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CHAPTER 1

Introduction

In this thesis, some new aspects in dealing with path integrals are discussed, in particular the per-
turbatively defined quantum statistical path integral and the application of methods known from
quantum field theory such as generating functionals in phase space. The expectation values appearing
in perturbative expansions of path integrals are usually pictured by Feynman diagrams. We derive
a graphical recursion relation to systematically construct topologically different Feynman diagrams
with their correct multiplicities for the anharmonic oscillator as an quantum statistical example and
for scattering processes in quantum electrodynamics, which illustrates the power of this method for
quantum field theoretic problems. Generalizations and extensions of variational perturbation theory
are used to calculate statistical properties of quantum systems and membranes.

1.1 Path Integrals

It was in 1948 when R.P. Feynman introduced the quantum mechanical path integral to calculate the
transition amplitude for a charged particle in electromagnetic field [1]. With the path integral, the
reinterpretation of the classically known notions “paths” and “orbits” became possible. Not only the
paths which make the action extremal but also all other ways the particle may follow contribute to the
transition amplitude with a phase factor which relates the action of a path to Planck’s constant A. In
its Euclidean form, the statistical path integral is built up from Boltzmann factors indeed indicating
the probability of a certain path of the particle [2 4].

The exact calculation of path integrals is only possible for systems whose action is quadratic in
the canonical variables, for example position z(7) and momentum p(7). In quantum mechanics, the
path integrals for the transition amplitudes of the free particle and the harmonic oscillator are exactly
calculated by time-slicing. Explicitly evaluating the path integral for a system with a more complicated
potential is impossible, if it cannot be brought into the necessary Gaussian form. This is, however,
possible for a class of systems, where the path integral can be transformed to be of oscillator type, e.g.
for the hydrogen atom by applying the Duru-Kleinert transformation [4]. In non-interacting quantum
field theories, e.g. for Klein-Gordon or Dirac fields, the Lagrangian density is usually quadratic in the
fields and their derivatives. Thus such path integrals are of Gaussian type and can easily be calculated.
If quantum fields interact, functional integrals cannot be evaluated analytically in almost all cases.
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1.2 Perturbative and Non-Perturbative Methods for the
Calculation of Path Integrals

Nevertheless, the interest in functional integrals has grown rapidly. Path integrals for a physical system
with weakly coupled interaction allow for a simple perturbation expansion, where the correlation func-
tions can be graphically pictured by Feynman diagrams. The most famous example is the interaction
of charged relativistic particles with an electromagnetic field, as described by quantum electrodynam-
ics, where the coupling constant is o = 1/137. For strong-coupling systems, path integrals are used
for the development of nonperturbative methods. Strong-coupling theories are necessary for calcu-
lating critical exponents of a system near a phase transition [5], for describing confinement between
quarks in quantum chromodynamics [6], or for the investigation of interacting strings [7]. Path integral
Monte Carlo methods on a lattice were developed to combine the selective probability picture of path
integrals with the great numerical power of supercomputers. Analytic non-perturbative methods for
strongly coupled systems are usually used to perform resummations of perturbative expansions as, for
example, by Padé or Borel methods. Alternatively, Feynman and Kleinert [8] as well as Giachetti
and Tognetti [9] developed a variational approach to approximatively calculate path integrals for arbi-
trarily coupled quantum mechanical systems. Within the last decade, the precision has been strongly
improved by extending it to higher-order variational perturbation theory [4, Chap. 5]. Additionally,
considerable progress was achieved in applying it to calculate critical exponents from strong-coupling
series of the Ginzburg-Landau theory of critical phenomena [5,10,11].

1.3 Contents of This Thesis

This thesis is divided into four parts. In Part I, a perturbative definition of the quantum statistical
phase space integral is introduced. Conventional time-slicing methods for calculating path integrals
yield integration measures, which are not well defined since these are infinite in the continuum limit.
Moreover, it is difficult to prove reparametrization invariance of the path integral under coordinate
transformations, in particular in curved spaces. A perturbative expansion of any phase space path
integral, where the complete Hamiltonian is treated as perturbation, does not possess these problems,
since the exactly solvable contribution has a regular measure and is trivially reduced to products of
¢ functions. It is interesting that this procedure leads directly to a high-temperature expansion for
the partition function. We prove the applicability of this method by calculating the effective classical
potential for the harmonic oscillator.

Since it is necessary to calculate expectation values of products of Hamiltonians, it is useful to in-
troduce Feynman rules, which can also be applied, if the Hamiltonian contains nonpolynomial terms.
This requires to generalize Wick’s rule, too. Furthermore, the calculation of mixed position-momentum
correlations must be considered. As examples, we study harmonic expectation values whose treatment
is necessary for the harmonic variational perturbation theory. In the case of nonpolynomial perturba-
tions, so-called smearing formulas replace the ordinary Wick decompositions of polynomial correlations
into products of two-point correlation functions. We also discuss the role of zero-mode fluctuations for
paths with periodic and fixed boundary conditions.

In high orders of perturbation theory, it becomes often difficult to determine all topologically dif-
ferent Feynman diagrams and their multiplicities. Usually this problem is attacked with the help of
combinatorial considerations. A powerful alternative is presented in Part II. We derive recursion rela-
tions from which all Feynman diagrams in any order are systematically generated without introducing
artificial currents. These relations can be completely expressed in a graphical way. This means that
the Feynman diagrams of a certain theory in any order are generated by cutting, removing, and glue-
ing operations on diagrams of previous orders of perturbation. We present recursion relations for the
quantum mechanical anharmonic oscillator and investigate the applicability to quantum field theories,
where we specialize to quantum electrodynamics.

The resummation of divergent perturbative series with harmonic variational perturbation theory is
the central aspect of Part ITI. After a short introduction of variational perturbation theory, we first
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generalize this theory to density matrices and calculate the particle densities for the double well and
the pair distribution function of hydrogen for different temperatures. Another interesting system is
the hydrogen atom in a uniform external magnetic field, since it destroys the isotropy of the Coulomb
interaction between electron and proton. The calculation of the effective classical potential, which
governs the quantum statistics of this system, is followed by a detailed treatment of the ground-state
energy. This quantity has a power expansion for weak strengths of the magnetic field, but a complicated
logarithmic behavior for strong magnetic fields. We use the variational approach to find an expression
for the ground-state energy as a function of the magnetic field strength, which is valid for all strengths
of the magnetic field although the asymptotic behavior is so extremely different. The results are in good
agreement with known values from numerical calculations. Considering the strong-field asymptotics
in detail, we go analytically beyond an estimate presented by Landau.

Another example, where variational perturbation theory yields very good results, is the strong-
coupling calculation of the fluctuation pressure of a membrane between walls. This shall be discussed
in Part IV. A fluid membrane is tensionless, and its shape is governed by the curvature energy. By
thermal fluctuations, the membrane exerts a pressure upon the walls. The pressure law is ideal-gas-
like and contains a dimensionless pressure constant, whose value is not exactly known. From our
strong-coupling calculation we obtain a very precise value that lies well in the error bounds of former
Monte Carlo simulations. We also evaluate the pressure constants for a stack of membranes, where our
strong-coupling approach is applicable for any number of membranes. Compared with Monte Carlo
simulations, where only constants for low numbers of membranes were computed, our results are in
very good agreement.






