
CHAPTER 1

Diagonal crossed products by duals of quantum groups

To strip o� all technicalities from the main ideas, in this �rst chapter we restrict ourselves to
strictly coassociative Hopf algebras (quantum groups) G. After reviewing some basic notions on
coactions and crossed products in Section 1.1 we introduce as a new construction the diagonal

crossed productM ./ Ĝ of a unital algebraM and the dual Ĝ of a Hopf algebra G in Section 1.2.
Section 1.3 gives a reformulation of this construction in terms of generating matrices summarized
in Theorem 1.13. We will see later on in Chapter 2 that this Theorem allows for a generalization
to quasi{Hopf algebras given in Theorem 2.1 (and also to weak quasi{Hopf algebras given in
Theorem 3.1), which may be viewed as the heart piece of this thesis. In order to carefully
prepare the much more complicated quasi-coassociative scenario we deliberately present this
construction in rather elementary steps.

In Section 1.4 we reformulate the Hopf spin chains of [NS97] and also the lattice current
algebras of [AFFS98] - both models being based on a Hopf algebra G - as iterated diagonal
crossed products. This opens the way to generalize these models to (weak) quasi{Hopf algebras,
thus covering the physically important case of truncated quantum groups at roots of unity, in
Chapter 5. Although we do not establish any new results in Section 1.4, we think it to be
quite illuminating that these two models may be based on the same algebraic construction.
In particularly the isomorphy of the two models - more exactly the second being obtained by
imposing periodic boundary conditions on the �rst -, as already established in [Nil97], becomes
rather obvious, as well as the role of the quantum double, describing the representation theory
of both models.

We emphasize that all concepts and constructions given in the subsequent chapters already
appear in this �rst chapter. Thus it may also serve as an overview and the reader is invited to
frequently return to Chapter 1 when feeling to get lost in the much more complicated treatment
of the quasi{coassociative case in the following chapters.

1.1. Coactions and crossed products

To �x our conventions and notations we start with shortly reviewing some basic notions
on Hopf module actions, coactions and crossed products. For full textbook treatments see e.g.
[Abe80], [Maj95], [Swe69]. We also introduce the \generating" matrix formalism. Throughout
by an algebra we will mean an associative unital algebra over C and unless stated di�erently
all algebra morphisms are supposed to be unit preserving.

Let G and Ĝ be a dual pair of �nite dimensional Hopf algebras. We denote elements of G by

Roman letters a; b; c; : : : and elements of Ĝ by Greek letters ';  ; �; : : : . The units are denoted

by 1 2 G and 1̂ 2 Ĝ. Identifying
^̂
G = G, the dual pairing G 
 Ĝ ! C is written as

ha j  i � h j ai 2 C ; a 2 G;  2 Ĝ:

We denote � : G ! G 
 G the coproduct, � : G ! C the counit and S : G ! G the antipode.

Similarly, �̂; �̂ and Ŝ are the structural maps on Ĝ. We will use the Sweedler notation �(a) =
a(1)
a(2); (�
id)(�(a)) � (id
�)(�(a)) = a(1)
a(2)
a(3), etc. where the summation symbol
and the summation indices are suppressed. Together with G we have the Hopf algebras Gop; G

cop

and Gcopop , where \op" refers to opposite multiplication and \cop" to opposite comultiplication.

Note that the antipode of Gop and Gcop is given by S�1 and the antipode of Gcopop by S. Also,

dGop = (Ĝ)cop; dGcop = (Ĝ)op and
dGcopop = (Ĝ)copop .

The notion of group actions on algebras and the associated crossed products generalize to
Hopf algebras as follows: A (left) Hopf module action of G on a unital algebra M is a linear
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map . : G 
M!M satisfying for all m;n 2M and a; b 2 G

a . (b .m) = (ab) .m

a . (mn) = (a(1) .m)(a(2) .n)

1 .m = m; a .1M = �(a)1M

Note that for group like elements a 2 G (i.e. �(a) = a 
 a and a invertible), a . becomes an
algebra automorphism of M, which means that Hopf module actions generalize the notion of
group actions. Right Hopf module actions / : m
 a 7! m/a are de�ned analogously. There is
also a dual version of Hopf module actions: A right coaction of G on an algebraM is an algebra
map � :M!M
G satisfying

(�
 id) � � = (id
�) � � (1.1)

(id
 �) � � = id : (1.2)

Similarly, a left coaction � is an algebra map � :M! G 
M satisfying

(id
 �) � � = (�
 id) � � (1.3)

(�
 id) � � = id : (1.4)

Similarly as for coproducts we will use the suggestive notations

�(m) = m(0) 
m(1)

(�
 id)(�(m)) � (id
�)(�(m)) = m(0) 
m(1) 
m(2)

�(m) = m(�1) 
m(0) (1.5)

