CHAPTER 2

Diagonal crossed products by duals of quasi—quantum
groups

In Chapter 1 we have reviewed the notions of left and right G—coactions and crossed products
and we have introduced as new concepts the notions of two—sided G—coactions and diagonal
crossed products, where throughout G had been supposed to be a standard coassociative Hopf
algebra. We have seen that this is the mathematical ctructure underlying the quantum group
spin chains of [NS97] and also the lattice current algebras of [AFFS98]. Moreover also the
Drinfel’d double D(G) appeared as a diagonal crossed product.

We now proceed to generalize the above ideas to quasi—Hopf algebras G. In Section 2.1 we
give a short review of the definitions and properties of quasi—Hopf algebras as introduced by
Drinfel’d [Dri90]. In Section 2.2 we propose an obvious generalization of the notion of right
G—coactions p on an algebra M to the case of quasi-Hopf algebras G (and similarly for left
coactions \). As for the coproduct on G, the basic idea here is that (p ® id) o p and (id® A)op
are still related by an inner automorphism, implemented by a reassociator ¢, € MRG®4.
Similarly as for Drinfel’d’s reassociator ¢ € § ® G ® G, ¢, is required to obey a pentagon
equation to guarantee McLane’s coherence condition under iterated rebracketings. We also
generalize Drinfel’d’s notion of a twist transformation from coproducts to coactions.

It is important to realize that ¢, has to be non-trivial, if ¢ is non-trivial. On the other
hand, ¢, might be non-trivial even if ¢ = 1g ® 1g ® 1g, in which case the above mentioned
pentagon equation reduces to a cocycle condition for ¢, as already considered by [DT86],
[BCM86], [BM8&9].

In Section 2.3 we pass to two—sided G—coactions (d, ¥), which could alternatively be consid-
ered as right (G ® G°P)—coactions in the above sense. Correspondingly, ¥ € RGO MRGR G
is the reassociator for §, which is again required to obey the appropriate pentagon equation. As
in Chapter 1, associated with any two-sided G-coaction (6, ¥) we have a pair (A, ¢,) and (p, ¢,)
of left and right G—coactions, respectively, which however in this case only quasi—commute. This
means that there exists another reassociator ¢, , € G ® M ® G such that

drp (A®idg)(p(m)) = (idg ® p)(A(m)) 5,, Vm € M.

Also, ¢,, obeys in a natural way two pentagon identities involving (A, ¢,) and (p,9,), re-
spectively. We show that twist equivalence classes of two—sided coactions are in one—to—one
correspondence with twist equivalence classes of quasi—commuting pairs of coactions, i.e. any
two—sided coaction ¢ is twist—equivalent to (A ® id) o p (and also to (id ® p) o \) where
A=(idg ®idp ®€)od and p = (e ®idpm ® idg) o 6.

In Appendix A we give a representation theoretic interpretation of the notions of left, right
and two-sided coactions by showing that they give rise to functors Rep G x Rep M — Rep M,
Rep M x RepG — Rep M and Rep G x Rep M x Rep G — Rep M, respectively, furnished with
natural associativity isomorphisms, obeying the analogue of McLane’s coherence conditions for
monoidal categories [Mac71].

In Section 2.4 we use our formalism to construct, for any two-sided G—coaction (4, ¥)
on M, the left and right diagonal crossed products M < G and G 1 M, as associative
algebra extensions of M (they are in fact equivalent as will be shown in Section 2.5). Up to
equivalence, these extensions only depend on the twist—equivalence class of §’s, and therefore on
the twist—equivalence class of quasi—commuting pairs (A, p). The basic strategy for defining the
multiplication rules in these diagonal crossed products is to generalize the generating matrix
formalism of Section 1.3 to the quasi—coassociative setting. In this way one is naturally lead to
define A\p-intertwiners T as in Definition 1.10, where now the coherence condition (1.32) has to
be replaced by appropriately injecting the reassociators ¢,, ¢, , and ¢, into the Lh.s., similarly
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as in Drinfel’d’s definition of a quasitriangular R—matrix for quasi—-Hopf algebras. With these
substitutions our main result is given by the following generalization of Theorem 1.13

THEOREM 2.1. Let G be a finite dimensional quasi-Hopf algebra and let (X, ¢,, p, qﬁp,d))‘p)
be a quasi—commuting pair of (left and right) G—coactions on an associative algebra M.
1. Then their exists a unital associative algebra extension M1 D M together with a linear
mapT:G — My satisfying the following universal property:
My is algebraically generated by M and T'(G) and for any algebra map v : M — A into
some target algebra A the relation

11(0(9)) = (p ©1d)(T) (2.1)
provides a one—to—one correspondence between algebra maps yr : My — A extending ~y
and normal elements T € G ® A satisfying

T Au(m) = p%(m)T, ¥me M (2.2)
(@3 AT (8,32 T (63)4 = (A ®idA)(T), (2.3)

where Aa(m) := (id ® v)(A(m)), (¢5)a := (idg ®idg ® 7)(¢,), etc.

2. If M C My and T : G — M, satisfy the same universality property as in part 1. ), then
there exists a unique algebra isomorphism f : My — My restricting to the identity on
M, such thatT = foT

3. There exist elements py € G @ M and q, € M ® G such that the linear maps

pr :GOM S (p@m) = (id ® 1)) (g,) T(pe)m € My (2.4)
PR M® é 5 (M)~ mI“(cp(l)) (QO(Q) ®id)(px) € My (2.5)
provide isomorphisms of vector spaces.

Putting T := ¢, ® T'(e#) € G ® M1, Theorem 2.1 implies that T itself satisfies the defining
relations (2.2) and (2.3). As before, we call T' the universal Ap—intertwiner in M;. We remark
that it is more or less straightforward to check that the relations (2.2) and (2.3) satisfy all
associativity constraints, such that the existence of M; and its uniqueness up to isomorphy
may not be too much of a surprise to the experts. In this way part 1. and 2. of Theorem 2.1
could also be proven without requiring an antipode on G. The main non—trivial content of
Theorem 2.1 is stated in part 3., saying that M may still be modeled on the underlying spaces
GOMor M® é, respectively !. However, as a warning against likely misunderstandings we
emphasize that in general (i.e. for ¢y, # 1g ® 10 ® 1g) neither of the maps

M®G3 (me ) —»mI(p) € My
GOM> (p@m)T(p)m e My

need to be injective (nor surjective)?. Also, in general neither of the linear subspaces I'(G),
pL(G ® 1) or pr(lam ® G) will be a subalgebra of M;. Still, the invertibility of the maps
ur/r guarantees that there exist well defined associative algebra structures induced on GoM
and M ® G via uZ}R from M;j. As in Chapter 1 we denote these by

G a WM, = (M) (2.6)
WM, =G = ppt(My). (2.7)

They are the analogues of the left and right diagonal crossed products, respectively, constructed
in Proposition 1.6 and Corollary 1.9.

To actually prove Theorem 2.1 we go the opposite way, i.e. for any two—sided coaction
(6,®) we will first explicitly construct left and right diagonal crossed products G b1 Ms and
M 1 G as equivalent algebra extensions of M in Section 2.4. As in Chapter 1 these are defined
on the underlying spaces GO Mand M®G, respectively. In Section 2.5.1 we describe these
constructions in terms of so—called left and right diagonal —implementers L and R obeying the
relations of Lemma 1.11(iii) and (ii), respectively, together with certain coherence conditions
reflecting the multiplication rules in ¢ > M and M b1 G. In Section 2.5.2 we generalize

1To define the elements py and gp one needs an invertible antipode, see (2.77), (2.80)
2In fact, we don’t even know whether the map I' : G — M necessarily has to be injective.



Lemma 1.11 by showing that coherent (left or right) diagonal d—implementers are always in
one—to—one correspondence with (although not identical to) coherent Ap—intertwiners T, i.e.
generating matrices satisfying the relations (2.2) and (2.3) of Theorem 2.1. This will finally
lead to a proof of Theorem 2.1 by showing that for §; := (A ®id) o p and §, := (id ® p) o A any
of the four choices G b1 My, G b1 Ms,, Mg, < G, or My, >a G explicitly solve all properties
claimed in Theorem 2.1. Moreover, in terms of the notations (2.6), (2.7) we will have

gAM)\-Mp:gANM(;l
WM, G =M, G

with trivial identification.

To keep the main part of this chapter more readable, we have postponed some proofs and
technical Lemmata to Section 2.6.

2.1. Quasi—quantum groups

In this section we review the basic definitions and properties of quasitriangular quasi—
Hopf algebras (quasitriangular quantum groups) as introduced by Drinfeld [Dri90], where the
interested reader will find a more detailed discussion. As before algebra morphisms are always
supposed to be unital.

