CHAPTER 4

The quantum double D(G)

As our first important application we will now propose the definition of the quantum double
D(G) of a (weak) quasi—Hopf algebra G. We will show that, similarly as for ordinary Hopf
algebras, the quantum double D(G) is a quasitriangular weak quasi-Hopf algebra, where D(G)
is weak if and only if G is weak, i.e. iff A(1) # 1. We will give explicit formulas for the coproduct,
the antipode and the R—matrix. These results are formulated in Theorem 4.3 and Theorem 4.4.

In view of the identification of the quantum double D(G) of an ordinary Hopf algebra G
with the diagonal crossed product G < G in (1.26) we propose the following

DEFINITION 4.1. Let (G, A, ¢, ¢) be a weak quasi-Hopf algebra. The diagonal crossed prod-

uct D(G) = G > AGA = AGA > G associated with the quasi-commuting pair (A = p =
A, ¢x = ¢, = ¢rp, = ¢) of G—coactions on M = G is called the quantum double of G.

Following the notations of [Nil97], the universal Ap—intertwiner of the quantum double will
be denoted by D =T'pg) € G ® D(G). Hence it obeys the relations (e ® id)(D) = 1p(g) and

DA(1)=A?(1)D =D (4.1)
D A(a) = A?(a)D, Va€eg (4.2)
$*12 D13 (¢ )12 D2 4 = (A ®id)(D) (4.3)

where we have suppressed the embedding G — D(G). Property (4.2) motivates to call D the
universal flip operator for A. Clearly, the relation (4.1) may be ommitted if A(1) = 1 ® 1.
Note that according to Theorem 2.1, the quantum double D(G) may be realized as an algebraic
structure on the vector space G®g (or, in the weak case, a certain subspace thereof, see
Theorem 3.1).

We remark that a definition of a quantum double D(G) for quasi-Hopf algebras G has
also recently been proposed by S. Majid [Maj97] using a Tannaka—Krein type reconstruction
procedure [Maj92]. Unfortunately it is hard to identify this algebra in terms of generators and
relations in concrete models. It will be shown in Appendix A that our construction in fact
provides a concrete realization of the abstract definition of [Maj97].

The first section of this chapter is devoted to the proof that D(G) is a (weak) quasi-
bialgebra. Analogously as in Proposition 1.8 this will also guarantee that every diagonal crossed
product My = yM, < G naturally admits a quasi-commuting pair (Ap, pp, PrpsPons Pappn)
of coactions of D(G) on M;. The last observation will be of great importance, since it implies
that the quantum chains constructed as iterated diagonal crossed products in Chapter 5 admit
localized D(G)—coactions.

In Section 4.2 we show that D(G) possess an antipode and a quasitriangular R—matrix.
Hence D(G) becomes a (weak) quasitriangular quasi-Hopf algebra, generalizing the well-known
results for ordinary Hopf algebras to the weak quasi—Hopf setting. We will see that the proof
of the antipode properties is fairly nontrivial. A part of this proof is postponed to Chapter B,
where we use graphical methods.

As an application we discuss in Section 4.3 the twisted double D¥(G) of [DPR90] and
generalize the results of [Nil97] on the relation with the monodromy algebras of [AGS95, AGS96,
AS96] in Section 4.4. The results of Section 4.4 will also become important in Chapter 5, when
we discuss current algebras on the lattice.

4.1. D(G) as a quasi—bialgebra and D(G)—coactions

We begin with constructing A\p : M1 — D(G) ® My and pp : M; = M1 ® D(G) as
algebra maps extending the left and right coactions A: M; DM - G M C D(G) ® M; and
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p:Mi DM MG C M;®D(G), respectively (see Proposition 1.8). The detailed proof of
the next Lemma will also give some flavour of the calculations with generating marices. (Try
to give a proof without using generating matrices !).

