CHAPTER 5

Quantum group spin chains and lattice current algebras

In this chapter we finally arrive at the construction of Hopf spin chains and lattice current
algebras based on a weak quasi-Hopf algebra G. Again we emphasize that this covers the impor-
tant case of quantum groups at roots of unity. In Section 5.1 we generalize the notion of two—-sided
crossed products, defined as special examples of diagonal crossed products in Section 1.4.1 to
the quasi—coassociative setting. We then define Hopf spin chains as iterated two—sided crossed
products in Section 5.2 and arrive at the definition of lattice current algebras in Section 5.3 by
imposing periodic boundary conditions again using our diagonal crossed product construction.
Finally we investigate the representation theory of these models in Section 5.4.

5.1. Two—sided crossed products

As in the associative case, a simple recipe to produce two—sided G—comodule algebras (M, §)
is by tensoring a right G—comodule algebra (A, p) and a left G—comodule algebra (B, A), i.e. by
setting M = A ® B and

§(A® B) := B(_1) ® (A0) ® B(g)) ® A(y)
as in (1.41). Obviously 6 = (A ®1id) o p = (id ® p) o A, where we use the same symbols (A, ¢y)
and (p, ¢,) for the trivially extended left and right coactions, i.e. A = A ® idg, etc. . Hence
(A0, Dx, 0p, Prp = 1g ® 1p ® 1g) is a strictly commuting pair of G-coactions on M = A® B.
In the terminology of (2.52a)-(2.52d) we have § = §, = §;, whereas ¥ = ¥,. = U, is given by
T=[1gR158¢,"][¢r ®1g ® 1g]. (5.1)

According to Theorem 2.1 the diagonal crossed product M; = (A®B)s, > G =: (A, @\ B) > G
is generated by {4, B,T(¢) | A € A, B € B, ¢ € G} satisfying the defining relations

AB=BA (5.2a)
[1g ® BT =T A(B) (5.2b)
pP(A)T =T [1g ® A] (5.2¢)
(A®id)(T) = ¢35 T T ¢, (5.2d)

where I = e, ® I'(e#) is the universal Ap-intertwiner.

The next Proposition is an analogue of Proposition 1.14 saying that the diagonal crossed
product (A, ®» B) 1 G may be realized as a two-sided crossed product A, x G x5 B. Note that
the isomorphism g in (5.3) below is different from the isomorphisms pg and pr, constructed in
Theorem 2.1.

PROPOSITION 5.1. Let G be a quasi—Hopf algebra and > : Ao Aand <« :BRG > B
be the left and the right action corresponding to a right G—coaction (p, $,) on A and a left G-
coaction (A, dx) on B, respectively. Extend A and p trivially to AQB and let M1 := (A,QB) <

G=(A®B)s, <G, 6 = (id®p) o\, be the diagonal crossed product with universal Ap-
intertwiner T' € G @ M.
(i) There is a linear bijection p: A® G ® B — My given by
wA®e® B) = AT(p) B, (5.3)
where we have suppressed the embeddings A = My and B <—>A/\/l1.
(ii) Denote the induced algebra structure on A® GQ B by A, x G x B = p~t(M;). Then

we get the following multiplication structure with unit 14 x 1 x 15 on A, > G xyB
(AxpxB) (A xyx B') 5.4
= A(p) > A, % [P) = p(2) — 5] 103 = Y1) = $5] X G (B 1¢2)) B’ '
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PROOF. Let pA € G® B =G ® (14 ® B) be given by (2.77) and define
f:A® 0 @B ARy ® (p2) ®idg) (A(B)pa)- (5.5)
Using (5.2b) we obtain
(nof)(A®p® B) = A(p @idm,) (T A(B) pa)
= AB (¢ ®idam, )(T pa)
= pr(A® B® o)
where pug : (A® B)® G — My is the linear bijection constructed in part 3. of Theorem 2.1, see

also (2.87). Hence p is surjective. Conversely, let R := T py € G ® M; then by Proposition 2.19
R is a right §,—implementer and

T =[1g0 R[S (ar) ® 1aa, ],
where gy € G ® B is given by (2.78) and where we have used that p is trivial on B. Hence we
get for all B € B, using again (5.2b)
I'[1g® B] =[1g ® (3Bo)] R[S~ (03 B(-1)) ® 1m,] (5.6)
where B(_1) ® B(g) = A(B). Setting

F(A® B y) := S (p) ®idp) (1 A(B)) ® @),
(5.6) implies
wA®p®B)=AT(p) B=puro f(A® B®y)
But since f is invertible (one directly verifies that f = f~1, with f given in (5.5)), the injectivity
of pur implies the injectivity of u.
This proves part (i). Part (ii) follows since one straightforward checks that the multiplication
rule (5.4) is equivalent to the defining relations (5.2). O

Next we show, that analogously as in (1.51) the two-sided crossed product construction
given in Proposition 5.1 may be iterated if one of the two algebras A and B admits a quasi—
commuting pair of coactions.

PROPOSITION 5.2. Let (A,pa,Pp4); (C,Ac,dr.) and (B, pB, A8, Oxrg, Pps, Prs.ps) be a
right, a left and a two-sided comodule algebra, respectively, and denote the universal Ap-—
intertwiners

FAB:ZCH(X)(IAXGMD(IB)EApXAgAD()\B (5.7)
Tpei=e€,®@(Apxe! x1c) € B, xGx,C,
where A, = A, ,, etc. , then
(i) Ay, » G xx B admits a right G—coaction (p, @5) given by ¢p 1= ¢,, (trivially embedded),
P lagp):=id4 ® pp and
(idg ® P)(T ap) == (Tap © 1g) $x s, (5.8)
(i) B, G xx C admits a left G-coaction (X,qﬁ;) given by ¢35 := @ (trivially embedded),

A f(3®c):= A ®ide and

(idg ® M)(Tpe) = ($xy ) > TC (5.9)
(iii) The trivial identification
(A,,ngx,\B)ﬁngx,\CzApngx;\(Bpngx,\C) (5.10)

is an algebra isomorphism.