A quasi-bialgebra (G, A, €, $) is an associative algebra G with unit together with algebra
morphisms A : § - G ® G (the coproduct) and € : G — C (the counit), and an invertible
element ¢ € G ® G ® G, such that

(id® A)(A(a))¢ = ¢(A ®id)(A(a)), a€G (2.8)

(i[dRid® A)(P)(ARid®id)(¢) = (1R ¢)(id ® A®id)(¢)(¢ ® 1), (2.9)
(e®id)o A =id =(id®¢€) o A, (2.10)

(dee®id)(¢) =11 (2.11)

A coproduct with the above properties is called quasi-coassociative and the element ¢ will be
called the reassociator. The identities (2.8)-(2.11) also imply

(€®id®id)(¢) = ([dRid®e)(¢) =1® 1. (2.12)

As for Hopf algebras we will use the Sweedler notation A(a) = a(1) ® a(s), but since A is only
quasi—coassociative we adopt the further convention

(A ® ld) o A(a) =0a(1,1) &® a(1,2) ® a(2) and (ld ® A) o A(a) = a(1) ® a(2,1) ® a(2,2)» etc..

Furthermore, here and throughout we use the notation
p=XeY ez, ¢1=XIeYeZ, (2.13)

where we have suppressed the summation symbol. To give an example, Eq. (2.8) written with
this notation looks like

o X! ®ap )Y @ apyZ’ = X'aq) ®Y'aq ) ® Z'ag)

Let us briefly recall some of the main consequences of these definitions for the representation
theory of G. Let Rep G be the category of finite dimensional representations of G, i.e. of pairs
(mv,V), where V is a finite dimensional vector space and 7wy : G — Endc(V) is a unital
algebra morphism. We will also use the equivalent notion of a G—module V with multiplication
g-v = my(g)v. Given two pairs (wy,V), (7, U), the coproduct allows for the definition of a
tensor product (my Rmy, VRU) by setting VRU := V QU and ny K7y := (my @ ) o A. The
counit defines a one dimensional representation. Equation (2.10) says, that this representation
is a left and right unit with respect to the tensor product X, and (2.8) says that given three
representations (nwy, wy, mw ), then (my X7y )Ry = 7y X (ry Ry ) with intertwiner ¢yyw =
(ru @ my @ Tw ) ().



The meaning of (2.9) is the commutativity of the pentagon

(CRV)EW)RX — URVIRWKRX) — UKV EWKX))

\ /

URVEW)RX UR(VRW)RX) |,

(2.14)

where the arrows stand for the corresponding rebracketing intertwiners. For example the first
one is given by ((ryRmy)®@mw @7x)(¢) = (my @7y @7w @7x) ((A®id®id)(4)). The diagram
(2.14) explains the name pentagon identity for equation (2.9). The importance of axiom (2.9) lies
in the fact, that in any tensor product representation the intertwiner connecting two different
bracket conventions is given by a suitable product of ¢’s, as in (2.14). The pentagon identity
then guarantees, that this intertwiner is independent of the chosen sequence of intermediate
rebracketings. This is known as Mac Lanes coherence theorem [Mac71].

A quasi-bialgebra G is called quasi- Hopf algebra, if there is a linear antimorphism S : G — G
and elements a, 8 € G satisfying (for all a € G)

S(agy)aag) = ae(a),  a)BS(ag)) = fe(a) (2.15)
X3S(YaZ! =1= S(X))aY’BS(Z7), (2.16)

where we have used the notation (2.13). The map S is called an antipode. We will also always
suppose that S is invertible. Note that as opposed to ordinary Hopf algebras, an antipode
is not uniquely determined, provided it exists. The antipode allows to define the (left) dual
representation (*m,*V) of (m,V), where *V is the dual space of V, by *n(a) = 7(S(a))?, the
superscript ¢ denoting the transposed map. Analogously one defines a right dual representation
(7*,V*), where V* = *V and 7*(a) = 7(S~1(a))?.

A quasi-Hopf algebra G is called quasitriangular, if there exists an invertible R € G ® G,
such that

A?(@)R=RA(a), a€g (2.17)
(A®id)(R) = ¢*'2 RIS (5712 B (2.18)
(1d®A)( ) ( )231 R13 ¢213 R12 ¢717 (219)

where we use the following notation: If ¢ = >, ¢} ®. .. 9" € G®"  then, for m < n, ¢p™1"2"m ¢
G®" denotes the element of G®" having 1¥ in the ns*™® slot and 1 in the remaining ones. The
element R is called the R-matrix. The above relations imply the quasi-Yang-Baxter equation

R'2 4312 R13 (¢ 1)132 R23 ¢ — 4321 R23 (¢ 1)231 RI3 4213 12 (2.20)
and the property
(e®id)(R) = (id®¢€)(R) = 1. (2.21)

Property (2.17) implies, that for any pair 7y, 7y the two representations (7y X7y, UK V) and
(my Ry, VRU) are equivalent with intertwiner Byy := 712 o (my ® 7y )(R), where 712 denotes
the permutation of tensor factors in U ® V. Egs. (2.18),(2.19) imply the commutativity of two
hexagon diagrams obtained by taking 7y ® 7y ® mw on both sides.

G being a quasitriangular quasi—-Hopf algebra implies that Rep G is a rigid monoidal category
with braiding, where the associativity and commutativity constraints for the tensor product
functor X : Rep G x Rep G — Rep G are given by the natural families ¢yvw and 7'2 o Ryy and
the (left) duality is defined with the help of the antipode S and the elements «, 3, see (B.2-B.4)
below.

Together with a quasi-Hopf algebra G = (G, A, €, ¢, S, a, 3) we also have G,,, G°°P and Gop?
as quasi—Hopf algebras, where “op” means opposite multiplication and “cop” means opposite co-
multiplication. The quasi-Hopf structures are obtained by putting ¢op = ¢_1, ¢°P 1= (qﬁ_l)321
Popf = ¢**!, Sop = 8P = (SCOP)_ =85, Qop = S71(B), Bop = S$7'(a), a®P := S (w),
Beop = Sil(ﬂ), cor =3 and BsP i=a. Alsoif Re G® G is quas1tr1angular in G, then R~}
is quasitriangular i 1n Gop, R*!' is quasitriangular in G°? and (R™')?! is quasitriangular in GS9P

?



Next we recall that the definition of a quasitriangular quasi-Hopf algebra is ‘twist covariant’
in the following sense: An invertible element F' € G®G, which satisfies (e®id)(F) = (id®e)(F) =
1, induces a so—called twist transformation

Ap(a) : = FA(a)F, (2.22)

pr:=10F)(idoA)(F)¢(A®id)(F ) (F'e1l) (2.23)

It has been noticed by Drinfel’d [Dri90] that (G, Ar, €, ¢r) is again a quasi-bialgebra. Setting
ap = S(h')ak', PBr:= f'BS(g"),

where h @ k' = F~! and fi®g¢' = F, (G,Ar,€,¢r,S,ar,Br) is also a quasi-Hopf algebra.
Moreover, if R is quasitriangular with respect to (A, ¢), then

Rp := F'RF™!

is quasitriangular w.r.t. (Ap, ¢r). This means that a twist preserves the class of quasitriangular
quasi-Hopf algebras [Dri90].

It is well known that the antipode of a Hopf algebra is also an anti coalgebra morphism, i.e.
Aa) = (S®S)(A°(S~1(a))). For quasi-Hopf algebras this is true only up to a twist: Following
Drinfel’d we define the elements v,6 € G ® G by setting?

v = (S(U) @ S(TY) - (a®a) - (Vig W) (2.24)
§:= (KoL) - (B pB)- (S(N) ® S(M7?)) (2.25)
where
T'eU' @V oW =1¢")- ([deide A)(¢),
KIoLl@M @N =(A®id®id)(¢)- (¢~ @ 1).
With these definitions Drinfel’d has shown in [Dri90], that f € G ® G given by

f:=(S®8)(AP(X?)-v-A(YIBZY). (2.26)
defines a twist with inverse given by
1= AS(X)aY?)-6-(S®8)(AP(ZY)), (2.27)
such that for alla € G
fA@) ™ =(S®8)(AP(S7 (a))). (2.28)
The elements v, d and the twist f fulfill the relations
fA(@ =y, AW f'=04. (2:29)
Furthermore, the corresponding twisted reassociator (2.23) is given by
dr = (S®S®I)(*"). (2.30)
Setting h := (S~! ® S71)(f?!), the above relations imply
hA(@)h ' = (S ® S ) (AP(S(a))) (2.31)
o= (S""®S @S5 (¢*) (2.32)
hA(S @) = (ST e S (v™) (2.33)

These identities will be used frequently below as well as the following

COROLLARY 2.2. For a € G let Ap(a) := hA(a) and Ag(a) :== A(a)h™! where h€ GRG
is the twist in (2.31). Then

(d®Ar)(Az(a) ¢ = (ST'® S @ ST (¢*) (AL ®id)(AL(a))
¢ (Ar ®id)(Ag(a)) = (id ® Ag)(Ag(a) ('@ S @ S71)(¢™), VYaeg
PrOOF. Writing Eq. (2.32) as
1@h)(i[doA)h) =SS TesS™H#*") (hel)(A®id)(h),
multiplicating both sides from the right with (A ® id)(A(a)) and using (2.8) yields the first

equality. The second equality is proven analogously. O

3suppressing summation symbols



The importance of the twist f for the representation theory of G lies in the fact that it provides
an intertwiner U ® V — (*V X *U)* given by 7'2 o (my K 7y )(f).

