the process of interacting with resources in multiple locations, 
on multiple platforms, and under multiple administrative domains. For instance, the user can 
access files by a virtual name in a virtual directory. He does not have to know the physical 
location of the file. 
 
An AVAKI Grid can be built from individual computers and local area networks or from 
clusters enabled by software such as LSF (Load Sharing Facility), PBS (Portable Batch 
System) or SGE (Sun Grid Engine). If one or more queuing systems, load management or 
scheduling systems already are in place, the AVAKI software can interoperate with them. 
Thereby it allows sharing of resources across the cluster and creates virtual queues. 
 
With AVAKI software users can execute their applications interactively or submit to a queue. 
Queues allow to group resources in order to take advantage of the shared resources mainly 
computing power. The AVAKI queue server provides multiple logical queues and allows the 
configuration of different options, such as number of jobs running at once, number of times to 
try to restart a job which has failed, and the number of jobs within a queue. It also supports 
the selection of an appropriate scheduler for the queue, selection of priority of a job within a 
queue and purging and killing of jobs currently running in a queue. 
 

Application 
Services 

System 
Management 

Services

Grid 
Protocol 

Protocol 
Adapters 

File Sharing/Distributed File System 

High Availability Parallel Computing 

High Throughput Computing 

Scheduling & Resource Management 
Accounting & Metering Binary Management 

Fault Tolerance & Recovery 

Object Management – Persistent and Statless 

Migration & Replication Failure & Event Model 

Metadata & Discovery 

Process Management Storage Management 

Distributed Directory Service 

Identity, Authentication, Encryption, Access Control 

Scalable Naming and Binding 

Communication Protocol Adapters 

UDP 
 

TCP/IP 
 

JXTA 
 

Native 
 

.NET 
 



 33

Security Infrastructure 
 
The security of AVAKI is a result of several separate capabilities that work together.  
 
As users access files, run applications, or submit jobs to queues, AVAKI authenticates the 
resources and ensure that the requested procession is allowed. The authentication is based on 
Public Key Infrastructure (PKI). Each resource made available on the AVAKI Grid has a 
unique identifier that is related to but independent of its user-visible name. The unique 
identifier of the resource is also independent of its physical location and it is used to 
authenticate resources.  
 
The built-in encryption and message digest feature are used to ensure message integrity.  
 
To control the access to resources on the Grid AVAKI provides a fine-grained security that 
local administrators can use to control access to their resources. The configuration of 
allowing/denying of user-access respectively resource-access is supported. Access to 
individual resources, including data, applications, queues, and hosts, is controlled 
individually. Files can be associated with multiple user groups, users can define user groups 
without administrative intervention, and per-file exclusion lists (allow-all-but/deny-all-but) 
are supported. Through the same mechanism, administrators control the access privileges of 
resources that use other resources, such as applications that use data files, or queues that run 
applications and use the processing power of hosts.  
 
Core Grid middleware 
The AVAKI system runs on top of the unmodified operating system of each participating 
machine in the AVAKI grid. Therefore it does not need to manage very low-level resources. 
The underlying local operating system does that. At the AVAKI level, the resource base 
consists instead of multiple heterogeneous processors and storage devices. 
 
AVAKI supports various types of heterogeneous platforms to act as a Grid service server: HP 
(Tru64 Unix), IBM (AIX), Intel (Red Hat Linux, Microsoft Windows 2000, Microsoft 
Windows NT), Sun (Solaris) and SGI (Irix). 
 
Grid Programming environment and tools 
AVAKI is structured as a system of distributed objects. All of these entities are represented by 
independent, active objects that communicate using a uniform remote method invocation 
service. This approach enables the interoperability of the components between multiple 
programming languages and heterogeneous execution platforms. 
 
Grid applications 
Most applications that use the AVAKI Grid can be written in any language and do not need to 
use a specific API. They can be run anywhere on the AVAKI Grid resources without source 
code modification as long as resources are available that match the application’s need. 
 
To take further advantage of distributed processing power, AVAKI’s queuing facility also 
supports two forms of parallel program execution: 
• AVAKI provides a simple support for performing many executions of a single 

application, each with different parameter data. This doesn’t include dependencies or 
work flow elements. Each of these runs is called a “job”. These jobs do not communicate 
with one another, i.e. they can run in parallel.  

• AVAKI supports existing code written in MPI with a “native MPI wrapper”. In this case 
it makes use of a preinstalled version of MPI on the target system. 

 
Currently there is no AVAKI MPI Grid implementation to support running a distributed job 
on heterogeneous platforms. 



 34

TME 
TME (Task Mapping Editor) is a visual programming tool developed at the Center for 
Promotion of Computational Science and Technology at the Japan Atomic Energy Research 
Institute. The tool facilitates seamlessly integrating parallel programs distributed over 
networks into a single meta-application. It provides an intuitive graphical user interface to 
specify relations among programs and identify computing resources. Based on the 
specification, the execution of programs is automatically controlled. 
 
Currently, two kinds of meta-applications are implemented on TME: a risk management 
system for environmental crisis and a distributed parallel data analysis system for nuclear 
fusion plasma. They allow performing of distributed parallel processing without being 
conscious of the underlying computing resources. 
 
The TME software is available for the following target platforms: 
Vector Parallel Computer: Fujitsu VPP300, NEC SX-4, Cray T90 
Scalar Parallel Computer: Fujitsu AP3000, Hitachi SR2201, SR8000, IBM SP2, SP3, Cray 

T3E, IntelParagon 
WS Server: Fujitsu GP8000S, HP9000, NEC TX-7, Sun Enterprise Server, 

SGI Onyx 
WS, PC Cluster : Compaq, HP, Sun WS, Linux Cluster 
 
The communication infrastructure as well as the security environment of TME currently 
based on the ITBL system. Therefore, the following description of the various layers of the 
Grid architecture [33] of TME concern also ITBL infrastructure. 
 
Fabric 
 
TME consists of 4 kinds of subsystems (see figure 8): the TME-GUI, the Meta-scheduler, the 
Resource Information Monitor (RIM), and the Execution Manager (EM).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Software architecture of TME 

Back-end HPC Resources 

RIS 
manager 

 

TME GUI 

RIS 
prober 

RIS 
prober 

EM 

RIS 
prober 

EM EM 

Task 
description Client Terminal 

Meta 
scheduler 

Execution 
control 

Resource 
information 



 35

The Meta-scheduler resides on one of the backend computing resources and communicates 
with users through the TME-GUI. Main tasks of the Meta-scheduler are the determination of 
the execution order of components according to the parsed task description and the control of 
the execution of a meta-application. When a user asks TME to select a suitable computing 
resource for a component, the Meta-scheduler decides the target computer with the help of 
RIM. 
 
RIM (Resource Information Monitor) handles the information on computers and networks. In 
order to gather resource information of each computer, RIM servers reside on each computer 
to monitor information. They send the monitoring results periodically to the RIM client, 
which stores the information and provides it to the Meta-scheduler or users. RIM treats two 
kinds of resource information, which are (i) static information such as CPU performance, size 
of memory, and type of hardware architecture of computers, and (ii) dynamic information 
such as latency and throughput of network, loads of computers, and the number of waiting 
jobs in a batch queue. In addition, RIM predicts future resource information as well. At 
present, two kinds of methods are implemented on a RIM prototype system. The first returns 
the most recent past resource information. The second provides more accurate information by 
searching the most similar sequence of resource information from the gathered data. 
 
EM (Execution Manager) is created on each target computer by Meta-scheduler to stage the 
execution of a meta-application under the control of Meta-scheduler, that is, receive input 
data for a component, execute a program, check a program termination, and transfer output 
data. When the program is to be executed in a batch mode, EM generates a batch script based 
on the information, which the user specifies in the registration phase. At present, EM has an 
interface to submit a job to NQS. 
 
Core Grid middleware 
TME is currently one of the tools implemented on the ITBL (Information Technology Based 
Laboratory) system. The objective of this project is to establish high-speed networking 
supercomputers to be distributed in different research organizations so that computational 
resources like software, research databases and computational power can be shared by all 
organizations in Japan. The ITBL project is the follow on of the STA (Seamless Thinking 
Aid) basic system. This is a software system for supporting a series of works on distributed 
scientific and technological computations by providing a work environment to enable 
seamless thinking of users. The STA system provides both communication infrastructure for 
supporting communications among heterogeneous computers and several computational tools 
integrated on the communication infrastructure, so that a user can work just like on a single 
computer without noticing the presence of multiple different computers. 
 
Figure 9 shows the architecture of the ITBL system. It is divided into several layers. In order 
to realize secure and easy access to resources, a single sign-on authentication mechanism and 
protocol changeable communication infrastructure on the VPN-based secure network exist. 
Various kinds of primitive services such as process manager, task scheduler, resource 
monitor, data manager are implemented on the foundation. In addition, the system will 
provide tool kits which interact with users and control the underlying primitive services in 
place of the users. There are two kinds of tools, a tool kit for component programming and a 
tool kit for community access. The former supports the development and execution of 
applications on the ITBL system. The latter supports sharing and exchanging of information 
among researchers. These tool kits are the most important for users, because they become an 
access interface to the ITBL system. 
 
 
 
 
 



 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Software Architecture of the ITBL system 

 
Security Infrastructure 
As mentioned before TME makes use of the ITBL security infrastructure. The security issues 
of ITBL comprise from mainly three parts: 
i) https and SSL based secured connection 
ii) X.509 based authentication 
iii) DMZ (DeMilitarized Zone) 
 
The ITBL system assumes that normal users access the ITBL server from the outside of an 
institution, in other words, normal users come from outside LAN. Thus ITBL should take care 
of the access through the firewall. Therefore, an ITBL (front) server is running on the DMZ, 
which is one of sub-networks connected to the firewall and DMZ can be also treated as 
outside from LAN. Inside the LAN where computational resources (supercomputers, 
databases are located), relay processes are running on the ITBL relay server, which directly 
relays the messages from any machine inside LAN and the user client outside the LAN. 
 
