main difference is that we use now the inequality between geometric and
arithmetic means (8.7) and (8.9) and with the help of (8.10) we get

k . n )
(2}|de|2 + 3 1df?)

i=k+1
2 n -
< k,—n/Q(n _ k,)—(n—k:)/2nn/2KO(Z |dfz|2)k/2( Z |dfz|2)(n k)/2
i=1 i=k+1

From this point the proofs follow the concept of the proof of Theorem 8.2.
For details of the proofs of Theorem 8.12 and 8.13 see [FMMVW] §6. Our
slightly better constants 3 and v, follow directly from the definitions of the
classes W73 and W1j,.

There exist some differences between the Theorems 8.1 and 8.2. In the
first theorem the mapping f is only weakly quasiregular. This could be
weakened by a theorem from T.Iwaniec ([Iwl] §11) which says that a weakly
K-quasiregular mapping f € VVé’f, p < n, is also K-quasiregular, if p is close
enough to n, here p depends only on n and K, see also [FW] §9. The theorem
depends on a Caccioppoli-type estimate, which recently was refined in [Iw2].

The differential form du; (7.4) depends on a multi-index, we have more
possibilities for a differential form of the class W7,. The differential form
u*w 4 in Theorem 8.2 is fixed, but we gave concreter constants v; and vs.

9 Morrey’s Lemma on manifolds

In this chapter we follow mostly the considerations of [MMV3]. Let M be
a Riemannian manifold of dimension n and without boundary. We assume
that M is orientable and of the class C3. Let d(m;, my) be the geodesic
distance between the points mq, my € M. We denote by

B(a,t) ={m e M :d(a,m) < t}
Y(a,t) ={m e M :d(a,m) =t}

the geodesic ball and the geodesic sphere, respectively, with center a € M
and radius ¢t > 0.
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In the following we make use of the co-area formula or the Kronrod-
Federer formula [Fe| §3.2. We give this formula in the form needed, see for
example [GT] §16.5.

9.1. Theorem. Let ¢ be a nonnegative Borel measurable set in a
domain D C M and u a local Lipschitz function on D. Then

(9.2) / S(m)|Vu(m)|dop = 7dt / é(m)dH

where H is the surface measure on Ey = {m € M : |u(m)| = t}.

To ensure that the local structure of the manifold M is uniformly euclid-
ean, we need the following three properties. Hereby we assume that in these
properties the constants 6, ¢, ..., ¢4 and the function h are independent of the
point a € M.

I) For a € M the radius of injectivity riy;(a) satisfies 0 < 0 < 7iy5(a).
Thus, the geodesic ball B(a,d) admits polar coordinates (r,6), 0 < r < 0,
0 € S"!, with the volume element

(9.3) dup = Go(r, 0)drdf

where G,(r,0) > 0 is a continuous function, compare with [BC] §11.10.
IT) The function G,(r, ) satisfies

(9.4) e h(r) < Go(r,0) < e h(r)

for all 0 < r < § and # € S"~! with the continuous function h(r) > 0.
[IT) The area of the geodesic sphere X(a,r)

(9.5) S(a,r) :Z(/ dH" :SHL G(r,0)do

a,r)

for r € (0,6) is an increasing function on (0, d). For the derivative of S(a,r)
with respect to r the following inequality holds

(9.6) csr™ 2 < S (a,r) < eqr P
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for all r € (0, 0).

For an arbitrary pair of points my, my € M we denote by T' = I'(mq, ms)
the family of locally rectifiable curves v C M of the class C*, k > 2, joining
the points my and ms.

9.7. Lemma. Suppose that the manifold M satisfies properties I), II),
and III) with the constant § > 0. Let my,my € M with d = d(my,my) < 4§
and let the function p € L (M), p > 1, be nonnegative. If there exist
constants a, c; > 0, such that

(9.8) / P < cs T
Blag,r)
forr € (0,d), k =1,2, then
mes, (B(ay,d) N B(ag, d))

(9.9) inf /pdsM < ¢4

’YEF(al ,az)
Y

We can choose
1 p—1

Co\ 2 2 n—1,c\2\ 1 Ca =2
= [ — 1 _- p(__ = P
“ (cl) n+a/p( * alp (03) )C5 (n(n—l))
with the constants ¢j, j =1,...,4 from (9.4) and (9.6).
Proof. First we consider the case p = 1. Let @ = B(ay,d) N B(az, d).
For k = 1,2 let Iy(m) be a geodesic segment joining the point a; to a point

m € Q. Since ripj(ag) > d, these geodesic segments [,(m) are the shortest
curves joining the mentioned points.

