The quantum double $\mathcal{D}(\mathcal{G})$

As our first important application we will now propose the definition of the quantum double $\mathcal{D}(\mathcal{G})$ of a (weak) quasi-Hopf algebra \mathcal{G} . We will show that, similarly as for ordinary Hopf algebras, the quantum double $\mathcal{D}(\mathcal{G})$ is a quasitriangular weak quasi-Hopf algebra, where $\mathcal{D}(\mathcal{G})$ is weak if and only if \mathcal{G} is weak, i.e. iff $\Delta(1) \neq 1$. We will give explicit formulas for the coproduct, the antipode and the R-matrix. These results are formulated in Theorem 4.3 and Theorem 4.4.

In view of the identification of the quantum double $\mathcal{D}(\mathcal{G})$ of an ordinary Hopf algebra \mathcal{G} with the diagonal crossed product $\mathcal{G} \bowtie \hat{\mathcal{G}}$ in (1.26) we propose the following

DEFINITION 4.1. Let $(\mathcal{G}, \Delta, \epsilon, \phi)$ be a weak quasi-Hopf algebra. The diagonal crossed product $\mathcal{D}(\mathcal{G}) := \hat{\mathcal{G}} \bowtie \Delta \mathcal{G}_{\Delta} \cong \Delta \mathcal{G}_{\Delta} \bowtie \hat{\mathcal{G}}$ associated with the quasi-commuting pair $(\lambda = \rho = \Delta, \phi_{\lambda} = \phi_{\rho} = \phi_{\lambda\rho} = \phi)$ of \mathcal{G} -coactions on $\mathcal{M} \equiv \mathcal{G}$ is called the *quantum double of* \mathcal{G} .

Following the notations of [Nil97], the universal $\lambda \rho$ -intertwiner of the quantum double will be denoted by $\mathbf{D} \equiv \mathbf{\Gamma}_{\mathcal{D}(\mathcal{G})} \in \mathcal{G} \otimes \mathcal{D}(\mathcal{G})$. Hence it obeys the relations $(\epsilon \otimes \mathrm{id})(\mathbf{D}) = \mathbf{1}_{\mathcal{D}(\mathcal{G})}$ and

$$\mathbf{D}\,\Delta(\mathbf{1}) = \Delta^{op}(\mathbf{1})\,\mathbf{D} = \mathbf{D} \tag{4.1}$$

$$\mathbf{D}\,\Delta(a) = \Delta^{op}(a)\,\mathbf{D}\,,\quad \forall a \in \mathcal{G} \tag{4.2}$$

$$\phi^{312} \mathbf{D}^{13} (\phi^{-1})^{132} \mathbf{D}^{23} \phi = (\Delta \otimes \mathrm{id})(\mathbf{D})$$
(4.3)

where we have suppressed the embedding $\mathcal{G} \hookrightarrow \mathcal{D}(\mathcal{G})$. Property (4.2) motivates to call **D** the universal flip operator for Δ . Clearly, the relation (4.1) may be ommitted if $\Delta(\mathbf{1}) = \mathbf{1} \otimes \mathbf{1}$. Note that according to Theorem 2.1, the quantum double $\mathcal{D}(\mathcal{G})$ may be realized as an algebraic structure on the vector space $\hat{\mathcal{G}} \otimes \mathcal{G}$ (or, in the weak case, a certain subspace thereof, see Theorem 3.1).

We remark that a definition of a quantum double $\mathcal{D}(\mathcal{G})$ for quasi-Hopf algebras \mathcal{G} has also recently been proposed by S. Majid [Maj97] using a Tannaka-Krein type reconstruction procedure [Maj92]. Unfortunately it is hard to identify this algebra in terms of generators and relations in concrete models. It will be shown in Appendix A that our construction in fact provides a concrete realization of the abstract definition of [Maj97].

The first section of this chapter is devoted to the proof that $\mathcal{D}(\mathcal{G})$ is a (weak) quasi-bialgebra. Analogously as in Proposition 1.8 this will also guarantee that every diagonal crossed product $\mathcal{M}_1 = {}_{\mathcal{M}}\mathcal{M}_{\rho} \bowtie \hat{\mathcal{G}}$ naturally admits a quasi-commuting pair $(\lambda_D, \rho_D, \phi_{\lambda_D}, \phi_{\rho_D}, \phi_{\lambda_D \rho_D})$ of coactions of $\mathcal{D}(\mathcal{G})$ on \mathcal{M}_1 . The last observation will be of great importance, since it implies that the quantum chains constructed as iterated diagonal crossed products in Chapter 5 admit localized $\mathcal{D}(\mathcal{G})$ -coactions.

In Section 4.2 we show that $\mathcal{D}(\mathcal{G})$ possess an antipode and a quasitriangular R-matrix. Hence $\mathcal{D}(\mathcal{G})$ becomes a (weak) quasitriangular quasi-Hopf algebra, generalizing the well-known results for ordinary Hopf algebras to the weak quasi-Hopf setting. We will see that the proof of the antipode properties is fairly nontrivial. A part of this proof is postponed to Chapter B, where we use graphical methods.

As an application we discuss in Section 4.3 the twisted double $\mathcal{D}^{\omega}(G)$ of [DPR90] and generalize the results of [Nil97] on the relation with the monodromy algebras of [AGS95, AGS96, AS96] in Section 4.4. The results of Section 4.4 will also become important in Chapter 5, when we discuss current algebras on the lattice.