In order to protect from an attack by an intruder, authentication on the ITBL server and 
computational resources are completely separated. That is, two-step authentication is 
required. In connection to other institutes, the same procedures is required, but automated 
behind the ITBL server. The user does not have to take care of multi-step authentication 
rather then it is realized as the single sign-on procedure. Any user information regarding the 
ITBL system is restored on the database server which is physically connected to the ITBL 
server, therefore significant information cannot be referred from any machine even though 
inside LAN, but only from the ITBL server. Security is assured by network configuration at 
first. 
 

Task Scheduling 
 

.. 

 Science Portal 
 

Service Layer 

Communication/Security Infrastructure 

https 
 

http 
 

SSL 
 

Raw Socket 
 

Resource Monitoring 
 

Data Management 
 

Single Sign-on Authentication Mechanism 
 

Common Communication Interface 
 

Network Hardware VPN Technology 
 

Primitive Service Layer 

 
 
 

Tool Kit for Community Access 

 
 
 

Tool Kit for Component Programming 

PPDE Stampi PatrasTME Data Access 
Service

Visualization 
Service 

Meeting 
Room Service 

System Management 
 

Message Logging 
 

Process Management 
 

Full Cell Simulation Regional Simulation Airplane Simulation 

Computer Resources Data Resources Experimental Devices 



 37

For all connections between client and servers, and ITBL servers and proxy (or relay) servers, 
authentication is carried out, and X.509-based certificates are required on the mutual (cross) 
checking. Thus the authentication on the ITBL system is redundant and almost all accesses 
from outside can be considered as valid connections. 
 
Between proxy servers and computers which are allocated inside the LAN, a communication 
API is implemented using the nexus library developed by Argonne National Laboratory, and 
its security depends on the local policy and sometimes it is assured by SSL and SSH (but this 
is optional). 
 
Core Grid Middleware 
All communication APIs are provided from the Starpc library, which is originally developed 
by JAERI. Starpc [48] is a RPC (Remote Procedure Call) based communication library for a 
parallel computer cluster. It supports communication between Java applets and C programs as 
well as C programs. It has the following features. (a)It enables communication between Java 
applets and C programs on an arbitrary computer without security violation, although Java 
applets are supposed to communicate only with programs on the specific computer (Web 
server) in subject to a restriction on security. (b)Diverse network communication protocols 
are available on Starpc, because of using Nexus communication library developed at Argonne 
National Laboratory.  
 
User Level Middleware 
On the TME canvas, data files and programs are expressed as icons. By linking program icons 
and data icons, users can easily specify data dependencies and execution order. Moreover, 
users can choose computers to conduct programs interactively. 
The visual specification of an application is translated into a task description. The description 
is sent to the Meta-scheduler which decides the execution order of the components. When a 
component is executed, the meta-scheduler selects the target computer with the help of RIM 
which provides information about computers and networks. In order to gather information, the 
probers reside on each computer to monitor information. They send monitoring results 
periodically to the manager. Finally, the manager provides it to the Meta-scheduler. After 
selecting the target computer, meta-scheduler makes requests to the execution manager on the 
target computer to allocate the task and stage data. 
 
Grid Programming environment and tools 
The TME_GUI is a web-based intuitive visual interface to integrate component programs. 
Users can specify relations among programs on a TME canvas. TME provides various ways 
to realize I/O linking: file transfer, pipe-lining and MPI I/O can be specified. For process 
creation, TME provides three kinds of mechanisms based on MPI semantics: spawning of 
processes, client/server connection and MPI-1 based start-up. The process creation as well as 
the MPI I/O is realized by the Stampi [47] communication library. 
 
Grid applications 
As mentioned before, TME supports the development and execution of a meta-application, 
which consists of many programs and data residing on distributed computing resources. It 
focuses on the scenario in which users integrate components by two kinds of methods: 
executing a parallel program on a parallel computer cluster, and connecting input and output 
of independent programs. 
 
In order to realize a GUI for end users, TME provides a users interface to supply file selection 
mechanisms, parameter input methods, etc. To realize this GUI, the concept of a modular GUI 
was introduced. Application developer can construct a module network by using these 
modules to integrate their own application into the TME environment. 
 



 38

At run-time, TME manages the execution of the meta-application, which means automatically 
stage of date and execution of programs according to the user specification. After the 
execution of a meta-application the user can monitor the execution status through the GUI. 
TME provides a single view to check the execution status of all component programs. 
 



 39

Installation and Test of Tools 

Introduction 
 
The test installation for the systems under consideration was a cluster at HLRS, Stuttgart. In 
order to simulate a typical user environment, the client portion of the software was installed 
on a workstation in Forschungszentrum, Jülich. Additionally, this configuration allowed the 
evaluation of the software with respect to its cooperation with firewalls, and other issues 
arising from dealing with two separate domains. The TME environment was installed only on 
one workstation. 
 
The platform used for the tests consists of a front node for interactive access (crossi.hww.de) 
and several nodes for execution of parallel programs. The cluster is a heterogeneous cluster 
consisting of 10 PIII nodes with 1GHz and 24 Xeon/PIV nodes with 2.4GHz and a small 
number of test nodes. 
 
We also wished to conduct some performance tests and comparisons between the systems in 
the test environment. However, this proved to be quite difficult. Firstly, we cannot assume a 
consistent environment with which to conduct the tests; the network between Jülich and 
Stuttgart is unpredictable and we could not be assured of a consistent environment on the 
cluster. Secondly, the structure of the systems makes them difficult to derive tests producing 
comparable results. For instance, both Globus and AVAKI support console access, whereas 
the graphical interface of abstract which must be accounted for.  
 
We installed simple test applications on the cluster, and we interfaced all the systems to this 
test application. We used this application to test the usability and function of the systems. It 
was decided however that timing accessing this application through our test Grid systems 
would merely result in measuring the performance of the cluster and the test application, and 
not of the Grid middleware.  
 
From the results of the questionnaire, parallel jobs as well as single batch jobs are both 
important, but we did not explicitly address requirements for Grid-enabled MPI (such as 
MPICH-G2). In fact, when submitting single jobs or ‘local’ MPI jobs to a cluster or a 
supercomputer, the overhead of adding the additional layer(s) of Grid middleware in terms of 
performance is usually negligible in comparison with the run time of the job. From the 
questionnaire, we can conclude that Meta-computing across multiple super-computers, is of 
limited appeal. Indeed, this is not really covered by UNICORE, and AVAKI. 
 
Additionally, in some systems it is difficult to establish when a submission has completed. 
For example, in UNICORE, the client informs itself of the completion of a job by regularly 
polling the NJS. Clearly, there is some lag between task completion and the user being 
informed, however, using the approach of polling enabled good co-cooperation between 
UNICORE and firewalls. Similarly, in the alpha versions of the Globus 3 toolkit, the job 
manager service appears extremely slow for the submission of trivial jobs, and again this is 
due to polling frequency.  
 
Tests were derived and performed submitting jobs to the test environment. We wished to time 
the period from submission of the job to its completion. However, as we discussed, it is 
difficult if not impossible to specify tests and conditions which would fairly compare all the 
systems under test. However, we felt that it might be possible in some cases to compare file 
transfer times. This is still difficult to achieve in UNICORE (due to polling for results). 
However, for console based scripts in Globus and AVAKI, it is possible to time the 
submission of a simple job, including a file transfer, until a response is received at the client.  



 40

UNICORE 
 
The UNICORE installation at HLRS (see figure 10) was used to accomplish the analysis of 
the Grid system. Currently the UNICORE 4.0 release is in operation and configured for 3 
target systems NEC SX5, VOLVOX (cluster of SMPs, 10 nodes NEC Express Server 5800) 
and AZUSA (cluster of 16 x Intel Itanium C0). Most of the tests of the UNICORE system 
were performed with release 4.0 using Java version 1.4.  
 

Figure 10: UNICORE Installation at HLRS 

 
To enable the work with the HLRS firewall one dedicated port between the Gateway machine 
and the NJS machine had to be opened by the firewall administrators. On the Gateway 
machine IP filters were installed to adjust the access to this machine and to avoid attacks from 
outside. Only one port is open for any client outside the firewall and used to establish the SSL 
connection between these clients and the Gateway. 
 
The Gateway software was installed on a SUN Workstation running SunOS 5.7. There were 
no problems during installation and with the reliability of the software. The NJS software 
component was also installed on a SUN Workstation and worked correctly. For each target 
system an individually NJS was created running on the same machine. The setup of the 
different IDB’s (Incarnation DataBase) had been done together with the system administrators 
of the target platforms. The UNICORE Gateway has been integrated into the automatic 
startup/shutdown of the underlying operation systems. The automatic startup of the NJS 
component is not possible due to the necessity of a tty device within the startup phase of the 
software. Therefore the NJS has to be started interactively by the system administrator. 
 
The UUDB (UNICORE User DataBase) is also running on the NJS machine. The integration 
of the user certificates was supported by scripts and worked fine. 
 
The installation of the TSI (Target System Interface) on the Linux cluster (crossi.hww.de) 
was no problem. We used the TSI version written for Linux clusters using PBS with no. If the 
UNICORE system should run in privileged mode, the TSI processes had to be executed as 
root. Only in privileged mode the user mapping will work at all. If the system is running 

IP Firewall 

Client 
 

Gateway 

NJS 
For VOLVOX 

njs1.hww.de

NJS 
NJS for NEC SX 5 

NJS 
For AZUSA 

Client 
 

unicore-gw.rus.uni-stuttgart.de

TSI on  
NEC SX5 

TSI on 
VOLVOX 

TSI on 
VOLVOX 



 41

unprivileged (not in root mode), all UNICORE jobs will execute under a special user account 
defined in the IDB.  
 
