3 Differential forms on Riemannian mani-
folds

Let M be an orientable compact Riemannian manifold of dimension n and
of the class C3. Let z', ..., 2" be local coordinates in the neighborhood of
a point m € M. The square of a line element on M has the following
expression in terms of the local coordinates !, ..., 2"

Z gii(z r)dz" da? .
i,7=1

Each section w of the bundle A*(T'(M)) is a differential form of degree k
on the manifold M. The differential form w can be written in terms of the

local coordinates !, ..., 2" (see (1.2)) as the linear combination
3.1) w= Z wyda! = Z Wiy dT™ AL A dat
IeZ(k,n) 1<ip << <n

Let w be a differential form defined on an open set D C M. If F(D) is
a class of functions defined on D, then we say that the differential form w is
in this class provided that all coefficients wy, I € Z(k,n), are in this class.

For example w € LP(D), 1 < p < o0, if all coefficients w; belong to LP(D).
Endowed with the norm

1/p p/2
(32) ||w||p,D:Q \w<m>|pdw) - /( )3 \w(m)ﬁ) dou

1/p

D I1€Z(k,n)

LP(D) is a Banach space. Here dvyq denotes the n-dimensional volume ele-
ment on M. The space L{(D) consists of all differential forms w with

o\ P/2 1/p
) dvu g < 0.

The norm (3.3) is only a semi-norm. The Sobolev space W?(M), 1 < p <
00, is defined by

8w1

Cort

(3.3) Nwlzrpy = /( > Z

D IeZ(k,n)i=1

W (M) = L' (M) N L{(M)
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with the norm [|w|lw1or) = W, + lw]l (). The local spaces Ly, (M) and
WLP(M) are defined in the usual way.
The Sobolev embeddings in Euclidean spaces (see for example [Re] §2)

are valid for compact manifolds. For the following theorem and proof see
[He] §3.3.

3.4. Theorem. Let M be a compact Riemannian manifold of dimen-
sion n. For every p, 1 < p < n, and every q > 1 such that ¢ < np/(n — p),
the embedding of W'?(M) in L1(M) is compact.

For all differential forms « € LP(D) and g € LY(D) with 1 < p,q < oo,
1/p+1/q =1, the inner product is defined by

(3.5) (0,8) = [(al@), B(x)) dva

D

The orthogonal complement of a differential form w on a Riemannian
manifold M will be denoted by % w, where the linear operator % is the Hodge
star operator of (1.5). If degw = 1, then in the local orthonormal system of
coordinates z', ..., 2" at m we can write

*w(m) =*> wi(m)de’ => (=1)" wi(m)dz" AL A dzi A .. A da™,
i=1 i=1

where the sign = means that the expression under ~ is omitted.

We shall make extensive use of the exterior derivative operator d. If w,
degw =k, 0 < k < n, is a differential form whose coefficients are in C''(M),
then dw, deg(dw) = k + 1, denotes its differential defined by

3.6)dw = dwi, 5 Ndx® A ... Nde = dwy A dz! .
1 k

1<i1 <...<ip<n I€eZ(k,n)

The exterior derivative operator is a linear operator. For arbitrary dif-
ferential forms a and (3, differentiable in a domain D C M, the following
properties hold

(3.7a) dlaNB)=da B+ (-1)andF,
(3.7b) d(da) = d(dB) =0,
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where k is the degree of the differential form «.

The formal adjoint operator to d, the so called Hodge codifferential d*,
is defined by the help of the exterior derivative operator and the Hodge star
operator. For a differential form w of degree k we define

(3.8) d'w=(-1)"«1dxw.
It follows that d*w is of degree k — 1 with the representation

k
Owi, i ; s ‘
dw= Y Z(_n"*l%dx“A...Adwa...Adx%.

1<i1<..<ip<n v=1

Observe that the application of the exterior derivative to a differential
form of degree n is always zero, the same is true for the codifferential applied
to a differential form of degree zero. From (3.8) it follows that d*(d*w) = 0.

In the previous chapter we already defined orientable manifolds, with the
help of differential forms we can say it in other words.

3.9. Lemma. A differentiable manifold M, dim M = n, is orientable
if and only if there exists a differential form of degree n, everywhere non-
vanishing.

For the proof see [Au] §9.

Let M and V be orientable Riemannian manifolds of dimension n and f :
M — N a mapping of the Sobolev class W,.?(M), p > 1. Concerning local
coordinates x!, ..., 2" we can write the mapping f locally in the components
fY ..., f" Then f induces a homomorphism f* : C*®°(M) — LI (M) on
differential forms of degree k, called the pull-back. More precisely, for a
differential form o = Y ez ardz’ € C°(M), dega = k, we get

(3.10) (ffa)(m) = > a(f(m)df* A Adf*

I€Z(k,n)

= > ar(fm)df".

