Introduction

The use of symmetry concepts in physics is as old as theoretical physics itself, and
nowadays symmetries play a very important role in nearly every branch of modern the-
oretical physics. Traditionally symmetries have always been considered as being given
(in some way or another) by a symmetry group, and only about twenty years ago more
general algebraic objects, such as so—called guantum groups or certain generalizations
thereof, started being considered as suitable symmetry objects. The invention and the
use of quantum groups is surely one of the most fascinating developments in mathe-
matical physics of the past fifteen years.

Originally, quantum groups emerged as a natural abstraction of certain basic ideas
of the quantum inverse scattering method [STF79], which - roughly speaking - is a sys-
tematic method of exact solution of a broad class of two—dimensional quantum field
theories or lattice models. They are intimately related to the famous Yang Baxter equa-
tion, which has already appeared before in other methods of exact solution. Meanwhile
these new algebraic structures have been used in many different areas of theoretical
physics, and also in mathematics, where they initiated new developments in the theory
of link invariants and in low dimensional topology (see e.g. [Tur94, RT90]).

In this thesis we are interested in quantum groups as objects describing the global
symmetry of a low—dimensional quantum field theory generalizing the concept of a
global gauge group. These “new symmetries” go under the name Quantum Symmetry.

Let us shortly recall what is meant by a global symmetry. In quantum field theory
one distinguishes two different types of symmetries. The external symmetry is given
by a group of space-time transformations. For example the external symmetry of a
relativistic quantum field theory always entails the group of Poincaré transformations.
This kind of symmetry mostly fits into everybody’s idea of a symmetry. The second
type of symmetry playing a prominent role in quantum field theory is the so—called
internal symmetry or global symmetry (gauge symmetry of 1. kind). These symmetries
are somewhat more subtle to describe. One usually needs some non-observable quanti-
ties such as charged fields to “see how they act”. The occurrence of global symmetries
is connected with limitations of the superposition principle in quantum field theory,
due to the existence of global conserved quantities, usually called charges. Roughly
speaking, the global symmetry is expected to describe the superselection structure, i.e.
the charge spectrum of the theory.

As an example one may consider the electric charge in quantum electrodynamics
[WWW52]. The electric charge is supposed to be globally conserved, i.e. observables do
not change the total charge of a given state. Thus the Hilbert space $ of physical states
decomposes into a direct sum of subspaces 9, (= superselection sectors) consisting of
states with charge z - e, z € Z. Relative phases of states with different charges cannot
be measured. The charge operator () provides a unitary representation of the global
gauge group U(1) on the Hilbert space $) according to o — €*®?. The above decom-
position of §) into charged sectors provides a diagonalization of the charge operator
Q. This way every sector carries a multiple of an irreducible representation of U(1):
Q) = e'@%|3h), ¢ € H,. Since all irreducible representations of the global gauge
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group U(1) appear, the superselection sectors ( = charge spectrum) may be labeled
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by the inequivalent irreducible representations of the global gauge group U(1). More-
over an operator creating the charge z transforms under global gauge transformation
according to ¢®Q F e10Q = ¢*aF.

The general theory of superselection sectors is most clearly formulated in the alge-
braic approach to local quantum field theory as initiated by [HK64] and further devel-
oped by [DHR69a, DHR69b, DHR71, DHR74], nowadays known as the Doplicher-Haag-
Roberts superselection theory (DHR-theory). In this framework superselection sectors
are interpreted as inequivalent representations of the (abstract) algebra of observables.
In a second step one may then construct non-observable charged fields interpolating
between different sectors and transforming under the action of the global symmetry.
For the reader not being familiar with these concepts we give a short introduction into
DHR-theory below.

But why - if at all - is there any need to talk about global (gauge) symmetries,
which are not given by a group? Why is there no sign of these fancy symmetries in
the most famous theories such as QED or the standard model, which have been so
successful in describing the experiments in high energy physics? An answer to these
questions is again provided by the general superselection theory. It was one of the
main achievements of the algebraic approach to show [DR90] that under quite general
assumptions in space time dimension d = 4 the global symmetry may in fact always
be realized as a compact group (the global gauge group). This result relies heavily on
the fact that in d = 4 particles obey Bose/Fermi statistics (permutation statistics).
How highly nontrivial this result is becomes clear if one considers low dimensional
QFTs (d < 3). Here the situation changes drastically. Due to the occurrence of braid
group statistics instead of permutation statistics, one is forced to consider more general
algebraic objects than groups as global symmetries. Somewhat simplified the reason
for this lies in the fact that - in contrast to Bose/Fermi commutation relations - more
general commutation relations (such as braiding relations) of charged fields cannot be
compatible with transformations under a group action. This is the place where the
search for “new symmetry concepts in QFT” takes place. Actually by now it is still an
open problem to find the most general algebraic object describing the superselection
structure of low dimensional QFT, substituting the global gauge group. This is called
the “symmetry problem of low—dimensional QFT”.

There are good reasons to be interested in low-dimensional quantum field theories.
First of all one should be aware that - beyond formal perturbation theory - there
are no nontrivial models in space time dimension d = 4. Conversely there exist a
lot of nontrivial low—dimensional models, many of them even being exactly solvable.
Therefore to investigate conceptual issues in concrete models, it may be of great use
to pass to low-dimensional quantum field theories. Another motivation to investigate
models with braid group statistics stems from the fact that particles with this kind
of statistics (also called fractional statistics) may possibly be used to describe some
effects in low-dimensional solid state physics, as e.g. the fractional quantum Hall effect
[Sto92].

As has already been indicated above, ordinary groups are ruled out as candidates
describing the global symmetry in models with braid group statistics. However quantum
groups may be used! Quantum groups are algebras which have nearly the same proper-
ties as a group (i.e. as the associated group algebras). These properties assure that their
representation theory is quite similar to the representation theory of ordinary groups.
In particular there exists a trivial representation, a tensor product of representations,
etc. This implies that a quantum group may act on field operators rather similar as a
group. Moreover, the existence of a so-called R—matrix allows for a formulation of braid-
ing relations of field operators, which are consistent with the quantum group action.
This is, why during the last decade quantum groups have become the most fashionable



candidates describing the global symmetry in low dimensional quantum field theories
(QFT)! or lattice models?. We will give a short introduction to quantum groups below,
also describing how they might act as a global symmetry.

