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Strong-Coupling Calculation of
Fluctuation Pressure of a Membrane
Between Walls

We calculate analytically the proportionality constant in the pressure law of a membrane thermally
fluctuating between parallel walls from the strong-coupling limit of variational perturbation theory
up to third order. Extrapolating these approximants to infinite order yields the pressure constant
a = 0.0797149 [48]. This result lies well within the error bounds of the most accurate available Monte
Carlo result aMg = 0.0798 4 0.0003 [88].

11.1 Membrane Between Walls

The violent thermal out-of-plane fluctuations of a membrane between parallel walls generate a pressure
p following the law
kLT

=0 (11.1)

whose form was first derived by Helfrich [50] using dimensionality arguments. Here, x denotes the
elasticity constant of the membrane, and d the distance between the walls. The exact value of the
prefactor « is unknown, but estimates have been derived from crude theoretical approximations by
Helfrich [50] and by Janke and Kleinert [85], which yielded

A ~0.0242, ol ~ 0.0625. (11.2)

More precise values were found from Monte Carlo simulations by Janke and Kleinert [85] and by
Gompper and Kroll [88], which gave

M€ &~ 0.07940.002, adg ~ 0.0798 + 0.0003. (11.3)
In a previous work [89], a systematic method was developed for calculating « with any desired high

accuracy. Basis for this method is the strong-coupling version of variational perturbation theory [4].
The application of this method to the fluctuation pressure of the membrane is similar to that for the
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particle in a box developed in Ref. [95]. In that theory, the free energy of the membrane is expanded into
a sum of connected loop diagrams, which is eventually taken to infinite coupling strength to account
for the hard walls. As a first approximation, an infinite set of diagrams was calculated, others were
estimated by invoking a mathematical analogy with a similar one-dimensional system of a quantum
mechanical particle between walls. The result of this procedure was a pressure constant

2
th T

= — =0.0771063... 11.4
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very close to (11.3).
It is the purpose of this paper to go beyond this estimate by calculating all diagrams up to four
loops exactly. In this way, we improve the analytic approximation (11.4) and obtain a value

o™ ~ 0.0797149, (11.5)

which is in excellent agreement with the precise MC value oS in Eq. (11.3).

11.2 Smooth Potential Model of Membrane Between Walls

To set up the theory, we let the membrane lie in the x-plane and fluctuate in the z-direction with
vertical displacements p(x). The walls at z = +d/2 restrict the displacements to the interval p(x) €
(—d/2,d/2). Near zero temperature, the thermal fluctuations are small, ¢(x) &~ 0. The curvature
energy F¢ of the membrane has the harmonic approximation (10.54)

Ec = %m/d:pz [0%p(x)]2. (11.6)

The thermodynamic partition function Z of the membrane is given by the sum over all Boltzmann
factors of field configurations ¢(x)

+d2 g
p(x) { K 2,192 2 }
7 = / ————L|expy——— [ d°x[0%p(x . 11.7
1 [ o Tt s [ (o) (11.7)
This simple harmonic functional integral poses the problem of dealing with a finite range of fluctuations.
This problem is solved by the strong-coupling theory of Ref. [89] as follows.

If the area of the membrane is denoted by A, the partition function (11.11) determines the free
energy per area as

f= —%mz. (11.8)

By differentiating f with respect to the distance d of the walls, we obtain the pressure p = —9f/dd.

11.2.1 Smooth Potential Adapting Walls

We introduce some smooth potential restricting the fluctuations ¢(x) to the interval (—d/2,d/2), for
instance

2 2

V(o) = m* &5 tan? o) = mte?(x) + T

" 3 Vs (), (11.9)

where we have split the potential into a harmonic and an interacting part

Vine (0(x)) = m* [g4<p4(x) +e6 (g)2 O (x) + es (2)4 O (x) + .. } (11.10)
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FIGURE 11.1: Smooth potential V(¢) for different values of the parameter m. In the limit m — 0 the hard
walls at ¢ = +d/2 are adapted.

with g4 = 2/3,e6 = 17/45,2e5 = 62/315, ... . Thus we are left with the functional integral

7= § 2oty exp (= [ @ {10700 4t )+ Z—zvmt(wx))}) , (11.11)

where we have set kK = kgT = 1. After truncating the Taylor expansion around the origin, the
periodicity of the trigonometric function is lost and the integrals over ¢(x) in (11.7) can be taken from
—00 to +00. The interacting part is treated perturbatively. Then, the harmonic part of V (¢(x)) leads
to an exactly integrable partition function Z,,.. The mass parameter m is arbitrary at the moment,
but will eventually be taken to zero, in which case the potential V(¢(x)) describes two hard walls at
¢ = £d/2. Figure 11.1 illustrates this behavior of the potential.

We shall now calculate a perturbation expansion for Z up to four loops. This will serve as a basis
for the limit m — 0, which will require the strong-coupling theory of Ref. [89].