(�
 id) � � � (id
 �)(�(m)) = m(�2) 
m(�1) 
m(0)

etc., where again summation indices and a summation symbol are suppressed. In this way we
will always have m(i) 2 G for i 6= 0 and m(0) 2 M. The notions of actions and coactions are
dual to each other in the sense that there is a one-to-one correspondence between right (left)

coactions of G on M and left (right) Hopf module actions, respectively, of Ĝ on M given for

 2 Ĝ and m 2M by

 .m := (id
  )(�(m)) (1.6)

m/ := ( 
 id)(�(m)) (1.7)

where ';  2 Ĝ and m;n 2 M. As a particular example we recall the case M = G with

� = � = �. In this case we denote the associated left and right actions of  2 Ĝ on a 2 G by

 * a and a (  , respectively. Analogously, choosing M = G with � = � = �̂, one arrives at

left and right actions of G on Ĝ, denoted by a *  and  ( a, respectively.

Crossed products. Given a right coaction � : M ! M
 G with dual left Ĝ-action .

one de�nes the (untwisted) crossed product (also called smash product)Mo Ĝ to be the vector

space M
 Ĝ with associative algebra structure given for m;n 2M and ';  2 Ĝ by

(mo ')(no  ) = (m('(1) . n)o '(2) ) (1.8)

where we use the notation mo  in place of m
  to emphasize the new algebraic structure.

Then 1Mo 1̂ is the unit in Mo Ĝ and m 7! (mo 1̂); ' 7! (1M o') provide unital inclusions

M!Mo Ĝ and Ĝ !Mo Ĝ, respectively. Similarly if � :M! G
M is a left coaction with

dual right action / then Ĝ nM denotes the associative algebra structure on Ĝ 
M given by

('nm)( n n) = (' (1) n (m/ (2))n) (1.9)

containing againM and Ĝ as unital subalgebras. If there are several coactions under consider-

ation we will also write M� o Ĝ and Ĝ n �M, respectively. We note that (1.8) implies that as
an algebra

Mo Ĝ =MĜ = ĜM

where we have identi�ed M�Mo 1̂ and Ĝ � 1M o Ĝ. In fact using the antipode axioms one
easily veri�es from (1.8)

mo ' = (mo 1̂)(1M o ') = (1M o '(2))((Ŝ
�1('(1)) .m)o 1̂) (1.10)

Similar statements hold in Ĝ nM. More generally we have



Lemma 1.1. Let . : Ĝ 
M ! M be a left Hopf module action and let A be an algebra

containing M and Ĝ as unital subalgebras. Then in A the relations

'm = ('(1) .m)'(2); 8' 2 Ĝ; 8m 2 M (1.11)

m' = '(2) (Ŝ
�1('(1)) .m); 8' 2 Ĝ; 8m 2M (1.12)

are equivalent and if these hold then MĜ = ĜM � A is a subalgebra and

Mo Ĝ 3 (mo ') 7! m' 2 MĜ;

is an algebra epimorphism.

The proof of Lemma 1.1 is obvious from the antipode axioms and therefore omitted. A

similar statement of course holds for the crossed product Ĝ nM.

Generating matrices. We conclude this introductory part by describing crossed products
in terms of the \generating matrix" formalism as advocated by the St. Petersburg school.
Our presentation will closely follow the review of [Nil97]. First we note that since G is �nite

dimensional we may identify HomC (Ĝ; V ) �= G 
 V for any C -vector space V . In particular, the
relation

T (') = ('
 id)(T); 8' 2 Ĝ; (1.13)

provides a one-to-one correspondence between algebra maps T : Ĝ ! A into some target algebra
A and elements T 2 G 
A satisfying

T13T23 = (�
 id)(T) (1.14)

where (1.14) is to be understood as an identity in G 
 G 
 A, the upper indices indicating
the canonical embedding of tensor factors (e.g. T23 = 1G 
T, etc.). Throughout, we will call
elements T 2 G 
A normal, if

(�
 id)(T) = 1A;

which in (1.13) is equivalent to T : Ĝ ! A being unit preserving. In what follows, the target
algebra A may always be arbitrary. In the particular case A = End(V ) we would be talking of

representations of Ĝ on V , or more generally, as discussed in Lemma 1.3 below, of representations

of Mo Ĝ or Ĝ nM, respectively, on V .

Definition 1.2. Let � :M! G 
M be a left coaction and let 
 :M!A be an algebra
map. An implementer of � in A (with respect to 
) is an element L 2 G 
A satisfying

[1G 
 
(m)]L = L [(idG 
 
)(�(m))] (1.15)

for all m 2M. Similarly, an implementer in A of a right coaction � :M!M
G is an element
R 2 G 
A satisfying (denoting �op = �M
G � �, � being the permutation of tensor factors)

R [1G 
 
(m)] = [(id
 
)(�op(m))]R (1.16)

We now have

Lemma 1.3. Under the conditions of De�nition 1.2 the relations


L('nm) := ('
 id)(L) 
(m)