The installation of the client software on two PC’s running WindowsXP and RedHat Linux 
also worked fine since Java 1.4 was preinstalled. A detailed integrated online help for the 
client is available and was helpful for the first time use of the client. After starting the client a 
keystore had to be created which contains all certificates. This process is supported by the 
UNICORE client. 
 
With the help of intuitive graphical user interface of the UNICORE client we prepared a job 
consisting of two sub-jobs including a dependency to run our application. We used the 
Command- and Script-Task. The file transfer for input and output files was included into the 
sub-jobs. After successful submission of the job, we could check the status of the job at the 
resource panel. This is not an automatic task and has to be done individually by the user. An 
integrated “WatchDog” tool helps to automates this task if necessary, for instance for long 
time jobs. Sometimes there were problems to refresh the resource list. To fix this, we removed 
the resoureCache.bin file from the UNICORE home directory. 
 
During run-time of the job some logging information can be fetched also to analyze errors. 
The level of information can be configured by the user. After successful run, we fetched our 
output, this means we could look at stout and sterr and the output files were transferred 
to our workstation.  
 

GLOBUS 
 
For the purposes of the evaluation, Globus was installed on one of the nodes of the cluster at 
HLRS (Stuttgart). During the test phase of the project we installed and tested various versions 
of the Globus software as they became available. Initially we used version 2.2.4 and more 
recently we worked with version 2.4.0. With the introduction of version 2 of the Globus 
toolkit, the software has been distributed with the Globus Packaging Technology (GPT). We 
are aware that organizations such as the National Science Foundation Middleware Initiative 
[50] distribute selected Grid middleware. For our tests we obtained software from the Globus 
website [51]. 
 
There is reasonable agreement that older incarnations of the Globus software were often 
troublesome to install and configure. However for the recent versions of Globus this has 
greatly improved. We found that it was relatively straightforward to install specific Globus 
services on a particular resource, and to test this by submitting jobs from user’s workstation. 
In order to install and configure Globus on a number of machines it would be preferable to 
automate this process to some extent. We also installed and used the Java CoG kit in order to 
integrate Globus services in a Java program, but we did not install any of the other higher 
level Globus programming environment and toolkits.  
 
The project partners followed an internal installation guide targeted for Linux installations 
which described, step-by-step, the interactions at the command line. We also chose to run our 
own test Certificate Authority in order to quicken the process of administrating security 
credentials.  
 
With the help of a document [52] describing the Globus firewall requirements we were able to 
configure the HLRS as well as the FZ Jülich firewall to work with Globus. Some specific 
ports must be allowed by the server site to allow clients to access the specific services. 
Additional an ephemeral port range must be open at both sites, to allow callbacks from Grid 
services to clients, and at server sites in order to allow connection to transient Grid services. 



 42

The firewall community does not like the usage of incoming connections to non-deterministic 
ephemeral ports. We constricted the ephemeral port range to 10 ports. To configure the 
Gatekeeper and Job-Manager to work with this port range we used the environment variable 
GLOBUS_TCP_PORT_RANGE. By setting this variable also on all clients the Globus 
libraries will only choose port numbers for controllable ports in that specified range. 
 
The contents of these instructions are discussed briefly in the following. These should not be 
taken as a full installation guide. For more information please refer to the Globus website, 
[52]. 
 

• Firstly, the installation process can be done as an un-privileged user, for example 
‘globus’. When configuring the Globus services root access is required. Define a 
location in the file system where Globus is to be located. Unpack the gpt package in 
this location, and create another direction (for example, ‘TK’), to hold the installed 
software. Also, the GLOBUS_LOCATION and GPT_LOCATION environment variables must be 
set. This procedure included the following key commands: 
 
tar zxvf $DD/gpt-2.2.5-src.tar.gz 
export GLOBUS_LOCATION=$ROOTDIR/GLOBUS22/TK 
export GPT_LOCATION=$ROOTDIR/GLOBUS22/gpt-2.2.5 

 
• After building the GPT (using build_gpt) the GPT can be used to install the relevant 

software bundles. We found the ‘globus-all’ binary bundle to be the easiest to install, 
and this is followed by gpt-postinstall. Thus: 

 
$GPT_LOCATION/sbin/gpt-install globus-all-2.2.4-i686-pc-linux-gnu-bin.tar.gz 
$GPT_LOCATION/sbin/gpt-postinstall 

 
• The following lines show an example as to how the globus_simple_ca is 

installed using gpt as an un-privileged user. 
 

$GPT_LOCATION/sbin/gpt-build $DD/globus_simple_ca_bundle-latest.tar.gz gcc32dbg 
$GPT_LOCATION/sbin/gpt-postinstall 

 
• The gpt-postinstall will install the necessary CA files into a determined CA 

directory, for example, /home/globus/.globus/simpleCA. 
 

• Next, the GSI must be setup. This must be done as root. Firstly, the globus 
environment must be initialized, using source $GLOBUS_LOCATION/etc/globus-user-

env.sh. Additionally, you must ensure that the GLOBUS_LOCATION environment 
variable is set. Then issue the following command: 

 
$GLOBUS_LOCATION/setup/globus_simple_ca_dcdd709d_setup/setup-gsi –default 

 
Self-explanatory input from the simpleCA administrator will be requested 
when running the setup-gsi command. The –default option indicates that the 
simpleCA should be considered the default CA.  
 

• Now we are at a stage where certificates can be requested. This is achieved by 
the following as root for a host certificate, 

 
grid-cert-request -host zam589.zam.kfa-juelich.de 

 
For a user certificate, a regular user can issue the following command, 

 
grid-cert-request 

 



 43

• The simpleCA owner must sign the generated requests, and then the requestor must 
move the signed credentials to their correct locations. 

 
• Correct security credentials for the host should now be present. Next, the following 

command initializes the Globus GRAM job manager, which requires the credentials 
to be present:  

 
$GLOBUS_LOCATION/setup/globus/setup-globus-gram-job-manager 

 
Now, start the gatekeeper as root (a more permanent solution involves using xinetd) 

 
globus-gatekeeper -conf $GLOBUS_LOCATION/etc/globus-gatekeeper.conf 

 
• In order for the user to be authorized at the GRAM service, the subject of the users 

X.509 certificate must be added to the grid-mapfile, along with the uid of a local 
account. A command line utility does this. For example,  

 
grid-mapfile-add-entry -dn "/O=Grid/OU=GlobusTest/OU=simpleCA-zam589.zam.kfa-
juelich.de/OU=zam.kfa-juelich.de/CN=Roger" -ln roger 

 
• Finally, back as user roger, we must first create a proxy certificate from the 

permanent certificate with grid-proxy-init. Following this we can submit a test script 
to the GRAM service, in this case at the machine zam589.zam.kfa-juelich.de.  

 
globusrun -o -r "zam589.zam.kfa-juelich.de" '&(executable=/bin/date)' 

 

A similar process must be followed in order to configure the information and data 
management services.  
 

AVAKI 
At HLRS, the AVAKI Compute Grid version 2.6 was installed in a production like 
environment. Figure 11 shows the participating machines. 
 

 
Figure 11: AVAKI installation at HLRS 

IP Firewall 

Client 
 

bootstrap 
server 

Linux host 1 
(Compute node) 

Client 
 

FW Proxy 

Linux host 2 
(Compute node) 

Internet

cluster proxy 

Master 

Cluster nodes (Compute Nodes) 
1 2 3 4 5 9 8 7 6 10 



 44

During the installation process also one difficulty had to be solved. A firewall proxy had to be 
installed to get access to the target hosts through the firewall. This proxy tunnels the in- and 
outgoing signals of the clients from outside the firewall. To enable these connections the 
firewall has to be opened on one dedicated port on the Proxy server machine for all clients 
how want to use the AVAKI Grid system. 
 
The following points describe the main steps of the installation process: 
1. Creation of communication-files which contain information about the AVAKI Grid 

constellation (e.g. IP-addresses of Proxy and bootstrap-server) 
2. Installation of the AVAKI software on all machines that will be part of the Grid and 

distribution of the communication-files 
3. Starting of the system (1. Proxies, 2. bootstrap-server) 
4. Adding computers to the Grid. To register clients and compute nodes to the AVAKI Grid 

each of these machines has to “join” the Grid. 
5. Initialization of compute nodes as grid service server. 
 
For the integration of a Third Party Queuing Sever an additional cluster proxy was installed 
on the front-end machine of the cluster. Each node of the cluster had to be initialized to the 
AVAKI Grid individually. After that, an AVAKI command that created some interfaces 
scripts and a special initialization process had to be run. 
 
After successful installation the administration can log on to the Grid system and add users 
and specify security and utilization policies for the Grid, users, and computers. 
 
To support MPI applications, the configuration of the so called “native MPI support” had to 
be done by the administrator. This means, first running a command to create a wrapper script 
for the MPI environment which should be used in the AVAKI Grid. AVAKI supports 
wrapper for MPICH, IBMMPI, LSFMPI, SGIMPI and SunMPI. Second, accomplish a special 
configuration command on one of the nodes which should be available for MPI jobs to 
integrate these nodes. 
 