4.1. $\mathcal{D}(\mathcal{G})$ as a quasi-bialgebra and $\mathcal{D}(\mathcal{G})$ -coactions

We begin with constructing $\lambda_D: \mathcal{M}_1 \to \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$ and $\rho_D: \mathcal{M}_1 \to \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G})$ as algebra maps extending the left and right coactions $\lambda: \mathcal{M}_1 \supset \mathcal{M} \to \mathcal{G} \otimes \mathcal{M} \subset \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$ and

 $\rho: \mathcal{M}_1 \supset \mathcal{M} \to \mathcal{M} \otimes \mathcal{G} \subset \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G})$, respectively (see Proposition 1.8). The detailed proof of the next Lemma will also give some flavour of the calculations with generating marrices. (Try to give a proof without using generating matrices!).

Lemma 4.2. Let $(\lambda, \rho, \phi_{\lambda}, \phi_{\rho}, \phi_{\lambda\rho})$ be a quasi-commuting pair of \mathcal{G} -coactions on \mathcal{M} and let $\mathcal{M}_1 \equiv {}_{\lambda}\mathcal{M}_{\rho} \bowtie \hat{\mathcal{G}}$ be the associated diagonal crossed product with universal $\lambda \rho$ -intertwiner $\Gamma \in \mathcal{G} \otimes \mathcal{M}_1$. Then there exist uniquely determined algebra maps $\lambda_D : \mathcal{M}_1 \to \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$ and $\rho_D : \mathcal{M}_1 \to \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G})$ satisfying (we suppress all embeddings $\mathcal{M} \hookrightarrow \mathcal{M}_1$ and $\mathcal{G} \hookrightarrow \mathcal{D}(\mathcal{G})$)

$$\lambda_D(m) = \lambda(m), \quad \forall m \in \mathcal{M} \subset \mathcal{M}_1$$
 (4.4)

$$(\mathrm{id} \otimes \lambda_D)(\mathbf{\Gamma}) = (\phi_{\lambda_\rho}^{-1})^{231} \mathbf{\Gamma}^{13} \phi_{\lambda}^{213} \mathbf{D}^{12} \phi_{\lambda}^{-1} \in \mathcal{G} \otimes \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$$

$$(4.5)$$

$$\rho_D(m) = \rho(m), \quad \forall m \in \mathcal{M} \subset \mathcal{M}_1 \tag{4.6}$$

$$(\mathrm{id} \otimes \rho_D)(\mathbf{\Gamma}) = (\phi_{\varrho}^{-1})^{231} \mathbf{D}^{13} \phi_{\varrho}^{213} \mathbf{\Gamma}^{12} \phi_{\lambda_{\varrho}}^{-1} \in \mathcal{G} \otimes \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G})$$
(4.7)

Moreover the algebra maps λ_D, ρ_D are unital if \mathcal{G} is not weak, i.e. if $\Delta(1) = 1 \otimes 1$.

Note that for the case that \mathcal{G} is an ordinary Hopf algebra and all reassociators are trivial, we recover the definition of λ_D , ρ_D given in Proposition 1.8.

PROOF. Let us first suppose that $\Delta(1) = 1 \otimes 1$. Viewing the left \mathcal{G} -coaction $\lambda: \mathcal{M} \longrightarrow \mathcal{G} \otimes \mathcal{M}$ as a map $\lambda: \mathcal{M} \longrightarrow \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$, Theorem 2.1 states that λ_D is a unital algebra map extending λ if and only if $\mathbf{T}_D := (\mathrm{id} \otimes \lambda_D)(\mathbf{\Gamma}) \in \mathcal{G} \otimes (\mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1)$ is a normal coherent $\lambda \rho$ -intertwiner. Now normality of \mathbf{T}_D follows from the normality of $\mathbf{\Gamma}$. To prove that \mathbf{T}_D is a $\lambda \rho$ -intertwiner we compute for all $m \in \mathcal{M}$

$$\mathbf{T}_{D} \left(\mathrm{id}_{\mathcal{G}} \otimes \lambda_{D} \right) (\lambda(m)) = (\phi_{\lambda\rho}^{-1})^{231} \mathbf{\Gamma}^{13} \phi_{\lambda}^{213} \mathbf{D}^{12} \phi_{\lambda}^{-1} \left(\mathrm{id}_{\mathcal{G}} \otimes \lambda_{D} \right) (\lambda(m))$$

$$= \left[(\lambda_{D} \otimes \mathrm{id}_{\mathcal{G}}) (\rho(m)) \right]^{231} (\phi_{\lambda\rho}^{-1})^{231} \mathbf{\Gamma}^{13} \phi_{\lambda}^{213} \mathbf{D}^{12} \phi_{\lambda}^{-1}$$

$$= (\mathrm{id}_{\mathcal{G}} \otimes \lambda_{D}) (\rho^{op}(m)) \mathbf{T}_{D}$$

where both sides are viewed as elements in $\mathcal{G} \otimes \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$. Here we have used the intertwining properties of Γ and \mathbf{D} and of the three reassociators.

To show that \mathbf{T}_D also satisfies the coherence condition, i.e. Eq. (2.3), we compute in $\mathcal{G} \otimes \mathcal{G} \otimes \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$ - again suppressing all embeddings

