
Chapter 3

Numerical methods to solve the

Liouville{von Neumann equation

3.1 Integration of the Liouville{von Neumann equa-

tion: Direct and indirect approaches

How to approximate the time evolution determined by the dissipative Liouville-von

Neumann equation and how to represent the operators necessary to portray the

phenomena under study (including the density matrix itself) are essential points to

treat realistic systems.

Details on the representation problem will be discussed in the application sections,

because it is directly related to the representation of state vectors in the Schr�odinger

formalism. A vast literature exists on this subject (Ref.[13] is a recent and detailed

review with exhaustive references to the original works).

For the time evolution of a density matrix, there are two main approaches:

(i) A direct strategy, where (2.9) is solved by propagating a density operator; or

(ii) indirect schemes, where (many) di�erent wave packets must be propagated.
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The observables are computed via the incoherent summation (2.2).

The direct approaches are usually general, being equally applicable to Red�eld or

Lindblad forms of dissipation1. Direct approaches have been extensively used in

recent years. Di�erent choices of representations for the operators have been made:

discretized spatial grids [70, 71, 72], possibly with more than one electronic surface

[73, 74, 75]; energy or zeroth order or other state representations [76, 77, 78, 79] or

mixed representations [80]. Many di�erent approximations for the time evolution

have been introduced, ranging from Runge{Kutta general purpose integrators [72,

76] to split operator schemes [70, 73, 75], direct diagonalization of the Liouvillian

matrix [77], polynomial methods [81, 74, 82, 80], and Krylov methods [78]. The most

promising methods seem to be the split schemes, the polynomial interpolations and

approximations, and the Krylov methods. At the present state of development, it

is not clear yet which integrators are more suited for a speci�c problem. They have

a slightly di�erent memory occupation, needing respectively at least one, three,

and some ten copies of the matrix representing the density operator. They are

supposed to have di�erent performances when used for time dependent or time

independent problems, as it is the case for their counterparts in the state vector

dynamics with the Schr�odinger equation [83]. In addition they have much di�erent

levels of complication for their practical use. A disadvantage of the direct methods

is their unfavorable memory requirements which scale at least as N2 (the size of a

density matrix itself) where N is the dimension of the Hilbert space of the system.

The wave packet based indirect methods usually o�er considerable savings be-

cause only Ncomponent wave functions have to be propagated. However, this has to

be done n times to compute observables via incoherent summation. When n < N ,

not only memory can be saved, but even a speedup in computation time relative to

the direct methods is possible.

There are many examples of wave packet approaches to open quantum systems.

Among them, the Monte Carlo Wave Packet method (MCWP) is a relatively com-

mon technique [84, 85, 73, 86, 87, 88, 89, 90]. In its most straightforward imple-

1This is often true also for other less known schemes like the Caldeira{Leggett model [65],

because the equation is integrated \as it is".
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mentation, a Liouville{von Neumann equation of Lindblad form (2.11) is replaced

with an ensemble of wave functions, whose dynamics follows the non{Hermitean

time{dependent Schr�odinger equation

j _ (t)i =
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Here, the Ĉi are the Lindblad dissipation operators, as de�ned in section 2.2. The

term �1
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i Ĉi is the source of the non{Hermitecity, and being negative it reduces

the norm of the wave function j (t)i in time. Each wave function is propagated for

a timestep, and its norm loss computed; if it is larger than a random number,

chosen between zero and one, the function undergoes a \quantum jump" according

to the form of the dissipation operators [85]. There are other implementations of the

method, see for example Ref.[87]. The stochastic quantum state di�usion method

(QSD) [91, 92, 93, 94, 73, 72] is similar to the MCWP.

An interesting alternative is the \jumping wave packet & incoherent, weighted

averaging scheme", or Gadzuk method [41]. For very simple forms of dissipation,

the distribution of the MCWP jump probabilities can be determined analytically

[41] or semianalytically [90]. The wavefunctions are then propagated with the time{

dependent Schr�odinger equation and undergo jumps out of a time distribution. The

observables are computed via incoherent summation of the values obtained for each

function via the distribution function. For the cases where it can be applied, the

method is very e�cient.

The Variational Wave Packet (VWP) method is a recently introduced alternative

[95], which will be discussed in the forthcoming sections.

The wave packet methods are not always general. MCWP, QSD and related

schemes are known only for dissipation models of Lindblad form [85]. The Gadzuk

method and its generalized versions can be used for special varieties of Lindblad

operators [90]. Only the VWP is in principle completely general in its applicability.

Some of the wave packet methods are stochastic approaches and sometimes con-

verge only poorly to the exact results, in particular when these are dominated by

statistically rare events (see Refs.[89, 96], section 3.4 and chapter 4).
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In connection with direct methods, we have been working with polynomial ex-

pansions of the Liouvillian. As described in Section 3.2, these polynomial expansions

can only be used if the dynamics is Markovian and linear. As indirect methods, we

used the VWP method, described in section 3.4. A comparison of VWP with the

MCWP and the Gadzuk method is given in chapter 4.

3.2 Polynomial expansions

3.2.1 Overview on the polynomial integrators

The representation of operators in a computer simulation can always be expressed

in matrix formalism. In particular, the polynomial methods are based on the theory

of the approximation of functions of matrices [97]. In this section, we will always

consider Eqn.(2.9), written in matrix form as

_� = L�; (3.2)

With the initial condition �(0) = �0. Here L is a D �D matrix representation of

the Liouvillian and �0 as a vector of size D = N � N , where N is the size of the

Hilbert space of the system. Analytically, the solution of (3.2) for a time � � 0 is

�(�) = exp(�L)�0: (3.3)

In practice, the exponential of a large matrix has to be approximated. If we choose

a polynomial approximation, we are interested in the polynomial Pn
� (L)�0 which

minimizes among all polynomials P of degree � n the local error

�loc(n) = k exp(�L)�0 � Pn
� (L)�0k: (3.4)

The application of functional calculus of analytic functions [98] gives an insightful

framework to our approximation problem. Let � � C be any Jordan curve2, enclos-

ing the complex eigenvalue spectrum of the dissipative Liouvillian L = LH + LD;

2A closed curve that does not intersect itself, e.g., the boundary of a rectangle or an ellipse.
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then

�loc(n) = k exp(�L)�0 � Pn
� (L)�0k

= k 1

2�i

Z
�

fexp(�z)� Pn
� (z)g(z � I�L)�1�0 dzk (3.5)

� min
�

�
C�max

z2�
j exp(�z) � Pn

� (z)j
�

for a constant C� > 0, depending on L and �, but independent of n. I is the identity

D �D matrix. From the above inequality, we see that the local error is related to

the problem of approximating a scalar analytic function, i.e., �nding among all

polynomials Pn
� at most of degree n the one that minimizes for �xed �

max
z2�

j exp(�z) � Pn
� (z)j: (3.6)

Following the maximum principle [99], one can substitute in (3.6) � by the domain

G = G(�) de�ned as the set of all points enclosed by �.

The exact solution of the min{max problem requires the calculation of the spec-

trum of L, that is equivalent to diagonalize it. This already corresponds to having

solved problem (3.3) [77], rendering super
uous the subsequent polynomial approx-

imation. Anyway, direct matrix diagonalization is ine�ective compared to iterative

multiplication with a sparse matrix3 [78] because of unfavorable scaling [102].

Therefore, it is a common practice to �x a curve � or respectively a domain

G and consider the scalar valued approximation problem (3.6). The choice of the

domain G is important for the numerical aspects as we are going to see below.