Sometimes it was hard to understand some problems which occurred during the installation 
process and runtime. For instance, after starting the bootstrap-server no other compute node 
could join the AVAKI Grid. There was no really helpful advice to detect the problem. If this 
problem was happen, the whole system has to be restarted, which means a time exposure of 
around 30 minutes. Another problem occurred after a complete new-start of the Grid system. 
The initialization process for each participation resource had to be redone. This process was 
very time consuming especially for the cluster nodes. 
 
To run an application on the AVAKI compute Grid it is necessary firstly to register this 
application on the Grid with a special command. The user can specify which users/groups of 
users can access them. After that users log in, define application parameters and submit a 
program to run on available resources. Input data is securely read from distributed sources. 
Once an application is complete, computational resources are cleared of application remnants 
and output is written to one or many of the physical storage resource available in the Grid. 
The detailed help file (pdf) supports the user in execution all the steps. 
 



 45

TME 
 
The TME installation at HLRS based only on the STA system, since the ITBL system was 
under developing at this point of time. It was installed on a SGI workstation. The following 
describes the installation process in detail: 
 
1. Installation of Nexus-4.1.1. Nexus is a portable library that provides multi-threaded 

communication facilities within heterogeneous parallel and distributed computing 
environments. 

2. Building of the Starpc (STA-RPC) library. This library is used for the communication 
between the web server and the backend machines.  

3. Building of the control daemons and adapter programs running on the backend machine. 
They control the TME resources and invoke applications. Both communicate with a web-
server and the applications. The adapters watch the state of application and passe some 
arguments and so on. The main control daemons are shown in Figure 12. 

4. Preparation of the TME applet distribution files on the web-server. Finally, we kicked the 
proxy-daemon for the web-server to start it by hand. The system assumed that Apache or 
other http server is already installed on the machine. 

 

 
Figure 12: Layered structure of the TME software 

On the client side a web browser is necessary to access the web interface of the TME system. 
After login on the STA system the TME GUI appears with the so called Module Window. In 
TME, the content of the parallel processing is defined by connecting programs and data. The 
programs and data shown in the form of icons are called “modules”. There are different 
modules to represent programs, data, network connections and applications.  
 
The flow of distributed parallel processing using TME is as follows: 
1. Importing programs and I/O files 

The user has to import programs and data files to be used into TME, and register them as 
modules in the Module Window. Some properties, such as file names and names of the 
computers storing them, must be defined when registering programs and data files. 

2. Creating module networks 
The creation of network modules has to done by connecting registered modules with lines 
in the Module Network Window. 
 

Adaptor Layer

Tool A Tool C Tool D Tool B 

Communication Layer

Control Layer

SCE/Nexcus 4.1.1

GUI Layer (JDK 1.3 later)

Tool 
Manager 

File  
Manager 

Exec 
Manager 

Resource 
Manager 

Proxy server
Master/Slave

Design Canvas and 
Monitoring Windows 



 46

3. Setting up runtime properties of modules 
After creation of the modules the user has to setup runtime properties, such as the name of 
the host to execute the program, specification of tss/batch execution, the queue names used 
to execute batch processing, and the number of processors in the Module Network 
Window. 

4. Instructing the execution of program module networks 
Starting of the execution of the defined modules has to be done in the Network Window. 

5. Monitoring execution status of network modules 
Monitor the execution status of the executed network modules in the Monitor Window. 
There is the possibility to show execution logs, to cancel execution of selected modules or 
to delete them from a list of running network modules. 

 

Summary of features available within the tested tools 
 
In the following we have collected the main features of the analyzed systems. The first table 
gives on general overview. 
 

Table 1: Overview of the Grid system, supported platforms, interfaces and security issues 

 Globus UNICORE AVAKI Compute Grid TME 
Version 2.4 4.0 2.6 - 
Distribution Public Public and commercial Commercial Public 
Open source Yes Other: Community Source 

Licence 
No Yes 

Documentation Good Good for installation and 
using of servers / Excellent 
for client 

Good for installation 
/Excellent for admini-
stration and using 

Poor for installation / 
Good for client 

Updates and 
roadmap 

Yes Yes Yes Yes 

Supported client 
OS 

Unix-Like All Java Windows/Linux Web-based 

Supported 
computing 
platforms 

Unix Like Hitachi SR 8000 
IBM SP  
Fujitsu VPP series 
NEC SX series 
Cray T3E, SV1 
IA32 clusters 
SGI O2000/3000, Onyx  

HP 
IBM 
Intel 
Sun 

Fujitsu VPP300, AP3000,  
            GP8000S, HP9000 
NEC SX-4, TX-7 
Cray T90, T3E 
Hitachi SR2201, SR8000 
IBM SP2, SP3 
Intel Paragon 
Sun Enterprise Server 
SGI Onyx 
Compaq WS cluster 
HP WS cluster 

Impact on 
owners of 
computational 
resources 

Variable (interfaces to the 
local resource 
management system) 

Variable (Perl scripts) Small Small 

User interface Command line client and 
GUI 

Command line client and 
GUI 

Command line client Web-based GUI 

API Yes Plugin-based interface No Adapters for application 
integration 

Authentication SSL SSL Yes (based on unique 
identifiers) 

SSL 

Authorization Yes Yes Yes Yes based on ITBL 
Encryption Yes Yes Yes Yes 



 47

The majority of the systems are available in public domain, except for AVAKI which is a 
commercial product. The documentation of most of the systems is good for the client side, but 
sometimes the installation instructions leads to be desired. The majority of the systems 
operate under several versions of UNIX, including Linux. AVAKI also supports 
WindowsNT/2000. UNICORE provides a Windows client. The impact on the owners of the 
computational nodes is typically small. Most of the systems provide a graphical and a 
command-line user interface. For the AVAKI Compute Grid only the command-line is 
available. Regarding authentication mechanisms most of the systems use SSL and X.509 
certificates. All systems support authorization and encryption. 

Table 2: Resource management 

Table 2 summarized the resource management aspects of the systems. All systems support 
batch jobs. Interactive jobs are under development for UNICORE. Parallel jobs are fully 
supported by TME, although the other systems also support the user in this area. All job 
management systems supports resource requests from users, only for AVAKI this is very 
limited. AVAKI and TME provides an own scheduling. Most of the systems provide support 
for job priorities assigned by users depending on the lower level system, except for TME. 
Globus, UNICORE and TME provide monitoring tools and detailed logs. Accounting is 
available in UNICORE and AVAKI. 

Table 3: Utilization 

Table 3 composes the utilization of the systems. Stage-in and stage-out are supported by all 
tested systems, as well time-sharing for jobs. Load-balancing mechanisms are available for 
Globus and TME. The scalability of all analyzed systems can be characterized as high. All 
systems support the user in suspending, resuming and killing jobs. Fault tolerance is not really 
supported by the systems, only Globus and AVAKI provides some limited support for fault 
tolerance. 

 Globus UNICORE AVAKI Compute Grid TME 
Batch jobs Yes Yes Yes Yes 
Interactive jobs Yes No, although some work is 

being done in the 
Eurogrid[9] project 

Yes Yes 
 

Parallel jobs Limited Limited Limited Yes 
Resource 
requests 

Yes Yes Very limited Yes 

Limits on 
resources 

No? No No No 

Flexible 
Scheduling 

Depends on the underlying 
system 

Depends on the underlying 
system 

Yes Yes 

Job priorities Depends on the underlying 
system 

Depends on the underlying 
system 

Yes No 

Job monitoring Monitoring tools and logs Monitoring tool and logs No Monitoring tools and logs 
Accounting No Yes Yes No 

 Globus UNICORE AVAKI Compute Grid TME 
Stage-in, stage-
out 

Yes Yes Yes Yes 

Timesharing Jobs Jobs Jobs Jobs 
Load balancing Yes (static) No No Yes 
Scalability High High High High for ITBL 

Limited for STA 
Suspending, 
resuming, killing 
jobs 

User only User only User only User only 

Fault tolerance Limited Site dependent Limited No 



 48

Summary and Conclusions 

Introduction 
 
As we have reiterated a number of times in this report, Grid middleware can be viewed as 
providing an abstract layer across heterogeneous resources and hence producing a uniform 
layer for access. This approach is common to all the systems we looked at, although there are 
substantial differences in how this is actually realized. 
 

• UNICORE works on the principle of using abstraction built into the design of the 
infrastructure. Specifically, the abstraction is facilitated through the description of 
tasks in an abstract and target system independent format. The core middleware 
component is the Network Job Supervisor (NJS) which consumes the abstract 
description, distributes the component job tasks in the workflow to the various 
resources, and incarnates the tasks for specific target systems. 

• Globus works a similar notion of Grid services provided. A user interfaces with these 
services directly through command-line tools, or through a programming environment 
or toolkits built upon the core Globus services.  

• AVAKI provides a familiar environment for UNIX users. AVAKI commands often 
mirror those found in a UNIX shell, for example, AVAKI ls. As such, the AVAKI 
middleware provides something like console access to a ‘virtual operating system for 
a global virtual computer’.  

• TME focuses on the seamless integration of parallel programs. With the help of TME 
the user can design a workflow diagram of the distributed application. TME realizes a 
higher-level view of schematizing the structure of meta-applications. 

 
Additionally, we can make a distinction between the four systems with regard to licensing 
arrangements. Globus is developed under the ‘Globus Toolkit Public License (GTPL)’. This 
is ‘a liberal open source license’ allowing the software to be used by anyone and for any 
purpose, without restriction.  
 
UNICORE is currently distributed under the UNICORE Forum License. This is modeled after 
the Sun Community Source License, and allows free access to the source code. UNICORE is 
also free for Research and Development purposes, i.e. for Grid projects using UNICORE. For 
production use a license from Pallas GmbH must be purchased.  
 
AVAKI is a commercial product and can be purchased in different license variations. The 
Science + Computing AG is the German distributor of the AVAKI software. 
 
