The norm of the tangent vector ¢ € T,,,(M) at m € M with respect to this
metric is defined by [£]g := (G(m)¢, £)1/2. Every K-quasiconformal mapping
f induces a metric tensor on M, namely

(6.9) G(m) := Jp(m)~*" D" f(m)D f(m)

if Jp(m) # 0, and G(m) = Id if Jp(m) = 0. It is clear that f is conformal
with respect to this metric. We refer to G(m) as the matrix dilatation of f
at m € M. The following lemma ensures the inequalities in (6.8). For the
proof see Lemma 7.9 in the case k = 1.

6.10. Lemma. Let f € W'?(M), 1 < p < n, be weakly K-quasi-
regular, then the equation

(6.11) Ka7He] < (G(m)e. € < Kol
holds for almost every m € M and for all £ € T,,(M).

Quasiregular mappings are weak solutions of the differential system
(6.12) D' f(m)Df(m) = Jy(m)*/"G(m) ,

commonly called the n-dimensional Beltrami equation.

7 A-harmonic differential forms and quasi-
regular mappings

This chapter connects quasilinear elliptic equations with quasiregular map-
pings. Similar results in Euclidean spaces are shown in [Iw1], [IM] and [FW].

Let M and N be orientable Riemannian manifolds of dimension n and
f: M — N a mapping of Sobolev class I/Vlif(/\/l), 1 < s <n. Wefix an
ordered multi-index I = (iy,...,4) € Z(k,n) and its complementary multi-
index J = (j1, ..., jn-k) € Z(n —k,n) (see also (1.3)), ordered in such a way
that

(7.1) de’ = xdx’ .
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Again we use local systems of coordinates x!,...,2" because we want to

calculate with the components of the mapping f. Suppose s > max{k,n—k}.
To each pair (1, .J) we assign locally the differential form
(7.2) up = fRdfU A AR € LT (M)

loc

of degree k — 1 and the conjugate differential form

(7.3) vy = (=1)" % fdf AL Adfr € LTT(M)
of degree k + 1. The degree of local integrability is verified by Sobolev
embedding Theorem 3.4, which can be used because u; and v; are of the
Sobolev class WiL*(M). Tt follows that uy,v; € Li (M), with 8 = =

loc n—s’
Because of - > - we have ur,v; € LY (M).
The differential forms du; and d*v;, both of degree k, are regular distri-

butions, more explicitly

(7.4) duy = df** Ndf" A... Adf?
= (=D)*dfr AL Adf € L (M)

and with (3.8)

(75)  duy = (=)™ xdxo,
_ (_1)n+1(_1)nk+1 *d**fjldf‘h AN df]nik
= (DM df AL AdfPE € L (M)

Now suppose that f € W5(M), s = max{k,n — k}, is weakly
K-quasiregular with the matrix dilatation G(m). We recall that G(m) :
T(M) = Ty (N) induces for a simple differential form a linear mapping
Gu(m) : AN(T,, (M) — A*(Ty(m) (M) called the kth exterior power of G(m)
(see (1.11)). Directly from the representation (6.9) it follows that G(m) is
symmetric with determinant equal to one.

If 0 < Ai(m) <...< A\ (m) denote the eigenvalues of G(m) at the point
m € M, then the eigenvalues of G4 (m) are the products A\, (m) ...\, (m)
corresponding to all ordered systems (ly,...,l) € Z(k,n).

Every linear mapping A : R" — IR" with A € GL(n) maps the n-
dimensional unit ball to an ellipsoid F(A) centered at the origin. Through
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the identification T, (M) ~ IR" we can use this statement also for D f(m) €
GL(n). We denote by 71 < ... <+, the lengths of the half-axes of E(D f(m)).

They also are the positive quadratic roots of the eigenvalues of the mapping
Df(m)D!f(m). We deduce that

Y = max|Df(m)¢] and 51 = min|Df(m)¢]

for £ € T,,(M). We denote by K = ~, /7 the linear dilatation of a quasi-
regular mapping f and we get

M\
(7.6) (—) S

Aj Vi
for all 1 <14,7 < n, see also [V&] §2.