$$\begin{split} (\Delta \otimes \operatorname{id})(\mathbf{T}_D) &= \left[(\operatorname{id} \otimes \operatorname{id} \otimes \Delta) (\phi_{\lambda\rho}^{-1}) \left[\mathbf{1}_{\mathcal{G}} \otimes \phi_{\rho} \right] \right]^{3412} \\ & \quad \Gamma^{14} \left(\phi_{\lambda\rho}^{-1} \right)^{142} \Gamma^{24} \left[\left[\mathbf{1}_{\mathcal{G}} \otimes \phi_{\lambda} \right] \left(\operatorname{id} \otimes \Delta \otimes \operatorname{id} \right) (\phi_{\lambda}) \left[\phi \otimes \mathbf{1}_{\mathcal{M}} \right] \right]^{3124} \mathbf{D}^{13} \left(\phi^{-1} \right)^{132} \mathbf{D}^{23} \\ & \quad \left[\phi \otimes \mathbf{1}_{\mathcal{M}} \right] (\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\lambda}^{-1}) \\ &= \left[(\lambda \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] (\operatorname{id} \otimes \rho \otimes \operatorname{id}) (\phi_{\lambda\rho}^{-1}) \right]^{3412} \\ & \quad \Gamma^{14} \left(\phi_{\lambda\rho}^{-1} \right)^{142} \Gamma^{24} \left[(\operatorname{id} \otimes \operatorname{id} \otimes \lambda) (\phi_{\lambda}) (\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\lambda}) \right]^{3124} \mathbf{D}^{13} \left(\phi^{-1} \right)^{132} \mathbf{D}^{23} \\ & \quad \left(\operatorname{id} \otimes \Delta \otimes \operatorname{id} \right) (\phi_{\lambda}^{-1}) \left[\mathbf{1}_{\mathcal{G}} \otimes \phi_{\lambda}^{-1} \right] (\operatorname{id} \otimes \operatorname{id} \otimes \lambda) (\phi_{\lambda}) \\ &= \left[(\lambda \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \\ & \quad \left[(\operatorname{id} \otimes \lambda \otimes \operatorname{id}) (\phi_{\lambda}^{-1}) \left[\mathbf{1}_{\mathcal{G}} \otimes \phi_{\lambda\rho}^{-1} \right] (\operatorname{id} \otimes \operatorname{id} \otimes \rho) (\phi_{\lambda}) \right]^{3142} \Gamma^{24} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\lambda}) \left[\phi^{-1} \otimes \mathbf{1}_{\mathcal{M}} \right] (\operatorname{id} \otimes \Delta \otimes \operatorname{id}) (\phi_{\lambda}^{-1}) \right]^{1324} \Gamma^{24} \mathbf{D}^{13} \\ & \quad \left[(\lambda \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) (\phi_{\rho}) \left[\phi_{\lambda\rho}^{-1} \otimes \mathbf{1}_{\mathcal{G}} \right] \right]^{3412} \Gamma^{14} \phi_{\lambda}^{314} \mathbf{D}^{13} \\ & \quad \left[(\Delta \otimes \operatorname{id} \otimes \operatorname{id}) \left(\phi$$

Here we have used several pentagon identities for the reassociators involved and the intertwining and coherence properties of Γ and \mathbf{D} . In the first equality we used (2.3) for Γ and \mathbf{D} , and in the second the pentagons (2.51c) and (2.35b). For the third equality we used the intertwining properties of \mathbf{D} and Γ to move two more reassociators between \mathbf{D}^{13} and \mathbf{D}^{23} and two more

between Γ^{14} and Γ^{24} . To arrive at the fourth equality we commuted \mathbf{D}^{13} and Γ^{24} and used the pentagons (2.51b) and (2.35b) and then again the intertwining properties of \mathbf{D} and Γ to bring two reassociators back between \mathbf{D}^{13} and Γ^{24} . The last equality holds by (4.4), (4.5). Thus we have shown that \mathbf{T}_D is coherent and therefore the definitions (4.4), (4.5) uniquely define a unital algebra map λ_D extending λ . Similarly one shows that ρ_D defines a unital algebra map $\rho_D: \mathcal{M}_1 \longrightarrow \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G})$ extending ρ .

Now let $\Delta(1) \neq 1 \otimes 1$, then eventually λ is non unital implying that also λ_D may be nonunital. That λ_D is an algebra map is proved as above.

Choosing in Lemma 4.2 also $\mathcal{M} = \mathcal{G}$ (i.e. $\mathcal{M}_1 = \mathcal{D}(\mathcal{G})$) we arrive at the following

Theorem 4.3. Let $(\mathcal{G}, \Delta, \epsilon, \phi)$ be a weak quasi-Hopf algebra, denote $i_D : \mathcal{G} \hookrightarrow \mathcal{D}(\mathcal{G})$ the canonical embedding and let $\mathbf{D} \in \mathcal{G} \otimes \mathcal{D}(\mathcal{G})$ be the universal flip operator.

(i) Then $(\mathcal{D}(\mathcal{G}), \Delta_D, \epsilon_D, \phi_D)$ is a weak quasi-bialgebra, where

$$\phi_D := (i_D \otimes i_D \otimes i_D)(\phi) \tag{4.8}$$

$$\epsilon_D(i_D(a)) := \epsilon(a), \quad (\mathrm{id} \otimes \epsilon_D)(\mathbf{D}) := \mathbf{1}_{\mathcal{D}(\mathcal{G})}$$
(4.9)

$$\Delta_D(i_D(a)) := (i_D \otimes i_D)(\Delta(a)), \quad \forall a \in \mathcal{G}$$
(4.10)

$$(i_D \otimes \Delta_D)(\mathbf{D}) := (\phi_D^{-1})^{231} \mathbf{D}^{13} \phi_D^{213} \mathbf{D}^{12} \phi_D^{-1}$$
(4.11)

Moreover $\mathcal{D}(\mathcal{G})$ is weak if and only if \mathcal{G} is weak.