TME and the underlying system STA is available under a special JAERI Open Source 
License [43] excluding the commercial use of the software. 
 



 49

Summary of Systems  

Globus 
 
Regardless of technical merits, Globus has a strong advantage over other Grid software due to 
its position as the de facto standard for Grid middleware and the plan by it’s developers for it 
to become the first production-ready implementation  of the Open Grid Services Architecture 
(OGSA).  It difficult to completely verify the claims regarding it’s dominance and it’s 
proclaimed de facto status, i.e. we can not prove that this is the case with statistical facts. 
However, making a informal survey of Grid projects and deployments running currently, it 
would appear that a majority of them are based on Globus rather than any other system. This 
benefit should not be underestimated. In addition, the Globus community of users is very 
active (in the form of mailing lists, etc), and in our opinion there is more activity in this area 
than for the other three systems.. There are also a large number of projects which build upon 
Globus services to provide other higher-level Grid services, programming environments, etc.  
 
The toolkit approach taken by Globus works well, and the software is mature. The Globus 
security infrastructure is implemented as a mandatory service which all the other services use. 
These other services are in the areas of : resource management, information services and data 
management. Globus offers powerful support for these core services. Infact, these core 
services are the extent of the Globus toolkit. Globus can be found at a relatively low-level in 
the software stack for a Grid, and one should bear in mind that the success of a Globus Grid is 
also dependent on the software installed on top of the Globus services. If Globus is deployed 
with other components, one can build a user-friendly Globus-based Grid environment. 
Alternatively, one can use Globus alone and manage and use the Grid using the Globus client 
tools. As such, we view Globus as a developer oriented system, as this is definitely the 
impression a users gets when using the tools directly. 
 
 
The three core services use different protocols for access. For example, the usage of  LDAP 
querying for the information services. While this enables powerful querying of both static and 
dynamic information, the syntax is unwieldy, and targeted at developers rather than regular 
users. This is in contrast to UNICORE. Here, although the information service is less 
comprehensive, the information provided by the IDB is viewable from the UNICORE client 
in a simple tabular form, and thus more easily accessible by end users.  
 
Regarding Globus security a quote from [30] is interesting, “the philosophy of Globus is to 
enable sharing of computational resources across sites that have a relatively high level of trust 
in each other”. The default security model provides rather wide privileges to remote users. 
Also, our experience was that Globus does not happily cooperate with firewalls. Often Globus 
deployments such as the Teragrid do not assume that firewalls exist between the various 
resources. Such factors tend to associate Globus with ‘private’ or dedicated Grids. Given such 
experiences, we feel that Globus is not particularly well suited to enabling desktop access to 
(super)computer resources, as one particular mode of operation important to users. This is the 
expertise of UNICORE, but a hybrid-solution perhaps offers the best possibilities. 



 50

UNICORE 
 
UNICORE can be most easily categorised as facilitating Desktop access to Supercomputer 
resources, in as much that it greatly assists remote seamless access to super-computers from 
desktop machines. UNICORE can also be categorised as Distributed Supercomputing since a 
UNICORE workflow can describe the execution of multiple, interconnected jobs over many 
supercomputer resources. However, UNICORE does not provide the basis for a Data-
intensive Grid, and does not address High Throughput computing. That said, it operates 
according to its initial specification very well, and it satisfies the majority of average user 
requirements. Indeed, our view of Globus as a developer oriented system, is in contrast to our 
view of UNICORE as a user oriented system. 
 
The top-to-bottom architecture is both the strength and weakness of the system. For example, 
the UNICORE enables a strong security model, albeit one that is relatively inflexible. The 
integrated nature of the components, including the client, also makes for a trouble-free 
installation procedure for both administrator and user. The java implementation is helpful in 
this regard. Conversely, its vertical architecture and design of interfaces makes it relatively 
hard to extend or provide additional services for. 
 
To allow a job to be assigned to a number of contributing machines, a user must sign a whole 
workflow before submitting it. This aspect of the design of UNICORE has allowed the use of 
a much tighter security model. However, one of the many definitions of Grid computing 
coined after UNICORE’s conception is “constructing new capacities dynamically and 
transparently from distributed services”. It is not clear if it is true to say that UNICORE 
conforms to this particular definition of a Grid. At the same time, it is not clear that this 
statement is the most important way to define a Grid. 
 
The UNICORE client provides a firewall friendly access to the Grid. In terms of an e-
commerce architecture classification, the UNICORE client is the top tier, the gateway and 
NJS the middle tier. With Globus it is typical that security administrators will require that a 
firewall is pre-configured with the IP addresses of machines able to reach Globus services. 
UNICORE allows a ‘roaming’ client and additionally the use of a installed application on the 
client machine allows some job construction off-line, before re-connection in order to submit. 
 
In addition to the firewall-friendly nature of the UNICORE software, some argue that 
UNICORE is more secure than Globus. This argument is based mainly around the fact that 
UNICORE does not use proxy credentials, and the private key remains in the client. This is a 
relatively compelling argument. However, the bottom line is that, as with Globus, UNICORE 
allows remote users to run remote code, and as discussed in [30] the recommendation is to 
protect critical resources and be aware of potential security risks. Potentially, a UNICORE 
site could remove script task UNICORE access, and require that all software resources be 
defined in the Incarnation Database (IDB). This adds an extra layer of abstraction and thus a 
layer of security. This virtualisation of software resources is likely to be further enabled 
through the introduction of OGSA into the UNICORE software. 
 
The UNICORE IDB does not provide dynamic information of the minute-to-minute state of 
the system. However, this kind of information can be obtained through a portal. Integration of 
dynamic information directly into UNICORE would be desirable, and would allow the 
development of a sophisticated resource broker, such as the one developed as part of the 
EuroGrid project.  
 
UNICORE is competent at satisfying a significant proportional of common usage patterns, 
particular those happy to use resources in the ‘traditional’ manner (i.e. batch submission to a 



 51

single resource). UNICORE additionally adds strong support from workflow and seamless 
access, including automatic executable and file staging. . UNICORE is strongest supporting a 
batch model for job submission. There is much less support for using UNICORE for parallel 
applications across resources and security domains. This usage is better enabled through the 
toolkit approach of Globus. 
 
In practice, no one tool covers all aspects of user-requirements, but we feel UNICORE is 
appropriate for the majority of usage requirements. However, for UNICORE it is difficult to 
extend the services to implement any unsupported functionality. This is apparent from the 
lack of support from UNICORE in the Grid Programming Environments layer of the 
architecture model. Notably, the Globus model is particularly strong in this respect, and its 
architecture lends itself to such extensions. 
 

AVAKI 
 
AVAKI provides an environment to collect resources – processing power, data files, and 
applications – to be used as a single uniform operating environment. This set of shared 
resources is called an AVAKI Grid. An AVAKI Grid can represent resources from different 
platforms at a single site within a single department, or it can represent resources from 
multiple sites, heterogeneous platforms, and separate administrative domains. 
 
AVAKI ensures secure access to files on the Grid. If files on participating machines are 
shared or made explicitly available for the grid they will become part of the Grid. Any subset 
of the resources existing in the environment can be shared. The administrator can decide 
which resources are visible to the Grid user. By the same token, a user of an individual 
computer or network that participates in the AVAKI grid is not automatically a grid user with 
access rights to grid files. 
 
The approach to collecting and sharing resources is supported by a global naming scheme that 
creates a unique identity for each user and resource. This is also the foundation of the AVAKI 
idea of authentication. The software supports local firewalls by introducing a firewall proxy 
client that manages the communication through a firewall. 
 
On the whole, however, AVAKI lacks many sorts of functionality found in Globus or 
UNICORE, and in addition seems challenging to use. 
 

TME 
 
TME (Task Mapping Editor) supports execution of parallel computing on supercomputer 
cluster. Users can describe contents about computing (program and data) and computer 
independently. Therefore TME supports combination of various computing by programs and 
data files on various parallel computers.  
 
TME is one of the components of the STA or ITBL environments and provides a visual 
programming environment. TME features include the separation of processing detail 
descriptions and the specifications of computers that will perform the processing. By 
dynamically specifying the machines using TME, the mapping of routine processing can be 
easily changed according to the load condition of each computer at the start of processing. 
 
Currently, basic functions of TME have been implemented, and the tool was used to create 
various applications of distributed parallel processing.  
 



 52

Conclusions from the Questionnaire 
The majority of the respondents were familiar with the term “GRID”. Asking for associations 
with this concept most of them pointed to “supercomputing” and “flexible”. The first clearly 
indicates the nature of early Grid computing idea as well as the background of the users, 
while the latter addresses the increase in flexibility which is often attributed to future Grid 
solutions. Other high relevant associations were “cheap” and “coordinated”. On the other 
hand terms like “secure”, “reliable” and “consistent” seem to be less well associated with the 
term Grid. for the respondents. This probably results from the justifiable skepticism of 
experienced computer experts in the face of the vast quantities of marketing hype being 
produced at present. 
 
It is interesting to note that only 24% of the respondents expect that the Grid will make the 
life easier for the users. However, nearly half of the respondents disagree with the statement 
that “Grid computing constrains the user more than it helps them”. This seems to indicate that 
users are not quite confident about what the future of Grid computing will bring with respect 
to ease of usage. 
 
Asking the users about their impressions of the economical future of Grid computing one 
third of the respondents expect the Grid to be a commercial success. This is also reflected by 
the fact that another one third sees Grid as a bubble that will soon burst. Users are obviously 
not entirely confident about the future of the concept. 
 
