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Fluctuating Membranes

We investigate the violent thermal out-of-plane fluctuations of a stack of membranes between two
parallel walls and calculate the pressure p that they exert upon these walls. In equilibrium with a
reservoir of molecules, tension vanishes and the shape is governed by extrinsic curvature energy. The
differential geometric background of this model is discussed in this chapter. The pressure law was
found by Helfrich [50] and reads for N membranes
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where L = (N + 1)a is the distance between the walls, and x the bending stiffness. The universal
pressure constants an are not calculable exactly. For a single membrane, a; was roughly estimated by
theoretical [50] and Monte Carlo methods [85-88]. By a strong-coupling calculation [48,89], presented
in Chapter 11, we find a value, which lies well within the error bounds of the latest Monte Carlo
estimate [88]. In a different strong-coupling approach [49], we also calculate the pressure constants for
a stack of membranes in Chapter 12. Our results are in excellent agreement with all available Monte
Carlo estimates [86-88] for N = 1,3,5. By an extrapolation to N — oo we determine the pressure
constant a for infinitely many membranes.

10.1 Introduction

Membranes formed by lipid bilayers are important biophysical systems occurring as boundaries of
organells and vesicles. Their tension vanishes due to the lateral motion of molecules within the mem-
brane. The flexibility of fluid membranes leads to an amazing variety of shapes of vesicles, which are
large encapsulating bags with a size of up to 100 um. Changes in temperature or osmotic conditions,
e.g. the concentration of ions or molecules in the membrane, induce shape transformations of vesicles.
Figure 10.1 shows schematically the process of a budding transition, where the increase of temperature
entails more violent membrane fluctuations, which lead to an uncoupling of a daughter vesicle, which
can move independently of the mother vesicle (see Ref. [90] for microscopic photographs of a budding
transition). Eventually, it can dock to another vesicle by an inverse process. Thus, shape transfor-
mations of membranes are necessary to make possible matter and energy transport between cells and
organells in a complex biological system.
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FI1GURE 10.1: 3D pictures of a budding transition of a vesicle by increasing the temperature. The surfaces were
modeled from microscopic photographs given in Ref. [90].

10.2 Differential Geometry for Curves and Surfaces

The geometry of the vesicle shapes can only be described locally, which means that it is necessary
to apply differential geometry for modeling membranes. In what follows, we briefly review the main
aspects of differential geometry.

10.2.1 Local Curvature of Curves

Topologically one-dimensional geometric objects appear in physics in different forms, for example as
particle paths, polymers, strings, or vortex lines. They have in common that it is sufficient to identify
each point of such an curved object by a vector in the surrounding embedding space, which depends
on only one parameter. The parameter choice depends usually on the appropriate problem.

We want to describe a curve C' in three-dimensional embedding space and we parameterize it with
the help of the parameter s, which we choose to lie in the interval 0 < s < 1. As Fig. 10.2 shows, a
certain point of the curve C' is given by the contravariant vector r(s) = (z(s)) = (z'(s), 2%(s), 2* (s))T
The components of the tangent vector t(s) = (t'(s)) at the point z?(s) are given by the differential
quotient

z'(s + As) —x'(s) d:z:i(s).

t'(s) = li = 10.2
(s) Asmo As ds ( )
The length of an infinitesimal piece of the curve is given by

= [dx' ()] + [da?(s)]? + [d2®(s)]? = nijdx’(s)dz? (s), (10.3)

where equal indices are summed over. The identity matrix (7;;) = diag(1, 1, 1) is used to transform
covariant vectors to contravariant ones: da; = n;;da’. The tangent vector t'(s) is already normalized.
To show this, we perform the scalar product

= VEG ) = VEGEE = fagtn = \ny 020 g

where we have used relation (10.3) in the last step. Now we determine the vectors transversal to t(s).
We know that the number of transversal vectors is D — 1, where D is the dimension of the embedding
space. Thus, we expect in three dimensions two independent vectors, which are orthogonal to t(s).
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FI1GURE 10.2: Curve C, parameterized by s, which we conventionally suppose to lie in the interval 0 < s < 1.

