
The norm of the tangent vector ξ ∈ Tm(M) at m ∈ M with respect to this
metric is defined by |ξ|G := 〈G(m)ξ, ξ〉1/2. Every K-quasiconformal mapping
f induces a metric tensor on M, namely

G(m) := Jf(m)−2/nDtf(m)Df(m)(6.9)

if Jf(m) 6= 0, and G(m) = Id if Jf(m) = 0. It is clear that f is conformal
with respect to this metric. We refer to G(m) as the matrix dilatation of f
at m ∈ M. The following lemma ensures the inequalities in (6.8). For the
proof see Lemma 7.9 in the case k = 1.

6.10. Lemma. Let f ∈ W 1,p(M), 1 ≤ p ≤ n, be weakly K-quasi-
regular, then the equation

K
1
n
−1|ξ| ≤ 〈G(m)ξ, ξ〉 1

2 ≤ K1− 1
n |ξ|(6.11)

holds for almost every m ∈ M and for all ξ ∈ Tm(M).

Quasiregular mappings are weak solutions of the differential system

Dtf(m)Df(m) = Jf (m)2/nG(m) ,(6.12)

commonly called the n-dimensional Beltrami equation.

7 A-harmonic differential forms and quasi-

regular mappings

This chapter connects quasilinear elliptic equations with quasiregular map-
pings. Similar results in Euclidean spaces are shown in [Iw1], [IM] and [FW].

Let M and N be orientable Riemannian manifolds of dimension n and
f : M → N a mapping of Sobolev class W 1,s

loc (M), 1 ≤ s ≤ n. We fix an
ordered multi-index I = (i1, . . . , ik) ∈ I(k, n) and its complementary multi-
index J = (j1, . . . , jn−k) ∈ I(n− k, n) (see also (1.3)), ordered in such a way
that

dxI = ? dxJ .(7.1)
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Again we use local systems of coordinates x1, . . . , xn because we want to
calculate with the components of the mapping f . Suppose s ≥ max{k, n−k}.
To each pair (I, J) we assign locally the differential form

uI = f ikdf i1 ∧ . . . ∧ df ik−1 ∈ L
n

n−1

loc (M)(7.2)

of degree k − 1 and the conjugate differential form

vJ = (−1)n+1 ? f j1df j2 ∧ . . . ∧ df jn−k ∈ L
n

n−1

loc (M)(7.3)

of degree k + 1. The degree of local integrability is verified by Sobolev
embedding Theorem 3.4, which can be used because uI and vJ are of the
Sobolev class W 1,s

loc (M). It follows that uI , vJ ∈ Ls′
loc(M), with s′ = sn

n−s
.

Because of sn
n−s

> n
n−1

we have uI , vJ ∈ L
n/n−1
loc (M).

The differential forms duI and d∗vJ , both of degree k, are regular distri-
butions, more explicitly

duI = df ik ∧ df i1 ∧ . . . ∧ df ik−1(7.4)

= (−1)k−1df i1 ∧ . . . ∧ df ik ∈ L1
loc(M)

and with (3.8)

d∗vJ = (−1)nk+1 ? d ? vJ(7.5)

= (−1)n+1(−1)nk+1 ? d ? ?f j1df j2 ∧ . . . ∧ df jn−k

= (−1)k+1 ? df j1 ∧ . . . ∧ df jn−k ∈ L1
loc(M) .

Now suppose that f ∈ W 1,s
loc (M), s = max{k, n − k}, is weakly

K-quasiregular with the matrix dilatation G(m). We recall that G(m) :
Tm(M) → Tf(m)(N ) induces for a simple differential form a linear mapping
G#(m) : Λk(Tm(M) → Λk(Tf(m)(M)) called the kth exterior power of G(m)
(see (1.11)). Directly from the representation (6.9) it follows that G(m) is
symmetric with determinant equal to one.

If 0 < λ1(m) ≤ . . . ≤ λn(m) denote the eigenvalues of G(m) at the point
m ∈ M, then the eigenvalues of G#(m) are the products λl1(m) . . . λlk(m)
corresponding to all ordered systems (l1, . . . , lk) ∈ I(k, n).

Every linear mapping A : IRn → IRn with A ∈ GL(n) maps the n-
dimensional unit ball to an ellipsoid E(A) centered at the origin. Through
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the identification Tm(M) ' IRn we can use this statement also for Df(m) ∈
GL(n). We denote by γ1 ≤ . . . ≤ γn the lengths of the half-axes ofE(Df(m)).
They also are the positive quadratic roots of the eigenvalues of the mapping
Df(m)Dtf(m). We deduce that

γn = max
|ξ|=1

|Df(m)ξ| and γ1 = min
|ξ|=1

|Df(m)ξ|

for ξ ∈ Tm(M). We denote by K = γn/γ1 the linear dilatation of a quasi-
regular mapping f and we get(

λi

λj

)1/2

=
γi

γj

(7.6)

for all 1 ≤ i, j ≤ n, see also [Vä] §2.