PROOF. (i) To show that (5.8) provides a well defined algebra map f: A, x G x» B =
(A, @ G xx B) ® G extending id 4 ® ps we have to check that the relations (5.2) are respected.
To this end we put T 45 := (T 415 ® 1g) ¢;;p3 and compute for B € B

[].g ® ﬁ(B)] T.AB — (FAB ® ].g) (/\B &® ld)(pB(B)) ¢;;PB
=T 45 (ide ® §)(As(B)),



which is the relation (5.2b). Trivially one also has (since ¢r,,, € G® (14 ® B)® G)
Typllg® A®1g] = [p7(4) ® 1g] T 45

verifying (5.2c). Finally, the coherence condition (5.2d) is respected, since in
GRG®(AxGxB)®G we have

(A®id®id)(T 45) = (A ®@id)(T 45)"** (A @ id ® id)(45, )
= (A ®1d)(T 45)"* [¢5, ® 1g] (1d ® Ap ®id)(¢5,,,) [1g ® 651, (1 ® id & pB)(d2s)
= ¢ T i Tos (id © Ag ©1d) (65, ,,) [16 ® b, ] (id ® 1d © pp) (drs)
e (%%)13‘* r% (% )2 (id ® id ® pB)($ars)
= (id ®id ® p)(¢312) T Thp (id ©id ® p)(y,,)

Here we have used the pentagon 1dentity (2.51b) in the second line, the coherence property (5.2d)
of T 5 in the third line and finally the intertwining property (5.2b). Thus p provides a well
defined algebra map, which is also unit preserving since (e®id®id)(T 45) = (14 ¥ ix1p)®1g.
Similarly one shows by a straight forward calculation that the pair (5, ¢5) satisfies (2.36a). Since
®5 = 0,5, the pentagon equation (2.36b) and the counit equations (2.36¢) and (2.36d) are clearly
satisfied. This proves part (i). Part (ii) follows analogously. To prove part (iii) we have to check
that we may consistently identify

g@[(AxQxB)xch]arABér EQ@[ANQK(BNQMC)] (5.11)

A(BxGXC)
G [(Ax@xB) xQMC] 5T 4gnme = Toc €G© [.Axg’;x (BNQKC)] (5.12)
For this, the nontrivial commutation relations to be looked at are according to (5.2b),(5.2¢)

T awoxpye Lo @ X1=pP(X)T 4 6.mer X €AXGXB

[1g®Y]FA(BN¢KC):FA(BXGKC)A(Y)’ YEBXQD(C

The remaining cases being trivial, it is enough to consider X € T 45(G) and Y € T'pc(G) for
which we get

23 13 __ - ~ 132 123 13 1 132 123
L osgume Tas = (dg ® D) (T a5) " T yipusuey = TaB (Pappn) " T ancune

23 13 _ 13 213 _ 13 —1 132 23
e L asuge) = T amngxe) (idg ® X)(Tpc) =T JBxinc) (Pxpps) " The

by the definitions (5.8) and (5.9). This shows that the identifications (5.11) and (5.12) are
indeed consistent and therefore proves part (iii) O

Note that due to part (iii) of the above proposition the notations I' ;5 and T’z as in (5.7)
are still well defined in iterated two—sided crossed products and the commutation relations of
“neighboring” Ap—intertwiners are given by

13 —1
Tis (d)/\zs pB

Adaption to the weak case. The definition of two—sided crossed products as in Proposi-
tion 5.1 has to be slightly modified if G is a weak quasi-Hopf algebra, i.e. if A1) #1®1. The
unital algebra A, » G X B is now defined on the subspace of A ® GoB given by

) 1% = TE. T (5.13)

AxGCxB:= span{A X @ X BEAI.(X) ®1§;1)I>90<11.(i) ®1g))B |Ae A,BeB,pe Q},
(5.14)

where lgf) ® IS) = p(14) and 1%_1) ® lg)) = A(1p). Again we have a linear bijection
u:AxQxB—)Mlz(A,,@,\B)MgA, Axpx B— AT(p)B

inducing the multiplication rule described by Eq. (5.4).
Also Proposition 5.2 stays valid. In particular we note that (5.14) still allows the identifi-
cation

(AxpxB)xyYyXxC=Axpx (Bxipx(C)



5.2. Quantum group spin chains

In this section we describe how the Hopf algebraic quantum chains considered in [NS97]
generalize to (weak) quasi-Hopf algebras G. To this end we use the two—sided crossed product
theory of Section 5.1 to generalize the constructions (1.49),(1.50) and (1.51).

Due to Proposition 5.2 the definition of Hopf spin chains as reviewed in Section 1.4.2
immediately generalizes to the quasi—coassociative case. As in Section 1.4.2 we interpret even
integers as sites and odd integers as links of a one dimensional lattice and we set Ay; = G,
Aoip1 = G , the latter just being a linear space. A local net of associative algebras A, , is then
constructed inductively for all n,m € 2Z,n < m, by first putting

Azigiga = Asi X Azip1 X Asit2 2GxGx G
where G is equipped with its canonical two—sided comodule structure (A = p = A, ¢ = ¢, =
®xp = ¢). Due to Proposition 5.2 this procedure may be iterated as in (1.49), by setting
Aziajys = Asiaj XGX G =G %G X A 22512
where the last equality follows from (5.10) by iteration. More generally one has as in (1.50) for
alli<pu<j—1
Asij = Asing ¥ G X Azyya (5.15)

We will now give a description of the finite Hopf spin chains (i.e. the local algebras Ay; »;) in
terms of generating matrices. Defining the generating “link operators” Ly, := T 4, 4,, , as
in (5.7), we get

LEMMA 5.3. Let G be a weak quasi—Hopf algebra. The finite open Hopf spin chain As; o;

is the unique unital algebra generated by G®'~ = A @ Azip1 ® --- ® Aaj and the entries of
generating matrices Ly, € G ® Ag; 25,1 <v < j, obeying the relations

Lir1 Loty = Loty Lojy, VE#ALI-1,0+1 (5.16a)
(6°'%)2k Loj 41 Lijg1 G262 = (A ©1d) (Lggyy) (5.16b)
L3} 4 ((‘7571)132)219 L3} = L3, Lai (5.16¢)
[1® Asg(a)] Ly g =Ly [1® Ax(a)], VE#LI+1 (5.16d)
[1® Azp(a)] Lop_y = Log_q [aq) ® A2k(az))] (5.16e)
Lopt1 [1® Aze(a)] = [ae2) ® Asi(aq))] Lggyy, Va€G (5.16f)
where Ay, denotes the identification G = Asy, and where ¢op, = (id @ id ® Ag)(¢).
Proor. Follows immediately from (5.2) and (5.13). O

Writing Asiy1(p) = (¢ ®id)(Ly;,,), (5.16¢) is equivalent to

Asi1 (P = ) A2i(97) Azia (9 = 6°) = Azita(p) Azi1 (¥)
Thus link operators on neighboring links do not commute any more in contrast to the coasso-
ciative setting! But the algebras As; 5 2; and Ag;y2 2,44 still commute, which means that the
above construction still yields a local net of algebras now indexed by intervals in 27Z.

Next we remark that Theorem 4.3 applied to the special case of two—sided crossed products
provides us with localized left and right coactions of the quantum double D(G) on the above
quantum chain generalizing (1.53). Indeed, using (5.15) and (5.8),(4.7), we obtain (right) D(G)-
coactions

P Aok 2j — Aok2; ®D(G), k<i<j (5.17)
acting trivially on Agg 2,2 U Agiy2.25, and given elsewhere by
P (A2i(a)) = Asi(aq)) ® (a@yp 1), a€G
(idg ® p%)(LZi—l) = |:L2i—1 ® (1p i)] (idg ® A2 ® ip)(9)
(idg ® PzDi)(Lm'-H) = (¢ 1) D3 213 L%?—H ot

where ip denotes the embedding G = G xp 1 C D(G) and where we have suppressed the
embedding idg ® As; ® ip of the three reassociators in the last line. As before, D denotes the



universal A—flip operator in G ® D(G), see chapter 4. One similarly obtains localized left D(G)—
coactions A% using (5.9),(4.5). This generalizes the D(G)—cosymmetry discovered by [NS97] to
weak quasi-Hopf algebras.