R(mo ') := 
(m) ('
 id)(R)

provide one-to-one correspondences between algebra maps 
L : Ĝ nM!A (
R :Mo Ĝ ! A)
extending 
 and normal �{implementers L 2 G 
 A (normal �{implementers R 2 G 
 A),
respectively, satisfying

L13L23 = (�
 id)(L)

R13R23 = (�
 id)(R)

Proof. Writing R(') := ('
 id)(R) � 
R(1Mo') 2 A and using HomC (Ĝ;A) �= G 
A,
the relation R $ 
R is one-to-one. The implementer property (1.16) is then equivalent to
R(')
(m) = 
('(1) .m)R('(2)) and R is normal i� 
R is unit preserving. Together with the
remarks (1.13 - 1.14) this is further equivalent to 
R de�ning an algebra map, similarly as in
Lemma 1.1. The argument for 
L is analogous.
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We �nally note that the equivalence (1.11) , (1.12) can be reformulated for implementers
as follows

Lemma 1.4. Under the conditions of De�nition 1.2 denote �(m) = m(�1) 
 m(0) and

�(m) = m(0) 
m(1). Dropping the symbol 
 we then have

(1.16) , [1G 
m]R = [S�1(m(1))
 1A]R [1G 
m(0)]; 8m 2M (1.17)

(1.15) , L [1G 
m] = [1G 
m(0)]L [S�1(m(�1))
 1A]; 8m 2M (1.18)

Proof. Suppose R is an implementer of �. Then by (1.16)

[S�1(m(1))
 1A]R [1G 
m(0)] = [S�1(m(2))m(1) 
m(0)]R = [1G 
m]R

by (1.2) and the antipode axioms. Conversely, if R satis�es the right equality in (1.17), then

R [1G 
m] = [m(2)S
�1(m(1))
 1A]R [1G 
m(0)] = [m(1) 
m(0)]R

proving (1.16). The equivalence (1.18) is proven analogously.

1.2. Two-sided coactions and diagonal crossed products

In Chapter 2 we will give a straightforward generalization of the notion of coactions to quasi-

Hopf algebras. However, in general an associated notion of a crossed product extensionMo Ĝ
will not be well de�ned as an associative algebra, basically because in the quasi-Hopf case the

natural product in Ĝ is not associative. We are now going to provide a new construction of what
we call a diagonal crossed product which will allow to escape this obstruction when generalized
to the quasi-Hopf case. Our diagonal crossed products are always based on two-sided coactions

or, equivalently, on pairs of commuting left and right coactions. These structures are largely
motivated by the speci�c example M = G, where our methods reproduce the quantum double
D(G).

Definition 1.5. A two-sided coaction of G on an algebra M is an algebra map � : M!
G 
M
G satisfying

(idG 
 � 
 idG) � � = (�
 idM 
�) � � (1.19)

(�
 idM 
 �) � � = idM (1.20)

An example of a two-sided coaction is given by M = G and � := D � (� 
 id) ��. More
generally let � :M! G 
M and � :M!M
G be a left and a right coaction, respectively.
We say that � and � commute, if

(�
 id) � � = (id
 �) � � (1.21)

It is straight forward to check that in this case

� := (�
 id) � � � (id
 �) � � (1.22)

provides a two-sided coaction. Conversely, given a two-sided coaction � : M ! G 
M 
 G
then � := (id
 id
 �) � � and � := (�
 id
 id) � � provide a pair of commuting left and right
coactions, respectively, obeying Eq. (1.22). Thus using the notation (1.5) we may write

�(m) = m(�1) 
m(0) 
m(1) (1.23)

etc., implying again the usual summation conventions.We remark that in the quasi-coassociative
setting of Chapter 2 the relation between two-sided coactions and pairs (�; �) of left and right
coactions becomes more involved, justifying the treatment of two-sided coactions as distin-
guished objects on their own right also in the present setting. Next, in view of (1.22) we also
have a one-to-one correspondence between two-sided coactions � of G on M and pairs of mu-

tually commuting left and right Hopf module actions, . and / , of Ĝ on M, the relation being
given by

('
 id
  )(�(m)) =  .m/'; (1.24)

where ';  2 Ĝ and m 2 M. This allows to construct as a new algebra the right diagonal

crossed product M ./ Ĝ as follows.



Proposition 1.6. Let � = (�
 idG) � � = (idG 
 �) � � be a two-sided coaction of G on M

and let . and / be the associated commuting pair of left and right actions of Ĝ on M. De�ne

on M
 Ĝ the product

(m ./ ')(n ./  ) := (m('(1) .n / Ŝ
�1('(3))) ./ '(2) ) (1.25)

where we write (m ./ ') in place of (m
') to distinguish the new algebraic structure. Then with

this product M
Ĝ becomes an associative algebra with unit (1M ./ 1̂) containing M�M ./ 1̂

and Ĝ � 1M ./ Ĝ as unital subalgebras.