(ii) Under the setting of Lemma 4.2 denote $i_{\mathcal{M}_1}: \mathcal{M} \hookrightarrow \mathcal{M}_1$ the embedding and define

$$\phi_{\lambda_D} := (i_D \otimes i_D \otimes i_{\mathcal{M}_1})(\phi_{\lambda}) \quad \in \mathcal{D}(\mathcal{G}) \otimes \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1$$

$$\phi_{\rho_D} := (i_{\mathcal{M}_1} \otimes i_D \otimes i_D)(\phi_{\rho}) \quad \in \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G}) \otimes \mathcal{D}(\mathcal{G})$$

$$\phi_{\lambda_D \rho_D} := (i_D \otimes i_{\mathcal{M}_1} \otimes i_D)(\phi_{\lambda_\rho}) \quad \in \mathcal{D}(\mathcal{G}) \otimes \mathcal{M}_1 \otimes \mathcal{D}(\mathcal{G})$$

Then $(\lambda_D, \rho_D, \phi_{\lambda_D}, \phi_{\rho_D}, \phi_{\lambda_D \rho_D})$ provides a quasi-commuting pair of $\mathcal{D}(\mathcal{G})$ -coactions on $\mathcal{M}_1 \equiv {}_{\lambda} \mathcal{M}_{\rho} \bowtie \hat{\mathcal{G}}$.

PROOF. Setting $\mathcal{M} := \mathcal{G}$ and $\lambda = \Delta$ in Lemma 4.2 implies that Δ_D is an algebra morphism, which is unital if and only if Δ is unital. The property of ϵ_D being a counit for Δ_D follows directly from (4.1) and the fact that (id $\otimes \epsilon \otimes \text{id}$)(ϕ) = Δ (1). To show that Δ_D is quasi-coassociative one computes that

$$[\mathbf{1}_{\mathcal{G}} \otimes \phi_D] \cdot (\mathrm{id} \otimes \Delta_D \otimes \mathrm{id}) ((\mathrm{id} \otimes \Delta_D)(\mathbf{D})) = (\mathrm{id} \otimes \mathrm{id} \otimes \Delta_D) ((\mathrm{id} \otimes \Delta_D)(\mathbf{D})) \cdot [\mathbf{1}_{\mathcal{G}} \otimes \phi_D],$$

where one has to use (4.11), the pentagon equation for ϕ and the intertwiner property (4.2) of **D** similarly as in the proof of Lemma 4.2. Thus Δ_D is quasi-coassociative and this concludes the proof of part (i).

Part (ii) is shown by direct calculation using the intertwiner properties of Γ and D and several pentagon identities for the reassociators involved. The details are left to the reader. \square

4.2. The quasitriangular quasi-Hopf structure

Note that viewed in $\mathcal{D}(\mathcal{G}) \otimes \mathcal{D}(\mathcal{G})$ and $\mathcal{D}(\mathcal{G})^{\otimes^3}$, respectively, the relations (4.3) and (4.11) are the defining properties of a quasitriangular R-matrix, see (2.18)-(2.19). Hence $R_D := (i_D \otimes \mathrm{id})(\mathbf{D})$ is an R-matrix for $\mathcal{D}(\mathcal{G})$ provided we can also show the intertwiner property (2.17).

To arrive at a suitable definition of an antipode S_D for $\mathcal{D}(\mathcal{G})$ extending the antipode of \mathcal{G} , we anticipate the result of Chapter B, Cor. B.3, that a quasitriangular R-matrix of a quasi-Hopf algebra obeys $(S \otimes S)(R) = f^{op} R f^{-1}$, where f is the twist defined in (2.26). This suggests the following

Theorem 4.4. Let $\mathcal{D}(\mathcal{G})$ be the (weak) quasi-bialgebra defined in Theorem 4.3. Then $(\mathcal{D}(\mathcal{G}), \Delta_D, \epsilon_D, \phi_D, S_D, \alpha_D, \beta_D, R_D)$ is a quasitriangular (weak) quasi-Hopf algebra with R-Matrix R_D and antipode S_D given by

$$R_D := (i_D \otimes \mathrm{id})(\mathbf{D}) \tag{4.12}$$

$$S_D(i_D(a)) := i_D(S(a)), \quad \forall a \in \mathcal{G}$$

$$\tag{4.13}$$

$$(S \otimes S_D)(\mathbf{D}) := (\mathrm{id} \otimes i_D)(f^{op}) \mathbf{D}(\mathrm{id} \otimes i_D) (f^{-1})$$
(4.14)

where $f \in \mathcal{G} \otimes \mathcal{G}$ is the twist defined in (2.26). The elements α_D, β_D are given by

$$\alpha_D := i_D(\alpha), \quad \beta_D := i_D(\beta). \tag{4.15}$$

Clearly, if \mathcal{G} is a Hopf algebra and $\phi = \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1}$, one recovers the well-known definitions of Δ_D, S_D and R_D in Drinfel'd's quantum double

$$\Delta_{D}(i_{D}(g)) = (i_{D} \otimes i_{D})(\Delta(g))$$

$$\Delta_{D}(D(\varphi)) = (D \otimes D)(\hat{\Delta}^{op}(\varphi))$$

$$S_{D}(i_{D}(g)) = i_{D}(S(g))$$

$$S_{D}(D(\varphi)) = D(S^{-1}(\varphi))$$

$$R_{D} = (\hat{1} \otimes e_{\mu}) \otimes (e^{\mu} \otimes 1),$$

where $D(\varphi) := (\varphi \otimes id)(\mathbf{D}), \ \varphi \in \hat{\mathcal{G}}.$

PROOF. To simplify the notation we will frequently suppress the embedding i_D , if no confusion is possible, i.e. we write $\alpha \equiv i_D(\alpha) = \alpha_D$, $(\mathrm{id} \otimes \mathrm{id} \otimes i_D)(\phi) \equiv \phi$ etc. To show quasitriangularity we first note that the element $R_D = (i_D \otimes \mathrm{id})(\mathbf{D})$ fulfills (2.18) and (2.19) so to say by definition because of (4.3) and (4.11). The (quasi-) invertibility of R_D is equivalent to the (quasi-) invertibility of the generating matrix \mathbf{D} which will be proved below in Lemma B.8 of Chapter B using graphical methods. We are left to show that R_D intertwines Δ_D and Δ_D^{op} , i.e.