7.7. Lemma. Suppose that f € W,2(M) is weakly K-quasiregular
and that 0 < A\;(m) < ... < \,(m) are the eigenvalues of the matrix dilata-
tion G(m). Then the dilatation condition for f at the point m € M reads
as

(7.8) Ai(m) < K?\j(m)
forall1 <i,j <n.
Proof. We have
Ar(m)Ai(m) < A(m)An(m) < A;(m)An(m)

and with (7.6) it follows that

An(m) %<m>)2 )
Ai(m) < Ai(m) = Ai(m) = K*X\:;(m) .
() < ) = (20 oy (m) = K2 m)
(I
7.9. Lemma. The metric tensor G4 induces a scalar product on

A¥(T,,(M)). The corresponding norm is equivalent to the norm of a differ-
ential form, i.e. the following estimation holds

k(k k(n—k)

(7.10) K™ 6] < (Gp(m)é, €)F < K¢
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for all simple differential forms & € A*(T,,(M)).
Proof. With the representation of the matrix dilatation (6.9) it follows

that
(Gu(m)E,€)F = Jp(m) n{[Df(m)]4€, [Df(m)]4€)?
= Jp(m) | [Df(m)] 4]
= Jy(m) " |e| max | [DF (m)] 4]
Further, it is enough to proof that
Tp(m) =% max | [Df(m)]4¢| < Ko

§1=1

Because of Jy(m)? = det(Df(m)D"!f(m)) it follows with (7.6) and Lemma
7.7 that

Tyt (s DA€l ) = Jptm) Gt (). o)
('Vn—k-i-l(m) .- 'Vn(m))n
(0m) 7l

< (An—r1(m) ... )\n(m)):Tk
B (A(m) ... Ap_g(m))2
< Kk—k)

Since \;/\; < K?, it follows that also \;/\; > 1/K?. Thus we get the lower
estimation of (7.10) in the same way. a

For simple differential forms of degree k we notate the linear mapping

H(m) : A¥(Ty(my(N)) — A*(T,,(M)) by setting H(m) := G5 (m).

7.11. Lemma. For the simple differential forms dur,d*v; € L (M)
of degree k we have

(7.12) H(m)du; = Jf(m)%’ld*vj .
Proof. With the definition of the pull-back f* (3.10) and with (3.11)

we get

(7.13) duy = (=) f*doy = (=)D f(m)]wdz;
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and
(7.14)  dvy = (=) % frdoy = (=1)" % [D'f(m)]udz s .

Through the identification T,,(M) ~ IR"™ we can use Lemma 1.15 also for
differential forms on Riemannian manifolds. If we apply to D'f(m) (1.16)
for differential forms of degree n — k, it follows with (7.1) that

«[D'f(m)]y = J;(m) = G (m)[D'f(m)] x .
and with (7.13) and (7.14)

2k 2k _q

H Y m)Jp(m)w " dvy = Jp(m)= 'Gy(m)dvs
= Jy(m) ¥ Gy(m) (= 1) [D'f (m)]pda”
= (=1 'Gy(m) GZ'(m) [D' f(m)]y * dz”
= (=)' [D'f(m)]pda’
= dus
This completes the proof. O

7.15. Lemma. For the Jacobian J;(m) of f € W' (M), s =
max{k,n — k}, we can write

(7.16) Je(m) = (duy,d*vy) .
Proof. Again with (3.10) and (3.11) we get

Ji(m) = det(Df(m))x*1 = * det (D'f(m))x1
= x[D'f(m)]g*1 = x(df' A... Ndf")
= xf"%1.