7.7. Lemma. Suppose that f ∈ W 1,s
loc (M) is weakly K-quasiregular

and that 0 < λ1(m) ≤ . . . ≤ λn(m) are the eigenvalues of the matrix dilata-
tion G(m). Then the dilatation condition for f at the point m ∈ M reads
as

λi(m) ≤ K2λj(m)(7.8)

for all 1 ≤ i, j ≤ n.

Proof. We have

λ1(m)λi(m) ≤ λ1(m)λn(m) ≤ λj(m)λn(m)

and with (7.6) it follows that

λi(m) ≤ λn(m)

λ1(m)
λj(m) =

(
γn(m)

γ1(m)

)2

λj(m) = K2λj(m) .

2

7.9. Lemma. The metric tensor G# induces a scalar product on
Λk(Tm(M)). The corresponding norm is equivalent to the norm of a differ-
ential form, i.e. the following estimation holds

K
k(k−n)

n |ξ| ≤ 〈G#(m)ξ, ξ〉 1
2 ≤ K

k(n−k)
n |ξ|(7.10)
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for all simple differential forms ξ ∈ Λk(Tm(M)).

Proof. With the representation of the matrix dilatation (6.9) it follows
that

〈G#(m)ξ, ξ〉 1
2 = Jf (m)−

k
n 〈 [Df(m)]#ξ, [Df(m)]#ξ〉

1
2

= Jf (m)−
k
n | [Df(m)]#ξ|

= Jf (m)−
k
n |ξ|max

|ξ|=1
| [Df(m)]#ξ| .

Further, it is enough to proof that

Jf (m)−
k
n max

|ξ|=1
| [Df(m)]#ξ| ≤ K

k(n−k)
n .

Because of Jf (m)2 = det(Df(m)Dtf(m)) it follows with (7.6) and Lemma
7.7 that

Jf(m)−k

(
max
|ξ|=1

| [Df(m)]#ξ|
)n

= Jf(m)−k (γn−k+1(m) . . . γn(m))n

=
(γn−k+1(m) . . . γn(m))n

(γ1(m) . . . γn(m))k

≤ (λn−k+1(m) . . . λn(m))
n−k

2

(λ1(m) . . . λn−k(m))
k
2

≤ Kk(n−k) .

Since λi/λj ≤ K2, it follows that also λj/λi ≥ 1/K2. Thus we get the lower
estimation of (7.10) in the same way. 2

For simple differential forms of degree k we notate the linear mapping
H(m) : Λk(Tf(m)(N )) → Λk(Tm(M)) by setting H(m) := G−1

# (m).

7.11. Lemma. For the simple differential forms duI , d
∗vJ ∈ L1

loc(M)
of degree k we have

H(m)duI = Jf (m)
2k
n
−1d∗vJ .(7.12)

Proof. With the definition of the pull-back f ∗ (3.10) and with (3.11)
we get

duI = (−1)k−1f ∗dxI = (−1)k−1[Dtf(m)]#dxI(7.13)
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and

d∗vJ = (−1)k+1 ? f ∗dxJ = (−1)k+1 ? [Dtf(m)]#dxJ .(7.14)

Through the identification Tm(M) ' IRn we can use Lemma 1.15 also for
differential forms on Riemannian manifolds. If we apply to Dtf(m) (1.16)
for differential forms of degree n− k, it follows with (7.1) that

? [Dtf(m)]# = Jf (m)1− 2k
n G−1

# (m)[Dtf(m)]# ? ,

and with (7.13) and (7.14)

H−1(m)Jf(m)
2k
n
−1d∗vJ = Jf(m)

2k
n
−1G#(m) d∗vJ

= Jf(m)
2k
n
−1G#(m) (−1)k+1 ? [Dtf(m)]#dx

J

= (−1)k+1G#(m)G−1
# (m) [Dtf(m)]# ? dx

J

= (−1)k−1[Dtf(m)]#dx
I

= duI .

This completes the proof. 2

7.15. Lemma. For the Jacobian Jf (m) of f ∈ W 1,s
loc (M), s =

max{k, n− k}, we can write

Jf(m) = 〈duI, d
∗vJ〉 .(7.16)

Proof. Again with (3.10) and (3.11) we get

Jf(m) = det (Df(m)) ? ?11 = ? det (Dtf(m)) ? 11

= ? [Dtf(m)]# ? 11 = ? (df 1 ∧ . . . ∧ dfn)

= ? f ∗ ? 11 .

Now with (1.9) we have

dxI ∧ ? ? dxJ = 〈dxI , ? dxJ〉 ? 11 = 〈dxI , dxI〉 ? 11 = ?11 .