From the point of view of representation theory the difference between Hopf algebras and
quasi—Hopf algebras may be reformulated by stating that in the first case Rep G is a strict rigid
monoidal category, whereas in the latter case Rep G is not strict but still rigid monoidal. A more
detailed discussion of these representation theoretic considerations is given in Appendix A.

Finally we introduce g as the dual space of G with its natural coassociative coalgebra
structure (A, é) given by (A(p) | a®b) := (¢ | ab) and &(p) := (¢ | 1g), where p € G, a,b€ G
and where (- | -) : G ® G — C denotes the dual pairing. On G we have the natural left and right
G-actions

a—=¢:=pn){re la) ¢=a=pelela), (2.34)

wherea € G, p € G. By transposing the coproduct on G we also get a multiplication GG -G ,
which however is no longer associative

(e a)=(poy|A), (1]a):=-ea)

Yet, we have the identities 1p = o1 = ¢, A(py) = A(p )A(w), = () = (aqy — )
(a(z) - ¢) and (p¥) < a = (¢ = aq)) (P < a(y)) for all p,9 € G and a € G. We also introduce
S :G — G as the coalgebra anti-morphism dual to S, i.e. (S(¢) | a) := (¢ | S(a))-

2.2. Coactions of quasi—quantum groups

The generalization of the definition of coactions as given in (1.1 - 1.4) to the quasi-Hopf
case is straightforward:

DEFINITION 2.3. A left coaction of a quasi-bialgebra (G,1¢g, A, €, ¢) on a unital algebra M
is an algebra morphism X : M — G ® M together with an invertible element ¢, € G ® G ® M
satisfying

(id ® N)(A(m)) dr = ¢, (A®id)(A(m)),  Vm e M (2.35a)
(16 © ,)(1d ® A ®id)($,)(¢ ® 1n) = (I ®id ® N ($y)(A id @id)(dy),  (2:35D)
(e®id) o X =id (2.35¢)

(id @ e ®id)(¢y) = (e ®id ®id)(dy) = 1g ® 1ps (2.35d)

Similarly a right coaction of G on M is an algebra morphism p : M - M ® G together with
¢, € M®G ® G such that

¢ (p®id)(p(m)) = (id® A)(p(m)) ¢,,  VmeM (2.36a)

(Im ® ¢)(id ® A ®id)(4,)(¢, ® 1g) = (id @ id ® A)(,)(p ®id ®id)(¢,), (2.36b)
(id®e)op=id (2.36¢)

(id®e®id)(4,) = ([d®id®e)(4,) =1y ®1g (2.36d)

The triple (M, X, ¢x) [(M, p, $,)] is called a left [right] comodule algebra over G also denoted
WM [M,].

We remark, that of the two counit conditions in (2.35d) and (2.36d), respectively, actually
either one of them already implies the other. Clearly, if G is a Hopf algebra, ¢ = 1401g®1g and

=1g ® 1g ® 1, one recovers the definitions given in (1.1 - 1.4). Also, particular examples
are given by M = G and A = p = A, ¢, = ¢, = ¢. In the general case equations (2.35b),(2.36b)
may be understood as a generalized pentagon equation, whereas (2.35a),(2.36a) mean, that A,
p respect the quasi-coalgebra structure of G. One should notice, that because of the pentagon
equations (2.35b) and (2.36b), ¢, and ¢, have to be nontrivial if ¢ is nontrivial (i.e. if G is not
a Hopf algebra). On the other hand ¢, or ¢, may be nontrivial even if ¢ = 15 ® 15 ® 1g, i.e. if
G is a Hopf algebra. In fact, such a restricted setting has been investigated before, see [DT86],
[BCMS86], or [BM89]. In [BCM86, BM89] Eq. (2.36a) is called a “twisted module condition”
and Eq. (2.36b) (for ¢ =1 ® 1® 1) a “cocycle condition”. It has been shown in [HNa], that
the twisted crossed products considered in [DT86], [BCM86], [BM89] are in fact special types
of our diagonal crossed products to be given in Definition 2.9 below.



As with Hopf algebras, a left coaction A (a right coaction p) induces a map < : M®G — M
(>:GM —= M) by

m<p:= (¢ ®id)(A(m)), (2.37)

pom = (id @ ¢)(p(m)), ¢€G, meM (2.38)

which by convenient abuse of notation and terminology we still call a “right action” (“left
action”) of G on M, despite of the fact that G may not be an associative algebra.

Similarly as for the coproduct A there is a natural notion of twist equivalence for coactions
of quasi—Hopf algebras.

LEMMA 2.4. Let (p, $,) be a right coaction of a quasi-bialgebra G on M and letU € M®G
be invertible such that (id ® €)(U) = 1rp. Then the pair (o', #),), given by
p'(m) :=Up(m) U~
¢y, = (i[dm @ A)(U) ¢, (p@idg)(U ) (U ' ® 1g)
again defines a right coaction of G on M (with respect to the same quasi—bialgebra structure on

g).

The proof of Lemma 2.4 is straightforward and therefore omitted. A similar statement holds
for left coactions A, where one would have to take U € G ® M and

¢ =(1g®U) (idg ® \)(U) 65 (A @ idp)(U™H).

Note that twisting indeed defines an equivalence relation for coactions. Similarly, if Ar and ¢p
are given by (2.22) and (2.23), then any right (left) G—coaction on M may also be considered
as a coaction with respect to the F—twisted structures on G by putting pr = p (Ar = A) and

(0,)F =AM OF)¢,, ($2)F =y (F ' ®1n).

The reader is invited to check that with these definitions (2.35b) and (2.36b) are indeed also
twist covariant. Note that in the case A = p = A, U = F, one recovers (2.23).

2.3. Two—sided coactions

As already mentioned before, the fact that the dual G fails to be an associative algebra,
is the reason why there is no generalization of the definitions of ordinary crossed products to
the quasi—Hopf algebra case. Nevertheless this will be possible for our diagonal crossed product
constructed from two—sided coactions. First we need

DEFINITION 2.5. A two—sided coaction of a quasi—bialgebra (G, A€, @) on an algebra M is
an algebra map 6 : M — G® M ®§ together with an invertible element ¥ € GRGRIMRGRG
satisfying

(idg ® 0 ®idg)(d(m)) ¥ = ¥ (A ® idpm ® A)(6(m)), Vm e M (2.39a)

(1T R 1g) (idg ® A ®idy ® A ®idg)(¥) (¢ @ 1p ® ¢~ 1)

= (idg ® idg ® § ® idg ® idg)(P) (A ®idg ® idym ® idg ® A)(P) (2.39b)
(e®idy ®€) 0§ =idym (2.39¢)

(dg @ e®idpm ® e®idg)(P) = (e ®idg ®idy ®idg ® €)(¥) =1g @ 1 ® 1g. (2.39d)
The triple (M, d, ¥) is called a two-sided comodule algebra, also denoted M.