11.2.2  Perturbation Expansion for Free Energy

The perturbation expansion proceeds from the harmonic part of Eq. (11.11):
Tz = %D(p(x) e Am2lP] = = Afm2 (11.12)
with
1
Al =5 [ 2 {0PpP + m' (0} (11.13)
From Refs. [85,89], the harmonic free energy per unit area fp,2 is known as
L 5
fmz = gm®. (11.14)

The harmonic correlation functions associated with (11.12) are

1
Zm2 .

(O1(p(x1)) O2(p(x2)) == )m> = %Dw(x)01(<p(x1))02(<p(><2)) cereAmz el (11.15)
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where the functions O;(¢(x;)) may be arbitrary polynomials of ¢(x;). The basic harmonic correlation
function

Gz (x1,%2) = (p(x1) (%2))m? (11.16)
determines, by Wick’s rule, all correlation functions (11.15) as sums of products of (11.16):
(p(x1) - o(xn))m> = Z Gmz2(Xp(1),XP2)) - - Gz (XP(n—1), XP(n) ) (11.17)
pairs
where the sum runs over all pair contractions, and P denotes the associated index permutations. The
harmonic correlation function (11.16) reads in momentum space
1 K 1 1
k2 +im? k%2 —im?|’

Gz (K) (11.18)

T rmt T 2m?
thus being proportional to the difference of two ordinary correlation functions (p? — p2)~! with an
imaginary square mass p? = £im?2. From their known x-space form we have immediately
i

4mm?
where Ky(z) is a modified Bessel function [96, Section 8.432]. At zero distance, the ordinary harmonic
correlations are logarithmically divergent, but the difference is finite yielding G,,2(0) = 1/8m?>.

We now expand the partition function (11.11) in powers of gVint (¢(x)), where g = n2/d?, and use

the expectation values (11.15) to obtain a perturbation series for Z. Going over to the cumulants, we
find the free energy per unit area

Gm2 (Xl, Xg) = sz (Xl — Xg) =

[KO(\/{m|x1 — xa|) — Ko(v/=im|x; —x2|)}, (11.19)

g1

£ = Foe 2 | Vi (9(3)) iz e — NIA

24 d2$1d2x2<‘/int (‘P(Xl))‘/int ((P(X)Z)>m27c +... s

(11.20)

where the subscript ¢ indicates the cumulants. Inserting the expansion (11.10) and using (11.15) as
well as (11.17), the series can be written as

f=m?

ao +§_o:l an (%)n] , (11.21)

where the coefficients a,, are dimensionless real numbers, starting with ag = 1/8 from Eq. (11.14). The
higher expansion coefficients a,, are combinations of integrals over the connected correlation functions:

4

m

ar = eagy @z {0 (X)) m2 e (11.22)
m° 2. /,6 ym'? 2. 52 4 4

a2 = €65y Az (0° (X)) m2,c — gy d*z1d za (97 (%1) ©" (X2))m2 s (11.23)
m® 2, (08 m'? 2,. 2 6 4

as = esgo d*x (V°(X))m2 ¢ Sy d*z1d 2o (°(%1) " (%X2))m2,c (11.24)

m16 )
+ei 184 / dPard® 2 d?z3 (0" (x1) 9" (x2) 0" (%X3))m2 -

To find the free energy (11.21) between walls, we must go to the limit m? — 0. Following [4,89], we
substitute m? by the variational parameter M?2, which is introduced via the trivial identity

m? = /M*—gr (11.25)
with

(M*—m?), (11.26)
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and expand the r.h.s. of Eq. (11.25) in powers of g up to the order g™. In the limit m? — 0, this
expansion reads

1 7

1 r 172 3
16]V1109

2 r2 r2 2 27

Inserting this into (11.21), re-expanding in powers of g, re-substituting r from Eq. (11.26), and trun-
cating after the Nth term, we arrive at the free energy per unit area

N
FN(M2.d) = M?agbo+ Y ang"M*' ", (11.28)
n=1
with
N—n
b= (1) <(1 _k”)/Q) (11.29)
k=0

being the binomial expansion of (1—1)(~™)/2 truncated after the (N —n)th term [89]. The optimization
of (11.28) is done as usual [4] by determining the minimum of fx(M?2,d) with respect to the variational
parameter M2, i.e. by the condition

Ofn (M2, d)

20 (11.30)
oMz '

whose solution gives the optimal value M3 (d). Re-substituting this result into Eq. (11.28) produces the
optimized free energy fn(d) = fn(MZ(d), d), which only depends on the distance as fy(d) = 4an/d>.
Its derivative with respect to d yields the desired pressure law with the Nth-order approximation for
the constant ap:

PN =an (g) B : (11.31)

We must now calculate the cumulants occurring in the expansion (11.21).

