Introduction

THIs thesis is essentially concerned with three different C*—algebras: the algebra
of the canonical anticommutation relations (CAR); the Weyl algebra, the expo-
nentiated version of the canonical commutation relations (CCR); and the Cuntz
algebra®. Common to all three is the fact that each is associated, in a specific way,
with an underlying vector space: The CAR algebra is the C*—Clifford algebra over
a real Hilbert space, the Weyl algebra is the C*—algebra generated by a project-
ive unitary representation of a real symplectic space, and the Cuntz algebra is the
universal C*-algebra generated by a complex Hilbert space. (The vector spaces
belonging to the CAR and CCR algebras will always be assumed to be infinite di-
mensional, as we will be exclusively dealing with systems possessing infinitely many
degrees of freedom.)

The CAR and CCR algebras are the most prominent algebras in quantum
physics, due to their distinguished role in describing systems of Fermions and Bo-
sons. The canonical anticommutation relations have been introduced by Jordan
and Wigner in 1928 in their analysis of the implications of Pauli’s exclusion prin-
ciple for the Fermi gas [JW28]. As an abstract C*—algebra, the CAR algebra has
a very simple structure: It is an approximately finite dimensional algebra, in a
sense a non—commutative analogue of a zero—dimensional topological space, and is
isomorphic to an infinite tensor product of copies of the two by two matrices.

Heisenberg’s canonical commutation relations were found by Born in 1925.
They first appeared in Born’s joint work with Jordan on the matrix formulation
of quantum mechanics [BJ25], but were independently obtained two months later
by Dirac [Dir26]. Inspired by group theoretic considerations, H. Weyl discovered
the usefulness® of replacing Heisenberg’s commutation relations (which do not have
bounded Hilbert space realizations) with their exponential form [Wey28]. In con-
trast to the CAR case, the Weyl algebra is a very “large” object (it is not separable),
and not much seems to be known about its abstract properties.

The Cuntz algebras are the basic examples of infinite C*—algebras (those con-
taining non—unitary isometries) and are of great importance in the general structure
theory of C*—algebras. They have been introduced by Cuntz in 1977 [Cun77], but
their generators (“Hilbert spaces of isometries”) had been studied before by Dop-
licher and Roberts in the context of general quantum field theory [DR72, Rob76a].
The generic appearance of the Cuntz algebras in quantum field theory has been
established rather recently by Doplicher and Roberts [DR90].

Each of these algebras possesses a natural class of structure preserving trans-
formations (“*~endomorphisms”), namely those which arise from linear symmet-
ries of the underlying vector spaces. These transformations will in all three cases

®The reader who is unfamiliar with operator algebras may think of a C*—algebra as an algebra
of bounded linear operators on some Hilbert space which is closed under taking adjoints and
uniform limits. Textbooks on operator algebras, with applications to physics, are [BR81, EK98|.

bHe regarded his relations as the answer to the “Frage nach dem Wesen und der richtigen
Definition der kanonischen Variablen” [Wey28].
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be termed gquasi—free endomorphisms, although in the CAR and CCR cases sev-
eral other names are also used in the literature (linear canonical transformations,
Bogoliubov transformations, one—particle transformations, ... ). Thus quasi—free
endomorphisms correspond to real orthogonal transformations in the CAR case,
to real symplectic transformations in the CCR case, and to complex isometries in
the Cuntz algebra case. Note that all these transformations need not be invertible
(their ranges need not be the whole space) if the underlying vector spaces are in-
finite dimensional. If they are invertible, then the transformations of the algebras
will be called quasi—{ree automorphisms.

It seems that quasi—free automorphisms (of the CCR algebra) first appeared
in Bogoliubov’s treatment of the Bose gas, although general (not necessarily lin-
ear) canonical transformations already occur in the famous “Dreiménnerarbeit” of
Born, Heisenberg and Jordan [BHJ26]. In the meantime there has been a tremend-
ous work on quasi—free automorphisms of the CCR and CAR algebras, so that it
would be hard to say anything new about them. Our interest is mainly in genuine
(non—invertible) endomorphisms, which have not been treated systematically in the
literature so far. We develop a complete theory of those quasi—free endomorphisms
of the CAR and CCR algebras which are, in the widest sense, related to second
quantization®. The second quantization of a genuine endomorphism is however no
longer a single unitary operator, but, as follows from the work of Doplicher and
Roberts, a whole Hilbert space of isometries on Fock space. This means that there
is a representation of a Cuntz algebra associated with each such endomorphism.

But why should a physicist care about endomorphisms of C*—algebras? Let us
give an answer to this question by sketching the history of the theory of superse-
lection sectors.

THE ALGEBRAIC THEORY OF SUPERSELECTION SECTORS

The theory of superselection sectors is an important and particularly successful
branch of local quantum field theory?. It was initiated by the observation of Wick,
Wightman and Wigner in 1952 that the validity of the superposition principle in
quantum physics is limited by what they called superselection rules [WWW52]. For
instance, there is no interference between a single—electron state 1/_ and a single—
positron state 14. In the state ¢ = a1y + a_vy_, the relative phase between the
1i—components cannot be measured, but can be arbitrarily changed by applying
global gauge transformations 9 — ¢’ = aye™p, +a_e ™ _. Such ¢ is not a
coherent, superposition, but a mixture of the pure states 11, with weights |a.|?.
Accordingly, matrix elements of physical observables between 1, and t_ must
vanish, observables are gauge invariant, and the physical Hilbert space splits up into
invariant “coherent” subspaces, each carrying a definite value of the electric charge.
The unobservability of relative phases in such situations led Wick, Wightman and
Wigner to the conclusion that the parities of elementary particles with different
charges cannot be compared.

Significant progress towards a deeper understanding of the general structure of
quantum field theory, and in particular of the concept of superselection rules, was
achieved by Haag and Kastler in 1964 [HK64]. Building on earlier ideas of Haag
[Haab9], they proposed a C*-algebraic treatment of quantum field theory. Whereas

°It should be noted that parts of our results have already been published [Bin95, Bin97,
Bin98g].

4We refer to Haag’s beautiful book [Haa96] for a comprehensive introduction into the subject.
We further recommend the lecture notes of Fredenhagen [Fre95], Roberts [Rob90], and Schroer
[Sch98b]. The early history of superselection rules has been nicely reviewed by Wightman [Wig95].
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“global” C*-algebra approaches to quantum field theory had previously been ad-
vocated by several authors, notably by Araki, Haag, Schroer, and Segal, Haag and
Kastler emphasized the importance of the principle of locality in field theory, i.e. the
absence of actions at a distance. Locality allows to assign to any bounded region O
in space—time the C*—algebra 2(O) generated by all observables which can be meas-
ured within that region, such that the natural partial ordering between regions is
preserved. The local algebras provide in some sense a “coordinate—free” description
of quantum field theory as opposed e.g. to Wightman’s approach [SW68] where one
has to make a specific choice among all fields belonging to the same Borchers class.
FEinstein causality requires that algebras belonging to spacelike separated regions
have to commute with each other. Haag and Kastler postulated that such a cor-
respondence between space-time regions and algebras of local observables should
fix the content of the theory completely. This point of view is plausible because
“ultimately all physical processes are analyzed in terms of geometric relations”
[HK64], and was supported by the general theory of collision processes that had
been developed earlier by Haag and Ruelle [Haa58, Rue62].

The formulation of quantum field theory in terms of local algebras permitted
a new look at superselection rules. Haag and Kastler introduced the quasilocal
algebra 2 as the C*-algebra generated by all local observables. The algebra 2
does not contain global quantities such as total charge or total energy; these can
only be obtained as strong limits in specific representations. Now 2l is expected to
possess an abundance of inequivalent irreducible representations, e.g. representa-
tions associated with states having different behaviour at spacelike infinity. (Haag
and Kastler believed that this was the only mechanism to produce inequivalent
representations in quantum field theory, but it was soon recognized that there ex-
ist inequivalent representations even among the states with the same asymptotic
behaviour; cf. (0.1) below.) That generic C*—algebras have lots of inequivalent
representations had already been discovered by von Neumann in 1939 [vN39]¢. Ac-
tually, any simple infinite dimensional C*—algebra (besides the algebra of compact
operators on a separable Hilbert space, which corresponds to the CCR algebra for
finitely many degrees of freedom, i.e. to ordinary quantum mechanics) possesses
uncountably many inequivalent irreducible representations. It was Haag who real-
ized in the mid-fifties the need for inequivalent representations in order to obtain
interacting quantum fields (“Haag’s Theorem”).

The different coherent subspaces are now interpreted as inequivalent irreducible
representation spaces of the single algebra 2(. Haag and Kastler called (the unit-
ary equivalence class of) an irreducible representation of 2 a superselection sector.
However, only a small subclass of all representations of 2 can be expected to have
a physical interpretation. In quantum field theory one is mainly interested in states
which describe local finite—energy excitations of the vacuum. The corresponding
sectors are called charge superselection sectors (and from now on, a sector will al-
ways mean a charge superselection sector). Here the term “charge” is used in a
very broad sense: It applies to any quantity which can be used to label the various
sectors.

Haag and Kastler argued that already a single sector should comprise all relev-
ant physical information. If one starts e.g. with a state in the vacuum sector, one
can create a particle of unit charge together with its antiparticle and then send the
antiparticle “behind the moon”. The resulting state will deviate, with respect to

¢He showed this on the example of an infinite tensor product of 2 X 2 matrix algebras (iso-
morphic to the CAR algebra) by exhibiting representations of type Ioo, II; and Ilo. The field
theoretic examples of inequivalent representations found in the 1950s also came from CAR and
CCR algebras, e.g. from non—-implementable quasi—free automorphisms, and thus are closely re-
lated to the subject of this thesis.
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local measurements, arbitrarily little from a state in the charge—one sector. Thus
any given state belonging to some sector can be approximated by states in each
other sector. In the terminology of Haag and Kastler, all sectors are “physically
equivalent”, which is, by a theorem of Fell, tantamount to all sectors being “equally
faithful” (they all have the same kernel). All superselection sectors thus determine
the same “abstract” C*—algebra 2(, and the choice of a particular representation of
2 appears essentially as a matter of convenience. This is the solution of the (at
that time much discussed) problem of inequivalent representations in quantum field
theory offered by Haag and Kastler.