5.3. Lattice current algebras

Also the construction of the periodic chain by closing a finite open chain may again be
described by a diagonal crossed product. As in Section 1.4.3 we define the periodic chain X,
with n sites as

Kn = A(A2,2n)p > G: (518)

where A\ and p are nontrivial only on Ay x A3z x A4 and Az, 2 X Ag,—1 X Aay,, respectively,
where they are defined as in Proposition 5.2, i.e. A extends A viewed as a left coaction on
Az 2 G to Az x A3 x A4 and p extends the right coaction A on Az, to Az, 2 X Az, 1 X Agy,.

We now show how the equivalence of the Hopf spin chains of [NS97] and the lattice current
algebras of [AFFS98] as shown in [Nil97] generalizes to the (weak) quasi-Hopf setting. Suppose
G to be quasitriangular with R—matrix R. As in (1.56) we define the generating current operators
by

Joiy1 = RaiLpiyy,  Rai = (id ® Azi)(RP), (5.19)
Clearly this relation is invertible (in the weak case use that A°?(1) L = L). We then get

PROPOSITION 5.4. Denote Ry; := (id®id® Az;) (623 R2 ¢ 1) and ¢o; := (id®id® Az;)(9).
The relations (5.16) are equivalent to the following set of relations

i1 Ioter = I501 Joppr, VEALI-1,141 (5.20a)

I I35 = Rop ¢ar, (A ®1id)(J) Bt (5.20b)

I5ho1 Ro 35040 = I3 T3, (5.20c)

[1® Aok (@)] Torss = Jopss [1® Ase(@)], Yk #1141 (5.20d)

[1® Ao (a)] Jo 1 = Top_1 [aq) ® Asi(ags)], Va e (5.20¢)

[ag) ® Azr(a(2)] Jops1 = Jogya [1 © Azg(a)] (5.20f)

These relations generalize the defining relations of lattice current algebras as given in [AFFS98]
to (weak) quasi-Hopf algebras. Thus we propose the following alternative

DEFINITION 5.5. Let (G, R) be a finite dimensional weak quasi-Hopf algebra with quasi-
triangular R—matrix R € G ® G. We define the lattice current algebra IC,, with n sites, n > 2,
to be the unique unital algebra extension of G®" generated by G®" = Ay @ A4 @ - -- ® Az, and
the entries of n generating lattice currents J,; ., € G ® Ky, k = 1,2,...,n = 0 satisfying the
relations (5.20).

The lattice current algebra K; consisting of one site link pair is defined to be the unique
unital algebra extension of G generated by elements of G and the entries of a monodromy matrix
M obeying the relations given in (4.28)-(4.30).

Note that due to Corollary 4.9 the above definition of K; is also consistent with (5.18).

PROOF OF PROPOSITION 5.4. Let us show that the relations (5.20) follow from (5.16), the
converse implication may be shown similarly. Relations (5.20a), and (5.20d-5.20f) are obvious.

To see (5.20b) we compute
Iokrr Iohr = Rog Loy B3 L5k 6520
= (id @id ® Ay) (B*H(A @ id)(R)"12 ) Ld,, L3, '

where we have used the intertwiner property (5.16f) of L, ;. But quasitriangularity of R
implies
31 . 312 . 312
RU(A®id)(R)] = [(R®1)(A®id)(R)]
=[¢"" (18 R) (de A)(R) ¢

— ¢213 R12 (A ® ld)(Rop) ¢312

]312



Plugging this into (5.21) and using (5.16b) yields
J3ir1 3541 = ([ @ id ® Azy) (45213 R (A ®id)(R) ¢312) L1 L3
= (i[d®id @ Az) (627 B'? (A @ id)(R™)) (A @id) (Lojyn) b3

= Roy, dox (A ®id) (Jort1) ¢2_k1+2

Thus we have proven (5.20b).
To show (5.20c) we compute

Jgi-ﬁ-l J%2—1 = R L%iﬂ Rog—2 L%%—l

= Rok—2 Rar Ljj 4 Loj 4

= Rog—2 Ror L3} _, ((¢_1)132)2k L%iﬂ

= R L3, ([(Awia)(R) 6™ 13,

=3 ((aeim@et aerRH)'™) I3,

= J%2—1 R2k Jg?ﬁ-h
where in the last equality we have used the identity

(Aid)(R) ¢! (1o R) = 612 RY (91)'2

following from (2.18). O

The relations (5.20) have also appeared in [AGS95, AGS96, AS96] as lattice Chern-Simons
algebras (restricted to the boundary of a disk) in the weak quasi-Hopf algebra setting, where
the copies of G sitting at the sites are interpreted as gauge transformations.

5.4. Representation theory

In this section we investigate the representation theory of finite open Hopf spin chains O,,
and periodic Hopf spin chains K,, where n € N denotes the number of sites, i.e.

On = A2’2n = [ S S o — o

2 4 2n

as defined in Section 5.2 and 5.3. Recall that we have O; = G and K; = D(G). Our main result
is given in

THEOREM 5.6. Let G be a finite dimepsiqnal semisimple weak quasi—Hopf algebra. Moreover
assume that there exists an element ¥ € GG satisfying (5.25) and for part (ii) that there exists
an invertible g € G obeying (5.38),(5.39). Then

(i) For all n € N the algebra O,, is semisimple and the center of O, is isomorphic to the
center of G, i.e. the inequivalent irreducible representations of the finite Hopf spin chain
O, may be labeled by the set of inequivalent irreducible representations of the underlying
weak quasi-Hopf algebra G.

(il) For all n € N the algebra K,, is semisimple and the center of K, is isomorphic to the
center of the quantum double D(G), i.e. the inequivalent irreducible representations of the
periodic Hopf spin chain K,, may be labeled by the inequivalent irreducible representations
of the quantum double D(G).



Part (i) is proven below in Corollary 5.12 and part (ii) in Corollary 5.14.

We remark that Theorem 5.6 especially applies to semisimple quotients of the quantum
groups U,(g) at roots of unity (¢ = 1). Also part (ii) covers the important cases of lattice
current algebras “at roots of unity”, since they are special examples of periodic Hopf spin chains
as has been shown in Section 5.3.

Section 5.4.1 is devoted to the investigation of semisimple weak quasi—Hopf algebras. We will
indicate, how elements of the well-known integral theory for Hopf algebras may be generalized
to (weak) quasi—Hopf algebras [Nil], which allows to formulate the condition under which a
diagonal crossed product M < G is semisimple. We also collect some properties of semisimple
algebras and their commutants. Sections 5.4.2 and 5.4.3 are concerned with the proofs of part
(i) and part (ii) of Theorem 5.6, respectively. Some of the more technical proofs are collected
in the Appendix 5.5 of this chapter.