However, it was soon realized that at least for rational theories (i.e. with a finite
number of superselection sectors) not only groups but also ordinary quantum groups
are ruled out, unless all sectors have integer statistical dimensions (see e.g. [FK93] for
a review or [Nil93] for a specific discussion of q—dimensions in finite quantum groups),
which is actually not the case in many models. Thus the search for generalizations went
on. Based on the theory of quasi—-quantum groups introduced by Drinfel’d [Dri90], G.
Mack and V. Schomerus [MS92] have proposed the notion of weak quasi—quantum groups
G as appropriate symmetry candidates, where “weak” means that the tensor product
of two “physical” representations of G may also contain “unphysical” subrepresenta-
tions (i.e. of g—dimension < 0), which have to be discarded. Examples are semisimple
quotients of g-deformations of enveloping algebras U(g), g a semisimple Lie algebra, at
roots of unity, ¢!V = 1 (also called truncated quantum groups at roots of unity).

In this way non-integer dimensions could successfully be incorporated. The price to
pay was that now commutation relations of G-covariant charged fields involve operator
valued R-matrices and, more drastically, the operator product expansion for G-covariant
multiplets of charged fields involves non-scalar coefficients with values in G. Thus,
the analogue of the “would-be” DHR-field algebra F is no longer algebraically closed.
Instead, Mack and Schomerus have proposed a new “covariant product” for charged
fields, which does not lead outside of F, but which is no longer associative. In [Sch95]
Schomerus has analyzed this scenario somewhat more systematically in the framework
of DHR-theory, showing that a weak quasi-Hopf algebra G and a field “algebra” F
may always be constructed such that the combined algebra F V G is associative and
satisfies all desired properties, except that F C F V G is only a linear subspace but
not a subalgebra. Technically, the reason for this lies in the fact that the dual G of a
quasi-quantum group is not an associative algebra.

To study quantum symmetries on the lattice in an axiomatic approach,
K. Szlachdnyi and P. Vecsernyés [SV93] have proposed an “amplified” version of the
DHR-theory, which also applies to locally finite dimensional lattice models. This set-
ting has been further developed by [NS97, NS95], where, based on the example of
Hopf spin chains, the authors proposed the notion of a universal localized cosymmetry
p: A—> A®G, A being the observable algebra, incorporating all sectors p; of A via
pr = (idg®mr)op, mr € Rep§. In the specific example studied by [NS97, NS95] G was
given by a so-called quantum double and the cosymmetry p was given by a coaction of
G on A. Related results have later been obtained for lattice current algebras [AFFS98],
the later actually being a special case of the Hopf spin chains of [NS97] (see [Nil97] and
Section 1.4). The analogue of a DHR—field algebra for these models is now given by the
standard crossed product F = A x C; [NS95], where Q is the Hopf algebra dual to G.

Now the methods and results of these works were still restricted to ordinary quan-
tum groups and therefore to integer statistical dimensions. To formulate lattice current
algebras at roots of unity one may identify them with the boundary part of lattice
Chern-Simons algebras [AGS95, AGS96, AS96] defined on a disk. Nevertheless, it re-
mains unclear whether and how for ¢ = root of unity the structural results of [AFFS98]
survive the truncation to the semi-simple (“physical”) quotients. Similarly, the gen-
eralizations of the model, of the methods and of the results of [NS97] to weak quasi
quantum groups are by no means obvious. In particular one would like to know whether
and in what sense in such models universal localized cosymmetries p: A - A® G still

lsee [BAWP94, BL93, Gaw91l, DPR90, FGV94, FK93, MS90, MS92, MRS89, Miigd8, PS90, RS90, Sz194,
Vec94]
2see [AFFS98, AFSV91, AFS92, BS98, Fad92, FG93, KS97, NS97, NS95, Pas88, PS89, SV93]



provide coactions and whether G would still be (an analogue of) a quantum double of
a quasi-Hopf algebra, possibly in the sense recently described by Majid [Maj97].

In this thesis we construct and investigate quantum spin chains and
lattice current algebras based on a weak quasi—quantum group and therefore
in particular at ‘roots of unity’.

Before we give an overview of this thesis and a summary of the main results we
provide a short introduction into the basic concepts on which our models are based.
In a first section we describe the DHR superselection theory. The following section is
concerned with quantum groups and their role as symmetry algebras, and finally we
sketch how the DHR-theory may be adapted to treat lattice models. Readers already
being familiar with all concepts mentioned so far are invited to skip these sections.

DHR-superselection theory

We will give a rather non—technical introduction into the basic notions of algebraic
QFT, especially into the Doplicher-Haag-Roberts (DHR) theory of superselection sec-
tors. For more detailed introductions see [Haa92], [Kas90], [BW92], [Bau95]. A nice
introduction with emphasis on the low—dimensional case is given in [Fre90].

The algebraic formulation of local quantum field theory - as given by [HK64] - uses
the language of (C*, von Neumann) algebras. This approach may be mainly charac-
terized by its emphasis on observable quantities and its insistence in separating local
from global properties. Local properties are encoded in the algebraic structure of the
local observables, whereas global properties enter through states and the correspond-
ing representation spaces. The algebraic framework is especially suited for describing
and investigating superselection structures without relying on ad hoc introduced non
observable quantities like charged fields. The latter are to be reconstructed from the
“intrinsic” properties of the theory, i.e. from properties of the local observables. This
also leads to an intrinsic notion of statistics, which is in particular useful when passing
to low-dimensional quantum field theories, where one has to deal with generalizations
of Bose/Fermi statistics.

In short, a quantum field theory is supposed to be completely defined by its local
net of observables, i.e. an inclusion preserving map

0 — A(O),

which assigns the C*—algebra A(O) of observables measurable in O to every bounded
region O in space—time. The local algebras A(Q) may be thought as being generated by
(bounded functions of) observable field operators (e.g. currents), which are “smeared”
with test functions having support in O. The C*-algebra generated by all A(O) is called
the algebra of quasi local observables and is again denoted by .A. Einstein causality is
implemented by the requirement that the local algebras A(O') and A(0O?) associated
to space-like separated regions O' and O? commute element-wise and relativistic co-
variance by demanding the Poincaré group to act on the observables by automorphisms
a(n,q) such that a 4)(A(O)) = A(AO+a). Note that till now there is no Hilbert space
of physical states specified, on which the observable algebra acts.