LEMMA 4.2. Let (X, p, dx, ¢p, Prp) be a quasi-commuting pair of G—coactions on M and
let My = M, G be the associated diagonal crossed product with universal Ap—intertwiner
T € G® M. Then there exist uniquely determined algebra maps Ap : My — D(G) ® M; and
pp : M1 = M1 @ D(G) satisfying (we suppress all embeddings M — My and G — D(G))

Ap(m) = A(m), Yme M C M, (4.4)
(ild @ Ap)(T) = (¢,,)*' T® X® D ¢, € G@D(G) @ My (4.5)
pp(m) = p(m), ¥Yme M C M, (4.6)
(d® pp)(T) = (6,7 D 629 T 671 € G © My © D(G) (4.7)

Moreover the algebra maps Ap, pp are unital if G is not weak, i.e. if A(1) =1® 1.

Note that for the case that G is an ordinary Hopf algebra and all reassociators are trivial,
we recover the definition of Ap, pp given in Proposition 1.8.

PRrOOF. Let us first suppose that A(1) = 1 ® 1. Viewing the left G—coaction A : M —
G®M as amap A : M — D(G) ® M;, Theorem 2.1 states that Ap is a unital algebra
map extending \ if and only if T, := (id ® Ap)(T') € G ® (D(G) ® M;) is a normal coherent
Ap-intertwiner. Now normality of T}, follows from the normality of I'. To prove that T, is a
Ap-intertwiner we compute for all m € M

T, (idg ® Ap)(A(m)) = (¢5,)*' T* ¢ D2 67" (idg ® Ap)(A(m))
= [(\p ®idg)(p(m))]*™ (93,1 T? ¢33 D12 !
= (idg ® Ap)(p**(m)) T

where both sides are viewed as elements in G ® D(G) ® M;. Here we have used the intertwining
properties of I' and D and of the three reassociators.

To show that T, also satisfies the coherence condition, i.e. Eq. (2.3), we compute in G ®
G ® D(G) ® M; - again suppressing all embeddings

(A®id)(Tp) = [(d®id® A)(¢;)) [1g ® ¢,

I (§,) ' T* [[1g ® $x] (id @ A @id)(42)[¢ © L]
[0 © 1m](A ®id ®id)(4}")

= [(A@id®id)(¢,)[¢,, ® 1](id ® p ®id)(¢),
T (p )2 T [(id ©id ® V) (62) (A ®id @ id)(¢x)] "D (¢71)132 D=
(id ® A @id)(¢5)[1g ® ¢ ](id @id @ X)(¢x)

= (A ®@id®id)(¢,)[¢y} ® 1g]]*"* T
[(d @A ®id)(45,) [1g @ ¢3,] (id @ id @ p)(a
[(A®id®id)(gr)[¢" ® 1] ((d® A ®@id)(gy, "
D*[1g ® ¢, '1(id ® id ® X)(¢x)

= (A @id ®id)(4,)[¢5} ® 1]]*"
[(A®ideid)(¢y,)) (id®id® p)(¢y")]
$324 D* [1g ® ¢ '](id ® id ® A)($)

= (id@id@Ap) (422 T (¢5)' 2 T ¢, )

Here we have used several pentagon identities for the reassociators involved and the intertwining
and coherence properties of I' and D. In the first equality we used (2.3) for I' and D, and in
the second the pentagons (2.51c) and (2.35b). For the third equality we used the intertwining
properties of D and T' to move two more reassociators between D3 and D?® and two more
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between I'* and I'**. To arrive at the fourth equality we commuted D'3 and I'** and used
the pentagons (2.51b) and (2.35b) and then again the intertwining properties of D and T to
bring two reassociators back between D' and T'?*. The last equality holds by (4.4), (4.5). Thus
we have shown that T, is coherent and therefore the definitions (4.4), (4.5) uniquely define a
unital algebra map Ap extending A. Similarly one shows that pp defines a unital algebra map
pp : M1 — M ® D(G) extending p.

Now let A(1) # 1 ® 1, then eventually X\ is non unital implying that also A\p may be
nonunital. That Ap is an algebra map is proved as above. O

Choosing in Lemma 4.2 also M = G (i.e. M1 = D(G)) we arrive at the following

THEOREM 4.3. Let (G,A,€,¢) be a weak quasi—-Hopf algebra, denote ip : G — D(G) the
canonical embedding and let D € G ® D(G) be the universal flip operator.