There is a rich literature about this approximation problem (3.6) both in complex

analysis [103, 104, 105, 106] and in theoretical chemistry [12, 83, 107] to cite a few.

These di�erent methods can be considered as special realizations of polynomial

approximations.

In the next section, the notion of conformal mapping associated with a domain

is introduced to be used in the de�nition of the \quasioptimal" polynomial approx-

imation on a domain that includes the eigenvalues of the matrix L.

3The Liouvillian can be a very large matrix, but it is often very sparse [100, 101, 102].
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3.2.2 Conformal mapping

For a given domain G, it is advantageous to consider separately its geometry and

its size. The shape of G determines the form of the polynomial approximation Pn
� ,

while the size in
uences its numerical stability.

Let G be a bounded, closed continuum in the complex plane, such that the

complement of G is simply connected in the extended plane and contains the point

at 1, e.g., a rectangle or an ellipse. By the Riemann mapping theorem [99], there

exists a conformal mapping  : C ! C which maps the complement of a closed

disc with center at the origin and radius � onto the complement of G, satisfying

the normalization condition4 limjwj!1  (w)=w = 1, where w is a complex number.

Then, its Laurent expansion at 1 is given by

 (w) = w + 
0 + 
1w
�1 + 
2w

�2 + : : : (3.7)

with coe�cients 
i 2 C . The logarithmic capacity of G is de�ned as the radius � of

the above disc. We call a domain scaled, if � = 1.

Examples:

(i) The conformal mapping

 (w) = w +m+ d=w (3.8)

with parameters m; d 2 C is the one that we are going to use through-

out to integrate the Liouville{von Neumann equation, so it is of central

importance. The left picture of Fig.3.1 shows that for a given logarith-

mic capacity �,  (w) describes a family of ellipses with center at m and

minor and major axis a = (�� d=�) and b = (� + d=�), respectively.

(ii) The mapping

 (w) = w +m� 1=(2w)3; m 2 C ;

speci�es a family of \rounded rectangles", centered at m (see the right

panel of Fig.3.1).

4The normalization condition is equivalent to the requirement that the coe�cient corresponding

to w is equal to 1.
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Figure 3.1: Elliptical and rectangle like scaled domains as in the example below. The

parameters are m = �0:25;�0:75;�1:25;�1:75 and d = �(m + 1) (from the left

to the right ellipse), and m = �0:875 for the \rectangle". The real and imaginary

axes cross at (0,0) in the complex plane, real part goes from w = -2 to w = +1, the

imaginary from �2i to +2i.

3.2.3 The Faber approximation

In this section, a brief introduction to Faber polynomials is provided. It is interest-

ing to notice that the well known Chebyshev polynomials [108] are a special family

of Faber polynomials constructed to approximate continuous functions of real vari-

ables. When functions of matrices have to be computed, the Chebyshev approxima-

tion is consequently suited to matrices with real (or purely imaginary) eigenvalues,

like the Hamiltonian (or the Hamiltonian multiplied by i). While Faber polynomi-

als are generally appropriate when the eigenvalues are de�ned in the complex plane,

as necessary for the Liouvillian , with an imaginary (Hamiltonian times i) and real

(dissipative part).

The family of Faber polynomials fFkgk2N associated with a conformal mapping

 is de�ned via the recursion relation

Fk+1(z) = z � Fk(z)�
kX

j=0


j � Fk�j(z)� k � 
k (3.9)

for k � 1 and F0(z) � 1 [109, 110, 111, 107]. The corresponding relations for matrix



26 Numerical methods to solve the Liouville{von Neumann equation

operations are obtained substituting z by L and multiplying the equations by �0,

as is exempli�ed in Eqn.(3.11) below.

The recursion relation is stable, if z or the spectrum of L respectively are con-

tained in the scaled domain [112]. It can be seen from (3.9) that Faber polynomials,

de�ned by their recursion relation, depend upon the coe�cients 
j of the conformal

mapping  and thus on the shape5 of G, but they are generated independently of

the size of the domain G (there is no � in (3.9)).

From a numerical point of view, e.g., for memory occupation, we are interested

in the families of Faber polynomials which allow short term recursions. Thus, we

are interested in domains G whose associated conformal mappings have only a few

nonzero terms in their Laurent expansion at 1 (see (3.7)). Among them, we have

been working mainly with the family of Faber polynomials corresponding to the

conformal mapping  (w) = w+m+ d=w (see Example (i) above). The parameters

m and d depend upon the relative \strength" of the Hamiltonian and dissipative

dynamics of the physical problem studied.

For our conformal mapping  (w) = w +m+ d=w, the associated Faber polyno-

mials are de�ned by the three term recursion

Fk+1(z) = (z �m)Fk(z)� d � Fk�1(z); k � 1 (3.10)

with initial values F0(z) � 1, F1(z) � z�m and F2(z) � (z�m)2� 2d. The matrix

equivalents of these relations are

Fk+1(L)�0 = (L�m � I)Fk(L)�0 � d � Fk�1(L)�0; k � 1 (3.11)

with initial values F0(L)�0 � �0, F1(L)�0 = (L�m � I)�0 and

F2(L)�0 = (L�m � I)F1(L)�0 � 2d � �0.

Setting the parametersm to 0 and d to 1=4, the associated Faber polynomials Fk

are equal to the normalized Chebyshev polynomials Tk via Fk(z) = 21�kTk, for

k � 1, while F0 = T0 for k = 0. For our purposes the Chebyshev polynomials are

too restrictive since they cannot be adapted to the strength of dissipation.

5This is the reason why the conformal mapping has to be introduced.
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Any function that is analytic inside G can be expanded in terms of the Faber

polynomials associated with  [109, 113, 110]. In application to exp(�z), this yields:

exp(�z) =

1X
k=0

1

2�i

Z
jwj=1

exp(� (w))

wk+1
dw| {z }

ck(�)

Fk(z) (3.12)

for all z 2 G. Now we de�ne the Faber approximation of order n to be the truncated

series

Pn
� (z) =

nX
k=0

ck(�)Fk(z)

with expansion coe�cients as de�ned above. Substituting Fk(z) by Fk(L)�0, one

gets the \matrix valued version" Pn
� (L)�0

�(�) = exp(�L)�0 � Pn
� (L)�0 =

nX
k=0

ck(�)Fk(L)�0: (3.13)

That is what we are interested in (notice that choosing another polynomial series

with terms Sk(t), the relation would be formally the same, being only necessary to

substitute Fk(L)�0 with Sk(t)(L)�0 and use the coe�cients belonging to the new

series).

For our conformal mapping  (w) = w+m+d=w, the coe�cients can be computed

analytically

ck(�) =
1

2�i

Z
jwj=1

exp (�(w +m+ d=w))

wk+1
dw (3.14)

= (�i=
p
�d)k exp(�m)Jk(2�

p
�d); (3.15)

where we used the identity exp (x(t+ 1=t)=2) =
P

k(t=i)
kJk(ix) [114]. Here, Jk is

the Bessel function of the �rst kind. For d = 0 the conformal mapping  is a simple

translation. Thus, equation (3.12) is simply the power series expansion at point m.

From now on, the term \Faber approximation" is always meant with respect to the

conformal mapping (3.8).
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3.2.4 The Newton interpolation at Lej�a points

Another way to approximate functions of matrices with polynomials is to make

use of the theory of the interpolation of analytic functions. The complex Newton

interpolation based on Lej�a points is an e�cient implementation of this idea, and

was introduced in density matrix calculations by Koslo� and coworkers [81, 115].