If one takes this philosophy seriously, one faces the basic problem: Given the
quasilocal algebra 2 (together with its local structure) in a, say, vacuum sector, how
can one extract the interesting physical information? In particular, one would like
to determine all charge superselection sectors together with a set of unobservable
fields generating these sectors from the vacuum. The charge quantum numbers
ascribed to the various sectors and fields are expected to be related to some sort of
inner symmetries which act covariantly on the fields and trivially on the observables,
and one would like to understand the laws of composition and exchange of charges
(“statistics”).

In the first step of such an investigation one has to specify which representa-
tions of 2 are to be regarded as “local excitations of the vacuum”, i.e. as charge
superselection sectors. In his pioneering work [Bor65, Bor67a] Borchers proposed
to consider all irreducible positive energy representations m which are “strongly
locally equivalent” to a given vacuum representation 7y and fulfill a certain “weak
duality” condition?. Under these assumptions the unitary operators implementing
the strong local equivalence could be interpreted as charged local fields.

However, it soon became clear that Borchers’ assumptions were violated in
typical examples. Positivity of the energy should of course hold in any reasonable
theory, but is in general, due to infrared problems, too weak a condition to allow a
complete classification of representations (such a classification is however possible
under certain circumstances, as e.g. in conformal field theory [BMT88]). In order to
clarify the role of Borchers’ other assumptions, Doplicher, Haag and Roberts started
a careful analysis of the superselection structure of elementary particle physics in
1969 which led to a series of seminal papers [DHR69a, DHR69b, DHR71, DHR74]
and was to a certain extent completed some 20 years later by Doplicher and Roberts
[DR90].

In [DHR69a] Doplicher, Haag and Roberts considered theories where a compact
global gauge group acts on a given field algebra such that the observables are
precisely the gauge invariant fields. They studied the representations of 2l that
are contained in a fixed vacuum representation of the larger field algebra. Among
other things, they found that the sectors of 2 occurring in this manner are in a
natural way labelled by the inequivalent irreducible representations of the gauge
group, and that weak duality implies the failure of strong local equivalence (see also
[Rob70]). Therefore Borchers’ fields do not exist in this case. Instead Doplicher,

fris a positive energy representation if the space—time translations are unitarily implemented
in 7 such that the relativistic spectrum condition holds (see [BFK96, and references therein] for a
local version of the spectrum condition). If one assumes that the local algebras are weakly closed
(this can be done in presence of a distinguished vacuum representation), then the restrictions of
positive energy representations to the local algebras are known to be unitarily equivalent. It is
commonly believed that the von Neumann algebras associated with double cones (see below) are
all isomorphic to the unique hyperfinite type III; factor [Ara64, Fre85, BDF87]. — 7 is strongly
locally equivalent to o if the restrictions of 7 and 7g to the relative commutant of any local algebra
are equivalent, and weak duality means that, in the representation , the relative commutant is
weakly dense in the commutant. Unfortunately, the DHR criterion (0.1) is also sometimes referred
to as “strong local equivalence”.
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Haag and Roberts obtained two properties of these sectors which are closely related
to, but much more significant than, strong local equivalence and weak duality. The
first is that the various representations of the algebras belonging to the spacelike
complement of any bounded region are unitarily equivalent, in symbols

Tlaory = mola(or)- (0.1)
Here g is the vacuum representation of 2[ (corresponding to the trivial represent-
ation of the gauge group), 7 is some superselection sector, and A(0O’) is the C*-
subalgebra of 2 generated by all local observables which can be measured within
the spacelike complement O’ of the bounded space—time region O. This condi-
tion is weaker than Borchers’ strong local equivalence. The second property is a
strengthening of Einstein causality

m(A(0)) = m(A(0"))". (0.2)

The prime on the right denotes the commutant (the set of all bounded operators
on the representation space of m which commute with all elements of 7(2((0"))).
Here 7(4(0)) is assumed to be weakly closed, cf. footnote (f). Eq. (0.2) can only
be expected to hold for particularly simple regions O, e.g. for double cones?, and
henceforth, we will generically take double cones as localization regions. Doplicher,
Haag and Roberts showed that Eq. (0.2) holds in this form in all simple sectors, i.e.
in all sectors corresponding to one—dimensional representations of the gauge group,
but not in non—simple sectors. The condition (0.2) is stronger than Borchers’ weak
duality, but the point is that it is not assumed to hold in all sectors.

Eq. (0.1) is commonly called the DHR selection criterion. It is supposed to
single out most sectors of interest in theories with short range forces. It implies
that the states in the representation « look asymptotically like the vacuum, and
that the charges distinguishing between 7w and my can be localized in any bounded
region. The DHR criterion is known to hold for all irreducible positive energy
representations in conformal field theory [BMTS88], but it excludes “topological
charges” which appear even in purely massive theories [BF82, FM83], and charges
which can be measured at arbitrary distances, e.g. by virtue of Gauf’ law. Sectors
satisfying the DHR criterion are automatically Poincaré covariant with positive
energy under rather general assumptions [GL92], so that covariance does not have
to be assumed from the outset.

Following a proposal of Schroer in [FRS89], (0.2) is called Haag duality in order
to distinguish it from several other concepts of “duality” occurring in physics. It
means that the local algebras cannot be enlarged in the representation 7 without
violating Finstein causality. It was originally invented by Haag and Schroer as
an expression of underlying relativistic dynamics [HS62, Haa63]. The failure of
Haag duality for double cones in the vacuum sector indicates that the theory is in
some sense incomplete. It is typically caused by spontaneous breakdown of inner
symmetries [Rob76b, BDLR92], but is also generic in two—dimensional quantum
field theory (cf. [Miig98]). This phenomenon can be traced back to the existence of
operators which are only invariant under the unbroken symmetries, but not under
the broken ones, in the first case; and to the existence of “kink operators” in the
second case.

In [DHR69Db] the converse problem of reconstructing the field algebra and the
gauge group from 2 and 7y was solved for the set of all Poincaré covariant sectors
satisfying the DHR criterion and Haag duality (simple sectors). This set of sectors
has the structure of a discrete Abelian group, and its Abelian dual can be viewed

9Double cones are non—void intersections of suitably situated open backward with forward
light cones. They constitute the simplest (yet sufficiently rich) class of causally complete bounded
regions in Minkowski space which is closed under Poincaré transformations.
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as the gauge group. There is a unique field algebra consisting of Bose and Fermi
fields which has 2 as its gauge invariant part and acts irreducibly on the “physical”
Hilbert space which contains each simple sector with multiplicity one.

Doplicher, Haag and Roberts extended this analysis to the class of all charge
superselection sectors conforming with the DHR criterion (0.1) in [DHRT71]. It
is remarkable how little input is needed for their methods to apply, the deeper
reason for that being an underlying general duality theory for compact groups.
(The striking analogy of the superselection theory with the representation theory of
compact groups had been fully recognized in [DR72], but it took almost 20 years to
finish the proof that both structures are really identical [DR90]). It suffices to start
with the quasilocal algebra 2, together with a faithful irreducible representation g
on a separable Hilbert space Hg, such that Haag duality (0.2) for double cones and
Borchers’ “property B”" hold in mg. Let us sketch some of their results.

First of all, it is an immediate consequence of (0.1) and (0.2) that any repres-
entation 7 satisfying the DHR criterion is unitarily equivalent to a representation
on Hy of the form 7 o p where p is a localized endomorphism of . Such g has the
following properties:

e o is a unital map from 2 into itself which preserves the algebraic structure,
the star “+” and the norm.

e ¢ is localized in some double cone O (and then also in every larger double
cone) in the sense that

o(a) =a, ae€A0), (0.3)

and it maps the algebras belonging to larger regions than O into themselves.

e o is transportable: If O is another double cone, then there is an endomorph-
ism 9 localized in O such that the representations g o ¢ and mg o 0 are
equivalent. Such 9 has the form

o(a) = up(a)u®, a €, (0.4)

where u is a unitary element contained in any 2(0) with O > O U O by
Haag duality.

Conversely, any localized endomorphism p gives rise to a representation g o g ful-
filling (0.1). Thus the sectors fulfilling the DHR criterion are in one—to—one corres-
pondence with the equivalence classes [g] of irreducible localized endomorphisms p.
Here two endomorphisms g, ¢ are called equivalent if they are related to each other
asin (0.4), and g is irreducible if the corresponding representation is. Irreducible en-
domorphisms are not necessarily invertible, it can happen that m (0())" = mo ()"
but o(A) C A. Invertible endomorphisms (= automorphisms) correspond to simple
sectors and are characterized by the property that o2 is irreducible.

Several operations can be performed within the set of localized endomorphisms.