Now with (1.9) we have
dr’ A xxdr? = (do! xda’) x 1 = (da’ dz") 1 = %1 .
Both together with (7.13) and (7.14) yields

Ji(m) = xf*(da’ Axxdz’) = x(f*dx’ A f*x*dx?)
= w(frdz’ Axx frdx’) = x(dug A*d*vy)
= *(du[,d*vJ>*]l = (dul,d*vj> .
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7.17. Lemma. The Jacobian J;(m) of the mapping f € W,53(M),
s = max{k,n — k}, has the representation
(7.18) Jr(m) = |duly = |d*vs |51,
%

Proof. With (7.12) and (7.6) we find that

and ¢ =

with p = .

(H(m)dur,dur) = J¢(m)

and therefore
(H(m)dur, dur)3 = |dus|% = J¢(m)
for p = 3. With the same calculation we get

(H™ Y (m)d vy, d*v,) 50 = |d*vy|}-0 = Jp(m)

for ¢ = 2. O

Now we introduce a nonlinear Lebesgue measurable mapping A : M x

Ak(Tm(M)) - Ak(Tm(M)) by
(7.19) A(m, €) = (H(m)&,€)T H(m)¢

for p = % and the conjugate mapping A~' : M x A¥(T,,,(M)) — A*(T,,(M))
by

(7.20) A7 (m, &) = (H™ (m)&,€)*T H (m)¢

with ¢ = -, 1/p+1/q = 1. Both A and A™" are defined for almost every

m € M and for all £ € A*(T,,(M)).

7.21. Lemma. If f € W’(M), s = max{k,n — k}, is weakly K-
quasiregular, then the differential form uy (7.2) of degree k—1 is A-harmonic.
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Proof. We have to show that the differential form wu; is a solution of the
A-harmonic equation (5.4). We use A in the form of (7.19). With the help
of (7.12) and (7.18) we obtain for du,

A(m,du;) = (H(m)duy, du[>%H(m)du1
[l > T (m) =~ ",

_2 2.9
Tp(m)' v Jp(m)e ™ d"vy

and therefore
(7.22) A(m,duy) =d*vy .

Applying the Hodge codifferential d*, it follows the (quasilinear elliptic) A-
harmonic equation

d*A(m,duy) =0,
for duj. O
Analogously we get for the differential form d*v;
A~ Ym, d*vy) = du; .
and arrive at the A~!-harmonic equation for d*v;
(7.23) dA Y (m,d*v;) = 0.
7.24. Example. Forn =2k =2 and K =1 we get H(m) = Id.

This implies du; = d*v;. For I = {2} and J = {1} the Cauchy-Riemann
differential equations

of _ oft . 0ft_or
orl  Ox2 a oxrl  Ox2

of an analytic function in 2 dimensions follow (local).

7.25. Lemma. With the two constants 0 < vy, 15 < 00 we have

(7.26) v |dug|P < (duy, A(m, dug))
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and
(7.27) |A(m, dup)| < vy |dug|P™,
for p > 1 and for all differential forms du; € L{,.(M) of degree k, 0 < k < n.

Proof. Because of Lemma 7.9 the norm of du; on the manifold M and
the norm generated by H(m) are equivalent and thus

l/‘duI‘ S ]duI]H .
With (7.16), (7.18) and (7.22) we get

wldwle < \dulty = Jym)
= (duj,d*vy) = {(duj, A(m,duy)) .

The second estimation follows directly from the definition of the mapping
A(m,€)

|A(m, dup)| = [(H(m)dury, dup)"= H(m)du;| < |H(m)|%|du P~

= 1y |du[|p_1 .

8 Quasiregular mappings and W7 -classes

In this chapter we want to consider the connection of quasiregular mappings
and the W7 -classes of differential forms.

8.1. Theorem. If f € W*(M), s = max{k,n — k}, is weakly K-
quasiregular, then the differential form duy (7.4), deg duy = k, is of the class
WTs.

Proof. This result follows direct with the Lemmas 7.21 and 7.25 together
with Theorem 5.6. O

We want to show now a different approach, based more on the proper-
ties of differential forms of the WT -classes. Here we follow [MMV1] and
[FMMVW].
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