Again we remark, that either one of the two counit axioms in (2.39d) already implies the
other. We also note, that two—sided coactions could of course be considered as right coactions
of G &GP or left coactions of G°°P ® G, respectively. Moreover, if (4, ¥) is a two-sided coaction

of G on M, then (6§, T ') is a two-sided coaction of G,, on M,, and (8,p, ¥,,) is a two-sided
coaction of G°°P on M, where

Sop 1= 6321, W, = W21 (2.40)
An example of a two-sided coaction is given by M =G, § = (A ® id) o A and
U:=[(deArid)(¢) e 1)pele1[(d@ideid)(s ). (2.41)



Similarly we could choose §' = (id ® A) o A and
=12 (H[doA®id) (¢ )[1®1¢7)[(ild®id ® &) (). (2.42)

From this example one already realizes that in the present context the relation between two—
sided coactions and pairs of commuting left and right coactions gets somewhat more involved
as compared to Chapter 1, where we had § = &'. First, one easily checks that for any two—sided
coaction (4, ¥) the definitions

A= (idg ®idp ®€) 0§ ¢y = (idg ®idg ® idpm ® € ® €)(T), (2.43)
p:=(e®idy ®idg) o ¢, = (e®e®idy ®idg ®idg)(T) (2.44)

provide us again with a left coaction (A, #,) and a right coaction (p,¢,). Moreover, putting
5 := (id ® § ® id) 0 § we have

& :=(\®idg)op=(e®idg ®idy ® e ®idg) 0 6> (2.45)
6y = (idg ® p) o A = (idg ® e ® idpy @ idg ® €) 0 63 (2.46)

However, due to the appearance of the reassociator ¥ in axiom (2.39a), the two expressions
(2.45) and (2.46) are in general unequal, and neither one needs to coincide with 4. Indeed,
defining

U= (e®idg ® idp ® € ® idg)(P) (2.47)
U, = (idg ® e ®idy ® idg ® €)(T) (2.48)
by, = U U, (2.49)

(2.43)-(2.46) and (2.39a)-(2.39d) immediately imply
§i(m) = U d(m) U, 6:(m) = U, d6(m) U
$r, (A ®1d)(p(m)) = (id ® p)(A(m)) Px,-

Moreover (X, p, ¢y, ,, #,,) provides a quasi-commuting pair of coactions in the following sense.

(2.50)

DEFINITION 2.6. Let (G, A, €,¢) be a quasi-bialgebra. By a quasi—commuting pair of G—
coactions on an algebra M we mean a quintuple (A, p, #y,¢,,8,,), where (A, ¢,) and (p,¢,)
are left and right G—coactions on M, respectively, and where ¢, , € G ® M ®§ is invertible and
satisfies

Pxp (A @1d)(p(m)) = (id @ p)(A(m)) §5p, VM € M (2.51a)

(1g @ 95,)(id @ A @1d)(45,) (91 @ 1g) = ([d ©®id ® p)($2)(A @ id @id)(¢y,)  (2.51D)

(1g®¢,)(id ® p®id)(¢,,)(dy, ® 1g) = ([d®id ® A)(¢,,)(A ®@id ® id)(¢,) (2.51c)

Obviously, the conditions (2.51a)-(2.51¢) apply to the case M = G, A = p = A and

¢y = ¢, = ¢- Also note, that acting with (e®e®idy®idg) on (2.51b) and with (idg ®idp ®@e®e)
on (2.51c) and using the invertibility of ¢,, one concludes the further identities

(idg ®idM®€)(¢>\p) =1gQ®1n, (e®idpyg ®idg)(¢>\p) =1y ®1g. (2.51d)

We also remark that quasi-commutativity is stable under twisting.

The fact that (A p,dy,6,,4,,) given in (2.43), (2.44) and (2.49) provides a quasi-
commuting pair is shown in detail in [HNa]. Conversely, one also verifies by direct computation,
that every pair of quasi-commuting coactions (X, p, ¢5,¢,,$,,) provides us with two-sided
coactions (¥, d;) and (¥, 6,) defined by

0 =(A®id)op (2.52a)
T = (idg ® A ®1d®") ((% ®15)(\ ® id?Q)(dgl)) [0y ® 1 ® 1g] (2.52b)
8y := (id ® p) o A (2.52¢)
¥, = (4§ @ p@idg) ((1g @ 65,) (45" @ p)(6)) [1g @ 15 @ 6, "] (2.524)

Note that (2.52a)-(2.52d) generalize the examples (2.41), (2.42).

Using this result one is now in the position to show that twist—equivalence classes of quasi—
commuting pairs of coactions (), p, ¢)‘,¢p,¢/\p) are in one-to-one correspondence with twist
equivalence classes of two—sided coactions (§, ¥), since by (2.50) up to twist equivalence any



two-sided coaction is of the type (d;/,,¥;/,) given in (2.52a) - (2.52d). Here one uses that
two—sided coactions (4, ¥) may be twisted in the same fashion as one-sided ones.

DEFINITION 2.7. Let (4, ¥) and (§', ¥') be two-sided coactions of (G, A€, ¢) on M. Then
(&', ") is called twist equivalent to (4, ¥), if there exists U € G ® M ® G invertible such that

§'(m)=Usm)U™! (2.53a)
UV =(1g0U ®1g) (idg ® 6 ®idg)(U) ¥ (A ®idp @ A)(U ) (2.53b)
(e®idp @ €)(U) = 1 (2.53¢)

The reader is invited to check that for any two—sided coaction (4, ¥) and any invertible U
satisfying (2.53c) the definitions (2.53a) and (2.53b) indeed produce another two—sided coaction
(6',0"). It is also easy to see that twisting does provide an equivalence relation between two—
sided coactions. Moreover, similarly as for one-sided coactions one readily verifies that if (4, ¥)
is a two-sided coaction of (G, A, €, #) on M, then for any twist F € G ® G the pair (§, Tp) is a
two-sided coaction of (G, Ar,€,¢r) on M, where Ar and ¢ are the twisted structures on G
given by (2.22) and (2.23), and where

Up =0 (F'elyeF™) (2.53d)

We summarize the connection between two-sided coactions and quasi—-commuting pairs of coac-
tions in the following Proposition.

PROPOSITION 2.8. Twist—equivalence classes of quasi—commuting pairs of coactions
A p, ¢>‘,¢p,¢>\p) are in one-to-one correspondence with twist equivalence classes of two—sided
coactions (6,¥). In particular the elements Uy, defined in (2.47)/(2.48) provide a twist equiv-
alence between (6, ¥) and (6;/,, /) given by (2.43)-(2.46), (2.49) and (2.52a)-(2.52d).

The proof of Proposition 2.8, especially the detailed calculations that all pentagon equations
are satisfied, is elementary but quite lengthy and is given in [HNa].

The importance of Proposition 2.8 stems from the fact that below the diagonal crossed
products associated with twist—equivalent two—sided coactions will be shown to be isomorphic.

2.4. The algebras Q <1 M and M Q

Having developed our theory of two—sided G—coactions § for quasi—bialgebras G we are now
in the position to generalize the construction of the left and right diagonal crossed products
C; < Ms and Mg < G to the quasi—coassociative setting. Before writing down the concrete
multiplication rules we would like to draw the reader’s attention to some important conceptual
differences in comparison with the results of Chapter 1.

As already remarked, the natural “multiplication” [ : GG - G given as the trans-
pose of the coproduct A : G — G ® G is not associative. Nevertheless, we will still write
o == fi(p ® ), p,1 € G, for details see the end of Section 2.1. This will imply the fact that
although we will have GraMs=GOM and My G = M®G as linear spaces, the subspaces
G®1x and 1 ® G will not be subalgebras in the diagonal crossed product. On the other
hand, M will naturally be embedded as the unital subalgebra M = 1@ M = M @ 1. We
would also like to stress that G > Ms =2 Ms = G will still be equivalent algebra extensions of
M. However the subspaces G a1 and 14 < G will not be mapped onto each other under
this isomorphism. (Recall that this was the case in (1.30)).

We now proceed to the details. Given a two—sided G—coaction (§, ¥) on M we still write as
before

pem<y = (Y @idy ® ¢)((m)), meM, o, €G, (2.54)

disregarding the fact that 0 might be neither of the form (2.52a) nor (2.52c¢). We also introduce
the element O € G R GO M ® G ® G built from the reassociator ¥ by

Q=020 01 @03 :=(dg ®idg ®idy ® S~ S~ (1) . p%, (2.55)

where h = (S7'!®S71)(f?') € G®G has been introduced in (2.31). As before, we have dropped
all summation symbols and summation indices.



DEFINITION 2.9. Let (4, ¥) be a two-sided coaction of a quasi-Hopf algebra G on an algebra

M. We define the left diagonal crossed product G b1 M to be the vector space GoM equipped
with the multiplication rule

(pram)(p o) i= [ = o = QL) = vy = )] 0 [21(S™ (W) pmaths)) ]
(2.56)

In cases where the two-sided coaction is unambiguously understood from the context we
also write G < M. Note that (2.56) again implies

(pram) = (pralp)(1>am). (2.57)

and for Qp/p = 1g®1g® 11 ®1g ® 1g we recover the definition of Chapter 1. Also, in Ga M
we still have the “commutation relation”

my =) (S (W) pm ).