One is easily determined by differentiating the scalar product t¢(s)t;(s) = 1 with respect to s:

disti(s)ti(s) =0

dti(s)

—— L ti(s). (10.5)

The vector dt(s)/ds is obviously orthogonal to t*(s), and we define the normal vector n(s) as

ni(s) = k™ (s) dt;(j) = k‘l(s)d;”—y, k(s) = ‘7”7;?% - (10.6)

The proportionality constant k(s) is called the curvature of the curve at the point s and the components
of the curvature vector k(s) are given by

E'(s) = k(s)n'(s), (10.7)

thus pointing into the same direction as the normal vector. The larger its length k(s), the more curved
is the curve at s. The other transversal vector is called binormal vector b(s) and is orthogonal to n(s)
and t(s):

bi(s) = b~ 1(s) I (10.8)

where the length b(s) = |dn’(s)/ds| describes the strength of torsion of the curve. The more normals
at neighboring points of the curve differ, the stronger is the torsion of the curve in this region.

An important quantity of a stringy object is its tension ¢. This material constant is identical with
the strength of the force, which acts in the opposite direction of an elongation to bring back a deformed
string into its equilibrium state. In order to describe quantitatively the consequences of elongating a
string with tension, we consider Fig. 10.3. The lower line represents a piece of an undeformed string.
Dragging it at the position s by an amount |Au(s)| from r(s) to r(s) + Au(s), where we keep the
ends fixed, the overall length of this piece of string obviously increases. As we are only interested in
elongations, which cause normal forces (which means that the force vector is parallel to the normal
vector n(s)), the displacement vector Au(s) is parallel to the normal vector n(s). This ensures that
the mechanical stress is the same for both legs of the triangle. It also allows us to choose one of the
two rectangular triangles for the following considerations, since the ratio of the hypotenuse to the
appropriate horizontal sides is identical for both. With these suppositions, we read off from Fig. 10.3:

As?(s) = Au(s) /12 + As?, (10.9)

where we have rescaled the elongation with respect to the length of the undeformed string:

1
lo = lo/ ds. (1010)
0
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F1GURE 10.3: Change of scale (As — As’) by elongating a string with tension.

Going over to infinitesimal quantities, this relation gives us the measure of the deformed string

ds'(s) = dsy /1 + [dlzéz)} ) (10.11)

The length of the deformed string can thus be written as

=1, / ds (10.12)

lo dS

in comparison to the undeformed one (10.10). Then, the energy E, of a deformed string due to its
tension is equal to the mechanical work A,, which is necessary to change the length of the string from
lp to I:

EU A (l - lo = Ulo / lodS

g [ o | )} 105 / dsny BV EEE) 2 [7 g, LT, 0.1

2 lods 2 g lods lods 2 ds ds

Q

where we have performed the scaling s — lgs in the last step. The approximate expression (10.13) is
valid in the adiabatic limit of small elongations |u(s)|.

If the line-like object can be deformed without changing its overall length, such as in the case of
stiff polymers, another material property becomes important: the elasticity or bending rigidity k. The
degree of elastic deformation strongly depends on the curvature k(s) at any position s. Thus, the
bending or curvature energy is given by the curve integral

1 1 1 J 1 2,0 2.7
0 0 0

ds ds 2 ds? ds? '

where we have used the relation (10.6) between the curvature k(s) and the difference of neighboring
tangential vectors t(s) and t(s 4 ds) per length element ds and, in the last expression, the definition
(10.2) of the tangential vector.