To get an understanding of the future requirements of the users we asked them about their 
type of applications and the size/type of the associated data traffic. As a result we can say that 
there will be a smaller number of applications that can be called Grid specific, but also that 
there are some applications that may benefit from high speed networks when running in a 
Grid environment. There are, however, a number of application scenarios for which network 
bandwidth is crucial even in the frame of traditional work flows. So it seems that quality of 
service for these applications is more important than a simple increase in speed. 
 
The key issues in field of the user’s expectations on Grid software are the impact on their 
applications and the support for finding and using Grid resources. The users expect to get 
good support in choosing resources in the Grid environment, but for most of the respondents 
it is not so important to have a graphical user interface. With respect to ease of usage they 
seem to be pessimistic, maybe because a majority of them expect to have to change their 
applications for using in a Grid Computing environment. 
 

Standardization and Interoperability 
 
A lifecycle proceeds as follows: pregnancy, birth, childhood, adolescence, maturity, and 
decline. In terms of computer science, this description is often applicable, however one could 
argue that for some fundamental breakthroughs, such as the internet, the technology would 
appear so fundamental that it may live forever. Presently, Grid technology is perhaps going 
through its adolescent phase, and receiving lots of coverage, some might argue ‘hype’. This 
opinion is shared in [7], "... the impression is that the current phase corresponds to an early 
phase for Grid Computing characterized by a difficult interoperability between different Grid 
technologies, a complex installation and configuration process for Grid products, and finally a 
very limited number of end users”.  
 
On the other hand, there is a strong argument for Grid technology and a "paradigm shift that 
will provide the next big boost in corporate productivity since the Internet and World Wide 
Web" [39]. In order for this to occur, there must a period of standardization, and once this is 



 53

complete and the standards implemented in production systems, then this will signify the 
maturing of the Grid.  
 
Therefore, there is a need to provide a uniform interface to the services offered by Grid 
middleware and standardized languages for the exchange of the messages themselves, thus 
motivating the development of suitable sets of native standards and protocols, which 
resources and their providers would adhere to in order to make them Grid enabled. The 
standardization work involved is currently being accomplished through organizations such as 
the GGF (and W3C, OASIS, for more omnipresent web and web services protocols). 
 
Taking, for example Globus in its version 2 incarnation, it offers three core services of job 
submission, information and data transfer. With regard to the protocols used to communicate 
with the middleware, Globus takes a rather piecemeal approach, and as a result there is little 
consistency among products. For example, the GRAM protocol is http-based, the MDS 
protocol is based on LDAP. Recently, there has been a visible shift in the Globus project from 
API’s and custom protocols, to standard protocols, and finally to web services. 
 
The Open Grid Services Infrastructure (OGSI) provides a consistent interface for accessing 
any Grid resource. In simple terms OGSI is a framework for doing secure messaging between 
organized stateful services on a Grid. One such message initiates a job-submission, another 
could inspect the information associated with the node on the Grid, and another message 
could initiate a data transfer between two nodes on the Grid. This encourages thinking in 
terms of messages between services. It is an exciting development in the Grid Computing 
world as it promises to make the technology more easily accessible to a greater number of 
people. This is due in part to the adoption of web services standards, and the steering of the 
specification by the GGF. It is an excellent foundation, i.e. establishing the interface to all 
Grid resources, from which to base the future work of the other language standardization 
efforts necessary for a Grid to operate and interoperate. 
 
Actually, application toolkits and graphical user interfaces should shield the user from the 
underlying protocols, and in this regard, the functionality of the software should be the 
determining factor in the software infrastructure selection. However, it is predicted that there 
will come a time when both open-source and proprietary Grid software will all implement to 
the same standards for interfaces and messages. Thus, this maturity and standardization of the 
software for building distributed systems supporting virtual organizations will result in direct 
benefit for all Grid users.  
 
Of course, a lot of the benefits which the standardization efforts promise are completely 
dependent on the careful adoption of the specifications. History, here, however shows one 
instructive case. Novell networking, once extremely popular did not adhere to the relevant 
networking models. Novell’s demise as a significant force in networking was at least partially 
the result of its failure to follow published, open standards. In time, it will be seen what will 
actually happen in practice. With regard to the current status of the software we are 
considering and their support for Grid standards, we will now examine the intentions, 
commitments and progress of the evaluated software.  
 
The next major release of the Globus Toolkit is release 3. Globus Toolkit 3 (GT3) will 
implement the Open Grid Services Architecture. The alpha release of GT3 was available in 
January 2003, and the first production release is planned for July 2003.  
 
Within the GRIP project, work is progressing with the integration of OGSA into the 
UNICORE architecture. Indeed, from early on, synergies between the UNICORE structure 
and OGSA have been recognized, and UNICORE has been active in the community to 
develop these standards. However, the GRIP project [18], for example, has recognized that 
although a common interface is very helpful, this is just the part of the solution. The Job 



 54

description languages of Globus and UNICORE (RSL and AJO respectively) are different, 
and in order to interoperate, translation between these languages is necessary. Agreeing on 
common standards for such languages are major activities for the Globus Grid Forum.  
 
As discussed in the specification [45], OGSI does not really represent a complete distributed 
object model, but it does have many characteristics of such a model. The view of a Grid as a 
collection of distributed objects has been the core philosophy of the original Legion project, 
although we note that in recent AVAKI documentation, there seems to be a initiative to 
rename some components to reflect the language of the Service Orientated Architecture, 
rather that that of a distributed object model. Indeed, AVAKI have also committed to 
supporting OGSA in their products, see [19]. 
 
JAERI has a plan to implement the communication infrastructure of the ITBL system, Starpc, 
by trusted communication libraries like globus-IO and grid-rpc. A detailed plan is confidential 
and cannot be addressed here. 
 

Executive Summary 
 
Our final recommendations are detailed below. The merits of all of the systems are such that 
we find it impossible to make a statement such as: “the best Grid software currently available 
is …” Indeed this is not intention of this project. Rather, the intent of the project is to evaluate 
the leading software systems in what is yet a very young area, and point out the strengths and 
weaknesses of various systems. 
 
The Grid will bring more wide-spread and easier access to powerful computing resources, 
including computation, data storage and coordination amongst resources. This infrastructure 
is built on two things: middleware and networks. Grid middleware is the integration software 
which makes this sharing and collaboration possible. Although, there appears to be consensus 
on the core functionality, the software is rapidly evolving, and clearly a ‘work in progress’, 
and in this report we have examined some popular choices of Grid software and evaluated 
their effectiveness.  
 
In reality, Grid computing is not really a new subject. Its roots are clearly in distributed 
systems, a subject which has been extensively researched over a number of years. Most of the 
requirements of the services, issues and potential bottlenecks would appear to have been 
recognized. Obviously, work is ongoing enhancing existing solutions, but consolidation 
seems to be the order of the day, with the main thrust establishing common architectural, 
protocol and language standards. 
 
Equally important is the network infrastructure. Indeed, a good network is the foundation on 
which the Grid is built. We found from the questionnaire that most of the respondents felt that 
network performance (e.g. high bandwidth, low latency) are important issues for their 
applications, and running them on the Grid. 
 
It is possible that in 5 years time once the standards for Grid software have passed through a 
number of iterations, and implementations has stabilized, a similar comparison between Grid 
middleware will be judged purely on higher-level services, security policy, user access and 
other such criteria.  
 
In many respects Globus is very strong. Its architectural model presents building block 
services from which a wide-variety of high-level services, programming/user environments 
can be constructed. Globus also has the advantage of being the de-facto Grid middleware, and 
undoubted there are more Globus deployments worldwide than any other. As such there is a 



 55

relatively big community surrounding the use of Globus, and projects which use or are based 
on Global technology. The wide ranging applicability of Globus is illustrated when we review 
the Grid projects and deployments based on Globus. We can summarize that Globus can be 
used as a basis for Grids in many of the areas discussed in the introduction, “Types of Grid”.  
 
The disadvantage of the horizontal architecture of Globus is that it is not so easily deployed as 
an ‘out of the box’ Grid solution. However, this is addressed by initiatives such as the NMI 
[50] which package a number of components with which a Globus based Grid can be 
constructed. 
 
We found UNICORE to be a very comfortable environment to work with. Additionally, it 
satisfies many of the user requirements and hence should be considered for most mainstream 
Grid deployments. In some respects it is not as capable as Globus. However, it is an 
integrated system which we feel makes it easier to deploy and use. The java-based software 
also helps in this respect. However, we felt that step by step instructions for installing 
UNICORE, particularly addressing how all the components are integrated together. 
UNICORE also installs with minimum disruption to the target systems; a small Perl daemon 
is all that must be installed. The implication of this is that it is normally easy to port the TSI to 
new target systems. This highlights some of the advantages of the UNICORE security 
infrastructure, particularly that the security is (partially) implemented as a function of a Usite 
(usually a local area network), and not on each individual resource. We have previously 
discussed the disadvantages of this approach, and it also assumes the Usite to be secured by 
other security measures.  
 
Due to basic idea of the AVAKI Compute Grid, it seems to be a very good solution for 
building a Grid from distributed workstations at a local site to run single jobs. If it is used in 
this way the system provides an easy-to-use, seamless computational environment. However, 
the authors believe that it does not provide a solution to support the creation of a wide area 
Grid including supercomputer resources, mainly because of the missing support for some of 
the current main Supercomputer systems (e.g. NEC). 
 
TME as part of a system like STA or ITBL can be described as an application manager. We 
think it’s a useful tool to establish a Meta-application on distributed computer resources, as 
parallel applications, special experiments and data files.  
 
Another viewpoint, particularly with regard to UNICORE and Globus, is that these can be 
seen as complimentary solutions; UNICORE provides the workflow and interface 
functionality for the underlying collection of Globus resources. Looking to the future we look 
forward to closer interoperability between Grid systems, and where the ‘Grid operating 
system’ as such, will be based on defined standards. 
 