But for the product (¢ < 1) (1) > 1 o4) to be consistent with this relation one has to inject the
reassociator ¥ since §(2) # (A®id®A)od and also the twist h since Ao S~ # (S~1@S~ 1) oA
in the quasi—coassociative case. We now formulate our first main result.

THEOREM 2.10.

(i) The left diagonal crossed product G b1 M is an associative algebra with unit 1 0 1.
(ii) M=1xx M C G M is a unital algebra inclusions.

We will give a detailed proof of Theorem 2.10 in Section 2.6. Let us shortly sketch the idea.
Let L € G ® (G a1 M) be given by L = ey ® (e# > 1py), where {e,} is a basis in G with dual
basis {e*} in G. We also abbreviate our notation by identifying m = (1 bam), m € M. The
multiplication rule (2.56) implies

[1g @m]L = [Sil(m(l)) ®1m]L [m(_l) ® m(o)], VYm e M (2.58)
LBL% = [S7H¥) @ S7HI) @ 1] [(Ar ®id)(L)] [ ® ¥ @ ¥?] (2.59)

where we have introduced the notation 6(m) = m_1) ® m() ®m(1y and T 1 =T =¥ @ ¥? @
U3 @ U* ® % and where Ar(a) := hA(a), a € G, has been introduced in Corollary 2.2. With
these relations the nontrivial associativity constraints to be shown are the following

L14(L24L34) L (L14L24)L34 (2.60)
[1g ® 1g © m)(L*L?) = ([1g ® 1g @ m]L*)L, (2.61)

where (2.60) is understood as an identity in G® ® (G = M) and (2.61) as an identity in
G® ® (G ba M). Now the identity (2.60) is shown by using the pentagon equation (2.39b) for
¥, whereas (2.61) is implied by the intertwining properties (2.39a) of ¥ and (2.31) of h. The
details are given in Section 2.6.

Before proceeding let us shortly discuss how in the present context one can see that ordinary
crossed products G x \M in general cannot be defined as associative algebras any more. In the
strictly coassociative setting of Chapter 1 these could be considered as special types of diagonal
crossed products, where § = A ® 1¢g. In the present setting it is not clear whether such ¢’s give
well defined two—sided coactions, since in fact the map

po(m) :=m®1g

need not even be a one-sided coaction. For this one would also need the existence of a reassoci-
ator ¢, satisfying the axioms of Definition 2.3 (note that the choice ¢,, = 1y ® 1g ® 1g will
in general not do the job due to the appearance of ¢ in the pentagon equation (2.36b)).

We conclude this section by giving the analog construction of a right diagonal crossed
product M < g which in fact will be proven to be isomorphic to M < G in the next section.



DEFINITION 2.11. Given a two—sided coaction (d, ¥) of G on M, and setting
Qr=0ER 05 05005,00% =) - (7' S ®idy ®idg ®idg)(¥),  (2.62)

we define the right diagonal crossed product Mg < G to be the vector space M ® G with the
multiplication rule

(m o< @)(n 1) 1= [m (pay>n < S (ps) O] 0 [ = p) = QRO = v = )],
(2.63)

COROLLARY 2.12. The right diagonal crossed product Mg 1< G is an associative algebra
with unit 1pq <1, containing M = M1 C M <G as a unital subalgebra.

PROOF. The proof goes along the same lines as the proof of Theorem 2.10 by noting that
under the trivial permutation of tensor factors we have

(M > G)op = QSZ” B (Mop)s,,

where (M < Q)op denotes the diagonal crossed product with opposite multiplication, and
where we recall our remark that with the definition (2.40) the pair (d,p, ¥,') defines a two-
sided coaction of G&IP on M. O

2.5. Generating matrices

We now pass to a formulation of diagonal crossed products in terms of generating matri-
ces similarly as in Section 1.3. As discussed in Section 2.3 the connection between two—sided
coactions § and (quasi-commuting) pairs of coactions (A, p) becomes more involved in the
quasi—coassociative setting. This will make it necessary to distinguish between Ap-intertwiners
and what we call left and right é—implementers, which all three coincide in the coassociative
setting of Chapter 1 due to Lemma 1.11. The precise relation between these different gener-
ating matrices will be clarified in Proposition 2.19, which finally leads to a proof of the main
Theorem 2.1. We would like to encourage the reader to frequently glance at Appendix A, where
he will find a representation theoretic interpretation of the generating matrices together with
their relationships expressed in terms of commuting diagrams.

2.5.1. Left and right diagonal j—implementers. From the associativity proof of The-
orem 2.10 in terms of the “generating matrix” L we immediately read off an analogue of
Proposition 1.12 describing the conditions under which an algebra map v : M — A into some
target algebra A extends to an algebra map from the diagonal crossed products into A. In view
of (2.58) and (2.59) we are lead to the following

DEFINITION 2.13. Let v : M — A be an algebra map into some target algebra A and
let (9, ¥) be a two-sided G—coaction on M. A left (right) diagonal §— implementer in A (with
respect to «y) is an element L € G ® A (R € G ® A) satisfying for all m € M, respectively,

[1g @ v(m)]L =[S~ (m(1)) ® 1] L [m_1) ® y(m())] (2.64)
R [1g ® v(m)] = [m(1) ® 7(m())| R [ST(m(—1)) ® 14] (2.65)
A left —implementer L (right —implementer R) is called coherent if, respectively,
LBLE =03 @ 0 ®14] (A ®id)(L) [Q} ® 02 @ v(Q3)] (2.66)
RYP R = [0 2 0% @ 7(2%)] (A ®id)(R) [2% ® Q) ® 14)), (2.67)

where 27,/r have been defined in (2.55)/(2.62).

To unburden our terminology from now by a left (right) d—implementer we will always
mean a left (right) diagonal d—implementer in the sense of the above definition. We trust that
the reader will not be confused by this slight inconsistence of terminology (which arises in
comparison with Definition 1.2, since two—sided coactions might also be looked upon as one—
sided ones).

As before, we also call L/R normal, if (e ®id)(L/R) = 1 4. Note that in the coassociative
setting of Lemma 1.11 left and right é—implementers always coincide. In the present context we
will still have one—to—one correspondences between left and right J—implementers, however the
identifications will not be the trivial ones.

Let us note the immediate



COROLLARY 2.14. Let (M, 4, ) be a two—sided G—comodule algebra and let v : M — A be
an algebra map into some target algebra A. Then the relations

YL (p = m) = (p ®id)(L) v(m) (2.68)
Yr(m > @) = y(m) (p @ id)(R) (2.69)

provide one-to—one correspondences between algebra maps i : G M A (ve : M
G — A) extending v and coherent left 5—implementers L (coherent right §—implementers R ),
respectively, where vr, /R is unital if and only if L /R is normal.

ProoOF. This follows immediately from (2.58) and (2.59) and the analogue relations in
Ms = G (Define L := 3 e, ® yr(e#), whith {e,} C G, {e#} C G being a pair of dual
bases). O

Next, we show that the diagonal crossed products associated with twist equivalent two—
sided coactions are equivalent algebra extensions.

PROPOSITION 2.15.

1. Let (6, T) and (8', ¥") be twist equivalent two-sided G-coactions on M. Then the diagonal
crossed products Mg < G and Mg G are equivalent extensions of M.

2. Let (6,%) be a two—sided G—coaction on M with respect to the coproduct A : G - G®G,
and let (5, PF) be the two-sided coaction with respect to a twist equivalent coproduct
Ap on G, see (2.53d). Denote the associated diagonal crossed products by M 1< G and
M Gr, respectively. Then M < G = M < G with trivial identification.

PROOF. 1. Let U € G ® M ® G be a normal twist transformation from (§, ¥) to (&', ¥')
andlet R € G® (Ms < G) and R' € G ® (Mg > G) be the generating matrices. By Corollary
2.14, to provide a homomorphism

f:M5><1gA—>M5/><lgA

restricting to the identity on M we have to find a coherent normal right J—implementer R e
G ® (Mg > G). We claim that the canonical choice (writing U™! = U! ® U? ® U?, where
summation symbols are suppressed)

R = [0% @ v(0)]R'[S™(T") ® 1.4] (2.70)

will do the job. Indeed, R obviously is a normal right é-implementer and one is left with
checking the coherence condition with respect to (4, ¥). Using (2.53b) this is straight forward
and is left to the reader.