Both together with (7.13) and (7.14) yields

Jf (m) = ?f ∗(dxI ∧ ? ? dxJ) = ? (f ∗dxI ∧ f ∗ ? ? dxJ)

= ? (f ∗dxI ∧ ? ? f ∗dxJ) = ? (duI ∧ ? d∗vJ)

= ? 〈duI, d
∗vJ〉 ? 11 = 〈duI , d

∗vJ〉 .
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2

7.17. Lemma. The Jacobian Jf(m) of the mapping f ∈ W 1,s
loc (M),

s = max{k, n− k}, has the representation

Jf(m) = |duI|pH = |d∗vJ |qH−1 ,(7.18)

with p = n
k

and q = n
n−k

.

Proof. With (7.12) and (7.6) we find that

〈H(m)duI , duI〉 = Jf(m)
2k
n
−1〈d∗vJ , duI〉

= Jf(m)
2k
n
−1〈duI , d

∗vJ〉
= Jf(m)

2k
n

and therefore

〈H(m)duI , duI〉
n
2k = |duI |pH = Jf(m)

for p = n
k
. With the same calculation we get

〈H−1(m)d∗vJ , d
∗vJ〉

n
2(n−k) = |d∗vJ |qH−1 = Jf(m)

for q = n
n−k

. 2

Now we introduce a nonlinear Lebesgue measurable mapping A : M ×
Λk(Tm(M)) → Λk(Tm(M)) by

A(m, ξ) = 〈H(m)ξ, ξ〉
p−2
2 H(m)ξ(7.19)

for p = n
k

and the conjugate mapping A−1 : M×Λk(Tm(M)) → Λk(Tm(M))
by

A−1(m, ξ) = 〈H−1(m)ξ, ξ〉
q−2
2 H−1(m)ξ(7.20)

with q = n
n−k

, 1/p + 1/q = 1. Both A and A−1 are defined for almost every

m ∈ M and for all ξ ∈ Λk(Tm(M)).

7.21. Lemma. If f ∈ W 1,s
loc (M), s = max{k, n − k}, is weakly K-

quasiregular, then the differential form uI (7.2) of degree k−1 is A-harmonic.
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Proof. We have to show that the differential form uI is a solution of the
A-harmonic equation (5.4). We use A in the form of (7.19). With the help
of (7.12) and (7.18) we obtain for duI

A(m, duI) = 〈H(m)duI , duI〉
p−2
2 H(m)duI

= |duI |p−2
H Jf (m)

2k
n
−1d∗vJ

= Jf(m)1− 2
pJf(m)

2
p
−1d∗vJ

and therefore

A(m, duI) = d∗vJ .(7.22)

Applying the Hodge codifferential d∗, it follows the (quasilinear elliptic) A-
harmonic equation

d∗A(m, duI) = 0 ,

for duI . 2

Analogously we get for the differential form d∗vJ

A−1(m, d∗vJ) = duI .

and arrive at the A−1-harmonic equation for d∗vJ

dA−1(m, d∗vJ ) = 0 .(7.23)

7.24. Example. For n = 2k = 2 and K = 1 we get H(m) = Id.
This implies duI = d∗vJ . For I = {2} and J = {1} the Cauchy-Riemann
differential equations

∂f 2

∂x1
= −∂f

1

∂x2
and

∂f 1

∂x1
=
∂f 2

∂x2

of an analytic function in 2 dimensions follow (local).

7.25. Lemma. With the two constants 0 < ν1, ν2 <∞ we have

ν1 |duI |p ≤ 〈duI , A(m, duI)〉(7.26)
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and

|A(m, duI)| ≤ ν2 |duI |p−1 ,(7.27)

for p > 1 and for all differential forms duI ∈ L1
loc(M) of degree k, 0 ≤ k ≤ n.

Proof. Because of Lemma 7.9 the norm of duI on the manifold M and
the norm generated by H(m) are equivalent and thus

ν |duI | ≤ |duI |H .

With (7.16), (7.18) and (7.22) we get

ν1 |duI |p ≤ |duI|pH = Jf(m)

= 〈duI , d
∗vJ〉 = 〈duI , A(m, duI)〉 .

The second estimation follows directly from the definition of the mapping
A(m, ξ)

|A(m, duI)| = |〈H(m)duI, duI〉
p−2
2 H(m)duI | ≤ |H(m)|

p
2 |duI |p−1

= ν2 |duI |p−1 .

2

8 Quasiregular mappings and WT -classes

In this chapter we want to consider the connection of quasiregular mappings
and the WT -classes of differential forms.

8.1. Theorem. If f ∈ W 1,s
loc (M), s = max{k, n − k}, is weakly K-

quasiregular, then the differential form duI (7.4), deg duI = k, is of the class
WT2.

Proof. This result follows direct with the Lemmas 7.21 and 7.25 together
with Theorem 5.6. 2

We want to show now a different approach, based more on the proper-
ties of differential forms of the WT -classes. Here we follow [MMV1] and
[FMMVW].
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