The method is shortly outlined in the following.

Let G be a domain as de�ned in Section 3.2.2. A sequence (zm)m2N of points

on the boundary of G, i.e., (zm)m2N � �, is called a Lej�a point sequence [106], if

jz1j = max
z2�

jzj and6

mY
k=1

jzm+1 � zkj = max
z2�

mY
k=1

jz � zkj

for m > 1. In numerical applications, one substitutes the maximum of all z 2 � by

the maximum of all z 2 �L, where �L = f~z1; ~z2; ~z3; :::~zLg is a set of equally spaced

points on the boundary of G with L � n = degree of Pn
� . We call a Lej�a point

sequence scaled if the points lie on the boundary of a scaled domain.

A sequence of Lej�a points de�nes the associated Newton polynomials f!k(z)gk2N
by the two term recursion

!k+1(z) = (z � zk+1)!k(z) (3.16)

for k � 0 and !0(z) � 1. The relations used for functions of matrices are de�ned by

!k+1(L)�0 = (L� zk+1 � I)!k(L)�0 (3.17)

with starting term !0(L)�0 � �0. The recursion relation is stable if the Lej�a points

are scaled and z (or the spectrum of L respectively) is contained in the scaled domain

[106, 115].

The Newton polynomials are related to the logarithmic capacity � of G by

m+1
p
j!m(zm+1)j �! �; m!1 (3.18)

6For the numerical purposes, z1 can be any point 2 �.
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thus

j!m(zm+1)j � �m+1 (3.19)

for \large" m. This shows why a rescaling of the iteration is necessary to avoid

over
ows (under
ows) [116, 106].

The coe�cients are the so called divided di�erences. For a function f on G, the

divided di�erences can be de�ned recursively7:

[zk; : : : ; zl]f =
[zk+1; : : : ; zl]f � [zk; : : : ; zl�1]f

zl � zk
(3.20)

for 1 � k < l and initial values [zk]f = f(zk). To have a stable recursion, the

Lej�a points have to be scaled [106, 116].

Any function that is analytic inside the domain G can be expanded in terms of

the Newton polynomials associated with the Lej�a points (zm)m2N [109, 113, 106].

The application to f(z) = exp(�z) yields

exp(�z) =

1X
k=0

[z1; : : : ; zk+1]exp !k(z)

for all z 2 G. Now we de�ne the Newton interpolation of order n as the truncated

series

exp(�z) � Pn
� (z) =

nX
k=0

[z1; : : : ; zk+1]exp !k(z): (3.21)

Substituting !k(z) by !k(L)�0 one gets the \matrix valued version" Pn
� (L)�0 that

is formally equivalent to relation (3.13).

In contrast to the Faber approximation for the Newton interpolation, there are

no restrictions on the shape of the domain or the function f (L)�0 .

7It is easy to see that every two elements of a Lej�a point sequence are di�erent and therefore

the denominator is di�erent from zero.
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3.2.5 Numerical aspects

Analytically, the Faber approximation and the Newton interpolation are very similar

[112]. Interesting is whether in numerical applications they would behave in a similar

way or not. Before starting, we have to decide how to choose the domain that

includes the eigenvalues of L. This step is very similar for the two algorithms.

On scaling and domain

The e�ects of the choice of the domain on the numerical stability and e�ciency are

of general nature, so any system can be used to exemplify them. For this purpose

we have chosen an abstract model as dissipative system. Here L corresponds simply

to a diagonal matrix with complex eigenvalues, which are plotted in the �rst panel

of Fig.3.2. The function approximated is, of course, the propagator (3.3), and the

results are reported for a single timestep, if many are used, the errors add together.

The shape of the domain G is taken as elliptic. The results are shown only for the

Faber approximation, being the e�ects of the shapes and sizes of domains absolutely

general for any polynomial integrator.

The behavior can be illustrated with three exemplary cases, shown in Figs.3.2,

3.3, and 3.4.

In Fig.3.2, a typical case of numerical instability is presented. In the �rst panel

of Fig.3.2, the dots represent the eigenvalues and the solid curve the elliptic domain

used for the polynomial expansion. The recursion relation is unstable because the

nonscaled eigenvalues of L lie outside the domain. The local error (3.4) grows

�rst exponentially, but then �nally decreases to a constant (second panel). The

Frobenius norm of the last term Fn(L)�0 in the series (3.13) explodes, as shown in

the right panel of Fig.3.2, so the computation of its value allows to control this kind

of numerical instability. Furthermore, it was shown in [117] that in the above case

the remaining error grows exponentially with the timestep � , so for large values of

� the accuracy is completely lost.
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Figure 3.2: Behavior of the integration for a nonscaled Liouvillian. Starting from

the left, the scaled domain and the nonscaled spectrum ('� � � ') are shown in the �rst

graph (the graph proportions are the same as in Fig.3.1). The local error (3.4) versus

the order n of approximation is depicted in the center, while in the last picture the

Frobenius norm of the Faber polynomials ('|') are presented together with the

modulus of the coe�cients (3.15) ('-�-').

Scaling. To avoid these numerical instabilities in the recursion relation, the

Liouvillian has to be scaled:

L! ��1L: (3.22)

The scaling factor � > 0 should make the spectrum of ��1L lie inside the scaled

domain. As a consequence8, the step size has to change, too: � ! �� .

 real

 im
ag

0 25 50 75 100
10

−15

10
−10

10
−5

10
0

10
5

 n
0 25 50 75 100

10
−15

10
−10

10
−5

10
0

10
5

 n

Figure 3.3: Behavior of the integration when the Liouvillian is properly scaled but

the domain lies partially in the right part of the complex plane. The meaning and

size of the graphs is the same as in Fig.3.2.

8We have �(�) = exp(�L)�
0
= exp(�� ��1L)�

0
� Pn

�� (��1L)�
0
. Note that in general

Pn
�� (��1L)�

0
6= Pn

� (L)�
0
, although the identity holds for the exponential function.
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In Fig.3.3, it is shown what happens if the domain is properly scaled but im-

properly set and enters in the right part of the complex plane. This depends on the

position of the points for the Newton interpolation and on the parameter m for the

Faber approximation. The norm of the Faber polynomials decreases exponentially

in this case, because the recursion relation is stable, the modulus of the coe�cients

(3.15) increases exponentially until n � 70, where it reaches a values far larger that

1, then it starts to decrease. The situation is far from \optimal", and worsens while

the domain is further moved to the right on the complex plane (the growth of the

coe�cients can easily over
ow). If the center m of the ellipse lies on the imaginary

axis, the local error looks similar to the one shown in Fig.3.2. The local error is con-

stant until n � 70 and then starts to decrease, so the calculation �nally converges,

but this represents a very ine�cient propagation, and can be avoided checking the

growth of the modulus of the coe�cients (the coe�cients are computed together at

the beginning, so this check is easy to perform).
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Figure 3.4: Behavior of the integration when the Liouvillian is properly scaled and

the domain is correctly set. The meaning and size of the graphs is the same as in

Fig.3.2.

In Fig.3.4, the spectrum of the scaled Liouvillian lies entirely in the scaled domain,

which is completely contained in the left part of the complex plane. The norm of the

Faber polynomials is almost constant, showing that the scaling was correct [97]. The

modulus of the coe�cients (3.15) is bounded by 1 and decays exponentially from

n � 30 on. The e�ort to reach a given local tolerance is much less than in the two

examples before. The optimal ellipse has the smallest scaling factor � compatible

with a stable propagation.