To prove part 2. we note that ¥ = U (F~! @ 15 ® F~!) implies by (2.62) (Qr)r =
F21 Qr (F~1)% since the element h € G ® G transforms under a twist according to hp =
(S'®S8 ') (F,')hF . Hence, by Definition 2.13, R is coherent with respect to (5, ¥, A) if
and only if it is coherent with respect to (6, ¥p, Ap). O

Of course, analogous statements hold for the left diagonal crossed products.

REMARK 2.16. In view of Proposition 2.8 we may from now on restrict ourselves to two—
sided coactions of the form (4, ¥) = (d;/,, ¥;/,) for a quasi-commuting pair (X, ¢, p, ¢, drp),
where 0; = (A ®id) o p and 6, = (id ® p) o A, see (2.52a - 2.52d). In this light it will also be
appropriate to introduce as an alternative notation consistent with (2.6),(2.7)

G 1 M, =G b1 Mg, (2.71)
WM, 4G = M;. a6 (2.72)

By Proposition 2.15(1.) we also have Mg, = M, G and G M;s, = G = Ms,
since & and 4, are twist equivalent. As will be shown below, also G M, and M;, < G are
equivalent extensions of M. Thus we get four equivalent versions of diagonal crossed products
associated with any quasi-commuting pair (X, p, ¢a, @,, dap) of G—coactions on M, all of which
will be shown to be a realization of the abstract algebra M; in Theorem 2.1.



2.5.2. Coherent Mp—intertwiners. In this subsection we are going to generalize
Lemma 1.11 by providing a normality and coherence preserving one—to—one correspondence
between right d,—implementers R or left §;—implementers L, respectively, and Ap—intertwiners
T, where 6, := (id®p)o A and §; := (A®id) o p. This will finally lead to a proof of Theorem 2.1.
As a Corollary we get that the left and right diagonal crossed products Ga M and Mg G
are equivalent algebra extensions of M. We start with a generalization of Definition 1.10

DEFINITION 2.17. Let (X, ¢, p, ¢p, #,) be a quasi-commuting pair of G-coactions on M
and let v: M ® A be a unital algebra map into some target algebra A. A Ap—intertwiner in A
(with respect to ) is an element T € G ® A satistying

T Aa(m) =pF(m) T, Vme A (2.73)
A M\p-intertwiner is called normal if (e ® id)(T) = 14 and it is called coherent, if
(@, 2) AT (63,)28° T (¢1)4 = (A ®id)(T) (2.74)

where the index A refers to the image v(M) C A, see also (2.2) and (2.3).

We first point out that (2.74) is consistent with (2.73) in the following sense

LEMMA 2.18. Under the conditions of Definition 2.17 let T be a Ap—intertwiner in A and
define BEGRG®A by

B = (6;"") AT (¢5,)i° T% (62)a (2.75)
Then we have for all m € M
B(A®ida)(Am)a) = (A ®ida)(p°P(m)4) B (2.76)
Proor. This is straightforward from the intertwiner properties of T and of ¢y, ¢x, and
by, see (2.73), (2.35a), (2.36a), and (2.51a). O

To provide a bijective map between coherent é—implementers and coherent Ap—intertwiners
we first need a generalization of formulas like mg) ® S™!(m(2))my = m ® 1g, which are
not valid any more due to quasi—coassociativity and the more complicated antipode axioms
(2.15/2.16). Recall that formulas of this type have been used to prove Lemma 1.11. Associated
with any left G—coaction (A, ¢)) on M we define elements py, g\ € G ® M by

pr:= @3S B) @ ¢, where éx = ¢} @ ¢} ® ¢¥, (2.77)
o= S(4))agl @ 4}, where ¢, =4 ® ¢ ® 63, (2.78)
and where as before we have dropped summation indices and summation symbols. Here a, 8 € G
are the elements introduced in (2.15). In the case M = G and (A, ¢n) = (p,¢p) = (A, )
analogues of these elements have also been considered by [Dri90], [Sch95]. Denoting A(m) =
m(_1) ® mg) they satisfy
A(m (o)) Pa [S_l(m(,l)) ®@1pm] =pa[lg ®@m]
[S(m—1)) ® 1a]ax A(m(o)) = [Lg ® m] qx
MRS @) @ 1Ml =16 @ 1y
[S(}) ® 1] aa A(PR) = 16 & 1as.
Note that the first two equalities provide a substitute for the non-valid formula m ®
S~1(mz))may = m ® 1g, whereas the second pair state some kind of invertibility property
of the elements py, ¢x.
Similarly, associated with any right G—coaction (p, ¢,) on M we define elements p,,q, €

M® G by
o =6, ® $,05(8)), where ¢,' =4, ®¢,®¢, (2.79)
p - P P 2 P P P P :
0= 005 )6, where 9, =404} 5 6] (250)
They obey a similar set of equations. All these equalities together with some kind of “coherence”
property are proven below in Lemma 2.21 and Lemma, 2.22 in Section 2.6. Again the reader may

find it helpful to consult the representation theoretic interpretation of the elements gx, px, @, D,
given in Appendix A, starting with (A.8).



We now state the generalization of Lemma 1.11. Throughout, by a convenient abuse of
notation, we are going to omit the symbol .

PROPOSITION 2.19. Under the conditions of Definition 2.17

1. Let 6, := (id®p)oA and ¥, e GRIGRAMRGR®G as in (2.52d) and let px,qn € GO M
be given by (2.77),(2.78). Then the assignments (omitting the symbol vy)

T+— R :=Tpy (2.81)
R +— T := p?(¢}) R[S} (g3) ® 14] (2.82)

provide mutually inverse normality and coherence preserving isomorphisms between the
space of Ap—intertwiners and the space of right §.—implementers.

2. Similarly let & == A Q®id)op and ¥, € GRIGAM R G® G as in (2.52b), and let
Dp>qp € M ®G be given by (2.79),(2.80). Then the assignments

Tr— L:=¢PT (2.83)
L— T:=[S"'(p2) ® 14 L \(p}) (2.84)

provide mutually inverse normality and coherence preserving isomorphisms between the
space of Ap—intertwiners and the space of left 6;—implementers.

The proof of Proposition 2.19 is given in Section 2.6. The content of the above Proposition
may also be expressed in terms of commuting diagrams, see (A.17) in Appendix A. We state
the immediate

COROLLARY 2.20. The left and the right diagonal crossed products G > Ms and Mg G
defined in Def. 2.9 and Def. 2.11 are isomorphic algebra extensions of M.

PROOF. First note that by Remark 2.16 we have GraMs =G M;, and M; < G~
Ms, > G. Now let R; := e, ® (1a < e) be the coherent §,~implementer in M;, > G. By
(2.82) and (2.83)

Ls == ¢ p(@3) Ry, [S1(3) © 1]
is a coherent §;—implementer. Thus, by Corollary 2.14 we get an algebra map f : G b M;s, —
M, > G by setting

flppam) = (p ®id)(Ls,) (m a 1) (2.85)
Using (2.81) and (2.84) one shows analogously that f is invertible. O

We are finally in the position to proof the main Theorem 2.1 stated in the introduction to
Chapter 2.

PRrROOF OF THEOREM 2.1. To prove the existence of M; we choose M; := M, 1< G and
I':Gg— M1,

L(p) = (¢ ®ida)(T), T =p”(a3) Rs, [S7"(qr) ® 1], (2.86)
where gy € G ® M is given by (2.78) and where Ry := e, ® (Ipm < et) € G ® M, is the
canonical coherent normal §,—implementer. Hence, by Proposition 2.19, I" is a normal coherent
Ap-intertwiner in M;. Moreover, we obtain for the map pg in (2.5)

pr(m @ @) : = (m 1) T(pq)) (pr2) ®1d)(pr)
(m 1) (¢ ®id)(T p»)
(moa 1) (Lag < @)
= (m ) (2.87)

by Proposition 2.19 1.), and therefore ug : M ® G — M, becomes the identity map. This also
shows that M is algebraically generated by M = (M < 1) and I'(G).

The universality property follows from Corollary 2.14 - providing a one-to-one correspon-
dence between algebra extensions M; — A and §,—implementers - and Proposition 2.19 -
providing a one-to-one correspondence between §,.-implementers R and Ap-intertwiners T'.



The uniqueness of M; (up to equivalence) follows by standard arguments from the univer-
sality property stated in part 1 and the fact that M;j is generated by M and F(Q)

We are left with showing that with ¢, € M®G given by (2.80) also ur, : G®M — M, given
in (2.4) provides a linear isomorphism, which under the identification ¢ ® M = G = My, in fact
becomes an algebra map. This is seen by realizing, that uy = f, where f : G M;s, = M;, < G
is the isomorphism defined in (2.85). O

2.6. Proofs
In this section we have collected the proofs omitted in the previous sections.

Proof of Theorem 2.10. One trivially checks the unit properties in part (i) and also the
identity

(pam)(1an) = (p >amn) (2.88)
for all m,n € M and all ¢ € G, thereby proving part (ii).