$$\Delta_D^{op}(i_D(a)) \cdot R_D = R_D \cdot \Delta_D(i_D(a)), \quad \forall a \in \mathcal{G}$$
(4.16)

$$(\mathrm{id} \otimes \Delta_{op}^{D})(\mathbf{D})) \cdot R_{D}^{23} = R_{D}^{23} \cdot (\mathrm{id} \otimes \Delta_{D})(\mathbf{D}). \tag{4.17}$$

Now Eq. (4.16) follows from (4.10). Hence we also get in $\mathcal{D}(\mathcal{G})^{\otimes^3}$

$$R_D^{12} \cdot (\Delta_D \otimes \mathrm{id})(R_D) = (\Delta_D^{op} \otimes \mathrm{id})(R_D) \cdot R_D^{12}, \tag{4.18}$$

which together with (2.18) implies the quasi-Yang Baxter equation

$$(\phi_D^{-1})^{321} R_D^{12} \phi_D^{312} R_D^{13} (\phi_D^{-1})^{132} R_D^{23} = R_D^{23} (\phi_D^{-1})^{231} R_D^{13} \phi_D^{213} R_D^{12} \phi_D^{-1}.$$
 (4.19)

Using (4.11), Eq. (4.19) is further equivalent to

$$(i_D \otimes \Delta_D^{op})(\mathbf{D}) \cdot R_D^{23} = R_D^{23} \cdot (i_D \otimes \Delta_D)(\mathbf{D})$$

which also proves (4.17). Hence R_D is quasitriangular.

In order to prove that the definition of S_D in (4.13),(4.14) may be extended antimultiplicatively to the entire algebra $\mathcal{D}(\mathcal{G})$, we have to show that this continuation is consistent with the defining relations (4.2),(4.3). This amounts to showing

$$(S \otimes S_D)(\mathbf{D}) \cdot (S \otimes S_D)(\Delta^{op}(a)) = (S \otimes S_D)(\Delta(a)) \cdot (S \otimes S_D)(\mathbf{D}), \quad \text{and}$$
 (4.20)

$$(S \otimes S \otimes S_D) ((\Delta \otimes \mathrm{id})(\mathbf{D})) = (S \otimes S \otimes S_D)(\phi) \cdot (S \otimes S \otimes S_D)(\mathbf{D}^{23}) \cdot (S \otimes S \otimes S_D)((\phi^{-1})^{132}) \cdot (S \otimes S \otimes S_D)(\mathbf{D}^{13}) \cdot (S \otimes S \otimes S_D)(\phi^{312}).$$
(4.21)

Since by definition $(S \otimes S_D)(\mathbf{D}) = f^{op}\mathbf{D}f^{-1}$, equation (4.20) follows directly from (4.2) and the fact, that by (2.28) f has the property $f \cdot \Delta(S(a)) = (S \otimes S)(\Delta_{op}(a)) \cdot f$. For the proof of (4.21) let us recall, that $\Delta_f := f\Delta(\cdot)f^{-1}$ defines a twist equivalent quasi-coassociative coproduct on \mathcal{G} with twisted reassociator ϕ_f defined in (2.23) satisfying $\phi_f = (S \otimes S \otimes S)(\phi^{321})$ (see (2.30)). Thus we get for the l.h.s. of (4.21) (with $\mathbf{D}_f := f^{op}\mathbf{D}f^{-1}$)

$$(S \otimes S \otimes S_D) ((\Delta \otimes \mathrm{id})(\mathbf{D})) = (\Delta_f^{op} \otimes \mathrm{id}) ((S \otimes S_D)(\mathbf{D}))$$
$$= (\Delta_f^{op} \otimes \mathrm{id})(\mathbf{D}_f)$$
$$= \phi_f^{321} \mathbf{D}_f^{23} (\phi_f^{-1})^{231} \mathbf{D}_f^{13} \phi_f^{213},$$

where the last equality is exactly the transformation property of a quasitriangular R-matrix under a twist [Dri90] and may be proven analogously using (4.2). By (2.30) this equals the r.h.s. of (4.21). Hence S_D defines an anti-algebra morphism on $\mathcal{D}(\mathcal{G})$.

 $^{^1 \, \}text{where}$ we have again suppressed the embedding id $\otimes \, i_D$ of f

We are left to show that the map S_D fulfills the antipode axioms given in (2.15) and (2.16). Axiom (2.16) is clearly fulfilled since we have $S_D \circ i_D = i_D \circ S$ and $\alpha_D = i_D(\alpha)$, $\beta_D = i_D(\beta)$, $\phi_D = (i_D \otimes i_D \otimes i_D)(\phi)$. Noting that $\Delta_D(i_D(a)) = (i_D \otimes i_D)(\Delta(a))$, $a \in \mathcal{G}$, the validity of axiom (2.15) follows from its validity in \mathcal{G} and the following two identities, which will be proven in Section B.3, Lemma B.8.

$$(\mathrm{id} \otimes \mu_D) \circ (\mathrm{id} \otimes S_D \otimes \mathrm{id}) \Big((\mathrm{id} \otimes \Delta_D)(\mathbf{D}) \cdot (\mathbf{1}_{\mathcal{G}} \otimes \mathbf{1}_{\mathcal{G}} \otimes \alpha_D) \Big) = \mathbf{1}_{\mathcal{G}} \otimes \alpha_D$$
$$(\mathrm{id} \otimes \mu_D) \circ (\mathrm{id} \otimes \mathrm{id} \otimes S_D) \Big((\mathrm{id} \otimes \Delta_D)(\mathbf{D}) \cdot (\mathbf{1}_{\mathcal{G}} \otimes \beta_D \otimes \mathbf{1}_{\mathcal{G}}) \Big) = \mathbf{1}_{\mathcal{G}} \otimes \beta_D,$$

with $\mu_D: \mathcal{D}(\mathcal{G}) \otimes \mathcal{D}(\mathcal{G}) \to \mathcal{D}(\mathcal{G})$ denoting the multiplication map.