The results for the Newton interpolation are reasonably equivalent, if the points
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are set on the boundary of the scaled domain shown in Figs.3.2-3.4. The local error

explodes in the �rst example, it is a factor 105 bigger than the error of the Faber

series in the second example and it is nearly the same of the other series in the third

example. In contrast to the smooth error curves of the Faber approximation, the

corresponding curves for the Newton interpolation are \shaky" due to the use of

divided di�erence coe�cients.

In practice, for the choice of the domain, an algorithm is necessary to determine

a rough estimate of the region of the complex plane where the eigenvalues of the

Liouvillian matrix L lie. This part is again identical both for the Faber and for the

Newton series. We are not interested in direct diagonalization, being the matrix

often too big to be held in the central memory of any present day computer, and

the algorithm too expensive to be used just to determine the shape of the eigenvalue

spectrum. To estimate an eigenvalue spectrum, we decided to use the most simple

iterative method, the power method [118], because with the reasonable assumption

that the eigenvalues lie in a domain between the zero and the eigenvalue with largest

modulus, only this last one has to be evaluated9. The method is not very e�cient,

but the time required for this step is negligible compared to the complete propagation

(typically �fty iterations compared to tens of thousands). We are aware of the

fact that the vector iteration is more or less ill conditioned, if the dimension D

(see Eqn.(3.2)) is very large, but we need only a rough estimate of the maximum

eigenvalue.

To have a reasonably stable iteration, one should consider that:

1) The eigenvalues are distributed symmetrically with respect to the real axis, be-

cause their imaginary part derives from the commutator in Eqn.(2.9), i.e., �i �Ĥs�̂+

i � �̂Ĥs. This term corresponds to all the possible di�erences between the eigenvalues

of Ĥs, that is the imaginary frequencies i!ij = i (Ei � Ej). Accordingly, there are

always two eigenvalues with maximum modulus. Adding i ~Emax � Î to the Liouvillian
(a known trick in eigenvalues calculations) where ~Emax is an estimate of the maximal

energy (following for example [12]), the eigenvalue spectrum is translated along the

9Except for special cases where the shape of the dissipation domain is expected to be \strange",

and in these cases the need arises to determine more eigenvalues accurately. In these cases it would

be more reasonable to use a Krylov iterative method for the complete dynamics, as is done in [102].
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imaginary axis and one of the eigenvalues with maximum modulus becomes larger

than the other one.

2) The Frobenius norm (0.2) and relative scalar product has to be used to compute

the eigenvalue as

� =
tr
�
�
y
n�n�1

�
r
tr
�
�
y
n�1�n�1

� :

3) The number of iterations must be larger than a minimum value in order to let

the system relax close enough to the desired eigenvalue. Then set an error criterion

between the di�erent iterations to chose when to stop the process.

3.2.6 Spectral estimates, scaling and coe�cients

Newton interpolation. In order to stabilize the computation of the Newton poly-

nomials and the divided di�erence coe�cients, the Lej�a points have to be scaled

(see Eqn.(3.20)). For this purpose a precise evaluation of the logarithmic capac-

ity of the domain is essential. We used an iterative process because to generate a

precise logarithmic capacity many uniformly distributed points are necessary; but

the computation of the uniform Lej�a points needs scaled starting points (with the

logarithmic capacity that we do not have) before, for numerical stability. Thus we

�rst use a few points in the Lej�a algorithm to derive a rough estimate of � (see

(3.18)), then all of the points are rescaled with it. More points are used to generate

a more precise capacity, until the logarithmic capacity values obtained for a group of

random points inside the domain di�er by less than the required accuracy. Usually

no more than three or four iterations are needed.

The generation of the Lej�a points requires the repetition of many operations

[115]. If we call zi the ith point chosen, and dn(~zi) the product of the distances of

point i with the n points already chosen, the Lej�a algorithm starts as follows:

� The �rst point z1 is chosen.
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� d1(~zi) = ~zi � z1 for every other point ~zi is computed and the ~zi with maximal

jd1j is chosen as the second point z2.

� The product d2(~zi) = (~zi � z1)(~zi � z2) = d1(~zi)(~zi � z2) is computed, and the

maximum value of its modulus determines z3.

� At every step k the dk(~zi) =
kQ

j=1

(~zi � zj) = dk�1(~zi)(~zi � zk) for every ~zi is

computed and its maximum value in modulus determines zk, until the number

of required points, n, is generated.

If the last dk�1(~zi) for all the remaining points in �L is kept in the memory, the

algorithm scales as n(L � n � 1), where n is the number of points to be chosen for

the interpolation and L is the total number of points used by the Lej�a algorithm.

Faber approximation. If an eigenvalue � of maximal modulus is known, it is

possible to determine an \optimal" ellipse: Its parameterm 2 [�2; 0] solves the third
order equation (1+r2)m3+(6r2�2)m2+12r2m+8r2 = 0 with r = imag(�)=real(�),

which can be solved by Newton methods [118]. Since the ellipse should not penetrate

the right part of the complex plane, we choose d = �(m+1). Now, the scaling factor

is �xed, too: � = j�=qj for q =
p
1 + r22rm(2 +m)2=(m2 + r2(2 +m)2).

The next step is to calculate the expansion coe�cients ck = �kJk(2��
p
�d) with

�k = (�i=
p
�d)k exp(��m). Since the density matrix theory in general is applicable

in the weak or at least medium coupling limit (for Markovian equations), the spec-

trum of L is \near" the imaginary axis and therefore �1 � m � 0. Accordingly,

d � 0 and we need only Bessel functions for purely real arguments. The factor �k

is prone to under
ow for large � and to over
ow for large k. For this purpose we

calculated �k in the following way:

�k =

8><
>:
f( 1p�d)

k=� exp(�m)g� ; j�k�1j < 10�3tol

1p�d�k�1 otherwise

9>=
>;

with �0 = exp(�m) and tol denoting the local tolerance.
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3.2.7 Local error estimator
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Figure 3.5: The local error of the Faber approximation ('|') and the local error

estimator (3.23) ('-�-') for the three examples above. The two curves do behave very
similar in the interesting decaying phase of the local error.

The operation

�loc(n) = jcn(��)j tr (F �
nFn) ; (3.23)

de�ned for the last term Fn included in the series (3.13) can be used to construct

a local error estimator. The estimator is only valid in the decaying phase, which

starts around n � �� and ends at the constant remaining error level, see Fig.3.5.

The norm of a scaled Fk being usually around 1, the order of the series is taken

as high as necessary for the modulus of the coe�cient of the last polynomial term,

cn(��), to be smaller than the required tolerance. Then (3.23) is evaluated to see if

the procedure was correct, so it is used only in the decaying phase, as it should be.

For simulation purposes, also the accuracy limit (the horizontal line) is per-

fectly �ne, being the errors usually done far larger than the remaining error (see

in Fig.3.5). Indeed the above error estimator worked very reliably for the Faber

approximation [112, 82, 80], while some caution must be taken for the Newton in-

terpolation, since the divided di�erence coe�cients oscillate in the decaying phase.

This may cause an underestimation of the real error. To eliminate this problem a

check on a few coe�cients before the last is usually su�cient.
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3.2.8 Comparison between Faber approximation and New-

ton interpolation

Regarding the memory occupation, the two methods are equivalent: The Newton

interpolation is based on a two term recursion while the Faber approximation is

based on a three term recursion. Both need three copies of the matrix � to realize

the recursive generation of �(t). The preparation step (generation of points and/or

coe�cients) is negligible for the global computation time for both methods, if the

Lej�a algorithm is properly programmed. We found that the Faber method is de�-

nitely easier to implement: No points have to be generated and staggered and the

coe�cients are analytical.