Proof. For m;m0; n 2M and ';  ; � 2 Ĝ we compute
�
(m ./ ')(m0 ./  )

�
(n ./ �) =

�
m('(1) .m

0 / Ŝ�1('(3))) ./ '(2) 
�
(n ./ �)

=
�
m('(1) .m

0 / Ŝ�1('(5)))('(2) (1) .n / Ŝ
�1( (3))Ŝ

�1('(4)))
�
./ ('(3) (2)�)

= m
�
'(1) . [m

0( (1) .n / Ŝ
�1( (3)))] / Ŝ

�1('(3))
�
./ ('(2) (2)�)

= (m ./ ')
�
(m0 ./  )(n ./ �)

�
;

which proves the associativity. The remaining statements follow trivially from '.1M =
1M /' = �(')1M and the counit axioms.

We emphasize that while Proposition 1.6 still is almost trivial as it stands, its true power only
appears when generalized to quasi-Hopf algebras G.

Definition 1.7. Under the setting of Proposition 1.6 we de�ne the right diagonal crossed

product M� ./ Ĝ � �M� ./ Ĝ to be the vector space M
 Ĝ with associative multiplication
structure (1.25).

In cases where the two-sided coaction � is unambiguously understood from the context we will

also write M ./ Ĝ. We emphasize already at this place that in Chapter 2 not every two-sided
coaction will be given as � = (� 
 idG) � � (or � = (idG 
 �) � � ), in which case the notations

M� ./ Ĝ and �M� ./ Ĝ will denote di�erent (although still equivalent) extensions of M. Here

we freely use either one of them. If � = idG
� for some right coaction � thenM� ./ Ĝ =M�oĜ.

More generally, �M� ./ Ĝ may be identi�ed as a subalgebra of Ĝn (�M�o Ĝ) � (Ĝn�M�)o Ĝ
using the injective algebra map

�M� ./ Ĝ 3 (m ./ ') 7�!(1̂nmo 1̂)('(2) n 1M o '(1))

�
�
'(2) n (m/'(3))o '(1)

�
2 Ĝ n �M� o Ĝ

which we leave to the reader to check. This also motivates our choice of calling the crossed

product M ./ Ĝ \diagonal".

The quantum double. In the caseM = G and � := D � (�
 id)��, the formula (1.25)
coincides with the multiplication rule in the quantum double D(G) [Dri86],[Maj90], i.e.

D(G) = GD ./ Ĝ: (1.26)

It is well known, that D(G) is itself again a Hopf algebra with coproduct �D given by

�D(a ./D ') = (a(1) ./D '(2))
 (a(2) ./D '(1)) (1.27)

where a 2 G and ' 2 Ĝ. It turns out that this result generalizes to diagonal crossed products
as follows

Proposition 1.8. Let � :M! G 
M
G be a two-sided coaction. Then M ./ Ĝ admits

a commuting pair of coactions �D :M ./ Ĝ ! D(G) 
 (M ./ Ĝ) and

�D :M ./ Ĝ ! (M ./ Ĝ)
D(G) given by

�D(m ./ ') = (m(�1) ./D '(2))
 (m(0) ./ '(1))

�D(m ./ ') = (m(0) ./ '(2))
 (m(1) ./D '(1))

where elements in D(G) are written as (a ./D '); a 2 G; ' 2 Ĝ.

Proof. In view of (1.27) the comodule axioms and the commutativity (1.22) are obvious.
That �D and �D provide algebra maps is shown by direct computation, which we leave to the
reader.
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Let us also recall the well known Hopf algebra identity D(Ĝ) �= D(G)cop, with algebra
isomorphism given by

D(Ĝ) 3 (' ./D̂ a) 7! (1 ./D ')(a ./D 1̂) 2 D(G): (1.28)

This generalizes to diagonal crossed products in the sense that they may equivalently be modeled

on the vector space Ĝ 
M.

Corollary 1.9. We de�ne the left diagonal crossed product Ĝ ./M� as the vector space

Ĝ 
M with multiplication given by

(' ./ m)( ./ n) := ' (2) ./ (Ŝ
�1( (1)) .m/ (3))n (1.29)

This de�nes an associative algebra, and the analog of (1.28) is given by

Ĝ ./M3 ' ./ m 7! (1M ./ ')(m ./ 1̂) � '(1) .m/ Ŝ�1('(3)) ./ '(2) 2 M ./ Ĝ; (1.30)

which provides an isomorphism of algebras restricting to the identity on M.

The proof of Corollary 1.9 is straight forward from the antipode axioms. The reader is

invited to check that in the case M = G and � = (�
 id) �� we recover Ĝ ./M� = D(Ĝ).

1.3. Generating matrices

Similarly as in Lemma 1.3 we now describe the de�ning relations of diagonal crossed prod-
ucts in terms of a generating matrix T. However, whereas in Lemma 1.3 the generating matrices
L and R had to ful�ll the implementer properties (1.15) or (1.16), respectively, the natural re-
quirement here is that T intertwines the left and right coactions associated with �.