A first approach to superselection theory in the algebraic framework was given
by S. Doplicher, R. Haag and J.E. Roberts in [DHR69a]. They still start with pre-
defined non observable fields given as a net of local field algebras O — F(O) obey-
ing Bose-Fermi commutation relations and acting irreducibly on a Hilbert space $).
As above there is supposed to be a unitary representation of a compact group G
of internal symmetries on $), which acts by its adjoint action on the field net, i.e.
U(g) F(O)U(g)~t = F(O), Vg € G. The local observable algebra A(Q) is defined



as the gauge invariant subalgebra of F(O) (fix point algebra). Under some techni-
cal requirement (twisted duality, which implies Haag duality in every simple sector),
[DHR69a] proved that the Hilbert space $) decomposes into orthogonal subspaces in-
variant under the action of the observables A and the action of the gauge group G as
follows

9=0,(9,8V,), (0.1)
where the representations 7(A) = A and U(G) decompose according to

=@, (wu ® 1Vu) (0.2)

U =,(1s, ®7). (0.3)

Here £ runs through the set of all inequivalent irreducible representations (7,,V),) of
G and the 7, are inequivalent irreducible representations of .A. Thus, superselection
sectors are labeled by the irreducible representations of G - the global symmetry G is
“dual” to the superselection structure. The vacuum sector $Hy ® C = $g carries the
trivial (one-dimensional) representation of G. Moreover all representations are “locally
generated” out of the vacuum in the sense that they fulfill the DHR—criterion

m, | A0 =2 o [ A(O'), for some bounded region O, (0.4)

where O’ denotes the causal complement of O and A(O') denotes the subalgebra of A
generated by all local algebras A(O) satisfying O C O'.

The last observation is most important since it provides a reasonable selection
criterion for physically relevant states®. Starting with a local net of observables (with-
out any predefined field net), given in a vacuum representation ()9, 7o), the DHR-
superselection sectors are given by the equivalence classes of representations of A
satisfying (0.4). A further analysis of DHR superselection sectors has been given in
[DHR69b], [DHR71], [DHR74]. Starting point is the basic observation that there is a
one-to-one correspondence between (equivalence classes of) representations 7 fulfilling
the DHR-criterion (0.4) and (equivalence classes of) localized algebra endomorphisms
p: A— A given by

T myop, (0.5)

where p is called localized in O if p | A(O) = id | A(O'). This equivalence
holds provided one requires the vacuum representation to fulfill Haag duality, i.e.
m0(A(0)) = w(A(O")), for all doubles cones O, which may be seen as some maxi-
mality condition on the local algebras (Einstein causality already implies the inclusion
C). The importance of the possibility to describe superselection sectors in terms of en-
domorphisms instead of representations of A lies in the fact, that endomorphism may
be composed (composition of charges), which provides the set Reppyr of DHR-sectors
with a (monoidal) product. This opens the way to analyze the rich algebraic structure
of Repppr *:
(i) Fusion rules: Every p decomposes into a direct sum of finitely many irreducibles.
In particular the product of two irreducible endomorphisms p;, p;, decomposes
into irreducibles p; according to
pi©pj = NE py (0.6)
with multiplicities Nj; € N.
3i.e. relevant for elementary particle physics. Surely there are physically interesting states - e.g. thermal
equilibrium states - which clearly violate (0.4). Also note that even in elementary particle physics the DHR—
criterion is in general to restrictive. [BF82] formulate a weaker criterion, which at least covers all massive
theories. In chiral conformal field theories one knows, that all positive energy representations are of DHR-type,

see [BMT88]
4provided property B holds, which ensures the existence of subobjects and direct sums in Repp g g



(ii) Conjugate sectors: For every irreducible p there exists a unique conjugate p such
that pg = id 4 (which represents the vacuum sector) appears in the decomposition
of p o p according to (0.6) (with multiplicity one).

(iii) Statistics: There is an intrinsic notion of statistics of sectors given by the so-called
statistics operators €, € A

Let us discuss (iii) in more detail, since here one finds the crucial structural differences
between DHR-theory in space-time dimensions d < 2 and in higher dimensions. Given
a localized endomorphism p the statistics operator ¢, is defined as ¢, := U~! p(U),
where U € A is a unitary such that p:= AdU o p is localized space-like separated to p
(the definition of €, does not depend on the special choice of U). The unitary €, has
the following remarkable properties

£pP(€p) €p = p(ep) €p P(Ep) (0.7)
ep € p*(A) (0.8)
d>3: e=1. (0.9)

The reason for (0.9) being valid only in space time dimensions d > 3 lies in the fact
that in d < 2 the causal complement of a bounded region is not connected. Now given
a unitary ¢, satisfying (0.7)-(0.8) one may define a representation of the braid group
By According to Artin [Art65] the braid group with n strings is generated by elements
01 ...0,_1, which satisfy the relations
0;0i+104 = 0i+1 04 O:Z-I—la ' VZ <n-2 (010)
oioj =004 if |i—jl>2.
A representation of B, is obtained by the assignment o; — pi_l(ep). Now it follows
from (0.9) that in d > 3 dimensions also the relation o2 = 1 is respected in this
representation and one therefore obtains a representation of the permutation group.
Thus DHR-sectors obey permutation group statistics in d > 3 space time dimensions
and braid group statistics in d < 2 dimensions. We finally remark that ¢, allows for
the definition of two numerical invariants associated to the sector represented by p as
follows. For every irreducible p there exists a so-called left inverse ¢, which is a positive
linear map, such that ¢, 0 p =id and po ¢, : A = p(A) is a conditional expectation.
It turns out that ¢,(e,) is a multiple of the identity and by polar decomposition one
obtains
bp(€p) = Z_Za |w,| =1, dp > 0. (0.11)
The number d, is called the statistical dimension and w), the statistical phase. (There
may also be sectors with infinite statistics d, = 0, which are usually discarded.)
Phrased in precise mathematical terms, the set Reppzr of DHR-sectors is a strict
rigid braided monoidal C*-category with subobjects and direct sums, which in d > 3
space time dimensions is even symmetric. The objects are given by the local endomor-
phisms of A and the morphisms (arrows) between two objects by the set of intertwiners

in A.