We now prove the associativity of the product in G 1 M. First note that (2.56) and (2.88)
immediately imply

[XY](1 m) = X[V (1 bam)] (2.89)
for all X,Y € G 0o M and all m € M. Next we show that
[X(Aam)]Y = X[(1xm)Y], VX,Y €GaM, meM (2.90)

To this end we use (id®e€)(h) = 1g and therefore (e®idg ®idy ®idg ®e)(Qr) = 1g @1 ®1g
to conclude for m,m/,n € M and ¢ € §
(1 bam) (P pan) =9z 02 (S (Y1) > m ats))n (2.91)
and hence also
(1 pam’) [(1pam)( pan)] = ) 02 [(ST (W2)) >m' 9ty ) (ST (%)) M ath(5))n]
= 2) > (ST (W) >m'm a4s))
= (1 am'm) (¢ ban) (2.92)
where we have used that ¢ is an algebra map. Moreover, (2.91) also implies for all ¢ € G

(21 1p0) [(L bam) (¢ )]
= [(Qf = ¢ = Q3)(QF = P2y — Q1)) > [QL(ST (Y1) pm at3))n]
= (p>am) (¢ ) (2.93)

Putting (2.88), (2.89), (2.92) and (2.93) together, we have proven (2.90).
In view of (2.88), (2.89) and (2.90), to finish the proof of associativity we are now left with
proving the following two identities

(> 1) [(10 > 1ag) (23 Tg)] = [0 D9 L) (90 b3 Tag) ] (x > T pg) (2.94)
(1 sam)[(p < Lpg) (1 52 1p0)] = [(1 0 m) (0 29 Tag)] (4 B3 1pq) (2.95)

for all ¢, 1, x € G and all m € M. To prove these remaining identities we rewrite them using
the generating matrix formalism. Let L € G® (G b M) be given by L = e, ® (e# bx 1p4), where
{e,} is a basis in G with dual basis {e#} in . We also abbreviate our notation by identifying
m = (1 am), m € M. Then Egs. (2.94) and (2.95) are equivalent, respectively, to

LU(LAL3) = (LULYL% (2.96)

[1g ® 1g ® m](L"L*®) = ([1g ® 1g ® m]L'®)L*?, (2.97)

where (2.96) is understood as an identity in G®° ® (G < M) and (2.97) as an identity in
G®" ® (G pa M). We now use that (2.56) and (2.57) imply

[1g®1y]L =L (2.98)

[1g ®m]L =[S~ (m(1)) ® Ipm] L [m_1y) ® m(ey], Ym e M (2.99)

LBL2 =[S 1) @ S 1T ® 10m] [(AL ®id)(L)] [T ® ¥? @ 3] (2.100)



where we have introduced the notation 6(m) = m_1) ® mg)®m() and T' =¥ =¥ @ ¥? @
U3 @ U* @ ¥, and where Ar(a) := hA(a), a € G, has been introduced in Corollary 2.2. To
prove (2.97) we use (2.99) twice together with (2.90) to get for the r.h.s. of (2.97)

([1g ® 1g ® m] L¥)L* =[S~ (m(g)) ® S_l(m(l)) ® 1] L¥L% [m(—2) ® m(—1) ® m(qg)),

where we have used the notation (id ® d ® id) o §(m) = m(_s) ® m(_1) ® M) ® Mm(1) ® M(y).
On the other hand, by the intertwiner property (2.31) together with (2.99),(2.100) the l.h.s. of
(2.97) gives

[1g ® 1g ® m] (LPL*)
= [(Sil ® 571)(A"p(m(1))(\i'5 ® ‘114)) ® IM] [(AL ® ld)(L)] [A(m(_l)) ® m(o)] [@1 RUV2Q @3]
Using again (2.100) to rewrite the r.h.s. of this formula, Eq. (2.97) follows from the defining
property (2.39a) of ¥ = U1,
To prove (2.96), we use (2.100) to compute for the Lh.s (writing ¥ for another copy of ¥)
LY(LAML%) =15 ® S7H(T%) @ S~H(T*) @ 10][(id ® AL ®@ id)(LPL?)][1g © ¥ @ 2 @ ¥°]

—(S'®Stes ((&f’ 2 APE )1 0 5 ® W) @ 1u] (2.101)

x[([d@ Az @id) o (Ar @id)(L)][¥ @ AF ) e ¥ [1g2 ¥ @ 92 ¥,
where for the second equality we have used the identity
Ar(S™Ha)be) = (7' ® STH(AP(a) AL(B)A(c)
following from (2.31). For the r.h.s. of (2.96) we get:
(L4124,
=[S7HP) @ ST (T ® STHTY) @ 1m][AL ®id @ id)(LPLP)][U @ §° @ ¥ ;) @ Uf))]
=[5 e s @ s ((Aa%E) e i it e \ilfl))) @ 1u] (2.102)

x (AL ®id ®id) o (Ar ®id)(L)] [A(T )®\IJ ®lIl][1Ill®\I!2®\I! _1y © ¥y,

where for the first equality we have used (2.99) to move ¥ to the right of L3* and in the second
equality again (2.31). Now we use that by Corollary 2.1

(id®AL)(AL(a)) = (ST'®@ St e ST (¢*) (AL ®id)(AL(a) o™, Vaeg.

Hence (2.101) and (2.102) are equal due to the pentagon identity (2.39b) for ¥, which proves
(2.96). This concludes the proof of parts (i) and (ii) of Theorem 2.10. O

Properties of the elements py, gz, Py, g,-

LEMMA 2.21.

1. Let (A, ¢x) be a left G—coaction on M and let px,qx be given by (2.77),(2.78). Then the
following identities hold for all m € M, where A(m) = m(_1) ® m(q)

A(m(o)) Pa [S_l(m(_l)) ®1pm] =pa[lg @ m] (2.103a)

[S(m(-1)) ® La] gr A(myg)) = [19 ® m]qx (2.103b)

AR e[S @) ®@1Im] =160 1y (2.103c)

[S(P)) @ 1a] ax A(PY) = 16 ® 1 (2.1034d)

Moreover, with f,h € GRG being the twists given by (2.26),(2.31), the following identities
are valid

¢x " (idg ® A)(pa) (1g © pa)
= (A ®ida) (A(@)pa) [ @ TM] [STHPR) @ STH(9X) © 1ud] (2.103e)

(1g ® gx) (idg ® A)(qr) &
=[S(43) ® S(8%) ® 1] [f ® 1] (A ®idag) (aaA(43)) (2.103f)



2. Similarly, let (p,¢,) be a right G—coaction on M and let p,,q, be given by (2.79) and
(2.80). Then the following identities hold for all m € M, where p(m) = m) ® m(y).

p(mo)) Py [1m ® S(m1))] = pp [m ® 1g] (2.104a)
[1pm @ S™Hm))] 4o p(m(g)) = [m © 1g] g, (2.104b)
p(4;) Pp [Im @ S(g))] = 1m @ 1g (2.104c)
[1m ® S W) g p(P;) = 1 © 1g (2.104d)
¢, (p®idg)(p,) (P, ® 1g)

= (idm ® A) (p(,)pp) [Iam @ F1[1m ® S(83) © S(65)] (2.104e)

(g, ®1g) (p®idg)(gp) ¢;1
=[1m®S7H¢)) ® STH¢,)] [1m @ h] (idp ® A)(g,0(8,))- (2.104f)

PRrROOF. Note that part 2. of Lemma 2.21 is functorially equivalent to part 1., since (p, ¢,)
is a right G-coaction if and only if (p°?,(¢,1)??) is a left G°P—coaction. Also, considering
(p, qu;l) as a right G,p,—coaction on M,,, the roles of ¢, and p, interchange, which makes it
enough to just prove Egs. (2.104b), (2.104d) and (2.104f) or the corresponding sets of equations
in part 1.

Let us begin with (2.104b). Denoting the multiplication in G°P by u°? one computes

)
[1am ® S~ (ma))] g, pm(o)) = [6) ® S (agm(1))$2] p(m (o))
= (ida ® u™) o (idy @ idg ® S™) ({100 ® 1 ® ] ¢, (0 @ idg) (p(m) )
(

= (1 1) o (idpg @15 8 5) ([Lya © 1 @ o] (.  8)(p(m) 6
=[m®1g] dp,

where we have plugged in the definition (2.80) of g, and used the intertwiner property (2.36a)
of ¢, and the antipode property (2.15). This proves (2.104b).