Definition 1.10. Let (�; �) be a commuting pair of left and right G-coactions on M and
let 
 : M ! A be an algebra map into some target algebra A. Then a ��-intertwiner in A
(with respect to 
) is an element T 2 G 
A satisfying

T�A(m) = �
op
A (m)T; 8m 2 M ; (1.31)

where �A � (

 id)�� and �A � (id

)��. A ��-intertwiner is called coherent if in G
G
A
it satis�es

T13T23 = (�
 id)(T) (1.32)

Similarly as in Lemma 1.4 we then have

Lemma 1.11. Let (M; �) be a two-sided G-comodule algebra with associated commuting left

and right G-coactions (�; �), and let 
 : M! A be an algebra map. Then for T 2 G 
 A the

following properties are equivalent:

i) T is a ��-intertwiner

ii) T [1G 
 
(m)] = [m(1) 
 
(m(0))]T [S�1(m(�1))
 1A]

iii) [1G 
 
(m)]T = [S�1(m(1))
 1A]T [m(�1) 
 
(m(0))]

Proof. Suppose T is a ��-intertwiner. Then

[m(1) 
 
(m(0))]T [S�1(m(�1))
 1A] = T [m(�1)S
�1(m(�2))
 
(m(0))] = T [1G 
 
(m)]

by the antipode axiom. Conversely, if T satis�es (ii) then

T [m(�1) 
 
(m(0))] = [m(1) 
 
(m(0))]T [S�1(m(�1))m(�2) 
 1A] = [m(1) 
 
(m(0))]T

proving (i) , (ii). The equivalence (i) , (iii) follows similarly.

We now conclude similarly as in Lemma 1.3.

Proposition 1.12. Let (M; �) be a two-sided G-comodule algebra with associated commut-

ing pair of coactions (�; �), and let 
 :M!A be an algebra map. Then the relation


T (m ./ ') = 
(m) ('
 id)(T) (1.33)

provides a one-to-one correspondence between normal coherent ��-intertwiners T and unital

algebra maps 
T : �M� ./ Ĝ ! A extending 
.



Proof. Let T (') := (' 
 id)(T). Then (1.32) together with normality is equivalent to

Ĝ 3 ' 7! T (') � 
T (1M ./ ') 2 A being a unital algebra morphism and the correspondence
T $ 
T j1

M
./Ĝ is one-to-one. Clearly, 
T extends 
 and Lemma 1.11 ii) implies

T (') 
(m) = 

�
'(1) .m/S�1('(3))

�
T ('(2)); 8' 2 Ĝ; m 2 M

and therefore 
T is an algebra map. Conversely, since (m ./ ') = (m ./ 1̂)(1M ./ '), any

algebra map 
 : �M� ./ Ĝ ! A is of the form (1.33).

We remark that one could equivalently have chosen to work with



op
T (' ./ m) := ('
 id)(T) 
(m) (1.34)

to obtain algebra maps 
opT : Ĝ ./ �M� ! A. Note that by applying ('
 id) to both sides the
equivalence of (ii) and (iii) in Lemma 1.11 ensures that (1.30) is an isomorphism.

Applying the above formalism to the case M = G and � = D � (� 
 id) � � we realize
that (1.31) becomes (suppressing the symbol 
)

T�(a) = �op(a)T; 8a 2 A (1.35)

In this special case we call T a �{
ip operator. As already remarked, in this case GD ./

Ĝ � D(G) is the quantum double of G, in which case Proposition 1.12 coincides with [Nil97],
Lemma 5.2 describing D(G) as the unique algebra generated by G and the entries of a generating
Matrix D � T

D(G) 2 G 
D(G) satisfying (1.32) and (1.35).

More generally every diagonal crossed product M ./ Ĝ may be described as the unique

algebra generated by M and the entries of a generating matrix � 2 G 
 (M ./ Ĝ) satisfying

(1.31) and (1.32), by choosing A =M ./ Ĝ in Proposition 1.12. This construction of diagonal
crossed products in terms of generating matrices is summarized in the following Theorem, which
we state in this explicit form, since it will allow a generalization to (weak) quasi{Hopf algebras
in the next chapter.

Theorem 1.13. Let (G;�; �; S) be a �nite dimensional Hopf algebra and let (�; �) be a

commuting pair of (left and right) G{coactions on an associative algebra M.

1. Then there exists a unital associative algebra extension M1 �M together with a linear

map � : Ĝ !M1 satisfying the following universal property:

M1 is algebraically generated by M and �(Ĝ) and for any algebra map 
 :M!A into

some target algebra A the relation


T (�(')) = ('
 id)(T); ' 2 Ĝ (1.36)

provides a one{to{one correspondence between algebra maps 
T :M1 ! A extending 


and elements T 2 G 
A satisfying (�
 idA)(T) = 1A and

T �A(m) = �
op
A (m)T; 8m 2 M (1.37)

T13T23 = (�
 idA)(T); (1.38)

where �A(m) := (idG 
 
)(�(m)) and �A(m) := (
 
 idG)(�(m)).