5.4.1. Semisimplicity. In the following the weak quasi—Hopf algebra G is always assumed
to be finite dimensional (f.d.). Also recall that in this case G being semisimple (s.s.) means that
G is isomorphic to a multi-matrix algebra, i.e.

G = ®rEnd(Vr) = @rm1(G),

where the V; are finite dimensional vector spaces and the index I runs through the (finite) set
of inequivalent irreducible representations of G. Thus G is “the direct sum of its irreducible
representations”. The center of G is spanned by the minimal central idempotents given by the
identities (matrix units) idy, € End(Vr). Moreover, semisimplicity of G implies the existence
of a unique normalized left integral in G which is also a right integral, i.e. an element e € G
satisfying

e?=e, e€le)=1 (5.22)
ae=ea=c¢c(a)l, VYVa€eg (5.23)
S(e) =e (5.24)

The idempotent e is the unique central projection onto the one dimensional representation given
by the counit.

For ordinary Hopf algebras G it is known that semisimplicity of G already implies semisim-
plicity of the dual Hopf algebra G [LR88]. Passing to quasi-Hopf algebras, the dual G is not
an algebra any more and we need some appropriate substitute for semisimplicity of Q, which
ensures that the diagonal crossed product of a semisimple algebra M and G is again semisimple.
In turns out that all we need is an element ¥ € § ® G satisfying

SoA=¢ (5.25a)
(id® %) (¢ (Aa) @b) ¢71) = (T ®id) (qu (a® Aa)) (]5) (5.25b)
Y~ Ala)=€(a)E=Aa) ¥, Va€eg (5.25¢)

Let us shortly comment on these properties. First we remark that in the Hopf case (where
$»=18®1®1) the existence of ¥ obeying (5.25a), (5.25b) is equivalent to cosemisimplicity of
G, see e.g. [Abe80]. Also, being f.d., in this case G is cosemisimple if and only if G is semisimple.
In the Hopf case, the element ¥ obeying (5.25) may then be constructed as follows. First one
realizes that the definition

S(a®b) = o(aS(b)) (5.26)

provides a one-to-one correspondence between normalized left integrals o € G and elements
Y € § ® G satisfying (5.25a) and (5.25b), where (5.25a) implies the normalization (1) = 1
and (5.25b) the left integral property o = ¢(1)o. This is in agreement with the wellknown
fact that a Hopf algebra is semisimple if and only if it possess a normalized left integral [LS69].
Next note that the second equality in (5.25¢) follows immidiately from (5.26), whereas the first
equality is satisfied if one demands the ‘g—trace’ property

o(ab) = o (bS*(a)) (5.27)
Thus for Hopf algebras to find an element ¥ satisfying (5.25) it is sufficient to find a normalized

left integral, which is a ‘g-trace’. Generalizing the notion of left integrals in G, a similar statement
holds for weak quasi-Hopf algebras [Nil], which then allows to prove the following



PROPOSITION 5.7. [Nil] The semisimple quotients UL"(g) of quantum groups U,(g) at roots
of unity (¢N =1) possess an element £ € G ® G satisfying (5.25).

We will sketch the proof of Proposition 5.7 in Section 5.5. Let us now state the important

THEOREM 5.8. [Nil] Let M be a f.d. and s.s. algebra which admits a two-sided G—coaction
(6, %) of a f.d. weak quasi—Hopf algebra G. Moreover assume that there exists ¥ € G® G obeying
(5.25). Then the diagonal crossed product Ms < G is semisimple.

Theorem 5.8 is a Maschke type Theorem and is also proven by an “averaging” procedure in-
volving the element ¥. We postpone the proof to Section 5.5. We emphasize that semisimplicity
of diagonal crossed products M; >t G does not depend on the chosen two—sided coaction 4.

We conclude this subsection with the following Proposition, concerning commutants and
bicommutants of multi-matrix (= finite dimensional semisimple) algebras:

PROPOSITION 5.9. Let V be a finite dimensional C-vector space and M C End(V) a

semisimple unital subalgebra. Denote by M’ the relative commutant of M in End(V), i.e.
M ={X € End(V) : Xm =mX VYm € M}, then

(i) M' is semisimple and has the same minimal central idempotents as M
(i) (M) = M
(iii) Let P € MU M' be a nonzero idempotent, then (P M P) = P M'P

Recall that the center of semisimple algebras is generated by the minimal central idempo-
tents so that (i) implies that the center of M and of M’ coincide. Part (ii) is known as the
bicommutant theorem and is usually formulated in the context of von Neumann algebras. The
algebra PMP in (iii) is called the reduction of M by P. For a proof of Proposition 5.9 see e.g.
[GHJ89], Prop. 2.2.3 and Prop. 2.2.5.

Choosing in Proposition 5.9 V = M and denoting by L(M) and R(M) the subalgebras of
End(M) given by left and right multiplication, respectively, one verifies immediately that

LM)=M,  R(M)= M (5.28)
LM)' = R(M),  RM)' = L(M) (5.29)

Now let P := R(p), where p = p?> € M. Since P € L(M)’, the left-action of M may be restricted
to the subspace PM = Mp. Moreover Mp still allows for a right-action of the subalgebra pMp.
Denoting these actions by L, and R, respectively, Proposition 5.9 implies the

COROLLARY 5.10. Let L,(M) C End(Mp) and Ry(pMp) C End(Mp) be defined as above,
then

Ly(M)" = Ry(pMp) (5.30)
R, (pMp)' = Ly(M) (5.31)

ProOF. Using the identifications

End(Mp) = PEnd(M) P
L,(M)=LM)P=PL(M)P
Ry(pMp) = P R(pMp)P = R(pMp),

Proposition 5.9(iii) implies

Ly(M)' = (P L(M) P)' = PR(M) P = R(pMp) = R,(pMp)
R,(pMp)' = (P R(M)P)' = PL(M) P = L,(M)



5.4.2. Representation theory of finite open chains. This subsection is devoted to
the proof of part (i) of Theorem 5.6. Let us first recall how one proceeds in the case of ordinary
Hopf algebras G. Here the claim follows directly from a duality theorem for iterated crossed
products [BM85], saying that

AxGxG=A®End(G). (5.32)
Tterating (5.32) one immediately arrives at
On = G ® End(G™1), (5.33)

which implies center(O,) = center(G). At least for the truncated case A(1) # 1 ® 1 we may
no longer expect (5.32) to hold, since due to (5.14), see also part (3”) of Theorem 3.1, the

dimension of 4 x G x G is strictly smaller than the dimension of 4 ® End(G). As a weaker
substitute for (5.32) we will prove the following

THEOREM 5.11. Let (A, p,¢,) be a finite dimensional semisimple G-comodule algebra,
where G is a finite dimensional semisimple weak quasi—Hopf algebra, and let also the two-sided
crossed product A, X G XA G be semisimple, then

center(A) = center(A x G x G) (5.34)
Theorem 5.11 may be viewed as a generalized duality theorem. It implies the