The direct sum of localized endomorphisms g1, ..., 0, is defined as follows. Take
local observables vy, ...,v, with the properties
viju =051, (0.5a)
Zvjv;-‘ =1 (0.5b)
j=1

hProperty B means that the local algebras are “almost type I1I” (any non—trivial local pro-
jection is, at least within a slightly larger algebra, equivalent to 1). This property was derived
from standard assumptions by Borchers [Bor67b]. It implies that any local algebra contains a
subalgebra isomorphic to the Cuntz algebra Os.
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(by the way, these are the defining relations of the Cuntz algebra O,,), and set
n n
@ 0i(a) = Zngj(a)v;f, a €A (0.6)
j=1 j=1

Such v; exist due to property B. The direct sum @;p; is again a localized endo-
morphism, and its equivalence class does not depend on the choice of the v; (if
¥1,...,0pn is another collection of local observables fulfilling (0.5), then the equi-
valence between the two direct sums is established, in the sense of (0.4), by the
unitary u = ) @;v;). Similarly, if ¢ is reducible, and p € m(o())" a non—trivial
projection, then there exists (by Haag duality and property B) a local observable
v such that

vv* = p, v =1, (0.7

and the “subobject” of p corresponding to p can be defined by gp(a) = v*p(a)v.
The equivalence class of g, is again independent of the choice of v. Finally, the
composition 91 o p2 of two localized endomorphisms is a localized endomorphism
whose equivalence class depends only on the classes of g; and g2, and in particular
not on the order of the factors, because endomorphisms which are localized in
mutually spacelike double cones commute with each other.

Thus direct sums and subrepresentations of representations fulfilling the DHR,
criterion also fulfill this criterion, and one has a well-defined commutative product
(“fusion”) of equivalence classes of such representations, corresponding to the com-
position of charges and given by the composition of the associated endomorphisms.
The availability of this product of sectors is the main advantage of working with
endomorphisms.

These observations provide the basis for an intrinsic understanding of statistics,
which is independent of a possible particle interpretation of the theory, and for the
reconstruction of gauge symmetries and charged fields from observable data only.

The statistics of a sector [g] describes the effect of exchanging identical charges
(remember that every sector carries a specific charge). It is determined by the
statistics operator €,, which can be defined as follows. Pick a unitary “charge
transporter” u as in (0.4) such that ¢ and the corresponding ¢ are localized in
spacelike separated double cones. Then

g, = u*o(u) (0.8)

is a unitary operator which commutes with all elements of o?(2), and its definition
is independent of the particular choice of u. (This is not true in two—dimensional
Minkowski space, where the spacelike complement of a double cone has two con-
nected components. There one can have two different choices of ¢,, one the other’s
inverse, depending on whether g is localized to the left or right of g. This possibility
had already been observed by Streater and Wilde in 1970 [SW70].) The statistics
operator ¢, fulfills the algebraic relations

599(59)59 = 9(59)599(59)7 (0.9)
er =1, (0.10)

so that the operators ¢"(g,), n > 0, fulfill the characteristic relations of element-
ary permutations (transpositions) which exchange n and n 4+ 1. Thus canonically
associated with any sector is a unitary representation of the infinite permutation
group. (Relation (0.10) gets in general lost in two dimensions, so that one obtains
representations of the infinite braid group instead. The first examples of sectors
with Abelian braid group statistics were again given in [SW70].) This permutation
group representation is analogous to the action of the permutation group on wave
functions in quantum mechanics. It describes permutations of factors in products
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of localized state vectors (or permutations of identical particles, if the theory has a
particle content; see [DHR74]).

The analysis of the statistics of the sector [p] now proceeds with the help of
left inverses. A left inverse ¢, of a non-invertible endomorphism p is a substitute
for the inverse of an automorphism. It is a unital positive linear map from 2l into
itself which is not multiplicative on the whole algebra 2, but satisfies

Po(ag(b)) = dp(a)d,  a,beA
It follows from this that ¢, ¢ = id, that po ¢, is a conditional expectation from 2
onto p(2A), and that ¢, enjoys the same localization properties (0.3) as o. Such ¢,
always exists, and corresponds to the physical operation of transferring the charge
of o to spacelike infinity. By applying a left inverse ¢, to the statistics operator ¢,
one obtains the statistics parameter A,

)\[Q] = ¢Q(EQ).
The statistics parameter is a scalar because ¢, maps 0*(2)' into o(2)’, and the
latter contains only scalars by Schur’s Lemma. A, is a numerical invariant’ of
the sector [g]. It can be used to classify the statistics of [g]. In the case of “finite
statistics”/ (i.e. A, # 0), the left inverse ¢, is unique, and one obtains the statistics
phase np,}, a complex number of modulus one, and the statistics dimension dj, > 1
by polar decomposition:
Mg = 78,
dig)

Simple sectors are precisely the sectors with dj,; = 1. The statistics dimension can
be viewed as a measure for the deviation from Haag duality in the sector [g]. It
can also be defined for reducible endomorphisms and coincides with the square root
of the minimal index [Jon83, Ko0s86] of the inclusion g(A(0)) C A(O) [Lon89]. It
is additive on direct sums and multiplicative on products of endomorphisms. Any
localized endomorphism with finite statistics is a finite direct sum of irreducible
endomorphisms with finite statistics.

Doplicher, Haag and Roberts classified the possible statistics in Minkowski
space of dimension greater than 2 [DHRT71]. There the statistics phase is just
a sign np = *1, and the statistics dimension dj, is a natural number (in the
infinite statistics case one sets dj,) = 00). These numbers characterize the unitary
representation of the permutation group: Depending on the sign 7., a sector
obeys either para—Bose or para—Fermi statistics of order d[,. This means that all
representations of the permutation group occur whose Young tableaux have columns
resp. rows up to length dj,. In a sector with infinite statistics, all irreducible
representations of the permutation group occur. Moreover, for every sector [g] with
finite statistics, there exists a unique conjugate sector [g] which is determined by the
property that the product [gg] contains the vacuum sector as a subrepresentation. A
sector and its conjugate have the same statistics: Aj,) = A (“particle-antiparticle
symmetry”). The conjugate sector can be viewed as arising from the state induced
by applying the left inverse to the vacuum state.

For the program of reconstructing the field algebra and the gauge group from
the observables, it proved instructive to reinvestigate the situation with given field
algebra and gauge group [DR72]. As mentioned above, the sectors occurring under
these circumstances correspond to the various irreducible representations of the
gauge group and satisfy the DHR criterion (0.1), hence can be described by localized

iSee [FRS89, FRS92, KMR90] for a discussion of uniqueness of X in two dimensions.

JThe case Alg] = 0 does not occur in theories with particle-antiparticle symmetry and is
usually disregarded. Reasonable examples of sectors with infinite statistics dimension have been
given by Fredenhagen [Fre94]. See also [BCL97].
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endomorphisms (one also needs a duality assumption on the fields for this). They
all have finite statistics. In [DR72] Doplicher and Roberts assigned to a localized
endomorphism p the closed linear subspace H(g) of local field operators ¥ which
induce p:

H(p) ={¥ | Ya=0(a)¥ for all a € A}. (0.11)

Because any field which commutes with all quasilocal observables is a multiple of
the identity, each ¥ € H(p) is a multiple of an isometry

T = || T]°1.

Likewise, ¥*¥' is proportional to 1 for any two ¥, ¥’ € H(p), defining an inner
product in H(p):

(T, 9')1 = T*T'.
This inner product induces the usual operator norm. Thus H(p) is a Hilbert space
of isometries [Rob76a] inside the field algebra. It has the property that the joint
kernel of all ¥* vanishes: Nker ¥* = {0}. Moreover, the dimension of H (p) is equal
to the statistics dimension of g:

and the gauge action restricts to a continuous unitary representation of the gauge
group on H(p). In this way one obtains a concrete equivalence between the
“category” of localized endomorphisms with finite statistics (whose morphisms
are the intertwiners between endomorphisms), and the category of finite dimen-
sional continuous unitary representations of the compact gauge group (with morph-
isms the intertwiners between representations). This equivalence preserves irre-
ducibility and direct sums. Since H(g1) ® H(p2) is canonically isomorphic to
H(p102) = H(01)-H(p2), the composition of endomorphisms corresponds to taking
tensor products of representations. The permutation symmetry is related to chan-
ging the order of factors in tensor powers, and charge conjugation corresponds to
passing to the complex conjugate representation.

Since our own work will be concerned with the description of the Hilbert spaces
H (p) associated with quasi—free endomorphisms g, let us add the remark that any
orthonormal basis Wy,...,¥g . in H(p) fulfills Cuntz’ relations (0.5) and imple-
ments g in the sense that

die]
o(a) =) T;ali,  aeL (0.13)
7j=1

This concept of implementation of endomorphisms by Hilbert spaces of isometries
reduces, in the case dj, = 1, to the familiar unitary implementation of automorph-
isms. Since H(p) is a representation space of the gauge group, the ¥; transform like
a tensor under gauge transformations. Indeed, Doplicher and Roberts have shown
that the elements of H(p) are the “typical elements” of the field algebra in the sense
that any irreducible tensor ®,,...,®,4 of local fields is of the form ®; = a¥; with
a € A and ¥; € H(p), for some irreducible localized endomorphism p. It follows
that the linear span of all ¥ € H(p), where p runs through all endomorphisms
localized in a double cone O, is weakly dense in the von Neumann algebra of fields
localized in O. We would also like to note that, associated with H(p), there is a
“Bosonized” version €, of the statistics operator, obtained by setting

de]
EDR ANH (0.14)
J.l=1



10 INTRODUCTION

This is the operator which effects the exchange of factors in a tensor product, since
it fulfills

£, 00 =T'Y, U, ' € H(p).
There is also a simple formula for the left inverse of g in terms of the ¥;:

at)
1
pola) = — > T5a¥;, acq (0.15)
d[g] j=1
The corresponding “Bosonized” statistics parameter is of course given by
1
£,) = —; 0.16
bolee) = 5 (0.16)

that is, the information about the statistics phase 7y, is lost. The full field theoretic
statistics operator €, has instead the form

dig)
_ dr* T * Ty *
Ep = E \I’]\I’j\I’k\I’l\I’l k>
Jik, =1

where the @j = u¥; are an orthonormal basis in the Hilbert space H(g) imple-
menting the endomorphism g (cf. (0.8) and (0.4)). This expression is obtained by
substituting g in (0.8) by the formula (0.13), and by writing the unitary charge
transporter v in terms of the ¥;, lilj asu=>y. j lilj ¥%. Using the asymptotic com-
mutation relations of the fields, which are in the present case of Bose or Fermi type
(@, 0; = +3,T;), one gets that &, = +&,.