As in the Hopf algebra case, one may take the construction of the quasitriangular R-Matrix in $\mathcal{D}(\mathcal{G})$ as the starting point and formulate Theorem 4.3(i) together with Theorem 4.4 differently:

COROLLARY 4.5. Let \mathcal{G} be a finite dimensional quasi-Hopf algebra with invertible antipode. Then there exists a unique quasi-Hopf algebra $\mathcal{D}(\mathcal{G})$ such that

- (i) $\mathcal{D}(\mathcal{G}) = \hat{\mathcal{G}} \otimes \mathcal{G}$ as a vector space
- (ii) the canonical embedding $i_D: \mathcal{G} \hookrightarrow \hat{\mathbf{1}} \otimes \mathcal{G} \subset \mathcal{D}(\mathcal{G})$ is a unital injective homomorphism of quasi-Hopf algebras,
- (iii) Let $\mathbf{D} \in \mathcal{G} \otimes \mathcal{D}(\mathcal{G})$ be given by $\mathbf{D} := S^{-1}(p^2) e_{\mu} p_{(1)}^1 \otimes (e^{\mu} \otimes p_{(2)}^1)$, where $p := p_{\rho = \Delta}$ is defined in (2.79), then $R_D := (i_D \otimes \mathrm{id})(\mathbf{D}) \in \mathcal{D}(\mathcal{G}) \otimes \mathcal{D}(\mathcal{G})$ is quasitriangular.

This quasi-Hopf algebra structure is given by (4.1)-(4.3) and the definitions in Theorem 4.3 and 4.4.

PROOF. Property (ii) implies (4.8), the first part of (4.9), (4.10) and (4.15), yielding also $f_D = (i_D \otimes i_D)(f)$. The quasitriangularity of R_D implies (4.2), (4.3), (4.11) and the second part of (4.9) and according to (B.16) $(S_D \otimes S_D)(R_D) = f_D^{op} R_D f_D^{-1}$. Hence the antipode is uniquely fixed to be the one defined in Theorem 4.4.

We remark that the above Corollary is also valid for weak quasi-Hopf algebras where only part (i) has to be modified according to

(i') As a vector space $\mathcal{D}(\mathcal{G}) = \lim\{\mathbf{1}_{(-1)} \rightharpoonup \varphi \leftharpoonup S^{-1}(\mathbf{1}_{(1)}) \otimes \mathbf{1}_{(0)} \ a \mid \varphi \in \hat{\mathcal{G}}, a \in \mathcal{G}\}$, where $\mathbf{1}_{(-1)} \otimes \mathbf{1}_{(0)} \otimes \mathbf{1}_{(1)} = (\Delta \otimes \mathrm{id})(\Delta(\mathbf{1}))$.

4.3. The twisted double of a finite group

As an application we now use our definition of the quantum double to recover the "twisted" quantum double $\mathcal{D}^{\omega}(G)$ of [DPR90], where G is a finite group and $\omega: G \times G \times G \to U(1)$ is a normalized 3-cocycle. By definition this means $\omega(g,h,k)=1$ whenever at least one of the three arguments is equal to the unit e of G and

$$\omega(g,x,y)\omega(gx,y,z)^{-1}\omega(g,xy,z)\omega(g,x,yz)^{-1}\omega(x,y,z)=1, \quad \forall g,x,y,z \in G.$$

The Hopf algebra $\mathcal{G} := Fun(G)$ of functions on G may then also be viewed as a quasi-Hopf algebra with its standard coproduct, counit and antipode but with reassociator given by

$$\phi := \sum_{g,h,k \in G} \omega(g,h,k) \cdot (\delta_g \otimes \delta_h \otimes \delta_k), \tag{4.22}$$

where $\delta_g(x) := \delta_{g,x}$. The identities (2.9) and (2.11) for ϕ are equivalent to ω being a normalized 3-cocycle. Also note that choosing $\alpha = \mathbf{1}_{\mathcal{G}}$ the antipode axioms now require $\beta = \sum_g \omega(g^{-1}, g, g^{-1})\delta_g$. In this special example our quantum double $\mathcal{D}(\mathcal{G}) \equiv \hat{\mathcal{G}} \bowtie \mathcal{G}$ allows for another identification with the linear space $\hat{\mathcal{G}} \otimes \mathcal{G}$.

LEMMA 4.6. Let \mathcal{G} be as above and define $\sigma: \hat{\mathcal{G}} \otimes \mathcal{G} \longrightarrow \mathcal{D}(\mathcal{G})$ by $\sigma(\varphi \otimes a) := D(\varphi) a, \varphi \in \hat{\mathcal{G}}, a \in \mathcal{G}$. Then σ is a linear bijection.

PROOF. Since $(\mathcal{G}, \Delta, \epsilon, S)$ is also an ordinary Hopf algebra, the relation (4.2) is equivalent to (suppressing the symbol i_D)

$$a D(\varphi) = D(a_{(1)} \rightharpoonup \varphi \leftharpoonup S^{-1}(a_{(3)})) a_{(2)}, \quad \forall a \in \mathcal{G}, \varphi \in \hat{\mathcal{G}}.$$

$$(4.23)$$

Using (2.4) (for the special case $\Gamma = \mathbf{D}$) this implies

$$\varphi \bowtie a \equiv (\operatorname{id} \otimes \varphi_{(1)})(q_{\rho}) D(\varphi_{(2)}) a = D(q_{\rho(1)}^{1} \rightharpoonup \varphi \leftharpoonup (q_{\rho}^{2} S^{-1}(q_{\rho(3)}^{1}))) q_{\rho(2)}^{1} a,$$

which lies in the image of σ . Hence, σ is surjective and therefore also injective.