To prove (2.104d) we introduce for a, b, c € G the notation o(a ® b® ¢) := ¢S~ (abf) a, to
compute for the Lh.s.

Lae ® S W2 45 p(p}) = [0} © 85 S~ (a6} 520)62] 0(8})
= (idy © 0)([6, ® 16) (p ® idg ® idg)(9; "))
= (idu ®0)((idy ® A @ idg)(9,") [Lm @ '] (idm B idg © A)(3))
= 1m @ FS 7 (@f*B)F' = 1u © 1,

where we have used the pentagon identity (2.36b), then the two antipode properties (2.15)
together with (id ® id ® €)(¢,) = 1m ® 1g to drop the reassociators ¢, and ¢,' and finally
(2.16).

The proof of (2.104f) is more complicated. First we rewrite

Lhas. (2.104f) = w(X),
where
X=[¢l®¢ 01015 ® ¢ [(p ®idg ® idg)(¢,) ® 1g][6,' ® 1¢ ® 1] (2.105)
and where the map w: M ® G%° — M ® G® is given by
wm®ab®ced) =mc S ad)a® S~ (ac)b

To rewrite the r.h.s. of (2.104f) in the same fashion we first use the identities (2.31) and (2.33)
and the definition (2.80) of g, to compute

Ly ® ] (idt ® A)(gy) = [Lua @ ][} © A (57 (a6})92 )]
= (8 ® (5™ ® STHAP ()] [ ® ] [Lag ® A(S™ (@) 4)]
= [1m® (ST @S (vPAP(¢)))] 6y ® A7)



Now we use the formula (2.24) for v implying
(57 © 57)() = S~ (0 dh))¢" © 57 (ad))3' ¢
to obtain
r.hs. (2.104f) = w(Y),
where
Y =[1m®1g®¢ '] (idy ®idg ®idg ® A) ([1m ® ¢] (ida ® A ®idg)(¢,))
(ld® A) o p®idg ®idg)(¢,) (2.106)

Using the pentagon eq. (2.36b) to replace the second and third reassociator in (2.106) yields

Y = [l 1g @67 (idy @idg @ 4)((d% @ A)(9,) (p2id®)(4,) [4;" © 1))
([d® A) o p®id®)(4,)
= (%" ® (A @id) 0 A)(g,) (p @ id @id) ([Lr @ 671 (1% © A)(6,) (p ©1d%")(4))
[¢,' ®1g ® 14]

= (id® ® (A®id) 0 A)(4,) (p® A ®id)(¢,) [(p ®id® ) (¢) ® 1¢] [¢," ® 1g ® 1g(] )
2.107

where in the second equation we have used (2.8) and (2.36a) to shift the reassociators ¢! and
qﬁ;l by one step to the right, and in the third equation again the pentagon identity (2.36b).
Hence, when computing w(Y'), the second factor in (2.107) may be dropped due to the an-
tipode property (2.15) and the two coproducts in the first factor disappear by the same reason.
Comparing with (2.105) proves, that w(X) = w(Y) and therefore both sides of (2.104f) are
equal. O

There are also some additional identities in the case where (X, ¢z, p,d,, drp) is a quasi-
commuting pair of coactions.

LEMMA 2.22. Let (A, &, p, $p, Prp) be a quasi-commuting pair of G-coactions on M and
let px/ps dn/p e given by Egs. (2.77) - (2.80). Then putting ¢, , = ¢;p1

5, (idg ® p)(pa) = [M93,)pr ® 63,1 [S71(8),) ® 1am ® 1g] (2.108a)
(idg © p)(ar) éx, = [S(D3,) ® 1a ® 161 [AA(93,) ® &3] (2.108b)
drp A ®idg)(p,) = [3, © p(83,)Ps] [16 ® 1a ® S(43,)] (2.108¢)
(A ®idg)(g,) ¢, = [1g @ Ty @ STH(83,)] (63, © 4op(43,)] (2.108d)

PROOF OF LEMMA 2.22. Again we remark that for functorial reasons Eqs. (2.108a) -
(2.108d) are all equivalent, see the arguments in the proof of Lemma, 2.21.

We prove the identity (2.108d). Introducing for a,b € G the map v(a ®b) := S~ (ab) a and
using the formula (2.80) for g, we compute

(A ®@id)(g,) by, = [\(@,) ® S H(ad)) b)) 5,
= (idg ® idp ® v) (()\ ®id ®id)(9,) [5) ® 1g])
= (idg @ id @ v) (145" © A)(65,)[1g © 6,] (14 & p@id)(¢n,))
=[1g® 15 ® S (83,)][1g ® ap] [d3, © P(H3,)];

Here we have plugged in the pentagon equation (2.51c) and used the fact that ¢, may be
dropped due to (2.51d) and the antipode property (2.15). This proves (2.108d) and therefore
Lemma 2.22. 2.22). O



Proof of Proposition 2.19. We only need to prove part 1, since part 2 is functorially
equivalent, see the proof of Lemma 2.21. If T is a Ap—intertwiner and R given by (2.81), then

poP(m(o)) R [S_l(m(,l)) ® l_A] = poP(m(o)) T pa [S_l(m(,l)) ® lA]
=R [1lg ® m]
by (2.73) and (2.103a), and therefore R is a right §,—implementer. Moreover, (2.103c) implies
PP (@) T[S H(aa) ® 1] = TAGR) pa[S ' (a3) ® 1ud]
=T
Conversely if R is a right d,—implementer and T given by (2.82), then
pP(m) T = p?(mg) R[S~ (q1) ® 1]
= p°P(63 m(0,0)) R[S™ (arm(0, 1))m( 1) ® 14]
= PP () R[S™ (g3)m—1) ® mq)]
=T A(m)

where in the second line we have used (2.103b) and in the third line the right J,—implementer
property (2.65) of R. Hence T is a Ap—intertwiner. Moreover

pP(@X) R[STHaz) ® 1a]pa = p7P (43 PR (o)) R [S™H(ax PR (1)) PA ® 14]
=R,

where we have used the §,-implementer property of R and then (2.103d). Thus the correspon-
dence T < R is one-to—one, and since g) and py are normal it is clearly normality preserving.

To prove that it is also coherence preserving assume now that the Ap—intertwiner T satisfies
the coherence condition (2.74) and let R = T py. Then

(A®id)(R)[h7' @ 1u] = ¢35 T (4,))'* A (2.109)
where A € G ® G ® M is given by
A=T% ¢, (A®idp)(pa) [h7" ® 1]
=T (idg ® \) (AM(@3) pa) [Lg @ pA] [ST(83) @ ST (8)) ® 1]
= (idg ® p") (A(B3) pa) R® [STH(¢3) ® STH($}) ® 1] (2.110)

Here we have used (2.103e) in the second line and the intertwining property (2.73) of T in the
third line. Using the intertwiner property (2.51a) of ¢, and (2.108a) we further compute

T (¢3,)'2 (idg ® p) (A(4}) p2)
= [ @) (o(B) (63, © 6,) RO 10| [S7@h) @ lg@1n]  (2110)
Putting (2.109) - (2.111) together we finally conclude
ARidR) [ '01y =[PP o PRERZ[STHI2) S 1 (T)e1y] (2112
where U, € G® G M ® G ® G is given by
U, = (1g® 16 ® ¢,)(idg ® idg ® p ® idg) ((idg ®idg ® p)(®,") (1g ® ¢)\p))

By (2.52d) we have ¥, = ¥ ! and therefore (2.112) is equivalent to the coherence condition
(2.67) for R as a right (4., ¥,)-implementer.

Conversely, assume now that R is a coherent right (4, ¥,.)-implementer and let T be given
by (2.82). To prove that T is coherent we have to show that

(A ®id)(T) = B

where B is given by (2.75). Now writing R = T py and going backwards through the derivation
(2.109)«(2.112) we conclude

(A ®id)(T py) = B (A ®id)(py) (2.113)



Thus, if p) were invertible we could immediately conclude that T is coherent. It turns out that
we may use (2.103c) as a substitute for the invertibility of py, since it implies

(A id)(T) = (A ®id) (p™(q}) T pa) (S (h) @ 1a0)
= (A®id)(p(a}) B(A ®id) (pr (S (a}) © 1))
= B(A 0id) (M) pr (S () © 1w)
=B

Here we have used (2.113) in the second line, (2.76) in the third line and again (2.103c) in the
last line. Thus T is a coherent Ap—intertwiner, which concludes the proof of Proposition 2.19.
O