To test the propagators a damped harmonic oscillator model was chosen, follow-

ing the equation [46]:

_̂�(t) = �i!
�
âyâ; �̂

�
+ 


�
â�̂ây � 1

2

�
âyâ; �̂

�
+

�
:

Here, ây and â are the annihilation and creation operators, respectively, ! = 0:02Eh

is the oscillator frequency, and 
 a damping constant. The dissipation was weak,

because the values 
 were � 10�2 times smaller than !. The system was represented

on a grid of 128 points. The comparison is made for single step propagations.

As is clear from the example reported in Table 3.1, the two algorithms require

about the same order to perform a time integration with the same accuracy. The two

algorithms are very similar, so the resulting CPU times are only slightly di�erent.

The Faber algorithm was found to be more stable for higher orders. Many other

calculations were performed, changing the accuracy of the integration, the length of

the timestep, the size of the domain, and the strength of the dissipation, but all of

them were consistent in showing the similarity of the two methods.

In conclusion, for dynamical problems the two methods are almost equally e�-

cient, however, the Faber algorithm is easier to implement compared to the Lej�a{

Newton method.

The method was tested also for non{Lindblad forms of dissipation and explicitly
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Table 3.1: Typical polynomial order necessary for a Newton and a Faber polynomial

series to have a relative error in the energy smaller than 10�4.

time /[a.t.u.] 100 400 1000 2000 3000

Faber 277 1059 2509 5249 7795

Newton 273 1067 2545 5662 |

time dependent problems, using the model of Ref.[119] as test case. The method

showed itself as reliable and e�cient, thus con�rming its qualities, and its general

applicability to density matrix calculations.

3.2.9 Calculation of absorption spectra by polynomial ex-

pansions

Polynomial expansion of an absorption spectrum

Often, the propagated density matrix is used in other formulae to derive observables

of interest. A typical case is the computation of a continuous wave (cw) absorption

spectrum. For a weak, continuous wave �eld, there is a known expression for the

absorption coe�cient of a system embedded in a dissipative environment [120]

�(!) =
4�!nmol

nc
Re
Z 1

0

dt ei!t tr
�
�̂eLt [�̂; �̂]

�
; (3.24)

which can be viewed as a generalization of the so called Heller formula [17] to the

dissipative case. Here, ! is the light frequency, �̂ is the dipole operator, nmol is

the density of molecules, c the velocity of light, and n the refractive index. Setting

�̂0 := [�̂; �̂], the solution of (3.24) is equivalent to the propagation of a matrix
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according to the dissipative Liouville-von Neumann equation

eLt�̂0 = eLt [�̂; �̂] : (3.25)

The integration is done for a discrete number of timesteps; the trace is computed

for each timestep and Fourier transformed. So it is a similar numerical problem as

the one treated in the previous sections.

An interesting aspect of the polynomial integrators is that the time dependence

is only in the coe�cients and the representation dependence is left to the Faber or

Newton recursion relations [121, 107, 122],

eLt [�̂; �̂] �
nX

k=0

ck(t)Pk(L)�̂0: (3.26)

This implies that the integral in (3.24) acts only on the coe�cients, leaving the recur-

sion relations unchanged. The coe�cients can be taken out of the trace operation.

Set Ks :=
4�nmol

nc
, then

�(!) = KsRe
Z 1

0

dt ei!t tr
�
�̂eLt [�̂; �̂]

�
� KsRe

nX
k=0

Z 1

0

dt ck(t)e
i!t

| {z }
sk(!)

tr (�̂Pk(L)�̂0) ;

(3.27)

where the only approximation is in the polynomial expansion of the propagator. If

the integration can be performed analytically a new series with coe�cients sk(!)

will be obtained. The recursion relations will be unchanged, but it will refer directly

to the spectrum. For the Newton interpolation the coe�cients are not given analyt-

ically, so they can only be integrated numerically, thus loosing the exactness of the

operation. This is not true for the new Faber approximation that will be considered

now.

The coe�cients sk(!) of the Faber approximation for absorption spectra evalu-
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ation are derived from (3.27) evaluating the integral in time using [123]:

sk(!) = Ks!

Z 1

0

ei!tck(t)dt =

Ks!

�
�ip
�d

�k Z 1

0

ei!tem�tJk(2�t
p
�d)dt =

Ks

!p
4�2d+ (m� + i!)2

 p
4�2d+ (m� + i!)2 + (m� + i!)

2�di

!k

: (3.28)

They are very similar to the Chebyshev series for computing dissociative Raman

spectra [121] or the Faber series for the Green operator [107]. This is to be expected

because the underlying framework of the three series is equivalent.

The equations to compute the spectrum with the Faber series are then:

�(!) � Re
nX

k=0

sk(!)tr (�̂Fk(L)�̂0) : (3.29)

Where �̂0 := [�̂; �̂] and Fk(L)�̂0 are the Faber polynomials acting on an operator

de�ned in section 3.2.3.

3.3 Infrared absorption spectrum of benzoic acid

dimers

3.3.1 Preliminary numerical considerations

The coe�cients (3.28) are algebraic, so there is no need for special functions like

Bessel functions. For this reason, it is much more stable and series with orders up

to millions can be used.

A di�erent series is needed for every ! point in the spectrum10. The memory of

present day computers would be �lled if all of the coe�cients of the series should be

generated at once, if \ill conditioned" spectra11 have to be computed. The memory

10Simply because the coe�cients are ! dependent.
11For example, when very narrow lines appear in a spectrum.
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required would scale as the number of ! values times the polynomial order. The

terms (3.28) can be generated via a simple one term recursion relation, which is easy

to determine from the last line of Eqn.(3.28). For this series only two copies of the

matrix have to be held in memory for each frequency: the kth coe�cient and the

multiplicative constant and then via the recursion relation, the k+1th term can be

generated at the same time as the corresponding polynomial.

Looking at the behavior of the coe�cients in Fig.3.6 (shown for a wide range

of energies), it is clear that the smallest ! can be taken as a reference for the

convergence, its coe�cients being always the largest, as soon as the modulus of the

coe�cients is small enough for the spectrum to be reasonably converged. Indeed,
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Figure 3.6: The logarithm of the modulus of the coe�cient jsk(!)j as a function of

the polynomial order is plotted for ! = 0.2, 0.7, 1.2, 1.7, 2.2 Eh, m is set to 0:2Eh

and � = 1:2. Ks is set to one. The larger the !, the smaller are the dashes in the

dashed lines.

the limit for ! ! 1 of the numerator of the nth-power term in (3.28) goes12 to

0. The lower frequency for which the spectrum has to be evaluated should be very

carefully chosen, because it in
uences the computation time by several orders of

12The standard (principal) branch must be used for the complex square root.
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magnitude, the modulus of the coe�cient for a certain n depending on ! more than

exponentially.

It is also possible to make an adaptive sampling of the spectral region, starting

with a coarse grid of !s and re�ning where the spectrum has complex features,

having only the traces of the polynomials to be held in the memory.

As already mentioned, the parameter m is related to the strength of the dissi-

pation. In Fig.3.7 we can see which is the behavior of the coe�cients for di�erent

m. It is interesting to notice that the series with coe�cients (3.28) converges faster
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Figure 3.7: The modulus of the coe�cients jsk(!)j is plotted as a function of the

polynomial order for m = -.05,-.25,-.45,-.65,-.85 Eh, ! is set to 0.2 Eh and � = 0:8.