I1€Z(k,n)

The pull-back f* can be interpreted as a coordinate transformation of dif-
ferential forms. The operator f* applied on differential forms of degree k
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with constant coefficients is easily recognized as the kth exterior power of
the linear transformation D' f(m). That is

(3.11) (f*a) (m) = [D"f(m)]y o .

For the theory of differential forms on Riemannian manifolds and espe-
cially for the following statements we refer to [Rh].

If M is a compact n-dimensional orientable Riemannian manifold with
nonempty piecewise smooth boundary OM, the following Stokes formula
holds for an arbitrary differential form w € C'(M), degw =n — 1,

(3.12) /w:/dw.
M

oM
3.13. Definition. A differential form «, deg o = k, on the manifold
M with coefficients oy € LY (M), I € I(k,n), is called weakly closed, if for

loc

each differential form 3, deg 8 = k + 1, with
suppNOM =0, suppB={meM:3#£0}C M,

and with coefficients in the class VVI})(?(M), 1/p+1/g=1,1<p,q< o0, we
have

(3.14) / (o, d*B) dup =0 .

M

The following lemma shows that for smooth differential forms «, condition
(3.14) agrees with the usual condition of closedness da = 0, see [Rh] §25. Let
M be an orientable Riemannian manifold with nonempty piecewise smooth
boundary.

3.15. Lemma. Leta,3 € CY(M) with dega =k and deg 3 =k + 1.
If either o or 3 has compact support in M, then

(3.16) /<da,5> dupg = /(a,d*ﬁ) dvpg .
M M
Proof. With (1.9) and property (3.7a) we know that

/<da,ﬂ)de = A{d&/\*ﬂ

M

= [dan=g)+ (-1 [andss.
M

M
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Because « or 3 has compact support on M, the first integral on the right
side is zero by Stokes formula for differential forms. Thus and with (3.8) it
follows

_ k+1 1 «
A[d@/\*ﬂ (—1)* /04/\** d*f3 = /a/\*dﬁ

- /adﬁde

M

We next introduce the following very useful theorem.

3.17. Theorem. Let a and 3 be differential forms, 3 with a compact
support, and a € WLP(M), € WH(M), 1 < p,q < oo, dega + deg 3 =
n—1,1/p+1/q=1. Then

(3.18) /da/\ﬁ (— )dega“/a/\dﬁ.

M

In particular, the differential form « is weakly closed if and only if dov = 0

a.e. on M.

Proof. Fix o and ( with the stated properties. Because the coefficients
of the differential form o are in the class W,.?(M), there exists a sequence
{a,}22, of differential forms with coefficients in the class C*(M) conver-
ging in the W1P-norm to the coefficients of the differential form « on every
compact set K C int M.

Let {£,}22, be a sequence of differential forms, deg 3, = degf, in the
class C'(M) having compact supports and converging in the norm of W4
to the differential form 3. We may assume that there exists a smooth sub-
manifold U CC M such that supp 3, C U for all integers n.

The differential forms a,, A (3, have compact supports contained in U.
Stokes formula yields

/d(an/\ﬁn):/d(an/\ﬂn):(),
M U

and hence

/dozn/\ﬁn (— )dega/anAdﬁn:o.

U
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We have
U/da/\ﬁ—U/danAﬁn:/(da—dan)/\ﬁ+U/danA(ﬁ—ﬁn).

U

Therefore, using the Holder inequality (1.10) we obtain

\U/domﬁ _ U/dan/\ﬁn‘

< /|d(oz—ozn)/\ﬁ|de+/|dOén/\(5—5n)|dUM
U U

< c/ d(c — )| |B]dvae + c/ (datn| |8 — Buldvag
U U

< Clld(e — an)ll ey 1Bl Loy + Clldan || oy |18 = BullLawy »

where C' = (C11,)"/? is the constant of (1.10) with k = deg o and [ = deg 3.
Similarly we obtain

‘(/a/\dﬁ _ /anAdﬁn\

U
< Cillellre@) 1d(B = Bl + Cille = anll oy [|[dB | Loy »

where C} = (Cy51)"/%. These inequalities easily yield (3.18).
If da = 0 a.e. on M, then by (3.18)

(3.19) /oz/\dﬁzo

M

for an arbitrary differential form 3 € W with compact support. This,
obviously, implies (3.14). On the other hand, if we take a weakly closed
differential form o € WiL?(M), then by (3.18) one has

/da AB=0 forall 5€WH(M) with suppSC M.
M

We fix an arbitrary point m € M and pass to the local coordinates on
M in a neighborhood of this point. We see that almost everywhere in a
neighborhood of the point m the coefficients of the differential form da are
zero. Hence the theorem has been proved. O

21