10.2.2 Local Curvature of Surfaces

In complete analogy to line-like objects in the preceding section, we investigate now topologically two-
dimensional surfaces like membranes in three-dimensional embedding space. A point of a surface S
may be identified by the position vector r(ul, u?) = 2%(u*) with g = 1,2, where u! and u? are suitable
coordinate lines and serve as a parameterization of the surface (see Fig. 10.4). We use Latin indices for
components of vectors in the embedding space, while Greek indices denote components of the intrinsic
coordinates of the surface. The coordinate lines u!, u? span a mesh and cover the surface completely.
At the moment, the choice of these coordinates is arbitrary. Tangent vectors t,(u*) point along these

coordinate lines and are introduced by

or(ut)  Ox'(u")
our  Qur

t (ut) = w=12. (10.15)
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u?+Au?
FIGURE 10.4: Surface S, which is parameterized by intrinsic coordinates u' and u?.
The surface normal vector N(u*) is then given by the cross product of the tangent vectors:
ti(ut) x ta(ut
N(u#) = o) x ba(u) (10.16)
|62 (ur) X to(ut)]
or, written in components,
Ni(u") = AL , (10.17)
\/Eijkt]ltéfilmtl,ltzm
where ¢;;; is the totally antisymmetric tensor
+1 {ijk} = {123} or cyclic,
gijk =<¢ —1 {ijk} = {213} or cyclic, (10.18)
0 else.
An infinitesimal square length element on the surface is obviously introduced by
ds® = [dz' (u*, u?)]? + [dz®(ut, u?))? + [de(ut, u®)]? = dagy(uf)dz' (u?). (10.19)
Substituting the total differentials by
, Oxt (ut) ,
dx*(u*) = Tdu“ = t,du”, (10.20)
Eq. (10.19) can be rewritten as the first fundamental form
ds® = g, dutdu”, (10.21)
with the metric
( or >2 or Or
. ort O =1 31 52
i _0x" dzy ou ou' Ju (10.22)

Gu = Lyliy = ourdu | or  or o\’ ’
oul Ou? ou? "
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r(u'+Au' u?)  r(u'+Aul,u?+Au?)
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FIGURE 10.5: Planar projection of a surface element.

The metric is a symmetric tensor, which uniquely characterizes the shape of the surface. It is diagonal,
if the tangent vectors are perpendicular to each other, which happens to be for orthogonal coordinates.

As the explicit calculation shows, the determinant of the metric is obtained by the square absolute
value of the cross product of the tangent vectors

g = det Juv = |t1 X t2|2 = Eijktzitésumtlyltgym. (1023)

In Fig. 10.4, we have highlighted a surface element and we calculate its area as follows. For an
infinitesimal small surface element, which is enclosed by the coordinates (u', u?), (u'+du', u?), (ut, u>+
du?), and (u! + du', u® + du?), the surface element and its planar projection are identical and we have
to calculate the area of a parallelogram as shown in Fig. 10.5. Since the area of a parallelogram is
identical to that of a rectangle with one shortened side, we obtain

7] 7]
dA = |r(u', v’ + du®) — r(u' u?)| [r(u' 4+ du', v?) — r(u',v?)|sina = ‘8—;‘1 du* 6—;2 du®sin o
= | X o du'du® = |ty x to| du'du® = /g du'du?, (10.24)
ou'  ou?

where we have used relation (10.23) in the last step. The overall area of the surface S is thus given by
the parameter integral

Ag = / dA = /duldu2 N2 (10.25)
S

In the following we investigate the local curvature of a surface. For the one-dimensional curve, we have
defined the curvature k as the proportionality constant between the normal vector n(s) at a position
s and the derivative with respect to s of the tangent vector t(s) in Eq. (10.6). A surface possesses
an infinite number of tangent vectors, since the two independent ones (10.15), which point along the
coordinate lines u' and u? span a tangential plane, in which all possible tangential vectors at the point
r(u', u?) reside. Thus there are infinitely many curves on the surface, which touch the point r(u!, u?)
and have different curvatures in this point. Thus we need a new definition for what we want to call the
curvature of a surface. Let r(s) be a point of a curve C with curvature k(s) on the surface S, where
the same point is parameterized by r(u!, u?). Then, n(s) = d?r(s)/kds* denotes the normal vector of
the curve and N(u',u?) the surface normal at this point. We define the normal curvature k,, at this
point by
_ @2 i i
kn = NiW =k, N; = kN;n' = kcos©, (10.26)

where we have used the definition (10.7) for the curvature vector. The angle between n and N at a
certain point is denoted by ©.