It took another fifteen years until S. Doplicher and J.E. Roberts succeeded in prov-
ing that in the case of permutation statistics the scenario of A being the fix point algebra,
of a compact group G acting on a bigger field net is generic [DR89a, DR89b, DR90].
In particular they proved that one may reconstruct a compact group G and a field
net F(O) obeying Bose/Fermi commutation relations such that (0.1-0.3) are fulfilled.
This construction is unique up to isomorphism. They essentially used the rich algebraic
structure of the set Reppyr of DHR-sectors. More precisely Doplicher and Roberts
succeeded in proving a new duality theorem identifying Reppyr with the representa-
tion category of a compact group with the following correspondences:



irreduc. DHR-sectors irreduc. representations of G

vacuum sector trivial representation

conjugate sector contragredient representation
composition of sectors tensor product of representations
fusion rules Clebsch-Gordan decomposition
statistics operator permutation of tensor factors.

This categorical equivalence is the precise meaning of the statement that the gauge
group G is the dual object of the superselection structure. We again point out that
these findings essentially use the fact, that in dimensions d > 3 the intrinsic statistics
defined with the help of the statistics operator is always permutation statistics. Until
now there is no known analogue of the DR-reconstruction in the case of (non Abelian)
braid group statistics.

The reconstructed local field algebras are spanned by the local observables and mul-
tiplets of field operators transforming covariantly under G as follows: Every irreducible
endomorphism p,, is a restriction of an inner endomorphism of the field algebra F, i.e.

dy
pu() =D i+, (0.12)
=1

where {t;}i=1,..q, is a set of isometries with support one (d,, is precisely the statistical
dimension of p,, see (0.11)):

du
Wi =01, Y g =1 (0.13)
i=1

Moreover {1;} is a G-multiplet transforming according to the irreducible representation
Ty, see (0.2). Also i; € F(O) if p, is localized in O and the operators 1); provide
transitions between the vacuum sector and the charged sector m,. Thus they may be
interpreted as charged fields®.

As already noted, there is no general reconstruction of charged fields transforming
under some global symmetry available in the case of braid group statistics. For partial
results in this case see [FRS89, FRS92].

As a first step one may at least try to find some “symmetry algebra” G, such
that the representation category of G may be identified with Reppp . First candidates
would be semisimple quasitriangular C*-Hopf algebras, whose representation categories
have indeed all desired properties, see below. The trouble is that (at least in rational
theories) they give only rise to integer statistical dimensions, see e.g. [FK93, Nil93]. As
has already been indicated above, a way out of this is to also consider more general
symmetry algebras such as quasi-Hopf algebras or weak quasi-Hopf algebras, which
will be introduced in Chapter 2 and Chapter 3, respectively.

Quantum groups as symmetry algebras

As mentioned above quantum groups emerged as certain algebraic structures lying
behind some general methods of exact solutions of certain low-dimensional quantum
field theoretic models and two—dimensional lattice models of statistical mechanics. For
an introduction to quantum groups from this point of view we highly recommend the
lectures on quantum groups given by L.A. Takhtajan [Tak89]. The term quantum group
was introduced by V. Drinfel’d in his seminal paper [Dri86] for a certain class of qua-
sitriangular Hopf algebras obtained as ‘deformations’ of usual (classical) groups (see
below). Meanwhile the term quantum group is often used in general for Hopf algebras
as we will do here. Two well-known monographs on Hopf algebras are [Abe80, Swe69].

5Actually the field multiplet {+;} generates a unique C*-algebra inside F, the so—called Cuntz algebra,
which plays a major role in the reconstruction of G and F.



There are also several introductory books on quantum groups incorporating the more
recent developments, e.g. [Kas95, Lus93, Maj95, CP94].

A Hopf algebra (quantum group) is an algebra G (over C) with unit 1, having
some further algebraic structures, which guarantee that its set of representations Rep G
(which mathematically speaking is a category) has similar properties as the represen-
tations of a group. We remark that in quantum physics a symmetry (group, algebra)
usually enters through its representations. More specifically for an algebra to be in-
terpreted as a symmetry (acting on some Hilbert space of physical states) one should
be able to formulate covariance properties of field multiplets and also invariance of a
ground state (or of observables). As we shall see, a Hopf algebra perfectly fits these
requirements. If G is additionally required to be quasitriangular, these transformation
properties are consistent with local braid relations.

To begin with, a Hopf algebra admits unital algebra maps A : G - G ® G (the
coproduct) and € : G — C (the counit), satisfying

(ARid)o A= (id®A)o A (coassociativity) (0.14)
(e®id)oA=id=(id®e€) o A (counit axiom). (0.15)

This makes G into a bialgebra. In the following we will use the Sweedler notation
Afa) =) afy) ® ajy) = aq) ® o).
i

The counit furnishes a distinguished one dimensional representation of G (the trivial
representation), whereas the coproduct A allows for the definition of a product of
representations. Indeed, given two representations 7y, w5 on vector spaces Vi and Vj,
respectively, then 7; X 7y given by

(rr R 7y)(a) :== (rr @ my)(Aa) = mr(an)) ® mr(ag)), a€g (0.16)

defines a representation of G on the vector space Vi ® V. Moreover coassociativity of
A implies associativity of the product X, and the counit axiom (0.15) ensures that € is
a ‘unit’ with respect to X, i.e. 7y X e = n; = € W 7. This justifies to call € the trivial
representation of G.

EXAMPLE 0.1 (The group algebra). Let us pause for a moment to see how the de-
finition of a bialgebra generalizes well-known properties of ordinary groups. To every
(topological) group there is an associated algebra, the so—called group algebra, which
- somewhat simplified - is the C—vector space with basis given by the group elements
and with product being defined on this basis by the group multiplication (which is then
extended linearly). In general a group fixes uniquely its group algebra and vice versa.
Let for simplicity G be a finite group with unit e. Then the group algebra of G is given
by G := CG = lin{g € G} with multiplication

(Zaigi) (Zﬂjgj) = Zaiﬁj 99, «;,P; €C.
i i ig

Clearly e = 1 provides a unit in G. The algebra G becomes a bialgebra with coproduct
A and counit e defined on group elements g € G by

Alg)=9g®g (0.17)
e(g) =1 (0.18)

and extended linearly to the whole of G. Thus in this case the counit € is in fact
given by the trivial representation of G and the product of representations as defined
in (0.16) yields the well-known product of group representations, i.e. (7; K 7;)(g) =
71(g) ® m5(g), g € G C G. Note that the coproduct in (0.17) is cocommutative, i.e
A(a) = A%(a), where A% := 70 A, 7 denoting the permutation of tensor factors.