COROLLARY 5.12. Let G be a f.d. semisimple weak quasi—-Hopf algebra and assume that
there exists an element ¥ € G ® G satisfying (5.25). Then

center(O,) = center(G)

PROOF OF COROLLARY 5.12. Follows by induction from Theorem 5.11 and Theorem 5.8
O

PROOF OF THEOREM 5.11. We will prove Theorem 5.11 by explicitly constructing a faith-
ful representation of M := A x G x G and showing that the commutant of M in this represen-
tation is isomorph to A°P. Employing Proposition 5.9 this proves (5.34). We arrive at such a
representation by using Corollary 5.10. We also use the notations introduced there. First note
that the integral e € G provides an idempotent

p=1laxixe e M
Using (5.22/5.23) and the multiplication rule (5.4) in M together with (5.14) one easily verifies
(A x oK a)p:AIE‘?) ® p — 151) ® ee(a)
p(Axpxa)p=(A®1l®e)e(a)p(l)
implying that

Mp= A1V o6 1Y) (5.35)
pMp= A, (5.36)

where the first line is an isomorphy of vector spaces and the second line an isomorphy of
algebras.

Since the map pMp — R,(pMp) is clearly faithful, (5.36) implies R,(pMp) = A°. Hence
we get from (5.31)

Lp(M) = Ry(pMp)' = Ry(A)" = (A7)’ (5.37)

In view of Proposition 5.9(i) this proves the isomorphy (5.34), provided L, is faithful, i.e.
provided L,(M) = M, which will be shown below in Proposition 5.16 in the Appendix 5.5. [



5.4.3. Representation theory of periodic chains. Similarly as for the open Hopf spin
chains, we arrive at a proof of part (ii) of Theorem 5.6 by showing that the periodic chain with
n sites may be viewed as the relative commutant of the periodic chain with n + 1 sites. More
generally we have

THEOREM 5.13. Let A be a semisimple f.d. algebra with a quasi—commuting pair of coac-
tions (X, p, dx, bp, Prp) of a weak quasi-Hopf algebra G. We also require the existence of an
invertible element g € G satisfying

ga=5%a)g (5.38)
Alg)=f""(g@9)h, (5.39)
where f,g € G ® G are the twists defined in (2.26) and (2.31). Furthermore denote
Mo =G As,, Go=({d®@N) op
Mi=A,xGx AG = G (A, ® AG)
Ms =G (Mi)s,, d2=(A®id)oA
where X and A are the extensions of X and A, respectively, as defined in Proposition 5.2. Let
us also assume Mgy and M to be semisimple. Then
center(Mg) = center(Mas)
Note that TheoremA 5.13 especially applies to the case where My = K,_1, My = O,, and
My =K, = O, < G yielding the following

COROLLARY 5.14. Let G be a semisimple f.d. weak quasi—Hopf algebra. Also assume the
existence of g € G being invertible and satisfying (5.38),(5.39) and of ¥ € Geg¢ satisfying
(5.25). Then the periodic Hopf spin chains K,, are semisimple and their center is isomorph to
the center of K1 = D(G).

PROOF OF COROLLARY 5.14. Follows by induction from Theorem 5.13 and Theorem 5.8.
O

PROOF OF THEOREM 5.13. As for the proof of Theorem 5.11 we will construct a faithful
representation of My such that the relative commutant of My is isomorphic to Mg?, which
then proves the claim due to Proposition 5.9. Again we will use the canonical integral e € G to
define the idempotent

p=1(Ix(la®e)) € M,
Using the notation of Corollary 5.10 we get a representation Lz of My on Msp by left multi-
plication, obeying
L3(Ma)" = Rp(pM2p) (5.40)

Clearly Rj is injective and we are left to show that L; is injective and that pMap = M,. To
see the injectivity of Lj note that

Ly pam) [(1 pan)p] = ¢ v< (mnp) = ¢ >< (Ly(m)[np]),
where L, is the representation of M; discussed in Proposition 5.16. Hence the injectivity of Lj
follows from the injectivity of L.
To prove the isomorphy pMaop = My we proceed as follows. First we compute

Pl (o (A®a))]p =1 < S (@) = (eqy = ¢ (A®e))
Employing Corollary 5.21 given below in the Appendix 5.5 yields

PMyp = 1in{¢(2) ~ Bgm (Yay= (A®e), veG, Ae A}
= lin{l({l) = @) = Be® (V) = STH1G,)) ® 1 A® e},

where, as also stated in Corollary 5.21, the assignment 1 +— (1(2) < B9 ® (1)) is injective.
Thus the linear map

[ Mo = pMaop, A oy — Bg < (Yay =< (AR e)) (5.41)



is bijective and we are left to show that f is also an algebra map, which will be done in
Lemma 5.22 below in Appendix 5.5.
In view of Proposition 5.9 this concludes the proof of Theorem 5.13, since by (5.40)

MgP = Ry (PM1p) = L(Mz)' = M.

5.5. Proofs

Proofs of Section 5.4.1. To prove Proposition 5.7 we use the following Proposition stated
in [Nil].

PROPOSITION 5.15. Let G be a f.d. s.s. weak quasi—Hopf algebra G. Define og € G by

oy = Z (Sz(eM)S(ﬁ)a) — e, (5.42)
o
where e, € G is a basis in G with dual basis e* € G. Then %9 € G ® G defined by
Yo(a®b) := 09 (aBS(abd)), a,beg (5.43)

satisfies (5.25b) and (5.25¢).

Note that in general oq may be zero. But if G possess a nonzero left integral e (i.e. in
particular if G is semisimple), then o9 # 0 since one immidiately computes from (5.42) that
S(e) — o9 = €. We are now in the position to give the

PROOF OF PROPOSITION 5.7. Since G = U["(g) is semisimple we may apply Proposi-

tion 5.15 to obtain a nonzero element ¥p € G ® G expressed in terms of o9 € G as in (5.43)
and obeying (5.25b), (5.25¢). Thus we are left to show that Xy may be normalized to fulfill also
(5.25a). But since

Yo(A(a)) = go(a()BS(aa))) = €(a) oo (8S(e))

this amounts to showing that oo (8S(a)) # 0. We may then define ¥ := [00(8S5(2))] %o
which now satisfies (5.25a)-(5.25¢). We therefore compute

a0 (aS(8)) = (S*(en)S(B)a — e | BS(a))
= (" | BS(@)S*(en)S(B)e)
= (e* | BS(a)gen g S(B)a)
= Tr(L(BS(a ) )oR( ~15(8)a))
> Tri(L(BS(a)g) o R(g™"S(B)a))
I

where T'r denotes the trace in End(G), T'ry the trace in End(End(V7)), where G = &;End(V7),
and L(a) and R(a) the left and right multiplication, respectively, with a € G. Denoting the
trace in End(Vr) by ¢r; we now use that