If we consider the surface coordinates as functions of the curve parameter, u = u#(s), we rewrite
the tangent and the normal vector of the curve at s as

i dz(ut(s Ozt dut
(o) = S = G
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FIGURE 10.6: Definition of main curvature lines.

n'(uh(s)) = k

2, .0, 1 2.7 “w v i g2, 1
_1dPxt(ut(s)) _ _1< oz dut du dz* d*u ) (10.27)

ds? ourdur ds ds = Out ds?

Multiplying the second relation by N; and acknowledging that the second term vanishes due to N(u*) L
ozt (ut)/out = t,(u"), we obtain

R dut du”
Ni—— =kp = hpyp— —, 10.28
b ds? " " ds ds ( )
where we have introduced the curvature tensor
92zt o .
hy=N,—— =N, —¢*. 10.29
" C Qukduv Oum Y ( )
Now we differentiate the relation NitL = (0 with respect to u”, yielding
Ot ozt ON; dzt dN;
, — =h,, =— = — —_— 10.30
 QutOu " out du” du* du” ( )

where we could use total differentials since du*/du” = §*,. Expression (10.30) exhibits the second
fundamental form [91,92]

—dx'dN; = h,,,du"du”. 10.31
2

Writing the right equation of (10.28) as k,ds? = hywdutdu” and substituting ds? by the first funda-
mental form (10.21), we obtain the important expression

B hywdurdu”

g o— L@ C0
" gepdutdur’

(10.32)

which relates the normal curvature with the metric and the curvature tensor of the surface. As stated
above, there is an infinite number of curves touching a certain point (u',u?) of the surface and having
a curvature vector k at this point. In order to find a measure for the curvature of the surface in this
point, we determine the curves with maximum and minimum curvature. This is done by extremizing
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the relation (10.32). Introducing abbreviations I* = du* and o, = hyy — kngu (= 0), Eq. (10.32) can
be written as

aul'l” =0. (10.33)
Differentiating this equation with respect to [ yields
ault =0, (10.34)

where we have utilized the symmetry of ov,,,. Re-expanding the abbreviations, multiplying by ¢, and
substituting g,”dut = du” leads to

h, dut — ky,du” = 0. (10.35)

This is a set of two equations (v = 1, 2), which constitutes an eigenvalue equation:
bt ho'\ ((dut du!
( hi? ho? a2 ) = kn du? | (10.36)
As usual, the eigenvalues k,, are obtained from the vanishing determinant

1 1
‘hl o =0. (10.37)

hi?2  he® —ky

Solving the quadratic equation (h11 — kn)(h22 —ky) — hi2hot =0 yields the two eigenvalues

1 1
b1z = ghyt & \/Z (hut)? — det h,”. (10.38)

Defining the Gaussian curvature

K= klkg = det huu (1039)
and the mean curvature
1 1 1 »
H = E(kl + k2) == ihuu == iT‘r h“H B (1040)

Eq. (10.38) can be expressed by

kio=H+\VH?>—K. (10.41)

These solutions are called main curvatures of the surface. The corresponding curves with curvature
vectors ki o satisfying k12 = ki 2 - Ny 2 at the point (ul, u2) are denoted as main curvature lines on
the surface. Their tangent vectors t; o are orthogonal to another. Thus the eigenvectors of hH” form
a local orthonormal coordinate system at this point of the surface as shown in Fig. 10.6.