These observations led Doplicher and Roberts to the conjecture that the (finite
statistics) superselection structure described in [DHR71], and valid in at least 3
space—time dimensions, should always be equivalent to the representation theory of
a unique compact group. The proof of this conjecture was completed in the late
1980s [DR9I0] via an extension [DR88, DR89a, DR89b] of the Tannaka-Krein duality
theory of compact groups. The Tannaka—Krein theory allows to recover a compact
group from its “concrete dual”, i.e. from the collection of finite dimensional unit-
ary representation spaces together with the intertwiners between representations.
The group elements can then be identified with certain functions assigning to each
representation space a unitary operator on that space. Doplicher and Roberts in-
stead characterized the abstract duals of compact groups. They found that any
category which has essentially all the properties shared by the category of localized
endomorphisms, namely a composition law with permutation symmetry, and the
existence of subobjects, direct sums and conjugates, is equivalent to a category of
finite dimensional continuous unitary representations of a unique compact group.

The construction of field algebra and gauge group from the observables and
localized endomorphisms now amounts to the construction of a concrete group dual
from an abstract one. The field algebra can be obtained as the “cross product” of
by the semigroup of localized endomorphisms. This is a C*—algebra which contains
2 and, for each endomorphism p, a finite dimensional Hilbert space H(g) inducing
0, with certain relations between the elements of 2 and the elements of the algebras
generated by the H(p). The gauge group can be identified with the compact group
of all automorphisms of the field algebra which leave 2 pointwise fixed.

Summarizing, the main result of Doplicher and Roberts states that, in
Minkowski space of dimension greater than two, the observable algebra can al-
ways be embedded into a larger field algebra on which a compact gauge group
acts in such a way that the observables are precisely the gauge invariant fields.
The fields are local relative to the observables and act irreducibly on a Hilbert
space which contains each superselection sector ¢ with multiplicity d[,). The charge
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quantum numbers are in one-to—one correspondence with the equivalence classes
of irreducible representations of the gauge group. This construction is unique up to
unitary equivalence, if one requires that fields commute or anticommute at spacelike
separations (“normal commutation relations”).

Thus the program of reconstructing charged fields and gauge symmetries from
local observables has been carried through successfully, at least in the case of strictly
localizable charges (cf. (0.1)) in space—time of dimension greater than two. This
is of course a strong confirmation of the central idea behind local quantum field
theory, that all physical information should be encoded in the relative position of
the algebras of local observables.

The picture is however less complete in low dimensional quantum field theory.
An analysis of the low dimensional superselection structure based on the DHR se-
lection criterion (0.1) and on Haag duality (0.2) in the vacuum sector has been
worked out by Fredenhagen, Rehren and Schroer [FRS89, FRS92]. The methods
of Doplicher, Haag and Roberts can be adapted to this situation, and, as already
indicated above, one finds a somewhat richer structure in this case. The stat-
istics phase can be an arbitrary element of the circle group T, and the statistics
dimension need not be an integer, but can take almost any value that is allowed
by Jones’ list [Jon83] of indices of subfactors. Statistics is governed by the braid
group instead of the permutation group, and the gauge symmetries (the “dual ob-
ject” of the superselection structure) do not form a group in general. However,
there are only partial results concerning the quantum symmetry problem (e.g.
[MS92, FK93, Reh96, BNS98, NSW98]), the classification of the occurring braid
group representations (see e.g. [FRS89, Lon90]), and the reconstruction of charged
fields (e.g. the “reduced field bundle” [FRS92], a bounded version of the conformal
“exchange algebras” of Rehren and Schroer [RS89], or [Sch95]). It is interesting to
note that many structural peculiarities such as braid group statistics, non—integer
dimensions, Verlinde’s modular algebra etc., which had been found previously in
conformal field theory, and which were thought to be consequences of conformal
invariance, could be shown to be generic features of low dimensional quantum field
theory, independent of conformal invariance; see e.g. [Reh90, FRS92].

Whereas Haag duality automatically holds in conformally invariant theories on
the circle (due to space—time compactification, see [BSM90, BGL93, FG93]), it is
not such a reasonable assumption in two-dimensional Minkowski space. The basic
mechanism for the violation of Haag duality in the vacuum sector is the following:
If O is a given double cone, then there exist operators in 20(0) which create a
charge in the left spacelike complement of O and annihilate a charge of the same
type in the right spacelike complement. Such operators cannot be approximated
by observables in 24(0’), so that (0.2) fails.

A preliminary analysis of the two—dimensional situation without assuming Haag
duality from the outset has recently been attempted by Miiger [Miig98]. Similar
as Doplicher, Haag and Roberts in [DHR69a], he starts from a field algebra with
normal commutation relations from which the observables are selected by a gauge
principle. The fields are assumed to satisfy a certain duality property, which would
imply Haag duality for the observables in higher dimensions, but entails only a
weaker form of duality (“essential duality”) in two dimensions; and a specific form
of causal independence, which is believed to hold in massive theories. One can then
enlarge the local field algebras by adding certain non-local “kink” or “disorder”
operators to the fields which act like the identity on one half of the spacelike com-
plement of some double cone, and like a global gauge transformation on the other
half. One can also introduce a system of enlarged local observable algebras on the
vacuum Hilbert space of the original observables, which fulfills Haag duality and is
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therefore called the “dual net”*, by setting
A4(0) = A(0")".

It turns out that this dual net is just the fixed point net of the enlarged field
algebra under the gauge group G; and that, if G is finite, there is a natural action
of a certain Hopf algebra containing G (the “quantum double” of G) on the enlarged
field algebra such that the original observables are the fixed points under the action
of the whole quantum double. In this sense the violation of Haag duality in two—
dimensional Minkowski space is also related to symmetry breaking.

Let us finally comment on the status of the DHR selection criterion (0.1). As
we already pointed out, all superselection sectors which can be reached by applying
local fields to the vacuum, and all positive energy representations in conformal field
theory, fulfill this criterion. But even in purely massive theories it is not true that
all positive energy representations can be localized in bounded space-time regions.
Buchholz and Fredenhagen proved that for a primary positive energy representation
m whose energy—momentum spectrum starts with an isolated mass shell, there is a
unique vacuum representation relative to which 7 can be localized around “semi—
infinite strings” extending from one point to spacelike infinity [BF82]. (In two
dimensions there are possibly two inequivalent vacua associated with 7, and one
can have soliton sectors interpolating between these vacua; see [Fr676, Fre90, Fre93,
Sch96a, Reh97].) One can perform an analysis of superselection sectors having
this weaker localization property relative to a fixed vacuum. Such an analysis is
technically more involved than in the case of the DHR criterion, but the resulting
structure is very similar. In particular, superselection sectors can still be described
with the help of endomorphisms. Braid group statistics arises already in three
dimensions; see [BF82, DR90, FGM90, MS95, FGR96] for details.

Even weaker localization properties must be expected for charged sectors in the
presence of long range forces, e.g. in QED, where the asymptotic direction of the
electric flux at spacelike infinity has to be taken into account. There is some hope
that the localization of charged states can be improved by comparing them with an
“infravacuum” state (a certain radiation background) instead of a vacuum state, so
that the criterion of Buchholz and Fredenhagen would apply [Buc82, Kun97]. An-
other mechanism which could make the methods of superselection theory applicable
to charges obeying Gauf}’ law has recently been proposed in [BDM*96]. These au-
thors showed on the example of a free massless scalar field that such charges can be
described by automorphisms ¢ which violate the Buchholz—Fredenhagen condition
on 2, but fulfill the stronger DHR criterion (0.1) relative to a smaller subalgebra.
Although one can no longer conclude from Haag duality that the charge transport-
ers u entering the definition (0.8) of the statistics operators €, are contained in
A (cf. (0.4)), it is nevertheless possible to define g(u) unambiguously. Then the
statistics operators are well-defined, and one can discuss the statistics of the model
in the usual way.

k «Essential duality” means that the so—defined dual net satisfies Einstein causality [Rob76b]:
A4(0") C AY(0)’. Essential duality is known to hold if the local algebras are generated by
Wightman fields [BW75]. The passage from a non-Haag dual theory to the dual net is the
customary way of restoring Haag duality. Its value lies in the fact that, in higher dimensions and
under the assumption of essential duality, the dual net possesses precisely the same superselection
sectors as the original theory [Rob80]. This is however not true in two dimensions, so that the
significance of the dual net is somewhat limited in this case. Under Miiger’s assumptions, the dual
net has in fact no superselection sectors fulfilling the DHR criterion. It seems that superselection
sectors of the original theory extend at best to soliton sectors of the dual net [M{ig97]. — Similar
questions have been investigated for conformally invariant theories on the real line in [GLW97].
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There are many other important topics in the theory of superselection sectors
that we cannot touch upon in this introductory survey. Let us mention the deep
connection with the theory of von Neumann algebras, whose powerful tools as e.g.
the modular theory of Tomita and Takesaki (leading for instance to a new approach
to the just mentioned localization problem [Sch97b, Sch97a]) and the techniques of
the theory of subfactors have found a lot of applications in local quantum physics. It
is even true that some of these developments had been anticipated in physics before
they were established in greater generality in mathematics. As these techniques will
not be applied in our work, we refer to the original literature [Lon89, Lon90, FRS89]
and to the reviews [Bor95, Wie96, Sch96b, Sch98a], and references quoted there,
for these matters.
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WHAT WE HAVE DONE

Review of the perspective. It should have become clear from the preceding
excursion to non—perturbative quantum field theory that endomorphisms of C*—
algebras do play an important réle in quantum physics. Starting from a theory of
local observables, for which clear physical principles can be formulated, localized
endomorphisms are the basic tools for an intrinsic construction of unobservable
charged fields, for the derivation of their localization properties, commutation rela-
tions and symmetries. Since one has less intuition concerning the physical properties
of unobservable quantities, it is gratifying that one does not have to postulate e.g.
the commutation relations of fields, but can deduce them from the principles of
locality and causality. It is equally remarkable that the gauge symmetries can be
derived from the interrelations between local observables, which are by their very
nature gauge invariant.