Ks is set to one. The bigger the modulus of m the smaller are the dashes in the

dashed lines .

for a larger dissipation, as one would expect, since the dissipation will quench and

decorrelate the system more e�ciently. An overestimate of the magnitude of the

dissipation can make the series decay too fast, and give unconverged results, which

show up as wild oscillations in the spectrum.

As common for all of the integrators, the bigger is the phase space volume of

the dynamics, the slower is the convergence. This is re
ected in the series with
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coe�cients (3.28), thus the factor � has to be evaluated properly [12].

3.3.2 Absorption spectrum for the benzoic acid dimers

The method was applied to the evaluation of the IR cw{absorption spectrum of

benzoic acid dimers embedded in benzoic acid crystals. For this purpose, a two di-

mensional, bound model (\hydrogen transfer mode" and \molecular frame mode")

was used. The operators were represented in the vibrational bound states of the

model Hamiltonian. The individual levels jii relax due to vibrational energy dissi-

pation. The relaxation operators �ij were derived using a microscopic model. The

relaxation is of Lindblad from. All details about the model can be found in Ref.[43].

There, the spectrum was obtained propagating a matrix (3.24) with a Newton poly-

nomial integrator. In contrast to [43], we use the series (3.29).

For this model, the cw{spectrum can also be evaluated analytically, so informa-

tion about the absolute error can be derived. The analytical spectrum is given by

[43]:

�(!) = !
X
i>j

(3.30)

�ij
2 (gj � gi)

 
�ii + �jj

(�ii + �jj)
2
+ (! + !ji)

2
� �ii + �jj

(�ii + �jj)
2
+ (! � !ji)

2

!
;

where �ij and �ij refer to the matrix elements of dissipation and dipole moment

operator respectively, !ij to the frequency of the transition and gi to the thermal

populations for state i,i.e. e
�

Ei
kbT

Q
. The �ii are de�ned as

P
i6=j

�ij, as in Ref.[43].

At low temperature the spectrum shows a very sharp peak in the small fre-

quency region (around 60 cm�1), as it will be illustrated below in Fig.3.10. This

is a challenge for the convergence of the series, due to the very slow decay of the

coe�cients as a function of the polynomial order k for small !, and the oscillations

in the polynomial terms generated by the delta like peak in the frequency domain.

Fig.3.8 shows the numerical e�ort for di�erent choices of the smallest ! to be
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included in the spectrum. To converge the spectrum at a temperature of 40 K, a
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Figure 3.8: Order needed to have a converged spectral intensity. The polynomial

order is plotted as a function of the frequency !, for a temperature of T= 40 K.

The three curves are obtained for a ratio between the modulus of the last coe�cient

and the �rst one equal to 10�7 (solid line), 10�5 (dot dashed), 10�3 (long dashed),

respectively.

series of order 4,000,000 was needed, which took about 40 min of CPU time (all

the calculations were done on an SGI ORIGIN 2000 of ZEDAT, Freie Universit�at

Berlin). From Fig.3.8, it is clear that to converge the complete spectrum except

the sharp peak at ! = 60 cm�1, a time in the order of tens of seconds should be

su�cient13. For the absorption spectrum at 40 K, the ratio between the modulus of

the last coe�cient and the �rst one was set to 10�7, while for the other calculations

even a value of 10�3 gives a spectrum almost indistinguishable from the analytical

one. Fig.3.9 shows the sharp peak close to 60 cm�1 in the 40 K spectrum, obtained

with various accuracies in the Faber polynomial expansion, and compared to the

analytical result. It is seen that with a ratio of the last to the �rst Faber polynomial

expansion coe�cient of 10�7 even this very narrow peak ( 0.02 cm�1 width) can be

13A globally coarser sampling of the spectrum and a lower accuracy would be su�cient.
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reproduced exactly. For less accurate calculations, the computed peak is broader

than the exact one and arti�cial oscillations become visible.
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Figure 3.9: The absorption spectrum of benzoic acid dimers around the peak at

59.76 cm�1 is shown as computed for three di�erent ratios between the modulus

of the last coe�cient and the �rst one: 10�7 (circles), 10�5 (triangles) and 10�3

(diamonds). The analytical solution is depicted as a solid line.

In Fig.3.10, the spectra are also reported for di�erent temperatures. In the lowest

panel (T = 40 K) we recognize the very narrow peak around ! = 60 cm�1, a bunch

of broadened peaks is visible. The assignment of the individual peaks can be taken

from [43]. For higher T, the well known trends are observed, that (1) temperature

increases the magnitude of dissipation and hence makes the peaks broader, and (2)

larger temperatures increase the importance of \hot bands" in the high ! part of
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the spectrum.

All spectra were in complete agreement with the analytical solutions, so that

it is not possible to distinguish between computed and analytical curves in the

�gures. There is a certain quantitative disagreement with the spectra computed in

[43], thus showing that this approach can improve accuracy in computing spectra

in the presence of dissipation. In passing, we note that to have complete agreement

between the analytical and propagated spectra, also the so called antiresonant terms

have to be included in the analytic solution.
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Figure 3.10: Spectra computed for T = 40; 100; 200; 300; 600 K (from lowest to

highest frame). The spectra are scaled in order to keep the peak at � 1140 cm�1 at

80 % of the height of the frame. For the lowest temperature the higher peak would

be the line at 59:76 cm�1, whose features are plotted in Fig.3.9, in the same units.

The analytical spectra are indistinguishable from the computed ones.
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3.4 The Variational Wave Packet (VWP) method

3.4.1 Introduction

This method was recently introduced to integrate the dissipative Liouville-von Neu-

mann equation for open quantum systems, in Ref.[95]. Its interesting features are

that any quantities of interest can be converged with arbitrary accuracy, and density

matrices can be represented as an ensemble of wave vectors, thus avoiding the at

minimum quadratic scaling with the Hilbert space dimensions of the density ma-

trix representation. Moreover, in comparison to the MCWP [Monte Carlo Wave

Packet] method it can be applied to more general forms of dissipation, even to non-

Markovian and non-positive generators. A reasonably accurate calculation of rare,

improbable events is possible, even if the method is more suitable for frequent prop-

erties. The method is also e�cient to compute observables depending dominantly

on coherence, like spectra, where its variational behavior allows one to determine

the proper dynamics with a small ensemble of functions.

3.4.2 Derivation of the VWP equations of motion

In this section, the equations of motion described in [95] are derived.

The dissipative Liouville-von Neumann equation, being �rst order in time, has

to be solved subject to some initial condition, always expressible as

�̂(t = 0) =

1X
i=0

�ij iih ij;

where the �i are real positive and the state vectors are orthonormal (see section 2.1).

For analogy, in the VWP method, the following ansatz is made for the open

system (reduced) density matrix for any time t > 0:

�̂(t) =

nX
u=1

nX
v=1

�uv(t)j u(t)ih v(t)j ; (3.31)
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where j u(t)i are time dependent expansion wave functions, and �uv(t) time depen-

dent coe�cients de�ned as �uv(t) = ��vu(t), to keep the density matrix Hermitean.

The approximative character of the ansatz lies in n being smaller than 1. It is im-

portant to stress the similarities between this expression and the statistical de�nition

of the density matrix (2.5). In principle, it is equivalent to the Multi Con�gurational

Time Dependent Hartree (MCTDH) method or Multi Con�gurational Time Depen-

dent Self Consistent Field (MCTDSCF) method, but the functions that have to be

approximated (the density matrices) are exactly a sum of Hartree products, this

being not true for general wavefunctions.