Following Helfrich [93], the definitions of mean and Gaussian curvature are used to write the bending
energy as an expansion in the curvature. The lowest-order contribution is then given by

Ec = / dA (26H” 4+ ke K), (10.42)
S

which is quadratic in the main curvatures k1 and ks. The elastic constants x and kg are denoted
as bending rigidity and Gaussian bending rigidity, respectively, and have the dimension energy. The
second term in the parentheses in Eq. (10.42) is the topological invariant 4rkg(1 — G) as follows
from the global Gauss-Bonnet theorem [91]. The number G counts the handles of the surface and is
called the genus of the surface. Since we assume the surface topology to be fixed, this constant energy
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FIGURE 10.7: Out-of-plane deformations of an almost planar surface are described with the Monge represen-
tation, where Cartesian coordinates are used. The coordinates x and y span the parameter space, and only
z = z(x,y) depends on the parameterization.

contribution can be omitted, leaving us with an curvature energy, which only depends on the mean
curvature. Thus, Eq. (10.42) is written as

Fo = g /d2u Va(hu")2. (10.43)

This is the classical curvature model for bilayer membranes and is valid for curvature radii much larger
than the membrane thickness (4nm) [94]. The membrane equilibrium shape is then determined by
minimizing the curvature energy.

A frequently used special parameterization of an almost planar surface is the Monge representation.
As shown in Fig. 10.7, it is characterized by the following choice of parameters:

r(ut,u?) =, yu',u?) =u? 2, u?) = z(2,y). (10.44)

In this simple case, only deformations orthogonal to the zy-plane can be described. Although this is a
strong restriction for the investigation of the influence of thermal fluctuations, which have no preferred
direction upon a membrane, we will use an even more simplified form of this representation throughout
the subsequent calculations. In Monge representation, the tangent vectors pointing into the direction
of the x and y unit vectors read

t1=(1,0,0.2),  t2=(0,1,0,2)". (10.45)

The cross product of these tangent vectors yields the surface normal vector

1
N= i@ o

(=0g2, —0yz, )T, (10.46)

which we have normalized according to Eq. (10.16). The covariant and contravariant metrics are given
by

uv _ L 14(0y2)* —0,20,2

uv
g = g ( —0p20yz 1+ (8mz)2) ' (10.47)

(14 (052)* 0,204z
v = 0p20yz 1+ (0y2)? o

where g is the determinant of the covariant metric

g=detg,, =1+ (9,2)* + (0y2)* (10.48)



170 10. Fluctuating Membranes

For the curvature tensor we obtain

1 02z 0042
hMl/ - \/_g (axayz 652 > Vy (1049)

or in the form we need it for calculating the mean and the Gaussian curvature:

h' =g hy, = L (14 (9y2)?] 022 — 0,20y20,0yz [1 + (0y2)?] 020yz — 8,20, 202
g°2 \ [1+ (922)%] 0a0y2 = 0220y 2032 [L+ (002)°] 0]z = 0020,2000y2
(10.50)

The mean curvature (10.40) of a Monge parameterized surface in the point (z,y, z(z,y)) is half the
trace of the tensor (10.50). Thus it is given by

1 1 21 a2 21 92
H = s raapee UL+ @210+ [1+ (9y2)7) 02z = 20,020,200, 2} (10.51)
~ %Az [1+0((v2)?)], (10.52)

where A is the Laplace operator 92 + 85 and V the gradient (9, 9,) in two dimensions. The Gaussian
curvature (10.39) is obtained from the determinant of h,,":

_ 1
~ 7 @7+ @7F |

K 0220,z — (0:0,2)] . (10.53)

The simplest form of the curvature energy (10.43) for a membrane, which can be parameterized with
the Monge representation is given by the expression

Bo=" / dady [Ax(z, )2, (10.54)

which we will use in the sequel to describe thermal fluctuations of membranes between walls.