2. If M� ~M1 and ~� : Ĝ ! ~M1 satisfy the same universality property as in part 1.), then

there exists a unique algebra isomorphism f : M1 ! ~M1 restricting to the identity on

M, such that ~� = f � �
3. The linear maps

�L : Ĝ 
M 3 ('
m) 7! �(')m 2 M1 (1.39)

�R :M
 Ĝ 3 (m
 ') 7! m�(') 2 M1 (1.40)

provide isomorphisms of vector spaces.

Proof. Putting M1 = M ./ Ĝ; �R := id
M
Ĝ

and �L the map given in (1.30), part 1.)

and 3.) follow from Proposition 1.12 and Corollary 1.9. The uniqueness ofM1 up to equivalence
follows by standard arguments.
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Putting � := e� 
 �(e�) 2 G 
M1 Theorem 1.13 implies that � itself satis�es the de�ning
relations (1.37) and (1.38). We call � the universal ��{intertwiner inM1. We again emphasize
that once being stated Theorem 1.13 almost appears trivial. Its true power only arises when
generalized to the quasi-coassociative setting in Chapter 2. Note that part 2. of Theorem 1.13

implies that the algebraic structures induced on Ĝ 
 M and M
 Ĝ via ��1
L=R

from M1 are

uniquely �xed. They are given by the left- and right diagonal crossed products Ĝ ./ M and

M ./ Ĝ, respectively, de�ned above in Proposition 1.6 and Corollary 1.9.

1.4. Quantum group spin chains and lattice current algebras

We are now in the position to reformulate the Hopf spin chains of [NS97] and the lattice
current algebras of [AFFS98] as iterated diagonal crossed products, thereby also reviewing the
relationship between the two models. It will turn out to be convenient to use the notion of
two{sided crossed products, which we will now introduce as a special type of diagonal crossed
products.

1.4.1. Two{sided crossed products. A simple recipe to produce two-sided G-comodule
algebras (M; �) is by taking a right G-comodule algebra (A; �) and a left G-comodule algebra
(B; �) and de�ne M = A
B and

�(A
B) := B(�1) 
 (A(0) 
B(0))
A(1) (1.41)

where A 2 A; B 2 B; �(A) = A(0) 
A(1) and �(B) = B(�1) 
 B(0). In terms of the Ĝ-actions

. on A and / on B dual to � and �, respectively, the Ĝ-actions .M and /M dual to (1.41)
are given by

'.M (A
B) /M  = ('.A
B / ); ';  2 Ĝ: (1.42)

Hence, we may construct the diagonal crossed productM ./ G as before. It turns out that this
example may be presented di�erently as a so-called two-sided crossed product.

Proposition 1.14. Let . : Ĝ 
 A ! A and / : B 
 Ĝ ! B be a left and a right Hopf

module action, respectively, with dual G{coactions �, �. De�ne the \two-sided crossed product"

A� o Ĝ n �B to be the vector space A
 Ĝ 
 B with multiplication structure
�
Ao 'nB

� �
A0 o  nB0

�
= A('(1) .A

0)o '(2) (1) n (B / (2))B
0 : (1.43)

Then A� o Ĝ n �B becomes an associative algebra with unit 1A o 1̂n 1B and

f : Ao Ĝ n B 3 Ao 'nB 7!
�
(A
 1B) ./ '

��
(1A 
B) ./ 1̂

�
2 (A
B) ./ Ĝ (1.44)

provides an algebra isomorphism with inverse given by

f�1
�
(A
B) ./ '

�
= (1A o 1̂nB)(A o 'n 1B) (1.45)

Instead of giving a direct proof, let us reformulate the above Proposition in terms of gen-
erating matrices. Setting T :=

P
� e� 
 (1A o e� n 1B), where as before e� denotes a basis of

G with dual basis e� 2 Ĝ, the multiplication rule (1.43) is equivalent to T satisfying

(�
 id)(T) = T13T23

[1
B]T = T �(B); B 2 B

T [1
A] = �opT; A 2 A;

(1.46)

where we identify A � A
1B, � � �
 idB, etc. . Thus T is a ��-intertwiner and since AoĜnB

is generated byM = A
B and the matrix entries ('
 id)(T); ' 2 Ĝ, it has to be isomorphic

to (A
B) ./ Ĝ. Denoting the ��{intertwiner in G 

�
(A
B) ./ Ĝ

�
by �, one veri�es that

(id
 f)(T) = �; (id
 f�1)(�) = T;

which by Propostion 1.12 implies that f is an isomorphism. We leave the details to the reader.