But, as it sometimes happens if one tries to put a physical theory on a sound
mathematical basis, it is difficult to identify the general structures, whose existence
is predicted by the abstract mathematical analysis, in concrete models. This applies
in particular to quantum field theory where mathematically rigorous models beyond
free fields are still lacking in four—dimensional space-time. Let us have a look at
some field theoretical models whose superselection structure has been puzzled out.

Localized automorphisms of the free charged Klein—-Gordon field, with gauge
group T, can be constructed as follows [Fre73, BLOT90]. One smears the field with
a smooth real test function which has support in a compact region O and whose
Fourier transform does not vanish identically on the positive mass shell. Then
one obtains a unitary operator by polar decomposition of the smeared field which
implements an automorphism localized in O and which carries one unit charge.
(One cannot use quasi—free automorphisms of the CCR algebra for this purpose
because they are all neutral.)

Localized automorphisms of the free Majorana field, with gauge group Z,, are
even simpler to get. Here one can take the Majorana field itself, smeared out with
a suitable localized real test function, as unitary implementer. This amounts to an
especially simple choice of a quasi—free automorphism (a reflection).

The situation is a bit different in the case of the free Dirac field, with gauge
group T. Since the field operators are no longer injective, one cannot build auto-
morphisms and unitary implementers directly out of the field operators. It is
then natural to look for localized automorphisms among the class of quasi—free
automorphisms of the CAR algebra. In [Bin93] we exhibited a family of charge—
carrying localized quasi—free automorphisms which are induced by certain unitary
multipliers on the single particle space. This construction works however only in
two dimensions, and it is unlikely that unitary multipliers yield charge-carrying
implementable automorphisms in higher dimensions. Our construction has been
generalized by admitting kink-like multipliers by Adler [Ad196]. The correspond-
ing automorphisms then show Abelian braid group statistics and extend to solitons
of the dual net.

The current algebra derived from the massless free scalar field has no superse-
lection sectors in dimension greater than two, but exhibits spontaneous symmetry
breaking [Str74, BDLR92]. On the contrary, it possesses a continuum (= R?) of
superselection sectors in two dimensions, due to its peculiar infrared properties.
The associated localized automorphisms correspond to displacements of the fields
[SWT70]. The superselection structure of the conformal current algebra on the circle
and of its local extensions (gauge group Zan) has been studied in [BMT88].



WHAT WE HAVE DONE 15

Of greater interest is the case of genuine endomorphisms, corresponding to
non—simple sectors. The only explicit examples of genuine localized endomorph-
isms constructed so far are, to the best of our knowledge, the ones leading to the
non-simple sectors of the chiral conformal so(N) WZW models at level one. They
all belong to the class of quasi—free endomorphisms of the CAR algebra. The first
example appeared in the treatment of the conformal Ising model by Mack and
Schomerus [MS90]. This model has one non-simple sector, with highest weight 1+
and statistics dimension \/5, and Mack and Schomerus offered a candidate of a loc-
alized endomorphism which was conjectured to describe this sector. They actually
did not use this localized endomorphism in their computations, but worked with a
global endomorphism throughout. This makes the analysis technically simpler, but
also somewhat questionable, because e.g. the concept of statistics depends crucially
on locality. The ideas of Mack and Schomerus were soon generalized by Fuchs,
Ganchev and Vecsernyés to the level one so(N) WZW models, which also have a
Fermionic realization [FGV92]. These models possess one non-simple sector, with
highest weight % and statistics dimension v/2, if N is odd; the case N = 1 repro-
duces the Ising model. But these authors also used global endomorphisms. This
state of affairs was subsequently improved by Béckenhauer who constructed loc-
alized endomorphisms, among them the candidate of Mack and Schomerus, which
are equivalent to the global ones of [MS90, FGV92], and which imply the same
fusion rules [B6c94, B6c96]. Note that, due to the non—integer statistics dimen-
sion, none of these endomorphisms can have the properties predicted by Doplicher
and Roberts (cf. (0.11)-(0.13)). These endomorphisms are not related to group
symmetries, but to genuine quantum symmetries.

In this connection, we should also mention the attempts of A. Wassermann
[Was] and Recknagel [Rec93, Rec96] to substitute localized endomorphisms by cer-
tain other structures. In [Was] the fusion of positive energy representations of
the loop groups LSU(N) is described. These representations can be constructed
using implementers of certain quasi—free automorphisms of the CAR and CCR al-
gebras over L?(T) [PS86], and are closely related to the su(N) WZW models. In
[Was], their fusion is not performed with the help of endomorphisms, but uses an
equivalent technique, the tensor product of bimodules over von Neumann algebras
[Con94] (“Connes fusion”). In [Rec93] it is proposed to replace endomorphisms of
algebras by endomorphisms of some associated Ko—groups which are in principle
much easier to handle. Though this heuristic approach is plagued with some serious
shortcomings, it was possible on its basis to reproduce the fusion rules of the su(2)
WZW model. In [Rec96] it is tried to reach the sectors of some minimal models
by “amplimorphisms” of certain associated path algebras. A characteristic feature
of [Rec93, Rec96] is the complete lack of locality. (There is also the reformulation
of the DHR theory given by Fredenhagen, where representations and endomorph-
isms are replaced by states and completely positive maps [Fre92]. The usefulness of
this approach has been demonstrated on some subtheories of the conformal current
algebra [Fre94].)

Summing up, one is confronted with a scarcity of field theoretic models whose
localized endomorphisms are explicitly known, and there are in fact no known
examples of endomorphisms which fit completely into the scheme of Doplicher and
Roberts.

Quasi—free endomorphisms of CAR and CCR algebras. Ever since the
invention of quantum field theory in the late 1920s [Dir27, JW28], the CAR and
CCR algebras have been the dominating algebras in this field. In view of the above
remarks it is natural to ask whether one can find endomorphisms of these algebras
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which share all the properties predicted by the theory of Doplicher and Roberts
(see the discussion after Eq. (0.11)).

Specifically, the questions we are facing are the following: Do there exist quasi—
free endomorphisms of the CAR and CCR algebras which can be implemented on
Fock space by Hilbert spaces of isometries in the sense of Eq. (0.13)? If yes, how
can such endomorphisms be characterized? What are their possible charge quantum
numbers? And can one construct the corresponding Hilbert spaces of isometries
(the “charged fields”) explicitly?

Very briefly, the answers implied by our work can be summarized as follows.
Each algebra possesses a rich semigroup of quasi—free endomorphisms having the
desired properties. These semigroups are the natural generalizations of the well-
known restricted orthogonal and symplectic groups. A quasi—free endomorphism
belongs to one of them if and only if its associated one—particle operator fulfills a
certain Hilbert—Schmidt condition. There are detailed formulas for the correspond-
ing charged fields on Fock space which have a well-defined meaning as infinite sums
converging strongly on a dense domain. The Hilbert spaces of isometries spanned
by these fields can in a natural way be regarded as Fock spaces over some auxiliary
space. (These auxiliary spaces can have finite or infinite dimension. Be aware that
these “Fock spaces of isometries” are not contained in the original Fock space, but
consist of operators acting on the latter.) This Fock space structure is compatible
with the action of the gauge symmetries, and provides the key to the determination
of the charge quantum numbers. Genuine endomorphisms are always reducible; the
possible values of their statistics dimensions are the powers of 2 (CAR) resp. oo
(CCR). They induce representations of the Cuntz algebras Os» and On.

For the convenience of the reader who finds the preceding remarks too con-
densed we would like to give now a detailed exposition of the material contained in
the central chapter of this thesis.

Section 1. Here we review the Cuntz algebras O(H) and their basic properties.
This section is intended as a supplement to the main text, and its content is not
essential for an understanding of the remainder.

After stating the definition of O(H), we quote Evans’ Fock space construction
of O(H) as a quotient of the Cuntz—Toeplitz algebra. Some general properties of
O(H), mostly due to Cuntz as e.g. its K-theory, are mentioned, and endomorphisms
of O(H) are discussed. Quasi—free endomorphisms and quasi—free states of O(H) are
closely related to the structure of the gauge invariant subalgebra of O(H), and have
been studied by Evans et al. Quasi—free group actions on O(H) are an important
element in the theory of Doplicher and Roberts.

There has recently been some interest, e.g. in connection with Powers’ Fy—
semigroups, in the relation between representations of O(H) on a Hilbert space H
and endomorphisms of B(H). Note that the Cuntz algebras enter our analysis in
exactly the same way: We study endomorphisms of the CAR and CCR algebras
which give rise to representations of the Cuntz algebras on Fock space via Eq. (0.11)
and (0.13). Thus our results also provide interesting examples for the representation
theory of O(H).

Finally some remarks concerning the role of the Cuntz algebras in the general
theory of C*—algebras are made, but there is no room to discuss these important
topics in greater detail.