We note that in general the map σ need not be surjective (nor injective). Due to Lemma 4.6 we may now identify $\mathcal{D}(\mathcal{G})$ with the new algebraic structure on $\hat{\mathcal{G}} \otimes \mathcal{G}$ induced by σ^{-1} . We call this algebra $\hat{\mathcal{G}} \otimes_D \mathcal{G}$. Putting $a \equiv \hat{\mathbf{1}} \otimes_D a$, $a \in \mathcal{G}$ and $\mathbf{D} := e_{\mu} \otimes (e^{\mu} \otimes_D \mathbf{1}) \in \mathcal{G} \otimes (\hat{\mathcal{G}} \otimes_D \mathcal{G})$ it is described by the relations (4.23),(4.3) and the requirement of $\mathcal{G} \equiv \hat{\mathbf{1}} \otimes_D \mathcal{G}$ being a unital subalgebra. To compute these multiplication rules we now use that the group elements $g \in \mathcal{G}$ provide a basis in $\hat{\mathcal{G}}$ with dual basis $\delta_g \in \mathcal{G}$. Hence a basis of $\hat{\mathcal{G}} \otimes_D \mathcal{G}$ is given by $\{h \otimes_D \delta_g\}_{h,g \in \mathcal{G}}$. In this basis the generating matrix \mathbf{D} is given by

$$\mathbf{D} = \sum_{k \in G} \delta_k \otimes (k \otimes_D \mathbf{1}_{\mathcal{G}}), \quad \mathbf{1}_{\mathcal{G}} = \sum_{h \in G} \delta_h. \tag{4.24}$$

Let us know compute the multiplication laws according to the (4.2),(4.3). To begin with, we have

$$(h \otimes \mathbf{1}_G)(e \otimes \delta_g) = (h \otimes \delta_g)$$
 and $(g \otimes \mathbf{1}_G)(h \otimes \mathbf{1}_G) = (gh \otimes \mathbf{1}_G)$.

Taking $(x \otimes id)$ of both sides of (4.2), where $x \in G$, and using $\Delta(\delta_g) = \sum_{k \in G} \delta_k \otimes \delta_{k^{-1}g}$ we get

$$(x \otimes \mathbf{1}_{\mathcal{G}})(e \otimes \delta_{x^{-1}g}) = (e \otimes \delta_{gx^{-1}})(x \otimes \mathbf{1}_{\mathcal{G}}),$$

or equivalently

$$(e \otimes \delta_g)(x \otimes \mathbf{1}_{\mathcal{G}}) = (x \otimes \delta_{x^{-1}gx}). \tag{4.25}$$

Finally, pairing equation (4.3) with $x \otimes y \in \hat{\mathcal{G}} \otimes \hat{\mathcal{G}}$ in the two auxiliary spaces, the l.h.s. yields

$$\sum_{s,r,t\in G} \omega(s,x,y) (\mathbf{1}\otimes\delta_s)(x\otimes\mathbf{1}_{\mathcal{G}}) \cdot \omega(x,r,y)^{-1} (e\otimes\delta_r)(y\otimes\mathbf{1}_{\mathcal{G}}) \cdot \omega(x,y,t) (\mathbf{1}\otimes\delta_t)
= (x\otimes\mathbf{1}_{\mathcal{G}})(y\otimes\mathbf{1}_{\mathcal{G}}) \cdot \sum_{s,r,t\in G} \frac{\omega(s,x,y)\omega(x,y,t)}{\omega(x,r,y)} (e\otimes\delta_{(xy)^{-1}sxy}\delta_{y^{-1}ry}\delta_t)
= \sum_{t\in G} (x\otimes\mathbf{1}_{\mathcal{G}})(y\otimes\mathbf{1}_{\mathcal{G}}) (\mathbf{1}\otimes\delta_t) \frac{\omega(xyt(xy)^{-1},x,y)\omega(x,y,t)}{\omega(x,yty^{-1},y)},$$

where we have used (4.25) in the first equality. The right hand side of (4.3) gives $(xy \otimes \mathbf{1}_{\mathcal{G}})$ so that we end up with

$$(x \otimes \mathbf{1}_{\mathcal{G}})(y \otimes \mathbf{1}_{\mathcal{G}}) = \sum_{t \in G} \frac{\omega(x, yty^{-1}, y)}{\omega(xyt(xy)^{-1}, x, y)\omega(x, y, t)} (xy \otimes \delta_t). \tag{4.26}$$

Similarly the coproduct is computed as $\Delta_D(e \otimes \delta_g) = \sum_{k \in G} (e \otimes \delta_k) \otimes (e \otimes \delta_{k^{-1}g})$ and

$$\Delta_D(x \otimes \mathbf{1}_{\mathcal{G}}) = \sum_{r,s \in G} \frac{\omega(xrx^{-1},x,s)}{w(x,r,s)\omega(xrx^{-1},xsx^{-1},x)} ((x \otimes \delta_r) \otimes (x \otimes \delta_s)). \tag{4.27}$$

The above construction agrees with the definition of $\mathcal{D}^{\omega}(G)$ given in [DPR90] up to the convention, that they have build $\mathcal{D}(\mathcal{G})$ on $\mathcal{G}\otimes\hat{\mathcal{G}}$ instead of $\hat{\mathcal{G}}\otimes\mathcal{G}$.