One further requires the existence of an antipode S. This is an algebra antimorphism
S : G — G satisfying

S(aw)) a@) = aq) S(ag) = €(a)l, a€g. (0.19)

A Hopf algebra (or a quantum group) is a bialgebra with antipode. As one might guess
from (0.19) and (0.17), the antipode generalizes the inverse in a group. Indeed, in the
above example G := CG the antipode § is given on the basis by S(g) = g~!. This clearly
defines an anti algebra morphism satisfying (0.19), making the group algebra CG into
a Hopf algebra. In this sense Hopf algebras (quantum groups) are generalizations of
ordinary groups.

As in the group case, the antipode allows for the definition of (left) contragredient
representations 77 on the dual space V; of V; by setting 77(a) := 7% (S(a)), * denoting
the transposed map. The antipode property (0.19) ensures that the trivial representa-
tion € is always contained in the product 7; X 7. Indeed, (0.19) implies that the dual
pairing (- | ) : Vi@ V; - C, v @ w +— (v | W) := w(v) intertwines the representations
mr X 77 and e

Let us finally introduce the notion of quasitriangularity. A Hopf algebra is called
quasitriangular, if there exists an invertible element R € G ® G (the R-matriz) inter-
twining A and A, i.e. (recall that A%(a) = a(3) ® a)

RA(a) =A%(a)R, Va€eg (0.20)

and obeying (A ® id)(R) = R¥R?3, (id ® A)(R) = R¥R'2, which are identities in the
threefold tensor product G ® G ® G, the upper indices denoting the embedding of tensor
factors, i.e. R?3 =1 ® R, etc. . This implies that R satisfies the Yang Baxter equation

R23 R13 pl2 — pl2 RI3 R23. (0.21)

Let us recall two consequences of the existence of an R—matrix. First (0.20) implies that
the two representations 7y X 7y and 7y X 7wy are equivalent with intertwiner given by
B;j = 1150(m®7my)(R), 115 denoting the permutation of tensor factors. Secondly (0.20)
implies that an R-matrix defines a representation of the braid group B,, (see (0.10)) on
the n-th tensor power Vi ® V7 ® - - - ® V1 of any G-module V7 by the assignment
ag; — B;.(Ii_H),

where again the upper indices mean that B%H) is supposed to act nontrivially an the
i-th and (7 4+ 1)-th tensor factor. In the case of the group algebra CG one may choose
R =1 ® 1 which is clearly quasitriangular since CG is cocommutative. Hence B;(IZH)
is just a transposition and yields a representation of the permutation group.

Let us now describe how a Hopf algebra may act as a global symmetry. Given some
action U of a Hopf algebra G on a Hilbert space §) of physical states, one can as in the
group case define the adjoint action v of G on the algebra of operators F 5 F : § — §
(field operators) by the formula

Yo(F) :=Ulaqy) FU(S(a(z)), a€G (0.22)

Note that for a € G group-like, i.e. A(a) =a®a, S(a) =a~! (see (0.17)) one recovers
the usual adjoint action of group elements. The action ~y satisfies

IYG(FF,) = 7a(1)(F) Ya() (F,) (0.23)
(Actions obeying (0.23) are called Hopf module actions.) The importance of this relation
lies in the fact that if {F?} and {F3} are multiplets for representations m; and 7y,
respectively, of G, i.e. 7(F¥) = F. n%%(a), o = I,J, then F¥ := F! F} is a my K m-
multiplet. We remark that for any m-multiplet {F*} the action y given in (0.22) is



equivalent to the following ‘generalized commutation relations’
U(a) F* = F' % (a()) Ulag), (0.24)

which is easily verified using the antipode property (0.19). This relation may - in con-
trast to (0.22) - be applied also in the case of (weak)—quasi Hopf algebras, see below.

The counit € may be used to state invariance properties. The field operator F' is
called G-invariant, if v, (F) = €(a)F, Ya € G, which - using (0.24) and the counit axiom
(0.15) - is equivalent to U(a) F = F U(a), Va € G. Thus as in the group case the ‘gauge
invariant’ operators are precisely the ones commuting with U(G).

Let us now also assume G to be quasitriangular. One may then propose the following
local braiding relations for space like separated field multiplets {1%} and {¢’;} (see
[Fro88]), where we assume 97 to be localized to the left of 1.

o s
Wiyl = iyl RYY, (0.25)

where Rlllf]’” = (n{* ® 7/)(R). The Yang-Baxter equation for R ensures consistency of
these quadratic relations and the quasitriangularity of R assures consistency with the
transformation properties of the field multiplets under the global symmetry G.

Thus, summarizing the above scenario, the algebraic properties of a quasitriangular
Hopf algebra allow them to act as a global symmetry on field multiplets obeying braid
group statistics with braid relations given by (0.25). Let us conclude this section by
giving at least one example of a genuine quantum group.

EXAMPLE 0.2 (The quantum enveloping algebra U, (slz)). The probably best-
known and most prominent quantum groups are the so—called g-deformations U, (sl(2)
of the universal enveloping algebra of the three dimensional complex Lie algebra slo,
first introduced in [KR81]. Recall that this Lie algebra is spanned by elements X, H
with Lie brackets

[H,X41] =+2X4,

XX | =K. (0.26)

It is the smallest simple Lie algebra and most of its properties (especially the below
described deformation) generalizes to all complex simple Lie algebras. Also recall the
universal enveloping algebra U (slz) defined as the (non-commutative) algebra generated
by a unit 1 and the elements of sy satisfying the relations (0.26) where the Lie bracket
is replaced by the commutator, i.e. [a,b] := ab — ba. U(sl2) is an infinite dimensional
algebra. It uniquely determines the Lie algebra sly (and vice versa). In particular it
has the same representation theory as g. In fact every representation of sl may be
continued to a representation of U(sly) and since sl may be viewed as a subset of
U(sly) one also has the converse statement. The unital algebra U(sl3) is a Hopf algebra
with coproduct A, counit € and antipode S defined on the generators a € g by

Ala) =a®1+1Qa

E(CI,) = 0, S(CL) = —qa (027)

and extended multiplicatively (in the case of A and ¢) or anti multiplicatively (in the
case of S). The Hopf algebra U(sly) is non commutative but cocommutative as can be
seen from (0.27).