Tri(L(a) o R(b)) = tri(mi(a)) tri(m(D)),
which may be checked by identifying End(V) =2 V* ® V and noting that L(a) operates on V
and R(b) on V* only. Hence we get

oo (aS(B)) =Y _ tri(m1(BS()g)) trr(mr(g™ Zd, d; >0,
I

where dr > 0 are the well-known quantum dimensions of U,(g). Here we have used that

dr = trf(ﬂ'f(ﬂs( ) ))
= try(m1(S(9)S*(2)S(8)))
=tri(mi(g 152 (@)S(8)))
=trr (WI(agfls )
(mr(g~ )

=trr(nr Oé



PRrROOF OF THEOREM 5.8. Recall that a finite dimensional algebra is s.s. if and only if
all its finite dimensional left modules are reducible (Wedderburn’s structure Theorem, see e.g.
[Abe80]). Thus it suffices to show that for every two M < G modules V, W, where W C V is
a submodule, there exists a M b G-linear surjective map p : V. — W. Denoting the canonical
embedding i : W — V it therefore suffices to prove the following three identities

poi=idwy (5.44)

pom=mop, VmeM (5.45)

(idg ® p) o Ry, = Ryy o (idg @ P), (5.46)

where at the Lh.s. and r.h.s. of (5.45) we have used the shortcut notation m = wy (m) € End(V)

and m = my (m) € End(W), respectively. This notation will also be used frequently below. We
proceed as follows. Viewing V' and W as M-modules, the semisimplicity of M implies the
existence of an M-linear map p : V. — W onto W, i.e. satisfying (5.44) and (5.45). We now
define the map p: V — W in terms of p by setting

pi=(E®idw) o (2 ® Q% ® OF) o R o (ild®id ® p) o R} 0 (0% ® QL ®@idy),  (5.47)
where Ry, = (id®@ 7w )(R) € G ® End(W) and Ry, = (id ® 7v)(R) are the canonical (normal
and coherent) right é—implementers.
To show (5.44) note that Ry, o (1®14) = (1®i) o Ry, since by assumption the embedding
i is M < G-linear. Using p o i = idy this implies
RiZo(id®id®p) o R¥ o (id ®id ® i) = Rip R3S
and therefore
poi=(Z®idw)o (0 ® 0% ® Q%) oRip o Ri} o (0F ® O ®@idw)
= (E®idw) o (A ®id)(Ry)
= (e®idw)(Ry)
- 1dW7

where we have used the coherence property (2.67) of R, (5.25a) and then the normality of R.
Thus we have proven (5.44).

The M-linearity (5.45) follows from the fact that R is a é—implementer (see (2.65)) and
from property (5.25¢) of ¥ since one computes

mop=(X®m)o ()

= (A7 (m( 1)) = S = A(my)) @idw ) o (-++) o mg)

=pom.
We are left to show (5.46). For the Lh.s. we get (denoting Q := Qg)
(idg ® p) o Ry = (£ ®@idg ® idw) o (2! ® 0° ®idg ® 2%) o Riy o (id§ ® p) o

R#oR¥ o (0?2 ® Ql ®idg ®idy)
= (T®idg ® 1dw) (2'0F, ® 00 © Q° © Q20%;) o Rij o (id} ® p)
Ry )] o (S NP )0 020 @ Q' ®idy)
= (Z®idg ®idw) o (¢ ' ®idw) o (2* ® A(Q%) ® O) o Ryy o (id’ ® p)
o [(A ®id)(Ry)]** 0 (22 ® A" ®idy) o (¢ ®idy). (5.48)
Here we have used the identity
0l @ 0% @ STHOY,))0? @ 2P0 © 0'0F) 0 °0 0 0°
= [(a7(@) @ 02)¢™ (2! @ A7(0%) | © 0% @ [(ARY) & 0°)¢ (2 © A(Q%))]

- following from (2.62), the pentagon identity (2.39b) for ¥ and formula (2.32) - and then
property (5.25c) of X. A similar calculation yields for the r.h.s. of (5.46)

Ry, o (idg ® p) = (idg ® T ®idg ® idw) o (¢ @idy) o (A(QY) ® 0° @ Q%) o [(A @ id)(Ryy)]
o (idy ® p) o R} o (A(D?) ® O ®idy) o (47! ®@idy) (5.49)



Comparing (5.48) and (5.49), both expressions coincide due to (5.25b). Hence we have proved
(5.46) which concludes the proof of Theorem 5.8. O

Proofs of Section 5.4.2.

PROPOSITION 5.16. Let M := A% G x G and p?=p:=14x1xe, where e € G is the
integral in G. Define the representation

L, : M — End(Mp), L,(m)[np]:=mnp
Then L, is injective.

PROOF. Since the proof will be quite lengthy, we first treat the case, where G is an ordinary
Hopf algebra. In this case we identify

MpzAxQxezA@Q

as a vector space. Using the multiplication rule (1.43) in M, the integral properties (5.22),
(5.23) of e and the identity (1) ® a < ¥(3) = a1y = ¥ ® a(), one computes

L,(Axpxa)B®id]=[A(pn) > B) ® peyva)] ela — ¢e))
= [A(p) > B) ® p(2)(a — )]

We claim that the subspace 14 ® GC Mp is separating for M. To see this, we define the linear
map

7: M — Home(G ® G, A)
(b @ ) = (ida @ b) (Lp(m)[14 @ )

and continuation by linearity, where (id 4 ®b)(B®x) := B{(b | x). Note, that 7 is not an algebra
morphism. Choosing X := 1) < S~ 1(b()) ® b1y and m = A % ¢ X a this yields

=Aa) | e (a—=19 <5 (b)))

= A(bay | ©)by |a =¥ = S (b))
= Ay | 9)(S" (b)) a | ¥)
=Ab]p)a|¥)

Since G is finite dimensional, the dual pairing (- | -) is non degenerate. Thus the map 7 is
injective and therefore also L, has to be injective.

Tm(X)

Now let us treat the general case, i.e. let G be a weak quasi—-Hopf algebra. In view of (5.14)
we may identify

MpzAxGerAlfg)@gAf—lfi). (5.50)

as vector spaces. The representation L, now involves the reassociator ¢,. Using (5.4) one arrives
at

Ly(A % o x a)[B1Y) @ v — 19)] = [A(pa) > B)XE @ (p@) = TF) (a = ¢ = Z¥)]
= [AB(O)X,];: ® (cp — B(l)ka) (CL — ’(b < Z:f)], (5.51)

where we denote ¢;1 = X}; ®17pi ®Z§ and where in the second equality we have used the identity
(1) > B ® p2) = By ® ¢ < B1). Next we modify the linear map 7 by setting

T M— HOmc(l(l)g ® é — S_1(1(2)),.A)
Tm(l(l)b R — 571(1(2))) = (1d4 ® Ypil(l)b) (Lp(m)[qll, @Y — 571(2:;1(2))%2)]) X;,



where g, € A® G is given in (2.80). Choosing X = byp' ® ¢ — S~ (b)p?) € 11yG ® G —
S71(1(2)), where p :=p,—n € G® G is defined in (2.79), we get for m = A x ¢ x a € M:
Tm(X) = (ida ® V") (Lp(m)lah @ ¥ = S~ (Zibeyp™)a2]) X;