We need to derive the equations of motion for the j u(t)i and the �uv(t). In

(3.31), state vectors and scalar coe�cients are arbitrary, and need only to approx-

imate �̂(t) when plugged in (3.31), but there are many possible sets that would

satisfy this. For the j u(t)i, we can formally write operator equations of the form

j _ u(t)i = �iĥj u(t)i (3.32)

to describe their time evolution. The only property required to the operator ĥ at this

point is to reproduce correctly the global dynamics and to de�ne unequivocally which

vectors from the space spanned by the fj u(t)ig would be used for the dynamics. In

particular ĥ does not have to be linear; it is usually time dependent. We can include

the boundary conditions for the dynamics directly in the evolution operators.

To derive the equations of motion, we use the Dirac{Frenkel time dependent

variational principle [18], and follow the analogous derivation of McLachlan [19]. We

want to �nd the solution of the Liouville{von Neumann equation with a restriction

on the possible forms of �̂(t), but in this space, we want to approximate the exact

dynamics as close as possible. Considering again the fact that the Liouville{von

Neumann equation (2.9)

_̂�(t) = L�̂(t) = �i
h
Ĥs; �̂(t)

i
+ LD (�̂(t)) ;

is a �rst order di�erential equation in time, �̂(t) and the e�ect of all the operators

on it are known at every time step t. Unknown is the di�erential, i.e., the time

derivative of the trial density operator (3.31), subject to the restriction of having

the ansatz form. We will call this time derivative �̂(t):

�̂(t+ �t) = �̂(t) + �̂(t)�t:
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A measure for the di�erence between this approximate time evolution and the exact

one is given by

tr

��
L�̂(t)� �̂(t)

�2�
;

i.e., by the square of the Frobenius norm.[ The density matrix norm as de�ned in

(0.3) would not work, because it refers only to the diagonal elements of the density

matrix]. To �nd the optimal evolution, we apply variational calculus by varying

�̂(t) and computing

tr

��
L�̂(t)� �̂(t) + ��̂(t)

�2�
:

We take the functional derivative with respect to �(t) (the part linear in ��̂(t)) and

set it to zero, in order to get a stationary value. All these operators being Hermitian

and the trace operations commutative, one gets after some algebra the equation:

tr
�
��̂(t)

�
�̂(t) � L�̂(t)

��
= 0 (3.33)

Since (3.33) holds for arbitrary ��̂(t), we have:

�̂(t) � L�̂(t) = 0: (3.34)

The time evolution in the restricted space must be equal to the Liouvillian applied

to the restricted �̂(t). �̂(t) can be evaluated directly, being the derivative of the

restricted density matrix, i.e., we have to take the time derivative of the ansatz

(3.31):

�̂(t) =

nX
j;k=1

h�
j _ j(t)ih k(t)j+ j j(t)ih _ k(t)j

�
�jk(t) +

_�jk(t)j j(t)ih k(t)j
i
: (3.35)

We can apply the operator (3.34) to each j u(t)i�
�̂(t) � L�̂(t)

�
j u(t)i = 0 (3.36)

and compute its matrix elements between the functions chosen for the ansatz:

h v(t)j
�
�̂(t) � L�̂(t)

�
j u(t)i = 0: (3.37)
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Substituting (3.35) in (3.37), yields

nX
j;k=1

h�
h v(t)j _ j(t)ih k(t)j u(t)i+ h v(t)j j(t)ih _ k(t)j u(t)i

�
�jk(t) +

_�jk(t)h v(t)j j(t)ih k(t)j u(t)i
i
= h v(t)jL�̂(t)j u(t)i: (3.38)

Since the starting functions can be arbitrarily chosen, we choose the fj u(0)ig or-
thonormal.

In order to get their time evolution governed unequivocally by (3.32), we start

to impose restrictions onto the operator ĥ:

a) We require ĥy = ĥ, i.e., ĥ is chosen as Hermitean, so the functions j u(t)i will
conserve their norm;

b) the functions are required to remain orthonormal for any time t > 0: h v(t)j u(t)i =
�uv.

Then Eqn.(3.37) becomes together with (3.32)

�i
nX

j=1

�
h v(t)jĥj j(t)i�ju(t)� �vj(t)h j(t)jĥj u(t)i

�
+ _�vu(t) =

h v(t)jL�̂(t)j u(t)i: (3.39)

Finally, for the �vu(t),

_�vu(t) = h v(t)j
n
L�̂(t) + i

h
ĥ; �̂(t)

io
j u(t)i: (3.40)

Substituting (3.35) in (3.36), one gets:

nX
v=1

�vu(t)j _ v(t)i = �i�̂(t)ĥj u(t)i+ L�̂(t)j u(t)i �
nX

v=1

j v(t)i _�vu(t) (3.41)

These equations have not determined yet the ĥ completely, so we can include other

conditions:
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c) �vu(t) = �u(t) �uv; 8t.

In the MCTDH scheme, this is equivalent to work in the basis of natural single

particle functions [124, 125, 126]. Consequently, the eigenvalues (populations) of

the density matrix as a function of time �u(t) are automatically determined as the

weights �u(t).

With constraint c), Eqn.(3.39) becomes, for v 6= u:

0 = _�vu(t) )

� i
�
h v(t)jĥj u(t)i�u(t)� �v(t)h v(t)jĥj u(t)i

�
= h v(t)jL�̂(t)j u(t)i )

h v(t)jĥj u(t)i =
i

�u(t)� �v(t)
h v(t)jL�̂(t)j u(t)i: (3.42)

This operation is possible only if the populations for di�erent functions are never

the same, which is generally not the case. Nevertheless, the equations can be reg-

ularized, as it will be shown in section 3.4.3. Substituting in this equation L�̂(t)
with �i

h
Ĥs; �̂(t)

i
+LD (�̂(t)), and using (3.31) for the Hamiltonian part, we �nally

obtain:

h v(t)jĥj u(t)i = h v(t)jĤsj u(t)i+
i

�u(t)� �v(t)
h v(t)jLD (�̂(t)) j u(t)i (3.43)

With (3.43) the nondiagonal elements of the operator ĥ are de�ned. However, we

still have to de�ne the diagonal elements and their projection outside the space they

span14. We can also derive the equations for the �u(t) for the chosen constraints.

Substituting constraint c) in Eqn.(3.39) we get

�i
�
h u(t)jĥj u(t)i�u(t)� �u(t)h u(t)jĥj u(t)i

�
+ _�u(t) =

h u(t)jL�̂(t)j u(t)i: (3.44)

The term in brackets in l.h.s. of Eqn.(3.44) is zero, so

_�u(t) = h u(t)jL�̂(t)j u(t)i:
14The space spanned by an incomplete set of functions can change in time, so the time evolution

operators must have a component outside the fj u(t)ig.
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The expectation value of the commutator
h
Ĥs; �̂(t)

i
for the function j u(t)i is zero,

so we �nally get:

_�u(t) = h u(t)jLD (�̂(t)) j u(t)i: (3.45)

Then we apply constraint c) to (3.41) and get

�u(t)j _ u(t)i = �i�̂(t)ĥj u(t)i+ L�̂(t)j u(t)i �
nX

v=1

h v(t)jLD (�̂(t)) j u(t)ij v(t)i:

(3.46)

Substituting in this equation L with �i
h
Ĥs; �̂(t)

i
+ LD (�̂(t)), as done before, and

using (3.31) and (3.43) it follows

�u(t)j _ u(t)i =� i�u(t)Ĥsj u(t)i+ i�u(t)h u(t)jĤsj u(t)i (3.47)

� i�u(t)j u(t)ih u(t)jĥj u(t)i

+

nX
v 6=u;v=1

j v(t)i
�v(t)

�u(t)� �v(t)
h v(t)jLD (�̂(t)) j u(t)i

+ LD (�̂(t)) j u(t)i � h v(t)jLD (�̂(t)) j u(t)ij v(t)i: (3.48)

The diagonal elements of ĥ, h u(t)jĥj u(t)i do not couple any of the fj u(t)ig and
introduce, therefore, for each function only a phase factor.