Now let ¢ € C, ¢ # £1. Then the gquantum enveloping algebra Uy(sl2) is defined
to be the unique algebra generated by 1 and elements X, X_, K, K~! with relations
(again [-,-] denoting the commutator)

KX, K '=¢' X,
K2 _ K_2 (028)

X, X_] =
[ + ] q_q_1



Writing formally K = ¢"/2, K~1 = ¢~ H/2 _ which in fact makes sense in any finite
dimensional representation of U,(slz), the relations (0.28) may be written as

[H,Xy] =+2X,

H__ _-H 0.29)
q" —q (
(X, X ] = ——7-

q9—4q
which explains the name “g—deformed”. The coproduct, counit and antipode may also
be deformed by

1 e(xa) =0 (0.30)

S(K)=K™', S(Xi)=-¢"X4

making U, (slz) into a Hopf algebra. The Hopf algebra structure of U,(sl2) is due to
[SkI85]. Quantum enveloping algebras U,(g) may be defined in a similar way for all
complex semisimple Lie algebras g as has been shown independently by [Dri85, Dri86]
and [Jim85].

If ¢ is a root of unity, i.e. ¢¥ = 1, the algebras U,(g) are not semisimple. This
may be cured by passing to semisimple quotients. The resulting algebras Z/{g’" are fi-
nite dimensional semisimple quasitriangular weak quasi—Hopf algebras in the sense of
[MS92], see Chapter 3. Their representation categories are strongly connected with the
modular categories of [Tur94]. As algebras they are isomorphic to the direct sum of the
irreducible representations of U,(g) with positive quantum dimensions. Thus they may
be obtained by dividing U,(g) through the ideal which is annihilated by all physical
representations (i.e. with positive quantum dimension). One may also use a general
reconstruction theorem, see [Har95]. The importance of the algebras U (g) for applica-
tions in physics lies in the fact that they are not only semisimple but also C*—algebras.

Lattice models and amplified DHR-theory

Let us shortly describe how the DHR-theory may be modified to deal with locally
finite dimensional lattice models, i.e. lattice models where the local observable algebras
are finite dimensional. We will in the following only deal with one dimensional lattices
(“quantum chains”), which are considered as models of 1+ 1-dimensional quantum field
theories.

A discrete local net of observables is an inclusion preserving map I — A(I) which
assigns a (finite dimensional) C*-algebra A(I) to every interval I = (a,b) C Z. Defining
the “space like complement” I’ of I by I' := {2z € Z | dist(z,I) > 2}, locality means
that if J C I’ then the algebras A(I) and A(J) commute (note that the definition of I’
implies that one admits nontrivial relations between “next neighbors”). The quasilocal
algebra of observables A is again defined as the C*-algebra generated by all local
observables.

Formulating an analog of the DHR-criterion one has to face the problem that every
injective localized endomorphism of A would automatically be an automorphism due
to the fact that the local observable algebras A(I) are finite dimensional. Thus taking
the DHR-criterion (0.4) as it stands, all sectors would be Abelian. The following mod-
ification, which has been proposed by K. Szlichanyi and P. Vecsernyés, turns out to
be appropriate. A representation 7 of A is said to fulfill the selection criterion, if there
exists an interval I and n € Z, such that

7 AI') 2n-mo | AT, (0.31)

that is, when restricted to A(I'), 7 is equivalent to a finite multiple of 7. As before
the (equivalence classes) of representations obeying (0.31) will be called DHR-sectors.



The role of the category of localized endomorphisms, which in the continuum case
describe the DHR-sectors, is now played by the category of localized amplimorphisms.
An amplimorphism (amplifying endomorphism) is an injective C*-algebra map p : A —
A® End(V) = M,(A), where V is an n-dimensional Hilbert space and where M, (A)
denotes the algebra of n x n - matrices with entries in A. We also always assume y to
be unital. An amplimorphism is called localized in I if u(A) = A® 1y, VA€ I'.
Assuming algebraic Haag duality, there is a one-to-one correspondence between
DHR-sectors and equivalence classes of localized amplimorphisms u given by

7= (mp ®1id) o p.

Moreover, as for endomorphisms, amplimorphisms allow for the definition of a
(monoidal) product of sectors given by u X v := (pu ® id) o v. One proceeds as in
the continuum case: The category of amplimorphisms (and therefore the category of
DHR-sectors) admits subobjects and direct sums, fusion rules, conjugates, statistics
operators, etc., making Reppyp into a strict braided rigid monoidal C*-category, for
details see [SV93].

In [NS97] the above scenario has been developed further by introducing the notion
of a universal cosymmetry. Let us assume that the theory is rational, i.e. admits only
a finite number of superselection sectors, given by amplimorphisms y1,..., g,. An am-
plimorphism p is called universal, if p is equivalent to @®]_; y4;. Denoting the C*-algebra
G := @; End(V;), p may be viewed as an algebra map p : A - A®G and the irreducible
sectors of A may be recovered from p by applying the irreducible representations 7; of
G : pu; = (id®7;) o p. A universal p is called a universal cosymmetry if G is a bialgebra
(G,A,¢e) and if p is a coaction, i.e. (p®id)op = (Id® A) o p, (idR®€) o p = id. We
also call G the universal cosymmetry. Moreover in this case one shows that G is even
a quasitriangular Hopf algebra, where the antipode is recovered by studying the con-
jugate amplimorphism p and the R-matrix is determined by the statistics operator ¢,.
The existence of a universal cosymmetry G in particular implies that the category of
localized amplimorphisms (i.e. the category of DHR-sectors) may be identified with the
representation category of G as rigid braided monoidal C*-categories. Moreover in this
case a field algebra may be reconstructed as an ordinary crossed product F = A X G ,
where G is the Hopf algebra dual to G. The Hopf spin models of [NS97] in fact possess
a universal cosymmetry given by the quantum double of the underlying Hopf algebra.

Let us finally illustrate the above scenario by shortly reviewing G-spin models, G
being a finite group, of [SV93]. Choosing G = Z(N), G-spin models reduce to the
well known Ising and Z(N) models. Denote Fun(G) =: {f : G — C} the algebra of
functions on the group G and let §,, be the tensor product of n copies of Fun(G). The
vectors {|o) | o : {1,...,n} = G} form an orthonormal basis in §),. The full operator
algebra on ), is generated by order parameters F»;11(g) and disorder (or kink creating)
operators Fy(g), 1 € {1,...,n}, g € G, defined as follows:

Fyi1(g) o) = dg,0; |0)

0.32
Foi(9)|0) = |01, -+, 051, g0s - gOrm). (0.32)

One may now compute the multiplication and commutation relations of these operators
and use them to define the abstract algebra Fj,. as the algebra generated by 1 and
elements {Fi(g) | k € Z, g € G} fulfilling these relations. The field algebra F is then
obtained as the C*-closure of Fj,..