Finally, we feel that research and development of Grid computing is currently being driven 
forwards with lots of investment and enthusiasm, and that the subject will remain compelling 
and exciting. Furthermore, this will result in the integration of more features that end users 
expect to find. In spite of the hype, there is real value to Grid systems and their potential to 
increase the efficiency and capability of computing systems. 



 56

Appendices 
 

A Bibliography and References 
 

1. I. Foster, C. Kesselman, S. Tuecke: ‘The Anatomy of the Grid: Enabling Scalable 
Virtual Organizations’ International J. Supercomputer Applications, 15(3), 2001. 

2. http://www.AVAKI.com 
3. G.Smecher: ‘Grid Topology using Condor and Globus’ available at 

http://grid.phys.uvic.ca/docs/pdf/globus-condor-intro.pdf 
4. http://eu-grasp.net 
5. http://www.deisa.org/Documents/Deisa_IP_eoi.pdf 
6. ‘Computing power on tap’, Economist, Jun 21st 2001 
7. JC Desplat, Judy Hardy, Mario Antonioletti ,Jarek Nabrzyski, Maciej Stroinski, 

Norbert Meyer: ‘Grid Service Requirements’, ENACTS Sectoral report , January 
2002, http://www.enacts.org  

8. Jan Fagerström, Torgny Faxèn, Peter Münger, Anders Ynnerman, J-C Desplat, 
Filippo De Angelis, Francesco Mercuri, Marzio Rosi, Antonio Sgamellotti, 
Francesco Tarantelli and Giuseppe Vitillaro: ‘High Performance Computing 
Development for the Next Decade, and its Implications for Molecular Modelling 
Applications’, Sectoral report ENACTS project, April 25, 2002, 
http://www.enacts.org 

9. http://www.eurogrid.org/ 
10. D.de Roure, N.Jennings, M.Baker, N.Shadbolt: ‘The evolution of the Grid’, 

International Journal of Concurrency and Computation: Practice and Experience 
2003 

11. http://ganglia.sourceforge.net/ 
12. http://www.computingportals.org 
13. Gregor von Laszewski, Gail Pieper, and Patrick Wagstrom. Performance Evaluation 

and Characterization of Parallel and Distributed Computing Tools, chapter ‘Gestalt 
of the Grid’. Wiley Book Series on Parallel and Distributed Computing. to be 
published 2002 

14. http://www.ggf.org 
15. http://www.globus.org 
16. http://www.gridlab.org 
17. F.Berman, G.Fox, T.Hey: ‘The Grid: Past, Present and Future’, in Grid Computing: 

Making the Global Infrastructure a Reality, F. Berman, G. Fox and T. Hey (eds.), 
Wiley, 2003. 

18. http://www.grid-interoperability.org/ 
19. http://www.AVAKI.com/news/releases/20030113_13.html 
20. ‘Introduction to Grid Computing and the Globus Toolkit’, 

http://www.globus.org/training/grids-and-globus-
toolkit/IntroToGridsAndGlobusToolkit.pdf 

21. G, von Laszewski, I. Foster, J. Gawor, P. Lane: ‘A Java Commodity Grid Toolkit’, 
Concurrency: Practice and Experience, 13, 2001. 

22. G. von Laszewski, et al: ‘The Java CoG Kit User Manual – draft version 1.1a’, 2003. 
http://www.globus.org/cog/manual-user.pdf 

23. C. Lee, D. Talia: ‘Grid Programming Models: Current Tools, Issues and Directions’, 
in Grid Computing: Making the Global Infrastructure a Reality, F. Berman, G. Fox 
and T. Hey (eds.), Wiley, chapt. 21, pp. 555-578, 2003. 

24. M.Lorch: ‘Symphony - A Java-based Composition and Manipulation Framework for 
Computational Grids’, http://zuni.cs.vt.edu/publications/symphony-thesis-lorch.pdf 



 57

25. N. Karonis, B. Toonen, and I. Foster: ‘MPICH-G2: A Grid-Enabled Implementation 
of the Message Passing Interface’, Journal of Parallel and Distributed Computing to 
appear 2003. 

26. I.Foster: ’Internet Computing and the Emerging Grid’, 
http://www.nature.com/nature/webmatters/Grid/Grid.html 

27. I. Foster, C. Kesselman, J. Nick, S. Tuecke: ’The Physiology of the Grid: An Open 
Grid Services Architecture for Distributed Systems Integration’, Open Grid Service 
Infrastructure WG, Global Grid Forum, June 22, 2002. 

28. C.Lee et al: ’A Grid Programming Primer’, 
http://www.eece.unm.edu/~apm/docs/APM_Primer_0801.pdf 

29. R. Buyya et al: ‘Problem solving environment comparison’, white paper 
http://www.eece.unm.edu/ apm, 2001. 

30. M.Surridge: ’A Rough Guide to Grid Security’, e-Science Technical Report Series 
(UKeS-2002-05) 

31. V.Sander: ’Design and Evaluation of a Bandwidth Broker that Provides Network 
Quality of Service for Grid Applications’, NIC Series Volume 16, 2003 

32. http://www.unicore.org 
33. D.Erwin: ‘UNICORE – A Grid Computing Environment’,. Grid Computing 

Environments 2001 Special Issue of Concurrency and Computation: Practice and 
Experience. 

34. http://www.fz-juelich.de/zam/RD/coop/unicoreplus/ 
35. http://www.w3c.org 
36. http://setiathome.ssl.berkeley.edu/ 
37. http://www.entropia.com/ 
38. M. Chetty and R. Buyya: ‘Weaving Computational Grids: How analogous are they 

with electrical grids?’ IEEE Computing in Science & Engineering, vol. 4, no. 4, pp. 
61-71, July-Aug. 2002 

39. http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2865519,00.html 
40. S. Gallopoulos, E. Houstis and J. Rice: ’Computer as Thinker/Doer: Problem-

Solving Environments for Computational Science’, IEEE Computational Science and 
Engineering, Summer 1994. 

41. http://www.cs.wisc.edu/condor/ 
42. K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke: ‘SNAP: A Protocol 

for negotiating service level agreements and coordinating resource management in 
distributed systems’. Lecture Notes in Computer Science, 2537:153-183, 2002. 

43. http://ccse.koma.jaeri.go.jp/program/eng/software/attention.html 
44. http://doesciencegrid.org//projects/GPDK/ 
45. http://www.gridforum.org/ogsi-wg/ 
46. T. Imamura, Yukihiro Hasegawa, Hironobu Yamagishi and Hiroshi Takemiya: 

‘TME - a Distributed Resource Handling Tool’, International Conference on 
Scientific and Engineering Computation (IC-SEC2002), Singapore, December 3rd-
5th, 2002. 

47. Yuishi Tsujita, Toshiyuki Imamura, Hiroshi Takemiya and Hironobu Yamagishi: 
‘Stampi-I/O: A Flexible Prallel-I/O Library for Heterogeneous Computing 
Environment’, 9th EuroPVM/MPI conference, Linz, Austria, September 29th- 
October 2nd, 2002. 

48. http://ccse.koma.jaeri.go.jp/publicity_open_software/starpc.html 
49. Avaki coporation: AVAKI Grid Software: Concepts and Architecture (white paper), 

March 2002 
50. http://www.nsf-middleware.org/ 
51. http://www.globus.org/gt2.4/download.html 
52. http://www.globus.org/gt2.4/install.html 
53. http://www.globus.org/security/simple-ca.html 
54. http://www.globus.org/security/v2.0/Globus%20Firewall%20Requirements-0.3.pdf 



 58

55. Thomas Beisel, Edgar Gabriel, Michael Resch: 'An Extension to MPI for Distributed 
Computing on MPPs' in Marian Bubak, Jack Dongarra, Jerzy Wasniewski (Eds.) 
'Recent Advances in Parallel Virtual Machine and Message Passing Interface', 
Lecture Notes in Computer Science, Springer, 1997, 75-83. 

56. I. Foster, C. Kesselman: Globus: 'A Metacomputing Infrastructure Toolkit', Intl J. 
Supercomputer Applications, 11(2):115-128, 1997.  

57. ‘Joint Project Report for the BMBF – Project UNICORE Plus’, Editor D.Erwin, 
ISBN 3-00-011592-7. 



 59

B Terminology 
 
AJO Abstract Job Object 
ASP Application Service Provider 
CA Certification Authority 
CoG kit Commodity Grid kit 
DUROC Dynamically-Updated Request Online Coallocator 
EM Execution Manager 
GASS Globus Access to Secondary Storage 
GIIS Grid Index Information Service 
GGF Global Grid Forum 
GPDK Grid Portal Development Kit 
GPT Globus Packaging Technology 
GRAM Globus Resource Allocation Manager 
GRIS Grid Resource Information Service 
GSI Grid Security Infrastructure 
GT Globus Toolkit 
GUI Graphical User Interface 
IDB Incarnation DataBase 
ITBL Information Technology Based Laboratory 
LAN Local Area Network 
LDAP Lightweight Directory Access Protocol 
LSF Load Sharing Facility 
MDS Monitoring and Directory Service 
MPI Message Passing Interface 
NJS Network Job Supervisor 
OGSA Open Grid Standard Architecture 
OGSI Open Grid Services Infrastructure 
PBS Portable Patch System 
PKI Public Key Infrastructure 
PSE Problem Solving Environment 
RIS Resource Information Monitor 
RIM Resource Information System 
RPC Remote Procedure Call 
RSL Resource Specification Language 
SSO Single-Sign-on 
STA Seamless Thinking Aid 
TSI Target System Interface 
Usite UNICORE site 
UUDB UNICORE user data base 
VO Virtual Organization 
VPN Virtual Private Network 
Vsite Virtual site 



 60

C Questionnaire 
 

1. Are you aware of the term ‘Grid’? 
 

57 Yes 
6 No 

 
 

2. Name 5 terms that you associate with the term Grid?  
 

13 As simple to use as a PC 
26 Coordinated 
15 Widely Spread 
3 Consistent 
8 Reliable 
33 Flexible 
8 Secure 
26 Cheap 
34 Usage of a super computer  
10 Others: hip, dynamic, dynamic job distribution to resources, dynamic 

resource availability, usage of computing power where available, anonymous, 
high computing power directly available, SETI@home, a grid comprises of a 
network of resources, security risks, barriers, massively parallel, circuitous 

 
3. Are you aware of the term PSE? 

 
20 Yes 
43 No 

 
 

4. If so, does the Grid in your opinion represent a PSE?  
 

13 Yes 
11 No 

 
 

5. What role will Grid computing in your opinion play in the future? 
 

10 Very important 
27 Important  
24 Not so important 
2 Unimportant 

 



 61

 
Where do you stand on the following statements?  
 