(i) Then (D(9),Ap,€ep,¢p) is a weak quasi-bialgebra, where

¢p = (ip ®ip ®ip)(¢p) (4.8)

ep(in(a)) :=€(a), (id®ep)(D) :=1pg) (4.9)
Ap(ip(a)) := (ip ®ip)(Aa)), Va€eg (4.10)
(ip ® Ap)(D) := (65")**' D¥* ¢1° D2 ¢! (4.11)

Moreover D(G) is weak if and only if G is weak.
(ii) Under the setting of Lemma 4.2 denote ipq, : M — M; the embedding and define

$rp == (ip ®ip Qirm,)(Pr) € D(G) @D(G) @ My
$pp = (im, ®ip ®iD)(¢p) € M1 ®D(G)®D(G)
Prppp = (iD ®im, ®ip)(dr) € D(G) ® M1 ®D(G)
Then ()\D,pD,qﬁAAD,%D,(ﬁ)\D,,D) provides a quasi—commuting pair of D(G)—coactions on
M= M, xG.

PROOF. Setting M := G and A = A in Lemma 4.2 implies that Ap is an algebra morphism,
which is unital if and only if A is unital. The property of ep being a counit for A p follows directly
from (4.1) and the fact that (id ® € ® id)(¢) = A(1). To show that Ap is quasi—coassociative
one computes that

[1g ® ¢p]- (([d® Ap ®id)((id ® Ap)(D)) = (i[d®id ® Ap)((id ® Ap)(D)) - [1g ® ¢p],

where one has to use (4.11), the pentagon equation for ¢ and the intertwiner property (4.2) of
D similarly as in the proof of Lemma 4.2. Thus Ap is quasi—coassociative and this concludes
the proof of part (i).

Part (ii) is shown by direct calculation using the intertwiner properties of I' and D and
several pentagon identities for the reassociators involved. The details are left to the reader. [

4.2. The quasitriangular quasi—Hopf structure

Note that viewed in D(G) ® D(G) and D(g)@’s, respectively, the relations (4.3) and (4.11)
are the defining properties of a quasitriangular R—matrix, see (2.18)-(2.19). Hence Rp := (ip ®
id)(D) is an R—matrix for D(G) provided we can also show the intertwiner property (2.17).

To arrive at a suitable definition of an antipode Sp for D(G) extending the antipode of G,
we anticipate the result of Chapter B, Cor. B.3, that a quasitriangular R—matrix of a quasi—-Hopf
algebra obeys (S® S)(R) = f°P R f 1, where f is the twist defined in (2.26). This suggests the
following

THEOREM 4.4. Let D(G) be the (weak) quasi-bialgebra defined in Theorem 4.3. Then
(D(9),Ap,€ep,¢p,Sp,ap,Bp, Rp) is a quasitriangular (weak) quasi-Hopf algebra with R-
Matriz Rp and antipode Sp given by

:= (ip ®id)(D) (4.12)
SD(zD( )) :=ip(S(a)), Va€eg (4.13)
(S®Sp)(D) :=([{d®ip)(fP)D@d®ip) (f 1) (4.14)



where f € GQ® G is the twist defined in (2.26). The elements ap,Bp are given by
ap =ip(a), Bp:=ip(B). (4.15)

Clearly, if G is a Hopf algebra and ¢ = 1 ® 1 ® 1, one recovers the well-known definitions
of Ap,Sp and Rp in Drinfel’d’s quantum double

Ap(ip(g)) = (ip ®ip)(A(g))

Ap(D(p)) = (D & D)(A*"(y))

Sp(in(g)) =ip(S(9))

Sp(D(¢)) = D(S™*(p))
Rp=(1®e,) ®(e"®1),

where D(y) := (¢ ® id)(D), ¢ € G.

Proor. To simplify the notation we will frequently suppress the embedding ip, if no
confusion is possible, i.e. we write @ = ip(a) = ap, (id ® id ® ip)(¢) = ¢ etc. . To show
quasitriangularity we first note that the element Rp = (ip ® id)(D) fulfills (2.18) and (2.19) so
to say by definition because of (4.3) and (4.11). The (quasi-) invertibility of Rp is equivalent to
the (quasi-) invertibility of the generating matrix D which will be proved below in Lemma B.8
of Chapter B using graphical methods. We are left to show that Rp intertwines Ap and A%,
ie.