As a particular example of the setting of Proposition 1.14 we may choose A = B = G with

its canonical left and right Ĝ-action. It turns out that in this case the two-sided crossed product

G o Ĝ n G � (G 
 G) ./ Ĝ is isomorphic to the iterated crossed product (G o Ĝ) o G. More
generally we have
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Proposition 1.15. Let A be a right G-comodule algebra and consider the iterated crossed

product (Ao Ĝ)oG, where G acts on Ao Ĝ in the usual way by a . (Ao') := Ao(a * '); A 2

A; a 2 G; ' 2 Ĝ. Then as an algebra (Ao Ĝ)o G = Ao Ĝ n G with trivial identi�cation.

Proof. The claim follows from

A('(1) .A
0)o '(2) (1) n (a (  (2))b = A('(1) .A

0)o '(2)(a(1) *  ))o a(2)b

as an identity in A
 Ĝ 
 G, where we have used

 (1) 
 (a (  (2)) =  (1)ha(1)j (2)i 
 a(2) = (a(1) *  )
 a(2)

as an identity in Ĝ 
 G.

It will be shown in Chapter 5 that being a particular example of a two-sided (and therefore of

a diagonal) crossed product the analogue of (Ao Ĝ)o G � Ao Ĝ n G may also be constructed

for quasi-Hopf algebras G. However, in this case A o Ĝ (if de�ned to be the linear subspace

A 
 Ĝ 
 1G ) will no longer be a subalgebra of A o Ĝ n G. We will see in Chapter 5 that this
fact is very much analogous to what happens in the �eld algebra constructions with quasi-Hopf
symmetry as given by V. Schomerus [Sch95].

1.4.2. Hopf spin chains. Next, we point out that Proposition 1.14 and Proposition 1.15
also apply to the construction of Hopf algebraic quantum chains [NS97] as introduced in sec-
tion 3 of the introduction. To see this let us shortly review the model of [NS97], where one
considers even (odd) integers to represent the sites (links) of a one-dimensional lattice and

where one places a copy of G �= A2i on each site and a copy of Ĝ �= A2i+1 on each link.

s
2i 2i+ 1

Ĝ
G Gs

2i+ 2

Non-vanishing commutation relations are then postulated only on neighboring site-link pairs,
where one requires

A2i(a)A2i�1(') = A2i�1(a(1) * ')A2i(a(2))

A2i+1(')A2i(a) = A2i('(1) * a)A2i+1('(2))
(1.47)

Here G 3 a 7! A2i(a) 2 A2i � A and Ĝ 3 ' 7! A2i+1(') 2 A2i+1 � A denote the embedding
of the single site (link) algebras into the global quantum chain A. Denoting Ai;j � A as the
subalgebra generated by A� ; i � � � j, we clearly have from (1.47)

Ai;j+1 = Ai;j oAj+1

Ai�1;j = Ai�1 nAi;j
(1.48)

Hence, by Proposition 1.14, we recognize the two-sided crossed products

A2i;2j+2 � (A2i;2j o Ĝ)o G = A2i;2j o Ĝ n G (1.49)

More generally for all i � � � j � 1 we have

A2i;2j = A2i;2� o Ĝ nA2�+2;2j (1.50)

where Ĝ � A2�+1. The advantage of looking at it in this way again comes from the fact that
the constructions (1.49) and (1.50) generalize to quasi-Hopf algebras G whereas (1.48) do not.
This observation will be needed to formulate a theory of Hopf spin models and lattice current
algebras at roots of unity, see Chapter 5.

Next, we remark that the identi�cations (1.49),(1.50) may be iterated in the obvious way.
This observation also generalizes to the situation where in Proposition 1.14 A and B are both

two-sided G-comodules algebras with dual Ĝ actions denoted .A ; /A ; .B ; /B , respectively.
Then in the multiplication rule (1.43) only .A and /B appear and one easily checks, that

for ';  2 Ĝ and A 2 A; B 2 B the de�nitions

'. (Ao  nB) := Ao  n ('.B B)

(Ao  nB) /' := (A/A ')o  nB
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again de�ne a two-sided G-comodule structure on AoĜnB. Hence, we have a multiplication law
on two-sided G-comodule algebras which is in fact associative, i.e. as a two-sided G-comodule
algebra

(Ao Ĝ n B)o Ĝ n C = Ao Ĝ n (B o Ĝ n C) (1.51)

which the reader will easily check. Obviously, one may also consider mixed cases, e.g. where in
(1.51) A is only a right G-comodule algebra, but B and C are two-sided, in which case (1.51)
would be an identity between right G-comodule algebras.

