
Appendix A

Kinetic energy evaluation

A.1 DVR and FFT methods

In this work two main methods were used to evaluate the kinetic energy operator for

density matrices propagations, namely the Fast Fourier Transform (FFT) algorithm

proposed by Berman and Koslo� [71], or alternatively the sinc{function Discrete

Variable Representation (DVR) method of Colbert and Miller [150]. Here we restrict

to a one dimensional problem, with the kinetic energy operator
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required in the discretized

Liouville{von Neumann equation(2.9) (r; s are indices of the coordinate grid, Zr =

Z0 + r�Z) is evaluated by

(i) fast Fourier transforming the density matrix �̂ to get �̂k, the density matrix

represented in the reciprocal (momentum) space,

(ii) multiplying the (r; s) element of �̂k by 1
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(k2Z;r � k2Z;s) (the kinetic energy

operator is local in momentum space [1]) and
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(iii) backtransforming the resulting matrix to coordinate space.

In the Coupled Channel Density Matrix (CCDM) approach with one bound coor-

dinate (x, say), treated in an eigenstate representation and only the other one (Z)

treated with FFT, these steps have to be repeated separately for each density matrix

block �̂kl (with k; l being eigenstate indices).

In the sinc{function DVR method, the individual free kinetic matrix elements

are evaluated directly according to [150]
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In the latter Eqn., �Z 0 is the spacing between (equidistant) points on the sinc{

function DVR grid, which in general may be di�erent from the grid spacing �Z

of the Fourier grid. The application of the operator on �̂ corresponds simply to a

matrix multiplication.

A.2 DVR versus FFT for CCDM calculations

To address the advantages and disadvantages of FFT or DVR methods to represent

the free coordinate, we performed a series of calculations for D2 (vibrational ground

state), Ek(0) = 0:2 eV, K = 8 (asymptotic basis), propagation time t1 = 250 fs,

timestep �t = 25 fs, Newton polynomial order n = 300, and varying grid sizes

along Z. The potential parameters are the same as in subsections 5.1-5.4, listed in

Table 5.1.

Let N be the number of Fourier and N 0 be the number of DVR grid points.

Then, for an identical grid consisting of N = N 0 = 64 points, both methods gave

identical results with regard to the �rst excited state population P1(t1) to within

0:5%. ( P1(t1) is less than 10�4 at this low impact energy). The calculations

took 13 and 7 hours on a HP9000/735 workstation for the DVR and the Fourier
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basis, respectively. For N = N 0 = 128 points, the computation times increase to

156 (DVR) and 38 (FFT) hours, respectively, con�rming the theoretically expected

scaling laws of N2logN for the FFT algorithm [71], and N3 for DVR.

Hence, the FFT algorithm is clearly to be preferred for the present applications.

The DVR algorithm, however, o�ers high 
exibility in shaping the grid to desired

low energy potential regions [150], and in choosing the number of grid points. (In

the case of FFT, N has to be a product of prime number to the power of integers).

Therefore, in certain cases (if N 0 � N), the DVR may become advantageous. For

the FFT, a Fourier mapping method could be used to optimally design the grid for

this cases [182].