AP(ip(a))-Rp = Rp - Ap(ip(a)), Vae€g (4.16)
(id® AD)(D)) - RE = R} - (id ® Ap)(D). (4.17)
Now Eq. (4.16) follows from (4.10). Hence we also get in D(G)®’
RE - (Ap ®id)(Rp) = (AY ®id)(Rp) - RP, (4.18)
which together with (2.18) implies the quasi-Yang Baxter equation
(60" R 62 RIS (1) B = RE (651 RE W RE 65" (4.19)

Using (4.11), Eq. (4.19) is further equivalent to
(ip ® AR)(D) - RE = RE - (ip ® Ap)(D)

which also proves (4.17). Hence Rp is quasitriangular.

In order to prove that the definition of Sp in (4.13),(4.14) may be extended anti-
multiplicatively to the entire algebra D(G), we have to show that this continuation is consistent
with the defining relations (4.2),(4.3). This amounts to showing

(S®Sp)(D) - (S ®Sp)(A®(a)) = (S ® Sp)(A(a)) - (S® Sp)(D), and (4.20)

(S®S®Sp)((A®id)(D)) =(S®S®Sp)(¢) - (S®S ® Sp)(D*)
(S®S®Sp) (¢~ - (S®S®Sp)(D'?)-(S®S®Sp)(¢3*?). (4.21)

Since by definition (S ® Sp)(D) = fPDf~! ! equation (4.20) follows directly from (4.2)
and the fact, that by (2.28) f has the property f - A(S(a)) = (S ® S)(Ayp(a)) - f. For the
proof of (4.21) let us recall, that Ay := fA(-)f ! defines a twist equivalent quasi-coassociative
coproduct on G with twisted reassociator ¢y defined in (2.23) satisfying ¢; = (S® S® S)(¢??!)
(see (2.30)). Thus we get for the Lh.s. of (4.21) (with D, := f*D f~1)
(S®S®Sp)((Agid)(D)) = (AY ®id)((S ® Sp)(D))

= (AY ®id)(Dy)

— ¢§21 D?E} (¢;1)231D}3¢?13
where the last equality is exactly the transformation property of a quasitriangular R-matrix

under a twist [Dri90] and may be proven analogously using (4.2). By (2.30) this equals the r.h.s.
of (4.21). Hence Sp defines an anti-algebra morphism on D(G).

Iwhere we have again suppressed the embedding id ® ip of f



We are left to show that the map Sp fulfills the antipode axioms given in (2.15) and (2.16).
Axiom (2.16) is clearly fulfilled since we have Sp oip = ip o S and ap = ip(a), Bp = ip(B),
¢p = (ip®ip®ip)(¢). Noting that Ap(ip(a)) = (ip®ip)(A(a)),a € G, the validity of axiom
(2.15) follows from its validity in G and the following two identities, which will be proven in
Section B.3, Lemma B.8.

(id ® pup) o (id ® Sp @ id) ((id ® Ap)(D) - (1g ® 1 ® ap)) =1g®ap
(id® pp) o (id ®id ® Sp) ((id ®Ap)(D)-(1g®Pp ® 19)) =15 ® Bp,

with up : D(G) ® D(G) — D(G) denoting the multiplication map. O

As in the Hopf algebra case, one may take the construction of the quasitriangular R-
Matrix in D(G) as the starting point and formulate Theorem 4.3(i) together with Theorem 4.4
differently:

COROLLARY 4.5. Let G be a finite dimensional quasi-Hopf algebra with invertible antipode.
Then there exists a unique quasi-Hopf algebra D(G) such that

(i) D(G) =G ®G as a vector space
(ii) the canonical embedding ip : G — 1 ® G C D(G) is a unital injective homomorphism of
quasi-Hopf algebras,
(iii) Let D € G ® D(G) be given by D := S~1(p?) euph) ® (e# ®p%2)), where p 1= pp—np is
defined in (2.79), then Rp := (ip ®id)(D) € D(9) ® D(G) is quasitriangular.