Section 2. This section contains a thorough analysis of the semigroup of all
quasi—free endomorphisms of the CAR algebra which can be implemented by Hilbert
spaces of isometries in a fixed Fock representation. Essentially all results which
go beyond the case of automorphisms are new. Most of them have already been
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published in [Bin95, Bin97], but the presentation given here is in several respects
superior to the one in [Bin95]. This analysis is completely general in that we do not
make specific assumptions on the structure of the real Hilbert space underlying the
CAR algebra. The price that one has to pay for this generality is that the concept
of locality is not incorporated at this level, but has to be discussed separately in
a more restrictive setting. As a consequence, we cannot apply the methods of the
theory of superselection sectors which hinge upon the principle of locality. Our
methods are instead taken from the representation theory of the CAR algebra and
from general functional analysis (e.g. Fredholm theory), and are largely independent
of the Doplicher-Roberts theory. (Analogous remarks are valid for the treatment
of the CCR case in Section 3.)

Section 2.1. The basic objects and facts that will be needed later on are in-
troduced. Araki’s “selfdual” CAR algebra formalism is used throughout which
amounts to complexification of the underlying real Hilbert space. Quasi—free endo-
morphisms are in one-to—one correspondence with their restrictions (“Bogoliubov
operators”) to this space. Bogoliubov operators are isometric. The fundamental
invariant of a Bogoliubov operator V is its Fredholm index, a non—positive integer
(or 00), and we find that this index is related to the statistics dimension dy of the
corresponding endomorphism gy by the formula

1.
dy =2 2V, (0.17)

Here the statistics dimension dy is defined to be the square root of the Watatani
index of the range of py. This is a purely C*—algebraic notion which does not
depend on representations. Automorphisms are characterized by dy = 1. By a
somewhat surprising result in [Bin97], any gy with statistics dimension dy = v/2
induces in a canonical way an isomorphism from the CAR algebra onto its even
subalgebra. These isomorphisms can be used to study the even subalgebra, which
models the algebra of observables in various physical systems.

The class of quasi—free states is defined, and the main technical tool to be used
later, the quasi—equivalence criterion for quasi—free states of Powers and Stgrmer
and Araki, is stated. Fock states are the pure quasi-—free states. The Powers—
Stgrmer—Araki criterion can be simplified if one of the states involved is a Fock
state. This has been observed by Powers, but we arrived independently at the
same conclusion, by an argument which can be found in the preprint version of
[Bin95].

Associated with every Fock representation is a second (equivalent) represent-
ation which we call the “twisted Fock representation”. The twisted Fock repres-
entation provides a convenient way to describe “twisted duality”, the analogue of
Haag duality in the presence of Fermi fields, and is always useful if one has to deal
with commutants of “local” subalgebras. The consequent use of the twisted Fock
representation will lead to some simplifications in the construction of the charged
fields in Section 2.4.

Section 2.2. This section is concerned with the representations 7 o ¢ that are
obtained by composing a Fock representation with a quasi—free endomorphism.
(Recall from p. 6 that the representations occurring in the theory of superselection
sectors have such a form.) We start with a discussion of the implementation problem
for endomorphisms of arbitrary C*—algebras. The conclusion to be drawn from this
general discussion is that an endomorphism p is implementable in an irreducible
representation 7 if and only if the representations 7 and 7o p are quasi—equivalent.

If 7w is the Fock representation of the CAR algebra induced by a Fock state
w, and if p is a quasi—free endomorphism, we show that 7o ¢ is a multiple of the
GNS representation of the quasi—free state wo p. (We do actually a little bit more
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because we give an explicit decomposition of Fock space into invariant subspaces.
This detailed description will be used in Section 2.4 to prove the completeness
relation (0.5b) for the charged fields.) The multiplicity is some power of two or
infinite. The question of implementability is thereby reduced to the question of
quasi—equivalence of quasi—free states, and we can derive our basic implementabil-
ity condition from the Powers—Stgrmer—Araki criterion. This condition generalizes
the well-known Shale—Stinespring condition which is restricted to the case of auto-
morphisms. Both conditions are formally the same. The Fredholm index of the
Bogoliubov operator corresponding to an implementable endomorphism is always
even, so that the statistics dimensions of implementable endomorphisms are integers
(or 00) as they should (cf. (0.12)).

The second half of this section deals with representations 7 o ¢ where 7 is a
given Fock representation, but ¢ an arbitrary (non-implementable) quasi—free en-
domorphism with finite index. (The analysis would be trivial in the implementable
case, because mo g is then unitarily equivalent to dy - w.) This analysis is e.g. relev-
ant for the endomorphisms describing the non—simple sectors of the WZW models
(cf. the remarks made on p. 15). We derive criteria for unitary equivalence of two
such representations, describe the quasi—free states of the form wo g where w is the
Fock state corresponding to 7, and characterize the endomorphisms g for which the
states w o g are pure or “almost pure” (mixtures of two inequivalent pure states.
This is in some sense the best one can get for endomorphisms gy with ind V' odd.)
These preparatory results are then applied to give an alternative proof a theorem
of B6ckenhauer, namely that 7o gy is a multiple of another Fock representation,
with multiplicity dy, if ind V' is even; and that it is a multiple of two “pseudo Fock
representations” , with multiplicity dy/v/2, if ind V' is odd. Invoking our isomorph-
ism onto the even subalgebra from Section 2.1, we obtain analogous results for the
restrictions of these representations to the even subalgebra. It was observed by
Szlachanyi and Bockenhauer, but regarded as a curiosity, that the restriction of
o gy to the even subalgebra behaves like a representation 7 o gy of the whole
CAR algebra, where V' is a Bogoliubov operator with ind V' = indV — 1. Our
approach gives a natural explanation for this phenomenon.

Section 2.3. Having established the necessary and sufficient condition for imple-
mentability in Section 2.2, we study here the structure of the topological semigroup
of all quasi—free endomorphisms which can be implemented in a fixed Fock repres-
entation. This semigroup is an extension of the restricted orthogonal group. One
of our achievements is the proof that this semigroup can be written as a product of
a small subgroup consisting of automorphisms which are close to the identity, and
the sub—semigroup of endomorphisms which leave the given Fock state invariant.
What is more, we are able to make a definite choice of the two factors in which an
implementable endomorphism decomposes.

There are some results involved in the proof of this product decomposition
which are of independent interest. The first is a useful parameterization of the
class of all Fock states which are unitarily equivalent to the given one. This para-
meterization is done in terms of certain pairs (7', h) consisting of an antisymmetric
Hilbert—Schmidt operator 7" and a finite dimensional subspace § of the kernel of T,
and is adapted to the structure of the cyclic vectors in Fock space which induce the
states. The next result is a canonical (up to a finite dimensional part related to
h) choice of a quasi—free automorphism belonging to the small subgroup mentioned
above which transforms a given equivalent Fock state into the original one.

Associated with any quasi—free endomorphism gy there is a “partial” Fock
state, viz. a Fock state of the CAR algebra over the range of V. Using the above
parameterization, we can extend this partial Fock state (in the implementable case)
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to a proper Fock state, say wy, of the whole CAR algebra. (This procedure is
reminiscent of the construction of the conjugate sector, with the help of the left
inverse, in quantum field theory; cf. p. 8.) The choice of wy is made definite
by minimizing both “parameters” T' and h in an appropriate way. We can thus
assign, in an unambiguous way, to each implementable quasi—free endomorphism
ov a Fock state wy which is equivalent to the original Fock state w, and such that
wy o oy = w. By the above, we get in addition a quasi—free automorphism gy in
the small subgroup which also has the property that wy o gy = w. The announced
product decomposition of gy is then obtained by setting

oV = U OW, W=U"'V. (0.18)

There is an ambiguity in the definition of gy which cannot be resolved. It amounts
to the freedom in the choice of an orthonormal basis in the “minimized” space by
associated with the Fock state wy .

The fact that any implementable quasi—free endomorphism can be written as a
product of two very simple factors is then used to determine the connected compon-
ents of the semigroup of implementable endomorphisms. It is well-known that the
restricted orthogonal group (the group of implementable automorphisms) has two
components which are distinguished by the Araki-Evans index, i.e. by the parity of
the dimension of the space hy . We find that the Araki-Evans index is not an invari-
ant of genuine endomorphisms, and that each set of endomorphisms gy with fixed
nonzero value of ind V' is connected. The product decomposition of endomorphisms
will further be used in Section 2.4 to reduce the proof of the completeness relation
(0.5b) for the charged fields to the simpler case of endomorphisms which leave w
invariant.