Let us now formulate the algebraic properties of Hopf Spin chains in terms of generating
matrices, using the relations (1.46). De�ning the generating \link operators" L2i+1 :=

P
� e�


A2i+1(e
�), A2i;2j is the unique algebra generated by G


j�i

� A2i 
A2i+2 
 � � � 
 A2j and the
entries of generating matrices L2�+1 2 G 
A2i;2j ; i � � � j obeying the relations

L132k+1 L
23
2l+1 = L232l+1 L

13
2k+1; 8k 6= l (1.52a)

[1
A2k(a)]L2l+1 = L2l+1 [1
A2k(a)]; 8k 6= l; l+ 1 (1.52b)

L132k+1 L
23
2k+1 = (�
 id)(L2k+1) (1.52c)

[1
A2k(a)]L2k�1 = L2k�1 [a(1) 
A2k(a(2))] (1.52d)

L2k+1 [1
A2k(a)] = [a(2) 
A2k(a(1))]L2k+1 (1.52e)

Let us shortly comment on these relations for the sake of getting a better understanding of
the \language" of generating matrices. Eqs. (1.52a) and (1.52b) express locality in the sense
that they give nontrivial commutation relations only on neighboring site link pairs. Eq. (1.52c)
may be viewed as an operator product expansion. Provided G is quasitriangular with R{matrix
R 2 G 
 G, it implies the braiding relations

R12L13 L23 = L23 L13R12:

Finally, (1.52d) and (1.52e) express covariance properties of the link operators L.

We �nish our discussion of Hopf spin chains by noting that the identi�cation (1.50) together
with Proposition 1.14 and Proposition 1.8 immediately imply that quantum chains of the type
(1.47) admit localized commuting left and right coactions of the quantum double D(G), which is
precisely the result of Theorem 4.1 of [NS97]. In fact, applied to the example in Proposition 1.14,
Proposition 1.8 gives

Corollary 1.16. Under the setting of Proposition 1.14 we have a commuting pair of left

an right coactions �D : AoĜnB ! (AoĜnB)
D(G) and �D : AoĜnB ! D(G)
(AoĜnB)
given by

�D(Ao 'nB) = (A(0) o '(2) n B)
 (A(1) ./D '(1))

�D(Ao 'nB) = (B(�1) ./D '(2))
 (Ao '(1) nB(0))

This implies the existence of right coactions �2iD of the quantum double D(G) on the quantum
chain, which are \localized" (i.e. act nontrivial only) in A2i;2i+1, where they are given by (using
generating matrix notation)

�2iD
�
A2i(a)

�
= A2i(a(1))
 (a(2) ./D 1̂)

(id
 �2iD)(L2i+1) = D13 L122i+1
(1.53)

Here D 2 G 
D(G) denotes the universal �{
ip operator D =
P
e�
 (1 ./D e�). Analogously

one may de�ne localized left coactions �2iD which are immediately shown to commute with �2iD .

1.4.3. Lattice current algebras. Diagonal crossed products also appear when formulat-
ing periodic boundary conditions for the quantum chain (1.47). In this case, starting with the

open chain A2;2n localized on [2; 2n]\Z one would like to add another copy of Ĝ sitting on the
link 2n+ 1 � 1 joining the sites 2n and 2 to form a periodic lattice.

Kn :

' $Ĝ

s
2
s
4
p p p p p p p p p p p p p p p p ss

2n
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Algebraically this means that A1 (� A2n+1) �= Ĝ should have non-vanishing commutation
relations with A2n

�= G and A2
�= G in analogy with (1.47), i.e.

A1(')A2n(a) = A2n('(1) * a)A1('(2))

A2(a)A1(') = A1('(1))A2(a ( '(2))
(1.54)

Written in this way Eqs. (1.54) are precisely the relations in

Kn := A2;2n ./ Ĝ

where � : A2;2n ! G
A2;2n
G is the two{sided coaction given by � �A2
= �
1G ; � �A2n

= 1G
�
and � �A3;2n�1

= 1G 
 id
1G . Hence, the periodic quantum chain appears as a diagonal crossed

product of the open lattice chain by a copy of Ĝ sitting on the link joining the end points. Again
we remark that this observation will be needed to give a generalization to (weak) quasi{Hopf
algebras. A similar remark applies to the lattice current algebra of [AFFS98] de�ned below.

We also conclude from (1.26) that the \periodic chain" K1 consisting of one point and one
link is given by the quantum double D(G)

&%
'$sK1 = G ./ Ĝ � D(G) :

(1.55)

Let us �nally review the lattice current algebras of [AFFS98] 1, which appear as special examples
of periodic Hopf spin chains. We follow the review of [Nil97], where the relation with the model
of [NS97] has been clari�ed.

Suppose G to be quasitriangular with R{matrix R 2 G
G and de�ne the generating lattice

currents

J2i+1 := (id
A2i)(R
op)L2i+1: (1.56)

Using (1.52), these are immediately veri�ed to satisfy the lattice current algebra of [AFFS98]

[1G 
A2i(a)]J2i�1 = J2i�1 [a(1) 
A2i(a(2))]; 8a 2 G

[a(1) 
A2i(a(2))]J2i+1 = J2i+1 [1G 
A2i(a)]

J132i+1 J
23
2i+1 = R12 (�
 id)(J)

J132i�1 R
12 J232i+1 = J232i+1 J

13
2i�1

Hence under the additional requirement of G being quasitriangular, the lattice algebras of [NS97]
and [AFFS98] are isomorphic.

1For earlier versions of lattice current algebras see also [AFSV91, AFS92, FG93]