The algebra A of observables is obtained as the invariant subalgebra under the
action of a generalized order x disorder symmetry which turns out to be given by the
double D(G) of G [SV93]. Let us first recall how this is realized for Abelian (Z(N))

spin models. Here the dual G consisting of all inequivalent irreducible representations



g of G is also a group, being isomorphic to G. The order symmetry Q(g), g € G acts
on the basis {|o) | o : Z — G} by the global spin rotation

Qg)|o) =1---,90n,90n+1,-..). (0.33)

Next, if “kinks” or “solitons” are supposed to be stable, the space of physical states

decomposes into inequivalent sectors labeled by the twist o U:éo in the boundary

conditions. The corresponding projections are given by the operators P(h), h € G
P(h)|0) = 50 ho o |9)- (0.34)

Using the Abelianess of G one may build from the P’s the unitary operators Q(§) :=
Yohead(h) P(h), g € G. In this way one arrives at a unitary representation (g,§) —
Q(g)@(g) of the global order x disorder symmetry G X G on the Hilbert space of
physical states.

If the group G is non Abelian, the dual G and also the operator Q loose its meaning,
but the algebra generated by Q(g) and P(h) may still be viewed as a symmetry algebra
of the model. From (0.33),(0.34) one obtains the relations

Q(g1) Qg2) = Q9192), P(h1) P(h2) = 6py h, P(ho)
Q(g) P(h) = P(ghg™") Q(9),

which are the defining relations of the double D(G). As a vector space D(G) =
Fun(G) ® CG, with the identification P(h) Q(g9) = dn ® g, where d, € Fun(G) is
defined by 6,(9) = 0ng- D(G) is a quasitriangular Hopf algebra with Fun(G) and
C(@) being Hopf subalgebras. Using (0.22) and the formulas (0.33),(0.34) one obtains
a definition of a (Hopf module) action 7 of D(G) on the field algebra F, for details see
[SV93].

Defining the observable algebra A as A := {F € F | 7,(F) = €(a)F, Va € D(G)},
it turns out, that A is a C*-algebra generated by a local net A(I), I = (a,b) C Z in
the sense described above. The local algebras may be described as follows: Consider
even (odd) integers to represent sites (links) of a one dimensional lattice and place a
copy CG = Ay; on each site and a copy of Fun(G) = Ag;41 on each link. Then A(I) is
generated by {A,, n € I'}, where nontrivial commutation relations are postulated only
on neighboring site link pairs, where they are given by

Ai+1(0n) A2i(g) = A2i(g) A2i+1(0g-14)
A2i(g) A2i—1(0n) = A2i—1(dpg-1) A2i(9)-

Here Ay;(+), Agi+1(+) denote the embeddings CG = Ay; C A(I) and Fun(G) = Asgiy1 C
A(I). On the basis {|o) | o : Z — G} these operators act as

(0.35)

(0.36)

AZZ(g) |O'> = | 0 304-1,904,0441,-- )
Agiy1(6p) o) = b (oioi}) o).

Now suppose A is given in some Haag dual vacuum representation mwy. Then one can
show that the DHR-sectors as described above are labeled by the irreducible represen-
tations {74} of D(G). The corresponding localized amplimorphisms p, may be realized
as follows: Given 7, there exists a matrix multiplet Fy) € F, 4,5 € {1,...,dy}, dg
denoting the dimension of the representation space V,, such that

Ya(Fe) =) Fa' 4’ (a), a€D(G) (0.37)
k
Y FFFF =1 (0.38)
%
Y FFFF =61, (0.39)

k



(The operators FY may be constructed as products of disorder and order operators.
In the Ising model G = Z(2), these operators do anticommute. In the general case the
F*% obey braiding relations defined by the R-matrix of the double D(G).) Then

pi(A) =Y FFAFF, AcA
k

defines an amplimorphism pg, : A — A ® End(V,). Relations (0.38), (0.39) generalize
the Cuntz relations (0.13) to the amplified setting.

Choosing instead of Fun(G) and CG any dual pair G, G of C*-Hopf algebras one
may formulate the corresponding commutation relations (0.36) yielding the Hopf Spin
chains of [NS97], see Section 1.4.2.

Overview and summary of results

In this thesis we present an explicit construction of quantum chains based on a weak
quasi-quantum group G. This way we arrive at a generalization of the above mentioned
Hopf spin models of [NS97] and also of the lattice current algebras of [AFFS98], both
being based on ordinary quantum groups. The most important application is given
by choosing G to be the semisimple quotient of a quantum enveloping algebra U,(g)
at roots of unity. The reason for studying these generalizations is to provide exam-
ples of lattice quantum field theories exhibiting a quantum symmetry with non-integer
statistical dimensions. Moreover lattice current algebras have been invented as lattice
regularizations of WZW-models and should therefore eventually be studied at roots
of unity. Since the quantum chains based on ordinary quantum groups G the quan-
tum symmetry is given by the quantum double D(G) we would also like to define the
quantum double of a weak quasi-quantum group.

In approaching these aims, one has to face the problem that the dual Gofa quasi—
quantum group is not an algebra (the multiplication is not associative). But since the
dual G appears as a subalgebra of the quantum double D(G) and also of quantum
chains based on G, it is not quite clear from the beginning if a generalization to quasi-
quantum groups is possible at all. We were able to solve this problem by introducing
a new construction of what we call the diagonal crossed product M < G of a unital
algebra, M and the dual G of a (weak) quasi-Hopf algebra G. In particular, M < G
will always be an associative algebra extending M = M 1 1. On the other hand,
the linear subspace 1,4 <1 G will in general not be a subalgebra of M G, unless G
is an ordinary (i.e. coassociative) Hopf algebra. The diagonal crossed product will be
the mathematical structure underlying all applications given later on. It also allows
to formulate in a very elegant way an amplified version of the Mack Schomerus field
“algebra”.