This quasi—Hopf algebra structure is given by (4.1)-(4.3) and the definitions in Theorem 4.3
and 4.4.

PRroOF. Property (ii) implies (4.8), the first part of (4.9), (4.10) and (4.15), yielding also
fp = (ip®ip)(f). The quasitriangularity of Rp implies (4.2), (4.3), (4.11) and the second part
of (4.9) and according to (B.16) (Sp ® Sp)(Rp) = f& Rpfp". Hence the antipode is uniquely
fixed to be the one defined in Theorem 4.4. O

We remark that the above Corollary is also valid for weak quasi—-Hopf algebras where only part
(i) has to be modified according to

(") As a vectorspace D(G) = lin{1(_y) = ¢ — S (1)) ® Ligya | ¢ € G,a € G}, where
1y ®Lg ®1g) = (A ®id)(A(1)).

4.3. The twisted double of a finite group

As an application we now use our definition of the quantum double to recover the “twisted”
quantum double D¥(G) of [DPR90], where G is a finite group and w: G x G x G = U(1) is a
normalized 3-cocycle. By definition this means w(g, h, k) = 1 whenever at least one of the three
arguments is equal to the unit e of G and

1

w(g, z,y)w(gz,y, 2) " 'w(g, 2y, 2)w(g, 2,y2) " 'w(z,y,2) =1, Vg,z,y,2 € G.

The Hopf algebra G := Fun(G) of functions on G may then also be viewed as a quasi-Hopf
algebra with its standard coproduct, counit and antipode but with reassociator given by

p:= D w(g:hk) (& ® 0 ® ), (4.22)

9,h.keG
where d04(z) := 04,. The identities (2.9) and (2.11) for ¢ are equivalent to w being a
normalized 3-cocycle. Also note that choosing a = 1g the antipode axioms now require

B=3, w(g™', 9,97 ")d,. In this special example our quantum double D(G) = G > G allows for
another identification with the linear space G ® G.

LEMMA 4.6. Let G be as above and define o : G ® G — D(G) by o(p ® a) := D(p)a, ¢ €
G,a € G. Then o is a linear bijection.



PROOF. Since (G, A, ¢, S) is also an ordinary Hopf algebra, the relation (4.2) is equivalent
to (suppressing the symbol ip)

aD(p) = D(a(l) - S_l(a(g))) ap), VYa€G,pe€ G. (4.23)
Using (2.4) (for the special case I' = D) this implies

praa = (id®¢))(g,) D(p@)) a = D(g;0) = ¢ = (62 S~ (ay3)))) 4o @

which lies in the image of . Hence, ¢ is surjective and therefore also injective. O

We note that in general the map o need not be surjective (nor injective). Due to Lemma 4.6
we may now identify D(G) with the new algebraic structure on ¢ ® G induced by o~ !. We call
this algebra G®pgG. Putting a = 1®pa,a € G and D := e, ®(e*®pl) €G® (G ®p G)
it is described by the relations (4.23),(4.3) and the requirement of G = 1 ®p G being a unital
subalgebra. To compute these multiplication rules we now use that the group elements g € G
provide a basis in G with dual basis dy € G. Hence a basis of Copgis given by {h®p 6y }n,geq-
In this basis the generating matrix D is given by

D=>Y 6&&(keplg), lg=) 6o (4.24)
keG heG

Let us know compute the multiplication laws according to the (4.2),(4.3). To begin with, we
have

(h®1g)(e®d,) =(h®dy) and (g®1g)(h®1g) = (gh® 1g).
Taking (z ®id) of both sides of (4.2), where = € G, and using A(dy) = D, cq 0k ® Ip-14 We get
(20 16)(e ® 0,-1,) = (€ ® 3,0-1)(x ® 1),
or equivalently

(e®dy)(x®1g) = (@ Iy-14)- (4.25)

Finally, pairing equation (4.3) with z ® y € G ® § in the two auxiliary spaces, the Lh.s. yields