Section 2.4. We show in this section how to construct an orthonormal basis in
the Hilbert space of isometries H(gy) which implements a given quasi-free endo-
morphism gy on Fock space. The implementers can be expressed in terms of anni-
hilation and creation operators. This will make it necessary to employ special Fock
space techniques, which have been avoided in the previous sections. The strategy
underlying this construction is the following: We first generalize the known meth-
ods of constructing unitary implementers for automorphisms to the case of genuine
endomorphisms!. This generalization makes essential use of the Fock state wy in-
troduced in Section 2.3 and permits us to define one isometric implementer ¥y (V)
for gy. (V) is characterized by the property that its value on the Fock vacuum 2
reproduces the cyclic vector inducing the state wy. We then construct a complete
set of implementers by multiplying ¥ (V') with suitable partial isometries from the
left. This approach is suggested by the observation that, if one has an orthonormal
basis ¥, (V) in H(gy), then the operators ¥,(V)¥, (V)" are partial isometries in
the commutant of the range of gy, and the ¥, (V) can be reconstructed from these

!t is well-known that an automorphism gy is implementable if and only if there exists a unit
vector Qp in Fock space which lies in the joint kernel of all transformed annihilation operators.
This vector Qy induces the state wo oy —!. Once Qy is known, the unitary implementer ¥(U)
for gy can be constructed essentially by setting ¥(U)7(a)? = 7(gy(a))Qy, where 7 denotes the
Fock representation and 2 the original Fock vacuum vector. In the case of endomorphisms, the
state wy plays the role of wo oy —!. But note that the cyclic vector Qy associated with wy
is no longer uniquely determined by the requirement that it be destroyed by the transformed
annihilation operators. In fact, any element of the Hilbert space H(gy )2 has the latter property.
This corresponds to the fact that wy is not the only possible extension of the partial Fock state
mentioned above. What remains true is that any implementer is uniquely determined by its value
on . Also note that, given wy, it is still not obvious that the construction of ¥o(V') goes through
in the known way: In the case of automorphisms, both relations U*U = 1 and UU* = 1 usually
enter the construction on the same footing; whereas in the case of endomorphisms, the second
relation is lost, and one has to take this into account with care.
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operators (together with ¥o(V')) by setting
To (V) = (Ta(V)(V)") Bo(V). (0.19)

The first step in this program is to give an appropriate definition of “bilin-
ear Hamiltonians”. This will be achieved by combining the algebraic approach
of Araki with the more analytic approach of Ruijsenaars. As is well-known, the
CAR algebra contains the spin group, the universal covering group of the connected
component of the identity of the group of Bogoliubov operators which induce inner
quasi—free automorphisms, together with its Lie algebra. The elements of this Lie
algebra are called “bilinear Hamiltonians” because they are bilinear expressions in
the generators of the CAR algebra, and can be identified with certain trace class
operators H on the underlying Hilbert space. But we need a more general defini-
tion of bilinear Hamiltonians if we want to cover the case of general implementable
transformations. A natural extension of this Lie algebra is the current algebra, the
Lie algebra of skew—adjoint operators on Fock space whose exponentials implement
one—parameter groups of quasi—free automorphisms. The current algebra can be
identified with a larger class of operators H, namely with the Lie algebra of the
restricted orthogonal group (if one allows for the occurrence of Schwinger terms).
But even in the case of quasi—{ree automorphisms implementers can in general not
be obtained as exponentials of these currents, so that this class is still too narrow.

The way out is to consider Wick ordered exponentials. Such Wick ordered expo-
nentials can be defined, a priori as quadratic forms on a dense domain in Fock space,
for Wick ordered bilinear Hamiltonians induced by arbitrary bounded operators H.
Under a certain Hilbert—Schmidt condition on H, these Wick ordered exponentials
are the quadratic forms of densely defined, in general unbounded, operators. The
commutation relations of these operators with creation and annihilation operat-
ors can be explicitly computed, and are used to determine all operators H such
that the Wick ordered exponential of the bilinear Hamiltonian induced by H has
the “correct” intertwining properties relative to a given quasi—free endomorphism
ov- The operators H with this property are in one-to—one correspondence with
certain operators T' obtained during the study of the state extension problem in
Section 2.3. The minimal choice Ty made in that section leads then to a unique
operator Hy associated with gy, and the isometric implementer ¥ (V) is obtained
as a finite sum of terms, each involving the Wick ordered exponential of the bilinear
Hamiltonian induced by Hy plus some additional operators which essentially fill
up the “Dirac sea” corresponding to the finite dimensional subspace by .

A complete orthonormal basis in H(gy) is then constructed from ¥o(V) by
the method outlined above. Here it is used that the commutant of the range of gy
can be easily described with the help of the twisted Fock representation. It is also
straightforward to obtain partial isometries in this commutant since any Fermionic
creation or annihilation operator is already (a multiple of) a partial isometry, by
Pauli’s principle. It is less obvious how to characterize partial isometries which
contain the range of ¥y (V) in their initial spaces, as is required by (0.19). This can
be done with the help of the Fock state wy and its associated “parameter” Ty .

We finally arrive at the following scenario. There is a certain subspace &y of
the kernel of V* which has dimension —% ind V. We choose an orthonormal basis
in . The representors of these basis vectors in the twisted Fock representation
then behave like creation operators relative to the implementer Wo(V'). That is, we
obtain an orthonormal basis in H(gy) by multiplying ¥ (V) from the left with all
possible ordered monomials in these operators. It follows that H(gy) is isomorphic
to the antisymmetric Fock space over £y, so that

dim H(Qv) = dv



WHAT WE HAVE DONE 21

(cf. (0.17)). The basis of implementers is chosen in such a way that the value of any
one of them on the Fock vacuum 2 is the state vector of some Fock state. Moreover,
the choice of implementers is compatible with the product decomposition (0.18).
Roughly speaking, the factor gy carries the exponential term plus the operators
corresponding to hy, whereas gy is responsible for the additional partial isometries.
The completeness of implementers (0.5b) is proved by showing that the ranges of the
implementers of the factor gy are equal to the invariant subspaces which appeared
in the decomposition of the representation 7 o gy in Section 2.2.

Let us finally remark that the formulas given for the implementers are not in
“normal form” in the strict sense, i.e. they are not completely Wick ordered. There
are two reasons for this. The first is the use of the twisted Fock representation,
which involves the second quantization of —1 as a factor. These factors could
be avoided by incorporating them into the bilinear Hamiltonian of Hy, but the
formulas would become less transparent then, and the combinatorics would be
more complicated. The second reason is that the additional partial isometries with
which @ (V) is multiplied contain an annihilation part which should be moved to
the right, with the help of the commutation relations, in order to get a completely
Wick ordered expression. We have not done so because the Fock space structure of
H(py) would then no longer be visible.

Section 2.5. Here we derive formulas for the Bosonized statistics operators of
quasi—free endomorphisms with finite statistics. The basic observation is that par-
tial isometries of the form ¥, (V)¥4(V)" have an explicit representation as monomi-
als in the basis vectors of €. Special examples are the operators ¥, (V)¥o(V)"
appearing in (0.19), and the operators ¥, (V)¥,(V)*, the projections onto the
ranges of the ¥, (V).

Recall from (0.14) that the Bosonized statistics operator is a certain polyno-
mial in the implementers of the endomorphism. The knowledge of the operators
U, (V)¥s(V)" and of the intertwiner properties of the ¥, (V) suffices to identify
this polynomial with an element of the even CAR algebra. As a consistency check,
we compute the “Bosonized statistics parameter” by applying the C*—algebraic left
inverses that were introduced in Section 2.1 to the Bosonized statistics operators.
The result is the inverse of the statistics dimension, in accordance with (0.16).

Section 3. This section contains an analogous analysis of quasi—free endomorph-
isms of the CCR (or Weyl) algebra. It is essentially based on [Bin98]. The general
remarks made above in the introduction to Section 2 apply here as well. The meth-
ods are now borrowed from the representation theory of the CCR algebra, and the
theory of Fredholm operators will again be of importance. The survey of Section 3
will be comparatively short, and we will try to emphasize the differences between
the CAR and CCR cases.

Section 3.1. The basic notions are established. We find it again convenient to
use Araki’s “selfdual” formulation. In the CCR case it is necessary to start with
a distinguished “reference” Fock state w in order to get a Hilbert space topology
on the underlying symplectic space. A certain dichotomy will arise in the follow-
ing from the fact that the algebraic relations are dictated by the symplectic form,
whereas the analytic aspects refer to the Hilbert space inner product. Relevant top-
ics discussed here are Araki’s duality relation and a statement about the affiliation
of sums of creation and annihilation operators to “local” Weyl algebras.

Section 3.2. Quasi—free endomorphisms are introduced. They are given by
Bogoliubov operators V' acting on the symplectic space. Bogoliubov operators
preserve the symplectic form and have well-defined Fredholm indices. In contrast
to the CAR case, ind V is always even, irrespective of implementability.
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As in the CAR case, we reduce the question of implementability to the ques-
tion of quasi—equivalence of quasi—{ree states, by showing that the representation
induced by a quasi—free endomorphism g in the given Fock representation is a mul-
tiple of the GNS representation of the state w o p. The multiplicity is either 1 or
00. Invariant subspaces are explicitly described.

The derivation of the necessary and sufficient condition for implementability is
based on the criterion for quasi—equivalence of quasi—free states in the form given
by Araki and Yamagami. Some work has to be done to get rid of the square roots
appearing in this criterion. We do this with the help of an inequality of Araki and
Yamagami; this inequality enables us to reduce the problem to the CAR case via
polar decomposition of V', because the isometric part of V' is a CAR Bogoliubov
operator. The resulting condition is a generalization of the well-known condition
of Shale which covers the case of automorphisms. The two conditions do not have
the same form, in contrast to the CAR case. The statistics dimensions are now
given by

1 i =
gy = b mdV=0 (0.20)
00, indV #0.

The Fredholm index is therefore a finer invariant than the algebraic index.

Section 3.3. We study the semigroup of implementable quasi—free endomorph-
isms, an extension of the restricted symplectic group. Again we aim at showing that
this semigroup can be written as a product of a subgroup of automorphisms close
to the identity and a sub—semigroup of endomorphisms which leave the Fock state
w unchanged. To this end we consider the set of Fock states which are equivalent
to w. We can parameterize this set similar to the CAR case. There is however no
counterpart of the spaces™ h, and the only parameter that is needed is an element
Z of the infinite dimensional open unit disk. This parameter Z characterizes the
cyclic vector in Fock space which induces the corresponding state, and has prop-
erties similar to the operator T occurring in the Fermionic case. For any Fock
state equivalent to w there is a canonical choice of an automorphism in the small
subgroup which transforms this state into w. Note that, with b, also the ambiguity
in the choice of this automorphism has disappeared.