The basic idea for this construction comes from generalizing the relations defining
the quantum double. To this end we start from an algebra M equipped with a (quasi-)
commuting pair of right and left G-coactions, p: M > M@Gand A: M —- GRI M
and denote ¢; := (A®id)op and §, := (id® p) o A as the associated equivalent two-sided
coactions. In the simplest case of G being an ordinary Hopf algebra and (A, p) being
strictly commuting (i.e. §; = ¢,) this amounts to providing a commuting pair of left
and right Hopf module actions > : § @ M — M (dual to p) and <« : M ® G > M
(dual to A) of the dual Hopf algebra G on M. In this case our diagonal crossed product
M b4 G is defined to be generated by M and G as unital subalgebras with commutation
relations given by (S : G — G being the antipode)

em = (pa)pmaS Hp@) P, mMEM, pEG . (0.40)



Note that for M = G and p = XA = A the coproduct on G, these are the defining relations
of the quantum double D(G) [Dri86], and therefore G <t G = D(G). Introducing the
“generating matrix”

r=Ye®cecGeicieMm=g),
7

where e, € G is a basis with dual basis e/ € G, (0.40) is equivalent to

L'A(m) = p?(m)I', VYm e M. (0.41)

Moreover, in this case GC MG being a unital subalgebra is equivalent to
(e®id)(T) = 1 (0.42)
r*r»? = (A®id)(I) (0.43)

where (0.43) is an identity in G ® G ® (M a G), the indices denoting the embeddings of
tensor factors. We call I' the universal normal and coherent Ap-intertwiner in G ® (M <
G), where normality is the property (0.42) and coherence is the property (0.43). Again,
for M = G and M < G = D(G), Equations (0.41)-(0.43) are precisely the defining
relations for the generating matrix D = I'p, ) of the quantum double (see e.g. [Nil97],
Lem.5.2).

Inspired by the techniques of [AGS95, AGS96, AS96] we show how to generalize
the notion of coherent Ap-intertwiners to the case of (weak) quasi-Hopf algebras G,
such that analogues of the Equations (0.41)-(0.43) still serve as the defining relations
of an associative algebra extending M = M a 1. We also show that diagonal crossed
products may equivalently be modeled on the linear spaces M ® G or G ® M (or —in
the weak case — certain subspaces thereof). We point out, that most of our algebraic
constructions are based on representation categorical concepts, as we discuss in more
detail in Appendix A. Therefore they may also be visualized by graphical proofs, see
Appendix B.

The basic model for this generalization is again given by M = G with its natural
two-sided G-coactions ¢; := (A ® id) o A and 6, := (id ® A) o A. In this case our
construction provides a definition of the quantum double D(G) for (weak) quasi-Hopf
algebras G, which is discussed in detail in Chapter 4. We show that the representation
category RepD(G) coincides with what has been called the “double of the category”
Rep G in [Maj97]. Hence our definition provides a concrete realization of the abstract
Tannaka-Krein like reconstruction of the quantum double given by [Maj97]. We then
prove that D(G) is a quasitriangular (weak) quasi-Hopf algebra. We give explicit for-
mulas for the coproduct, the antipode and the R-matrix. The most nontrivial part is
the construction of the antipode. To this end, as a central technical result we establish
a formula for (S ® S)(R) and the relations between R~!, (S®id)(R) and (id® S~1)(R)
for a quasitriangular R € G ® G in any quasi-Hopf algebra G in Appendix B. Re-
call, that in ordinary Hopf algebras the last three quantities coincide and therefore
(S ® S)(R) = R. To prove these formulae and also the antipode properties of Sp, we
use the graphical calculus developed by [RT90, Tur94, AC92b]. This will also allow to
give nice intuitive interpretations of many of the identities derived in Chapter 2. In
fact, without this graphical machinery we would have been lost in proving or even only
trying to guess these formulas. In particular, a purely algebraic proof of the formulas
for R™! and (S ® S)(R) in Theorem B.2 would most likely be unreadable and therefore
also untrustworthy. As applications we discuss the twisted double D¥(G) of [DPR90]
and generalize the results of [Nil97] on the relation with the monodromy algebras of
[AGS95, AGS96].

We are finally in the position to reach our original aim by applying our formalism
to construct quantum chains based on a weak quasi-Hopf algebra as iterated diagonal



crossed products in Chapter 5. Putting M = G ® G and choosing A = p = A, where p
acts nontriviallyon G = G®1 and A on G = 1®4G, yields a commuting pair of coactions
on M. In this case M <G = G x G X G becomes a two—sided crossed product. We take
this construction as building block of a quantum chain living on two neighboring sites
(carrying the copies of G) joined by a link (carrying the copy of G). We show how this
construction iterates to provide a local net of associative algebras A(I) for any lattice
interval I bounded by sites. Generalizing the methods of [NS97] we also construct
localized coactions of the quantum double D(G) on such (weak) quasi-Hopf spin chains.
Periodic boundary conditions for these models are again described as a diagonal crossed
product of the open chain by a copy of G sitting on the link joining the end points.
In this way we arrive at a formulation of lattice current algebras at roots of unity
by adjusting the transformation rules of [Nil97] to the quasi-coassociative setting. In
particular the lattice current algebra consisting of one site and one link is seen to be
isomorphic to the quantum double D(G).

Having constructed quantum chains based on a weak quasi—-Hopf algebra G, we
investigate their representation theory. At this point we have to assume that G is
semisimple, which is surely the case in all applications, in particular for the semisimple
quotients of quantum enveloping algebras at roots of unity. We prove that the center
of any finite quantum chain A(I) is isomorphic to the center of G, whereas the center
of any periodic quantum chain is isomorphic th the center of the quantum double
D(G). This way we generalize the results of [AFFS98] on the representation theory of
lattice current algebras, based on a quasitriangular (modular) Hopf algebra, to weak
quasi—Hopf algebras.

Our main results are stated in Theorem 2.1 and Theorem 3.1 (diagonal crossed
products by duals of quasi-Hopf algebras and weak quasi-Hopf algebras, respectively),
Theorem 4.3 and Theorem 4.4 (the quantum double D(G), its quasitriangular quasi—
Hopf structure and D(G)-coactions) and Theorem 5.6 (representation theory of quan-
tum chains).

We remark that our investigation of quantum chains is purely kinematical in the
sense that we have not specified any dynamics. Also we do not introduce any *—
structures. For lattice current algebras at roots of unity, C*—structures may be intro-
duced along the lines developed in [AGS95, AGS96]. For general quantum spin chains
based on a C*-quasi-Hopf algebra G we also believe this to be true, but the details still
need to be worked out.

Parts of this thesis have been accepted for publication in Reviews of mathematical
physics ([HNa]) and in Communications of Mathematical Physics ([HND]).