Y w(sz,y)(1©6) (@@ 1g) - w(z,my) " (e ® 6:)(y @ 1g) - w(w, y,t)(1 ® &)
s,rteG

= @olgyely. Y HenUems

(e ® é(zy)—lszy(sy—lry(st)

s,rteEG w(:z:, T y)
w(zyt(zy)™', z, y)w(z,y, )
=) (z®1g)(y ®1g)(1 ® &) ;
t;; w(z,yty=,y)

where we have used (4.25) in the first equality. The right hand side of (4.3) gives (zy ® 1¢) so
that we end up with

w(z,yty 1, y)
zy) Lz, y)w(z,y,

@elg)(y®lg) =) e 5 (zy ® &) (4.26)
ted
Similarly the coproduct is computed as Ap(e ® §5) = >, (e ® 01) ® (e ® dp-1,) and

w(zrz=!, z,s)
(z,r,8)w(zre=—1, zsz—1, )

Apx®lg)= ) ” ((z ®3,) ® (z® J5)). (4.27)

r,s€G

The above construction agrees with the definition of D (@) given in [DPR90] up to the con-
vention, that they have build D(G) on § ® G instead of G ® G.



4.4. The monodromy algebra

Having defined the quantum double of a (weak) quasi-Hopf algebra, the definition of mon-
odromy algebras (see e.g. [AFFS98]) associated with quasitriangular Hopf algebras may now
easily be generalized to the case of quasi-Hopf algebras. These algebras have already appeared
in [AGS95, AGS96]. We will give an explicit proof that the defining relations of [AGS95, AGS96]
indeed define an associative algebra structure on =Y (or, in the weak case, a certain subspace
thereof), which in fact is isomorphic to our quantum double D(G). For ordinary Hopf algebras
this has recently been shown in [Nil97], see Section 1.4.3.

Let G be a finite dimensional quasi-Hopf algebra with quasitriangular R-matrix R € G ® G.
Following [Nil97] we define the monodromy matrix M € G ® D(G) to be

M := (id®ip)(R?) D.
Defining also R € G ® G ® D(G) by
BR= ¢213 R ¢—1
we get the following Lemma:

LEMMA 4.7. The monodromy matriz M is normal, i.e. (e ® id)(M) = 1p(g) and satisfies
(dropping the symbol ip):

A(1)M =MA(1) (4.28)
Al@)M =MA(a), a€g (4.29)
M RM? = R¢ (A ®id)(M) ¢~ (4.30)

PRrOOF. We will freely suppress the embedding ip. Since the R-Matrix has the property
(id®e€)(R) = 1, normality of M follows from the normality of D. The identities (4.28/4.29) are
implied by (4.1/4.2) and the intertwiner property of the R-Matrix. Let us now compute the
Lh.s. of (4.30):

M RM? — R¥ D134213 R12 41 R32 D23

- ' DB (A ®id)(R)¢~1]132 D2

= [(R®1)-(A®id)(R)]** D" (¢ )32 D,
where we have used the quasitriangularity of R in the second line and property (4.2) of D in
the third line. The r.h.s. of (4.30) yields

Ro(A®id)(M)é ! = ¢?'3 B2 (A ©id)(R?) ¢*12 D13 (¢ 1)132 D
= [¢" @@ R) (d& A)(R) ¢]"* D" (671D,
where we have used the definitions of M and R and (4.3). Now, the quasitriangularity of R
implies
(R®1)(A®id)(R) =¢**' (1®R) (id® A)(R) ¢

which finally proves (4.30). O
Note that the relations (4.28) - (4.30) are the defining relations postulated in a similiar form
by [AGS95, AGS96] to describe the algebra generated by the entries of a monodromy matrix

around a closed loop together with the quantum group of gauge transformations sitting at the
initial (= end) point of the loop. Thus we define similarly as in [Nil97]

DEFINITION 4.8. The gauged monodromy algebra Mz(G) D G is the algebra extension
generated by G and elements M (p), ¢ € G with defining relations given by (4.28) - (4.30),
where M (p) = (¢ ® id)(M).

Lemma 4.7 then implies the immediate

COROLLARY 4.9. Let (G, R) be a finite dimensional quasitriangular weak quasi—Hopf alge-
bra. Then the monodromy algebra Mg(G) and the quantum double D(G) are equivalent exten-
sions of G, where the isomorphism is given on the generators by

M(p) ¢ (¢ ®id)(R” D)