To obtain the product decomposition of a quasi—free endomorphism gy as in
(0.18), we must again solve the problem of extending a certain “partial” Fock state
associated with gy to a proper Fock state wy . Recall that this problem was solved
in the CAR case by “minimizing” the parameters T and h in some sense. In
particular, it is possible to define the operator Ty as a function of (the components
of) V. However, we could not find a similar prescription for the operators Z (and
presumably such a prescription does not exist). This complication is caused by
the fact that Z has to fulfill an additional requirement related to the positivity of
the state, viz. its norm has to be smaller than one. (There is no such restriction
on the operators T'; the admissible T' form in fact a Hilbert space.) Instead we
discovered a canonical method, based on spectral theory, how to extend the partial
state directly, i.e. without having recourse to the parameter Z. This state extension
wy is then used to define the parameter Zy; remember that Zy will be needed later
for the construction of implementers. Having assigned a Fock state wy to gy so that
wy 0 oy = w holds, there is then an unambiguous choice of an automorphism gy in

"The canonical anticommutation relations are symmetric in creation and annihilation oper-
ators, but the canonical commutation relations are not. Thus there exist endomorphisms of the
CAR algebra which interchange creation and annihilation operators, and this is the origin of the
spaces h. This possibility is absent in the CCR case.
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the small subgroup such that wy o oy = w, and the desired product decomposition
is finally obtained as in (0.18).

As a corollary, we determine the connected components of the semigroup. It
turns out that any subset of endomorphisms gy with ind V' constant is connected.

Section 3.4. The construction of a complete set of implementers for a given
endomorphism gy is performed. We start by defining Wick ordered Bosonic bilinear
Hamiltonians, and Wick ordered exponentials thereof, on Fock space. These are
in general quadratic forms, but determine densely defined operators under some
conditions on the associated operators H. One can again compute commutation
relations of Wick ordered exponentials with creation and annihilation operators,
and select the operators H with the property that the corresponding Wick ordered
exponential fulfills appropriate intertwiner relations with respect to gy. These
operators H are in one-to—one correspondence with the operators Z parameterizing
the Fock states which solve the extension problem from Section 3.3.

One implementer ¥o(V) is then obtained as the (normalized) Wick ordered
exponential of the bilinear Hamiltonian induced by the operator Hy which cor-
responds to Zy. The value of ¥y(V) on the Fock vacuum {2 is the cyclic vector
associated with the state wy. To get a complete set of implementers, we choose a
certain basis in a subspace €y of the kernel of the symplectic adjoint of V. The
dimension of this subspace is —% ind V. Polar decomposition of the representors of
these basis elements yields a set of isometries which commute with each other and
with the elements of the range of gy. One can then show that the operators ¥, (V)
obtained by multiplying ¥o(V) from the left with all possible ordered monomials in
these isometries satisfy the relations of (an essential representation of) the Cuntz
algebra O. Since these isometries behave like (isometric parts of) creation oper-
ators with respect to the “vacuum” ¥o(V), one finds that the Hilbert space H (gy)
is canonically isomorphic to the symmetric Fock space over £y .

Our choice of implementers is again compatible with the product decompos-
ition oy = pyew. Roughly, the factor gy is responsible for the Wick ordered
exponential, and the factor gw for the additional isometries. The completeness of
implementers follows from the fact that the ranges of the implementers of the factor
pow coincide with the invariant subspaces for the representation 7o gy described in
Section 3.2. The expressions for the implementers are again not completely Wick
ordered, because the additional isometries will in general contain an annihilation
part. But strict Wick ordering would hide the inherent Fock space structure of

H(ov).

Section 4. The general theory of the implementation of quasi—free endomorph-
isms of the CAR and CCR algebras has been completely developed in Sections 2 and
3. The detailed knowledge of the structure of the implementing Hilbert spaces will
now be used to gain insight into the charge structure of quasi—free endomorphisms
and to determine the possible charge quantum numbers.

The setting will be tailored to the situation implied by the Doplicher—Roberts
theory. That is, we will consider the CAR and CCR algebras as field algebras which
contain the observables as fixed points under the action of a given global gauge
group G. The gauge group will be assumed to consist of quasi—free automorphisms
which leave a fixed Fock state, the vacuum state of the field algebra, invariant.
Therefore G acts by usual second quantization on Fock space.

As a consequence, quasi—free endomorphisms are a priori endomorphisms of
the field algebra. (Note that by the results of Doplicher and Roberts, localized
endomorphisms of the observable algebra have a natural extension to the field
algebra in terms of their implementers, by replacing the observable a in (0.13) by



24 INTRODUCTION

elements of the field algebra.) Thus we have to single out a subset of quasi—{ree
endomorphisms which restrict to endomorphisms of the gauge invariant subalgebra.

The relevant subset is the semigroup of gauge invariant endomorphisms, i.e. of
endomorphisms g commuting with G, because these are precisely the endomorph-
isms whose implementing Hilbert spaces H (p) carry a representation of G. By the
discussion following Eq. (0.11), the determination of the charge quantum numbers
of p is equivalent to the determination of the representation of G on H(p). This
representation is further equivalent to the representation of G on the Hilbert space
H(p), which is easier to handle than H(p) itself (here 2 denotes the Fock vacuum
vector).

It should be noted that our assumptions are satisfied in models like the N-
component Dirac field with gauge group U(N).

Section 4.1. We compute the charge quantum numbers of gauge invariant
quasi—free endomorphisms gy of the CAR algebra. It turns out that they are
essentially determined by the subspaces hy and ¥y introduced in Section 2.

We have to study the behaviour of the implementers under gauge transform-
ations. The values of the implementers of gy on the vacuum vector {2 have the
following structure: To the left stands a product of partial isometries associated
with the subspace £y, followed by the “filled Dirac sea” corresponding to the finite
dimensional subspace hy, and finally the “pure creation part” of the Wick ordered
exponential of the bilinear Hamiltonian of Hy, applied to 2. We show that the
subspaces hy and £y are representation spaces of G, and that the operators related
to these subspaces transform linearly under G. The exponential term on the other
hand is invariant. This follows from the fact that the operators Ty can be expressed
as a function of the components of V', and confirms that the “minimal” choice of
Ty made in Section 2.3 is a reasonable one.

The transformation law of implementers implies that the representation Uy of
G on H(py) has the form

UV >~ det;,v ® AEv- (021)

Here dety,, is the one-dimensional representation obtained by taking the determ-
inant on hy of the Bogoliubov operators in G, and Ag, is the dy—dimensional
representation of G on the antisymmetric Fock space over ¢y. (Recall that H(gy)
is isomorphic to this Fock space.)

It follows that Uy, and hence pv, is reducible if ind V' # 0, because Ag, is
reducible. The representation Ag, contains together with the representation on &y
all the higher antisymmetric tensor powers thereof. The “least reducible” case is
obtained if €y is irreducible.

A special case worth mentioning is the case G = T and ind V' = 0, i.e. the case
of the restricted unitary group. It is well-known from the work on the external field
problem that the charge of elements of the restricted unitary group is given by a
certain Fredholm index ind V, (which has nothing to do with the index of V).
This fact can be easily derived from our much more general result: The factor Ag,
in (0.21) becomes trivial, and the factor dety, yields the index of V.

We study the question which representations of G' can possibly occur on the
subspaces hy and €y. In typical cases, any representation of G that is realized
on Fock space appears as a subrepresentation on some H(py). Then we compare
our findings with the generic superselection structure of quantum field theory. The
semigroup of gauge invariant endomorphisms is not closed under taking subobjects
or direct sums. It is closed under taking conjugates if one makes natural assump-
tions on the action of G. Under these assumptions, one can assign to each gauge
invariant Bogoliubov operator V another such operator V¢ such that hy. and &y.
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are antiunitarily equivalent to hy and £y, so that the representation Uy is unitarily
equivalent to the complex conjugate representation of Uy .

Finally we give an explicit example of a localized implementable gauge invari-
ant endomorphism with statistics dimension 2V of the free massless N-component
Dirac field in two dimensions. The construction rests on the use of “local” Four-
ier bases for the chiral components, and is in this respect similar to the known
examples of localized endomorphisms in conformal field theory.

Section 4.2. Here we compute the charge quantum numbers of gauge invariant
quasi—free endomorphisms gy of the CCR algebra. Since the spaces hy are absent
in the CCR case, the charge quantum numbers are entirely determined by the
representation of G on £y .

We derive the transformation law of the implementers of gy. Recall that the
implementers are obtained by multiplying the distinguished implementer ¥y (V)
from the left with certain isometries which are associated with the space ty. ¥o(V)
itself is a Wick ordered exponential of a bilinear Hamiltonian which is characterized
by the operator Zy. Similar to the CAR case, this Wick ordered exponential is
gauge invariant, and we take this as a confirmation that we gave the “correct”
definition of Zy in Section 3.3. Though there is no explicit formula for Zy in terms
of V, it is still true that Zy is in some sense a function of V, and this suffices to
prove the invariance of ¥o(V).

The subspace £y is again G—invariant. But in contrast to the CAR case, the
isometries associated with &y do not transform linearly under G. One can however
show that they obey a linear transform law when restricted to the range of ¥y (V),
and that is essentially all we need.

We conclude that the representation Uy of the gauge group G on the Hilbert
space H(gy) is unitarily equivalent to the representation on the symmetric Fock
space over £y induced by the representation on €y,. Thus one can say that the
endomorphisms in the CCR case are even “more” reducible than in the CAR case,
because Uy (and hence gy ) always splits into an infinite direct sum of irreducibles
if indV # 0. Another consequence is that automorphisms (ind V' = 0) carry no
charge.

Finally, we investigate which representations can be realized on £y, and under
which conditions charge conjugation is ensured. The remarks made in this context
in the Fermionic case apply here as well.
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