= Ay XX (Vibyp' | (0 = qp) Y1) (@ = ¢ = S™H(Zibeyp*) a3 Z)))

= Agyoy X E X} (AYbyp") | (9 — gpyYy) © (a = ¢ — ST (Zibyp") a3 Z))

= Agb oy XX (450 T © S~ H(Zibeyp?) 2 ZE) - AT ibuypt) - (1®a) | 9 © 1)

C20 19 (1D © S b)) -a- AbwpY) - (1®4a) | p©v)

=41 aPb10) | ) Aa | v

= A1 (0 10) = o = 17)Aa | ¥)

- (idA®b®zp)(A X @ X a)

Here we have plugged in (5.51) in the second line, then used the identity (5.52), which will be
proved below in Lemma 5.17, and finally the identities (2.104b) and (3.17) for the elements p, g.
Hence, 7 is injective, implying that L, is injective. O

LEMMA 5.17. Let ¢ := gy-n € G® G and q, € A® G be given by (2.80) and denote
¢t =X ®Y;® Zi. Then the following identity holds.

(1a®1®571(Z) - (p®id)(g,) - ¢, ' - (X; ®A(Y))) = (p(1a) ®1) - (La®q)  (5.52)
PRrOOF. The Lh.s. of (5.52) may be written as
Lhs. of (5.52) = A' ® A> @ S~ (aA?)A?
where
A= (p®idg ®idg)(4)) - (¢, ®1)-(ida ® A®idg)(¢,")
But the pentagon equation (2.36b) for ¢, implies the equality
A= (ids®idg ® A)(¢,7) - (14 @ ¢)
Therefore (denoting ¢ = X* ® Y* ® Z*)
Lhs. of (5.52) = X} @ VX" ® S™'(aZ},,Z2") Z} 1, V"
=19 1P x* @ 571 (azh)Y*
= (p(la)®1)(1a®4q),
where for the second equality we have used the antipode property (2.15) and the identity
(ida ®idg @ €)(¢; 1) = p(14)- O

Proofs of Section 5.4.3. We start with some technical considerations needed later on.
First recall the canonical left and right actions of a weak quasi—Hopf algebra G on its dual G
already introduced in (2.34). They are given by

a—= =90 lpe) la) ¢=a=ygelen la), a€g, peg. (5.53)

We list a few properties of these actions:

LEMMA 5.18. The following identities hold for all a,b € G, ¢ € G

Ala = p=b) =91 —b®a— ¢@) (5.54)
a— )@Y =91 e —a (5.55)
$(S(a) = ¢) = 5(p) = a, S(p - S(@) =a— $() (5.56)



PRrROOF. The first two identities follow by direct computation from definition (5.53) (note
that A is strictly coassociative also for quasi—-Hopf algebras G). To prove the first identity in
(5.56), we pair the Lh.s. with an arbitrary element b € G to obtain

(8(S(@) = ¢ |b) = (S(a) = ¢ | S®))
=(p | S(b)S(a))

= (S(p) | ab)

= (S(p) < a|b)

The second identity is proven analogously. O

Next we recall the definition of the so called Pentagon operator U : G © G — G ® G [], where G
is the dual of a Hopf algebra G:

Ulp @) = pS (1)) ® ¢z
U (e ®9) = ph) @ 1(a)-

The operator U is also called Takesaki operator or multiplicative unitary, see e.g. [BS93]. De-
noting the left G—actions

llp®Y) :i=aq) = @Y — S(aw), Lilp®Y):i=a— 91, (5.57)
U has the following intertwiner property
Ul,=L,U, VYa€gqg.
We now propose the appropriate generalization to weak quasi—Hopf algebras.

LEMMA 5.19. Let G be a weak quasi-Hopf algebra and let p := pp=n,q:= ¢o=A € GR G be
the elements given in (2.79),(2.80). Define U,U : GG - GR G by

Ulp®¥) = (¢ = ¢)(SWq) = ¢°) @ ) (5.58)
Ulp®9) == (0" = )(0* = Pn)) @ Y. (5.59)
Then UU and UU are idempotents given by
UlU(p@¢) =9 = 1y @19 = 1y (5.60)
UU(p@¢) =11y = ¢ @9 = S(1y), (5.61)

and U has the intertwiner property
Ul,=L, U, Va€eg. (5.62)
) VYe reAmark that the above Lemrrla also implies, that the restricted map U : UU (Q ® Q) —
UU(G ® G) is bijective with inverse U.
ProoOF. We show (5.60). According to (2.104a) and (3.16) the elements p,q € G ® G obey
Afaqy)p[1® S(ap))]=pla®1], Vaeg
Alg)p[1® S(g*)] = A1),
which together imply the identity
A1) [a®1] = A¢" aq)) p[1® S(¢® a2))], Vae€g. (5.63)
We now compute for a,b € G, v, € G
UT(p29) |aob) = {[(0" = 0B = du)] = '} (Sm) — ) & v |a®b)
= (0" = P)(P* = ¥))] ® S(W2) @ Y(s) | ¢A(a) ® b)
= (e ® ) ® S(ha) @) | Ald'an))p® ¢a@m) @ b)
=(p 9| Alg'an) p[1 @ S(¢’a())b)
=(p=11)®Y ~1p) |axb)

where in the last equality we have used (5.63). This proves (5.60). The identity (5.61) is shown
similarly using the analogue of (5.63) following from (2.104b) and (3.17).



We are left to show the intertwiner property (5.62).
Ul(p ®9) = (aq) = ¢ < ¢") (S(¥q) < S(aw)) — ¢°) @ ¢
= (ag) = ¢ = ¢') (a) = S(¥q) = ¢*) ® o)
=L, U(p ® 1),
where we have used (5.56) in the second equality. This concludes the proof of Lemma 5.19. O

COROLLARY 5.20. Consider the following two subspaces on ®G
Caiag = {8 = ¥1) @Y2) | ¥ € G} (5.64)
Cinv :={X € G®G | 1,(X) = €(a)X, Va € G}, (5.65)
where 8 € G is defined in (2.15) and l, is the G—action given in (5.57).
Then Cgiag = Cinv, and as a linear space Caiqg 15 isomorph to G.
PROOF. First we note that due to (5.55) Caiay C UU(G®G). We also have Cin, C UU(GRG)

since €(1) = 1. We now compute, again using (5.55),

a8 = ) @ Py — S(ae) = awy)BS(a@)) = Yy @ P =€) (B = ¥a) @ Yw),
which proves the inclusion Cgiqg C Ciny. We are left to show the inclusion Ciny C Cgigg. First
note that (using (e ® id)(p) = 3)