Any observable is computed with (3.31). However, only diagonal elements occur

because of constraint c), so the phases cancel out one another and can be de�ned

arbitrarily as h u(t)jĥj u(t)i := �u(t). Usually �(t) is set to zero to minimize the

phase changes in the functions. Considering that

1X
v=1

j v(t)ih v(t)jLD (�̂(t)) j u(t)i = LD (�̂(t)) j u(t)i

(if the expansion is complete, the sum is the identity operator Î), and de�ning the

projector on the basis used for the dynamics as

P̂ :=

nX
v=1

j v(t)ih v(t)j;
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we can write:

LD (�̂(t)) j u(t)i = (Î � P̂ )LD (�̂(t)) j u(t)i+
nX

v=1

j v(t)ih v(t)jLD (�̂(t)) j u(t)i:

The equations of motion for the j u(t)i in the form used for the dynamics are �nally

derived:

j _ u(t)i =� iĤsj u(t)i+ ij u(t)i
�
h u(t)jĤsj u(t)i � �u(t)

�
+

nX
v=1;v 6=u

1

�u(t)� �v(t)
j v(t)ih v(t)jLD (�̂(t)) j u(t)i

+
1

�u(t)

�
Î � P̂

�
LD (�̂(t)) j u(t)i : (3.49)

In Eqn.(3.49), the �rst term on the r.h.s. is due to the Hamiltonian evolution of

the system and the second one determines only a phase factor for the wave function

j u(t)i. The third and fourth terms account for the coupling of the system to the

dissipative environment. Eqn.(3.49) and (3.45) are the basic equations of motion

in the VWP method, giving the time evolution of the basis functions and their

coe�cients, respectively.

When a complete set of expansion wave functions is used, summing up (3.45) for

every u, we have

nX
u=1

_�u(t) =

nX
u=1

h u(t)jLD (�̂(t)) j u(t)i: (3.50)

If the number n goes to 1, this is equivalent to the trace of LD (�̂(t)). The trace of

LD (�̂(t)) has to be zero for the generator to conserve the norm, so if the expansion

is complete, the trace of the density matrix is conserved. For �nite n, however, the

trace decreases with increasing time and this loss of norm can be used as a con-

vergence criterion for the proper choice of n, the number of terms in the expansion

(3.31). If LD = 0 (the system is subject to no dissipation), the norm is anyway

conserved, this being consistent with the unitary character of the Hamiltonian dy-

namics.
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3.4.3 Practical implementation of the VWP equations of

motion

The VWP method is a time dependent method, so we have to de�ne initial con-

ditions. If a pure state is used as initial state, one sets n, the number of basis

functions, to some small value15. If one starts with a mixed state, one has to use

as many functions as necessary to have a representation of the state with an accu-

racy compatible with the requirements of the propagation. Practically, one has to

diagonalize the density matrix and take as many j u(t = 0)i with their �u(t = 0)

as necessary to have an error in the trace
Pn

u=1
�u(t = 0) smaller than the error

tolerance of the simulation.

After the propagation has been started, one adds a new function as soon as the

total norm loss in a timestep exceeds some prespeci�ed accuracy threshold16 and the

smallest j�i(t)j is larger than this same threshold17. If a function has to be added

to the ensemble, it is chosen as

j n+1(t)i =
�
Î � P̂

� nX
u=1

LD (�̂(t)) j u(t)i;

and normalized. P̂ is again the projector on the subspace presently spanned by the

functions at time t. The new function is generated orthogonal to the other ones (as is

required by the algorithm) and in the \direction" where the system is evolving. The

initial weight �n+1(t) is chosen smaller than the accuracy required for the dynamics,

hence adding no error to the propagation. The weight will be quickly adjusted by

the evolution itself.

As mentioned above, in Eqn.(3.49), there is a singularity (a major source of sti�-

15The notion of \small" depends on the strength of the dissipation. Usually two functions are

enough: One is the initial pure state, the other one to reproduce the dissipative dynamics at short

times.
16The threshold is related to the error tolerance. Not to forget that this is a local error, so the

�nal error is �
PNsteps

i=1 jErrij, where Nsteps is the total number of integration steps, and jErrij

the error in timestep i.
17It would be of no use to add a function if the population of the last does not increase, the

error in this case is likely due to the integrator (for instance due to the use of too long timesteps).
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ness, giving rise to very fast unstable dynamics for states with similar populations):

lim
�u(t)!�v(t)

1

�u(t)� �v(t)
=1:

A possible solution for this problem is to use a regularization scheme, and to replace

the singular term by

�u(t)� �v(t)

(�u(t)� �v(t))
2
+ �2

: (3.51)

Here, � has to be a function of the di�erence in population of the two states in order

to have a regularization e�ect, and not to perturb too much the actual dynamics.

A convenient choice for � is

� = ~� exp

"
�
�
�u(t)� �v(t)

~�

�2
#
:

This solution is not completely satisfactory, because contrary to its equivalent coun-

terpart in the MCTDH method [124], it is not only applied to negligibly populated

functions [95, 96]. Thus the regularization scheme can become critical. For in-

stance, when many population \crossings" are generated, which is the case in the

simulation of the photodesorption processes with both simultaneous excitation and

quenching, as described in the next chapter. Moreover, the �u(t) never really cross

during the time evolution18, so when a function must become less populated than

another one, the two functions must exchange their characteristics, and this can be

numerically very ine�cient. To tackle this problems, one must be careful in choosing

the parameter ~� and the error tolerance required to an integration step. There is

not yet a general solution to this problem, because it is pathologically ingrained in

the equations of motion of the VWP method. Nevertheless, the problems have been

overcome for most of the problems it has been applied to [95, 96].

To implement the equations of motion, �rst the term LD (�̂(t)) j u(t)i has to be
evaluated. The evaluation of this term depends strongly on the dissipation form

chosen, but in principle is a known operation, giving a new wavefunction. To deter-

mine the time derivative of �u(t) via (3.45), this state vector has to be integrated

with the bra h u(t)j. The projection on the other states allows to compute the

18They show the so called avoided crossings [95].
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summation term in (3.49), and together with (3.45) the �P̂LD (�̂(t)) j u(t)i term;
then the resulting terms have to be summed up with the part of the equations of

motion depending on the Hamiltonian Ĥs (which is straightforward to implement)

to generate the time derivative of j u(t)i.

For the time evolution a predictor{corrector integrator with adjustable timesteps

is adopted [95]. During the propagation, the error is controlled. The sources of errors

in the VWP method are the following:

e1) The error in the \diagonalization" of �̂(t) is proportional to the norm loss in

the trace (see the end of next section for a detailed discussion), and depends

on the number of functions included in the ansatz (3.31).

e2) The error due to the integrator, which should be added to e1). Usually this

error is easily kept smaller than the �rst one.

e3) There are the errors coming from the discretization and truncation of the

Hilbert space. Their behavior is known from and analogous to ordinary wave

packet propagations [13, 127].