6. In the future Grid computing will provide computing power just like today’s electric 
Grid. 

 
5 I totally agree 
9 I rather agree  
26 Partly  
13 I agree less 
10 I don’t agree at all  

 
 

7. Grid computing is a bubble that will soon burst. 
 

6 I totally agree 
13 I rather agree  
21 Partly  
20 I agree less 
3 I don’t agree at all 

 
 

8. Grid computing will replace super computing in general. 
 

3 I totally agree 
2 I rather agree  
14 Partly  
22 I agree less 
22 I don’t agree at all 

 
9. Computer centres will lose their importance due to Grid computing. 

 
3 I totally agree 
5 I rather agree  
9 Partly  
18 I agree less 
28 I don’t agree at all 

 
 

10. Grid computing will make life easier for the user. 
 

4 I totally agree 
12 I rather agree  
19 Partly  
20 I agree less 
8 I don’t agree at all 

 



 62

 
11. Grid computing is limited to problems which are simple to parallelize, such as high 

energy physics. 
 

7 I totally agree 
23 I rather agree  
16 Partly  
11 I agree less 
6 I don’t agree at all 

 
12. Grid computing will be a commercial success because above all it is interesting to 

the economy.  
 

5 I totally agree 
16 I rather agree  
11 Partly  
25 I agree less 
6 I don’t agree at all 

 
 

13. Grid computing will be a standard in the future which will be driven by large 
software companies.  

 
3 I totally agree 
10 I rather agree  
21 Partly  
24 I agree less 
5 I don’t agree at all 

 
 

14. Application Service Providers (ASP) are the future of super computing. 
 

4 I totally agree 
7 I rather agree  
24 Partly  
18 I agree less 
10 I don’t agree at all 

 
 

15. Computer centres will be re-valued through Grid computing because computers are 
used more centrally again.  

 
5 I totally agree 
11 I rather agree  
22 Partly  
21 I agree less 
4 I don’t agree at all 

 



 63

 
16. Grid computing constrains the user more than it helps him. 

 
3 I totally agree 
17 I rather agree  
10 Partly  
28 I agree less 
5 I don’t agree at all 

 
 

17. In the future computing power will mainly be provided by local computers.  
 

12 I totally agree 
14 I rather agree  
20 Partly  
11 I agree less 
6 I don’t agree at all 

 
 
Make an appraisal of your requirements 
 

18. What type of application do you mainly use? 
 

34 Pure batch mode 
23 Workflow/piped applications (one run after the other) 
13 (Online) controlled applications 
12 Observed applications (online visualization of application) 
4 Steered applications (online visualization of applications with feedback) 
3 Coupled applications (applications such as independent fluid structure) 
20 Parallel applications with low communication 
38 Parallel applications with lots of communication 
5 Controlled  distributed applications 
0 Observed distributed applications 
1 Steered distributed applications 
2 Others: vectorized application 

  
 

19. Requirement type? 
 

18 Only transfer of input/output data to computer 
12 Seldom and low communication between the computers, as in online control 
14 Seldom but intensive communication between computers as in online 

visualization 
16 Frequent but small communication between computers 
27 Frequent and intensive communication between computers 

 



 64

 
20. How dependent are your typical programs on network latency?  

 
20 Strong  
16 Less strong 
20 Normal 
7 Less 
0 Not at all 

 
21. In which area should the latencies lie?  

 
19 Up to 10 microseconds 
17 Between 10 and 100 microseconds 
10 Between 100 and 1000 microseconds 
4 Between 1 and 10 milliseconds 
1 Between 10 and 100 milliseconds 

 
 

22. How strongly dependent are the typical programs on bandwidth? 
 

27 Strong  
14 Less strong 
15 Normal 
7 Less 
0 Not at all 

 
23. In which range should that bandwidths lie? 

 
3 Up to 1 Mbit/sec 
4 Between 1 Mbit/s and 10 Mbit/s 
11 Between 10 Mbit/s and 100 Mbit/s 
22 Between 100 Mbit/s and 1 Gbit/s 
18 Over 1 Gbit/s 

 
24. In which area does the size of the input data lie?  

 
20 Up to 1 MB 
12 Between 1 MB and 10 MB 
8 Between 10 MB and 100 MB 
15 Between 100 MB and 1 GB 
10 Over 1 GB 

 
25. In which area does the size of the output data lie?  

 
4 Up to 1 MB 
4 Between 1 MB and 10 MB 
12 Between 10 MB and 100 MB 
16 Between 100 MB and 1 GB 
28 Over 1 GB 

 
 
 
 



 65

26. Do your applications use parallel I/O? 
 

11 Yes 
22 To some extent 
30 No 

 
 

27. Is a post-processing of the generated output data necessary? 
 

38 Always 
20 Sometimes 
5 Never 

 
 

28. Do you use debugging tools on high performance systems for your application? 
 

5 Always 
39 Sometimes 
19 Never 

 
29. Do you use performance profiling and analysis tools on the High Performance 

Systems for your application? 
 

11 Always 
42 Sometimes 
10 Never 

 
When using a GRID you expect….. 
 

30. ... your application will be easier to handle.  
 

9 Totally agree 
9 Rather agree 
9 Partly 
28 Rather do not agree 
8 Definitely disagree 

 
 

31. ... that your application can be used completely without changes. 
 

9 Totally agree 
11 Rather agree 
10 Partly 
14 Rather do not agree 
19 Definitely disagree 

 



 66

 
32. ... that you need to write a Batch-job script in order to use your application in this 

environment. 
 

24 Totally agree 
21 Rather agree 
10 Partly 
5 Rather do not agree 
3 Definitely disagree 

 
 

33. ... that you need to adapt a program by using a particular GRID tool , in order to 
use it. 

 
11 Totally agree 
28 Rather agree 
13 Partly 
7 Rather do not agree 
4 Definitely disagree 

 
34. ... that you need to rewrite your application by using a specific GRID-API, in order 

to use it. 
 

9 Totally agree 
12 Rather agree 
9 Partly 
19 Rather do not agree 
14 Definitely disagree 

 
 

35. ... that you have to login per session ... 
 

54 once 
3 on every computer that you wish to use in the grid 
3 each institution that is involved in the grid 
3 on every computer at each institution that is involved in the grid 

 
 

36. ... as an interface ... 
 

11 a graphical user interface 
23 a console based interface 
26 both 
3 none of the above 

 
 

37. ... to know where the applications that you want to use can be found. 
 

11 Totally agree 
19 Rather agree 
8 Partly 
18 Rather do not agree 
7 Definitely disagree 



 67

 
38. ... to have to know where your input and output data is found. 

 
18 Totally agree 
15 Rather agree 
13 Partly 
13 Rather do not agree 
4 Definitely disagree 

 
 

39. ... that you can explicitly choose the resources (hardware and software), which you 
wish to use. 

 
26 Totally agree 
21 Rather agree 
8 Partly 
8 Rather do not agree 
0 Definitely disagree 

 
 

40. ... to have to select these again each time you use the GRID resources 
 

5 Totally agree 
8 Rather agree 
15 Partly 
25 Rather do not agree 
10 Definitely disagree 

 
 

41. ... that the GRID automatically select the best resource for you 
 

10 Totally agree 
21 Rather agree 
16 Partly 
12 Rather do not agree 
4 Definitely disagree 

 
 

42. ... that the GRID offers both options (automatic and user controlled search for 
resources) 

 
34 Totally agree 
22 Rather agree 
7 Partly 
0 Rather do not agree 
0 Definitely disagree 

 



 68

 
 

43. ... that in the usage of different types of resources, your application has to be re-
compiled for each. 

 
13 Totally agree 
19 Rather agree 
9 Partly 
12 Rather do not agree 
10 Definitely disagree 

 
44. ... that each application compiled by you must be transported to each resource. 

 
3 Totally agree 
5 Rather agree 
10 Partly 
17 Rather do not agree 
28 Definitely disagree 

 
 

45. ... a debugging tool, which you can use in the GRID environment. 
 

30 Totally agree 
19 Rather agree 
8 Partly 
4 Rather do not agree 
2 Definitely disagree 

 
 

46. ... Performance Profiling and Analysis Tools for the tuning of your application in 
this environment. 

 
32 Totally agree 
19 Rather agree 
5 Partly 
5 Rather do not agree 
2 Definitely disagree 

 
47. ... that the above mentioned tools can be used in the same way as in non-GRID 

environments. 
 

15 Totally agree 
12 Rather agree 
16 Partly 
15 Rather do not agree 
5 Definitely disagree 

 
 
 
 
 