We have
(9.10)  inf / pdsn < inf / pds i + / pdsa | = R(D)
v€l'(ay, a2
l1(m) la(m)
and hence
(9.11) /dUM < /de / pdsM—i-/de / pds pq
l1(m)
< / dv g / pds g + / dvp / pdsm
B(a1 d B(ag d lg(m
= L +1.
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Here we need to estimate the integral I; only, the integral I can be estimated
similarly.
Applying the Kronrod-Federer formula (9.2) and observing that
|Vind(ag,m)| =1 in B(ag,d),

we obtain from (9.3) that
(9.12) L = /dr / dH™! / pds
— / dr / G (r,0)df / p(t,0)dt,
0 st 0
where G (r,0) = G, (r,0). Now (9.4) yields

(9.13) L < e [h(r)dr / d9/pt9

- c2/h dr/dt/

QU O\&

[e=]

If we set

/pde /dt/G1t9 (t,0)d6

then for almost every r € [0, d), we have by (9.4)

J(r) = / G (r, 0)p(r,0)d0 > ¢y h(r) / p(r,0)d6 .

Sn—1 Sn—1

Now we obtain from (9.13)

I < e O/d h(r)dr O/ C{;L(Ez)dt - z—i O/d h(r)dr O/ {l/((f))dt.




However, the inequality (9.4) implies

where S1(r) = S(ay,r) and w,_ is the surface area of the unit sphere S~
of R". Thus from the preceding inequality we get

2 , d r&
(9.14) L < (Cl) /Sl(r)dr S
The last integral has the value
(9.15) Oéﬁyt: £80+!£$ﬂ®ﬁ
I ) o
= 50 sES0r

since the conditions imply that

J(1)
Si(t)

From (9.14) and (9.15) we obtain

<ct*—0ast—0.

(9.16) (%fﬁg/ﬂﬂ&+/&@ﬁ/é@ﬁﬁﬂt

The condition (9.8) yields

;i c
9.17 [ I < =2 are.
(0.17) [ < 5

We conclude from (9.6) and (9.8) that

/dS (T)dr/r () Si(t)dt < “ /r”_ldr/ﬂc t"2dt
[ S S = a1




This inequality together with the estimates (9.16) and (9.17), leads us to the
inequality

IN

—1

-1
- nji)a <1+<Z_2)2 nT) arre

Since a similar estimate is valid for I, we obtain from (9.11)

(9.18) R (I') mes, @ < (02)2 265 (1 + (%)2 nT—1> ante,

c1’/ n+ o Cs

and this inequality together with (9.10) finishes the proof of the lemma for

p=1.
The case p > 1 can be reduced to p = 1. By the Holder inequality we
have for k =1,2

/pde§(1rnesnB(a/y€,7“))1)771 / PPdva

B(ag,r) (ak,T)

Using (9.2) and (9.6) we obtain

dHn 1
mes, B(ag, ) = /dt / _

With this relation and with (9.8) we arrive to the estimate

p=1l 1
pn1+

/ pdup < 771(”_1)) Pekr
B(ag,r)

Now we can use the lemma for p = 1 and get (9.9) in the general case. O
For a subdomain D CC M we set

(9.19) d(D) = inf liminf d(my, D)

{my} k—oo
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where the infimum is taken over all possible sequences {my}, my € M, not
having accumulation points in M. For the domain D we assume that there
exists a constant c¢; > 0, such that

(9.20) mes,, (B(ai,d) N Blag,d)) > c; d"”

for all points a1, ay € D, satisfying the condition
1
(921) d= d(&l,&g) < 56(D) .

Now we deduce the well-known form of Morrey’s lemma for differential forms
on Riemannian manifolds. For the special case of functions compare with

[GT] §12.1 and [Re] §2.1.

9.22. Theorem. Suppose that the manifold M satisties the properties
I), II), and III) with the constant § > 0. Let D CC M be a domain such
that 6 < 6(D)/2 and (9.20) holds. Let w € Wit?(M) be a differential form
of degree k, 0 < k < n, p > 1. If for every point a € D and for every
r < 6(D)/2 the inequality

(9.23) / |dw|Pdopyg < c5r"PHe
B(a,r)

holds, then the differential form w can be redefined on a set of measure zero
such that for all ay,as € D, d(ay,az) < d, we get

(9.24) inf )/\dw\dSM < S g5 ,
Cr
ol

v€l'(ay,a2

where cg is the constant from Lemma 9.7.

Proof. If we replace in Lemma 9.7 the function p by the value of the
differential form dw, the theorem follows directly with the help of (9.20). O

10 Estimate for the energy integral

Here we present an estimate for the energy integral of the differential form
dw € WT,.

46