4.4. The monodromy algebra

Having defined the quantum double of a (weak) quasi–Hopf algebra, the definition of monodromy algebras (see e.g. [AFFS98]) associated with quasitriangular Hopf algebras may now easily be generalized to the case of quasi-Hopf algebras. These algebras have already appeared in [AGS95, AGS96]. We will give an explicit proof that the defining relations of [AGS95, AGS96] indeed define an associative algebra structure on $\hat{\mathcal{G}}\otimes\mathcal{G}$ (or, in the weak case, a certain subspace thereof), which in fact is isomorphic to our quantum double $\mathcal{D}(\mathcal{G})$. For ordinary Hopf algebras this has recently been shown in [Nil97], see Section 1.4.3.

Let \mathcal{G} be a finite dimensional quasi-Hopf algebra with quasitriangular R-matrix $R \in \mathcal{G} \otimes \mathcal{G}$. Following [Nil97] we define the monodromy matrix $\mathbf{M} \in \mathcal{G} \otimes \mathcal{D}(\mathcal{G})$ to be

$$\mathbf{M} := (\mathrm{id} \otimes i_D)(R^{op}) \mathbf{D}.$$

Defining also $\hat{R} \in \mathcal{G} \otimes \mathcal{G} \otimes \mathcal{D}(\mathcal{G})$ by

$$\hat{R} := \phi^{213} R^{12} \phi^{-1}$$
.

we get the following Lemma:

Lemma 4.7. The monodromy matrix \mathbf{M} is normal, i.e. $(\epsilon \otimes \mathrm{id})(\mathbf{M}) = \mathbf{1}_{\mathcal{D}(\mathcal{G})}$ and satisfies (dropping the symbol i_D):

$$\Delta(1) \mathbf{M} = \mathbf{M} \, \Delta(1) \tag{4.28}$$

$$\Delta(a) \mathbf{M} = \mathbf{M} \Delta(a), \quad a \in \mathcal{G}$$
 (4.29)

$$\mathbf{M}^{13} \,\hat{R} \,\mathbf{M}^{23} = \hat{R} \,\phi \,(\Delta \otimes \mathrm{id})(\mathbf{M}) \,\phi^{-1} \tag{4.30}$$

PROOF. We will freely suppress the embedding i_D . Since the R-Matrix has the property $(id \otimes \epsilon)(R) = 1$, normality of \mathbf{M} follows from the normality of \mathbf{D} . The identities (4.28/4.29) are implied by (4.1/4.2) and the intertwiner property of the R-Matrix. Let us now compute the l.h.s. of (4.30):

$$\begin{split} \mathbf{M}^{13} \, \hat{R} \, \mathbf{M}^{23} &= R^{31} \, \mathbf{D}^{13} \, \phi^{213} \, R^{12} \, \phi^{-1} \, R^{32} \, \mathbf{D}^{23} \\ &= R^{31} \, \mathbf{D}^{13} \left[(\Delta \otimes \mathrm{id})(R) \phi^{-1} \right]^{132} \, \mathbf{D}^{23} \\ &= \left[(R \otimes \mathbf{1}) \cdot (\Delta \otimes \mathrm{id})(R) \right]^{312} \, \mathbf{D}^{13} \, (\phi^{-1})^{132} \, \mathbf{D}^{23}, \end{split}$$

where we have used the quasitriangularity of R in the second line and property (4.2) of \mathbf{D} in the third line. The r.h.s. of (4.30) yields

$$\begin{split} \hat{R} \, \phi \, (\Delta \otimes \mathrm{id})(\mathbf{M}) \, \phi^{-1} &= \phi^{213} \, R^{12} \, (\Delta \otimes \mathrm{id})(R^{op}) \, \phi^{312} \, \mathbf{D}^{13} \, (\phi^{-1})^{132} \mathbf{D}^{23} \\ &= \left[\phi^{321} \, (\mathbf{1} \otimes R) \, (\mathrm{id} \otimes \Delta)(R) \, \phi \right]^{312} \mathbf{D}^{13} \, (\phi^{-1})^{132} \mathbf{D}^{23}, \end{split}$$

where we have used the definitions of M and \hat{R} and (4.3). Now, the quasitriangularity of R implies

$$(R \otimes 1) (\Delta \otimes id)(R) = \phi^{321} (1 \otimes R) (id \otimes \Delta)(R) \phi$$

which finally proves (4.30).

Note that the relations (4.28) - (4.30) are the defining relations postulated in a similar form by [AGS95, AGS96] to describe the algebra generated by the entries of a monodromy matrix around a closed loop together with the quantum group of gauge transformations sitting at the initial (\equiv end) point of the loop. Thus we define similarly as in [Nil97]

DEFINITION 4.8. The **gauged monodromy algebra** $M_R(\mathcal{G}) \supset \mathcal{G}$ is the algebra extension generated by \mathcal{G} and elements $M(\varphi)$, $\varphi \in \hat{\mathcal{G}}$ with defining relations given by (4.28) - (4.30), where $M(\varphi) \equiv (\varphi \otimes \mathrm{id})(\mathbf{M})$.

Lemma 4.7 then implies the immediate

COROLLARY 4.9. Let (\mathcal{G}, R) be a finite dimensional quasitriangular weak quasi-Hopf algebra. Then the monodromy algebra $M_R(\mathcal{G})$ and the quantum double $\mathcal{D}(\mathcal{G})$ are equivalent extensions of \mathcal{G} , where the isomorphism is given on the generators by

$$M(\varphi) \leftrightarrow (\varphi \otimes \mathrm{id})(R^{op} \mathbf{D})$$