UA®¢)=8— 1) ®dw),
which implies U(1 ® G) = Cyiay and, since 1 ® G c UU(G ® G), also
U(Caiag) =1®G. (5.66)
Thus Cgiqg = G as linear spaces. Now we invoke the intertwiner property (5.62) to conclude
(supressing summation symbols ")
O @YU € Ciny = LaU(p' @Y%) = e(a) U(p' @ 4%), Va€§
which further implies U (o' ® %) € 1 ® G, since
a—x=¢ela)y,VaeG = xeCl.
Thus due to (5.66) U(Ciny) C U(Caiqg) implying
Cinv = UU(Ciny) C UU(Caiag) = Ciag
O

COROLLARY 5.21. Consider the left action I(p @ ¥) := aqy = ¢ ® ¢ — S~ (a()) and
define
Cho i ={X €G@G|10(X) =e(a)X, Vaeg}
Cliag = {¥1) ® Y(2) = By}
C:=12(6®G) = {eq) = ¢ @9 — S (e))}
where e € G is the unique integral in G and g€ G implements the square of the antipode. Then
Cw = Cliag = C, and as a linear space C = G.

inv
0
- deg

L' @¢) =ela) (¢’ @¢) S lLlp' @y —g ") =€) (¢’ ®Y" ~g ")
& @' @Yt g7 € Caing
&'@Y € Chyy
where the first equivalence uses (5.38)and the third (5.55). This also implies that as a linear

space C? . 2 Ciny = G. Thus we are left to show the equality C2,, = C. The property e(e) = 1
implies the inclusion C,, C C. Conversely let X € C, then I9(X) = X and therefore

2(X) = 19 0 12(X) = 19,(X) = €(@)I2(X) = e(a)X

which implies the inclusion C C C}),,. This finishes the proof of Corollary 5.21. O

PROOF. The identity C follows immediately from Corollary 5.20 since we have

nv



We are now in the position to prove
LEMMA 5.22. The map f: Mo — pMoap defined in (5.41) is an algebra map.

ProoF. Under the conditions of Theorem 5.13 denote the left (&g, d1,d2)—implementers
LioeGgoaMo, LieGaMi, L,eGM,
and define
~ Bg)L 5, p€G
) = (cp(g) Bg) Li(ea)) B, ¢ (5.67)
(A) =1 (I1(Ad®e)), A€A

Thus the map f given in (5.41) may be expressed as

flopa A) = f(Lo(p) A) = I(p)i(A)

and according to Corollary 2.14 f is an algebra map (extending ¢) if and only if I := e, ® I(e*)
is a coherent left dp—implementer (with respect to ). To show that I is a do—implementer (for
do = (id ® p) o A) we compute

i(A) I(p) = i(A) La(p(2) < Bg) L)) P
= Ly(A—1y) = ¢(2) — B9)i(Aw)) Li(ea)) P
= La(A1) = 9@ < Bg) Li(pa) < S (Ap,n)) i(Ap,0)
=I(A-y = o= S ' (Ap)) i(A00)
where we have used (5.54) in the last equality. Thus I is a left dp—implementer. According to
(2.66), I is coherent iff
(9 = Q) 1(QF ¢ < Q1) i(Q}) = I(ey) (5.68)

with Q7 = Q7' = (h1)% (idg ® idg ® id4 ® S~ ® S71)(¢),-), where 1, is expressed in terms
of ¢x, ¢, and ¢y, in (2.52d). To prove (5.68), we need the multiplication rules of L; and L,.
Using (5.1) they may be expressed as

Ly(py) = La(¢h = ¢ = h'STH?)) La (g3 = ¢ = h*ST1(4%)) (53 ® ') (5.69)
Li(py) = Li (¢ — ¢ = B'S7H4})) L1 (¢ — ¢ < h*S7H($))) (¢, © 6°), (5.70)

where here and throughout we suppress the embedding A ® G C M,. Moreover, with d, =
(A®1id) o A, one obtains from (5.8),(5.9) (after some calculations expressing L in terms of T')

Li(9) La(p) = La(d3, = ¢ = S71(9")) L1 (8" = ¥ = S7H(43,)) (¢%, ® ¢°) (5.71)
We know compute
I(p) I(¥) = La(p) = Bg) L1(pa)) La(¥(2) = Bg) L1 (Y1) P
= Ly(p(2) — Bg) L2(8%, — t2) — B9S " (¢?))
Li(¢" = oy = S7H(3,)) (83, ® °) L1 (Yw)) b
= La(p(2) +— Bg) L2 (¢ip = 1y — BgS(¢?))
Li(¢" = oy — S_l(¢§\p)) Ly (¢ = ¥y — S_1(¢§p(l))) (¢§p(0) ® e)

where in the first equation we have plugged in definition (5.67), in the second we have used the
commutation relations (5.71) and in the last equality that L; is a d;—implementer and then the
integral property of e. This yields for the L.h.s. of (5.68)

I(Qf = ¢ <= Q7)) I(Q] = v < 07)i(Q])
= I(¢,\ —~ @ h'S” (¢,\p ¢3 ¢,\(1 2)))
(¢,\p ¢,\ — ¢ — h*S~ (¢>\p(1) ¢2 ¢>\(1 1))) i((ﬁip(o) ‘73}) ¢§\(0))
= Ls(@w) = B9) La(dz) = BgS™(8)) Li (8" = ¢n)) Li(§ = ) (8 #0) © ©)
= Ly(@2) — ¢'B9) La(th2) — *BS(8%)9) L1 (B(1)) L1 (d(1)) (8} $50) ® €), (5.72)



where we have used (5.54) and the notation
$=¢3 = 9 h'S” (¢3 ¢,\(1 2)
= ¢X = — h*S~ (¢p ¢>\(1 1))

in the second equality and (5.55), (5.38) in the third equality. To compute the r.h.s. of (5.68)
we first note that (5.39) and (2.29) imply the identity A(8g) = § (9 ® g) h. Hence

I(p) = La((p(2)%2)) — B9) L1 (py¥)) P
= Ly((p(2) — 8" gh") ((2) — 6%gh®)) L1 (o))
2 Ly(9) = o) = 01957 (3) La (63 — bia) < %9571 (8)
Li(¢' = (pyvay) = S~H¢3w))) (43¢0) @)
(5:10) Lo(...)) La(...) Li(y = @) — B' ST (] ¢,\(1 2)))
L, (¢ = 1y — h*S™ (¢2 ¢,\(1 1))) (¢p ¢,\(0) ®e)
Ly (¢2) — 6'9gS™1 (%)) La (P2 — 6%9S7(7))
Li(9(n) = &) L1 (B = d) (9, #h0) © )
2 Lo (B2 = 610" 5(8%)9) L (diay = 815)0°S(8)g) Li ($)) Lt () (85 830y ® )
where we have used the integral property of e several times and also the fact that L, is a left

d1—implementer to move elements of A ® G to the right. Comparing with (5.72) this proves
(5.68) provided

(5.54)

¢'8® §*BS(6°) = A(¢")d (S(¢°) ® S(67))
which is immediately verified by going back to the definition (2.25) of . Hence we have proven
the coherence property of I which concludes the proof of Lemma, 5.22. O