11.3 Evaluation of the Fluctuation Pressure up to Four-Loop
Order

The correlation functions appearing in (11.22) (11.24) are conveniently represented by Feynman
graphs. Green functions are pictured as solid lines and local interactions as dots, whose coordinates
are integrated over:

X1

X2 = Gpz(x1,%2), (11.32)
. = /d%;. (11.33)

These rules can be taken over to momentum space in the usual way. One easily verifies that the
integrals over the connected correlation functions in (11.22) (11.24) have a dimension A/m2(+V =1,
where V' is the number of the vertices and [ denotes the number of lines of the associated Feynman dia-
grams. Thus we parameterize each Feynman diagram by vA/ m2U+V =1 with a dimensionless number
v, which includes the multiplicity. In Table 11.1, we have listed the values v for all diagrams up to
four loops. No divergences are encountered. Exact results are stated as fractional numbers. The
other numbers are obtained by numerical integration, which are reliable up to the last written digit.
The right-hand column shows numbers vk obtained by the earlier approximation [89], where all the
Feynman diagrams were estimated by an analogy to the the problem of a particle in a box. In Ref. [89],
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TABLE 11.1: Feynman diagrams with loops L, multiplicities s, and their dimensionless values v. The last
column shows the values vk = vpr /4" used in Ref. [89)].
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it was shown that the value v of a large class of diagrams of the membrane problem can be obtained by
simply dividing the value of the corresponding particle-in-a-box-diagram vpg by a factor 1/4% where
L is the number of loops in the diagrams.

Inserting the numbers in Table 11.1 into (11.22)—(11.24), we obtain the coefficients a1, a2, ag of the
free energy per area (11.28), which is then extremized in M2. To see how the results evolve from order
to order, we start with the first order

7T2

1
fi(M?,d) = §aOM2 +a1g (11.34)

with ag = 1/8 and a; = 1/64. Here, an optimal value of M? does not exist. Thus we simply use
the perturbative result for m = 0, which is equal to (11.34) for M = 0. Differentiating f1(0, d) with
respect to d yields the pressure constant in (11.31):

1 2 2

T T ~0.038553. (11.35)

MZIUE T 256

This value is about half as big as the Monte Carlo estimates (11.3) and agrees with the value found
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FIGURE 11.2: Difference between the extrapolated pressure constant aex and the optimized N-th order value
an obtained from variational perturbation theory for the method presented in this chapter (solid line) and the
first four values of the approximation scheme introduced in Ref. [89] (dashed line). Dots represent the values
to order N in these approximations.

in [89]. To second order, the re-expansion (11.28) reads

72 7t 1

3
2 2
fg(M d) = gaOM +a1—d2 +a2—d4 el (11.36)

with as ~ 1.0882- 1073 from Table 11.1. Minimizing this free energy in M? yields an optimal value

8 ag w2 w2
2 — ~
M;(d) = “ga_oﬁ R 0'152362ﬁ’ (11.37)

f2(d) = Z—z <a1 +14/ ;aotm) . (11.38)

Inserting ag = 1/8 and aq, as from Table 11.1, we obtain

and

ap ~ 0.073797, (11.39)

thus improving drastically the first-order estimate (11.35). This value is by a factor 1.026 larger than
that obtained in the approximation of Ref. [89].
Continuing this proceeding to third order, we must minimize
5

f3(M?,d) = 16@0M2 + a1

w2 3 7t 1 w6 1

with a3 ~ 2.7631 - 1075, The optimal value of M2 is

32 as 1 5 apa? | w2 w2
M3(d) = 1/ga—0 cos lg arccos 4 | 5?23 75 ~ 0219608 . (11.41)

Inserted into (11.40), we find the four-loop approximation for the proportionality constant «:

az ~ 0.079472. (11.42)
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FIGURE 11.3: Plot of successive (-like functions associated with expansion (11.46) to orders N =1, 2,3 (solid
curves). For comparison, we also plot the corresponding functions obtained from the approximate expansion
coefficients aX (dashed curves). The curves coincide for N = 1. The zeros gr.n of the Nth approximation
are from right to left: gy, = 64 (64), gr» = 38.369 (39.554), and g, 5 = 32.783 (34.796). The zeros approach

rapidly the value g = 30.953 (fat dot) associated with the pressure constant (11.45).

This result is in very good agreement with the Monte Carlo results in (11.3) and should be a lower
bound for the exact value since the successive approximations increase monotonously with the order
of the approximation. It differs from the approximate value of the method presented in Ref. [89] by a
factor 1.047.

An even better result will now be obtained by extrapolating the sequence a1, a2, a3 to infinite
order.

11.4 Extrapolation Towards the Exact Constant

Variational perturbation theory exhibits typically an exponentially fast convergence. This was exactly
proven for the anharmonic oscillator [4]. Other systems treated by variational perturbation theory
show a similar behavior [53]. Assuming that an exponential convergence exists also here, we may
extrapolate the sequence of values a1, s, a3 calculated above to infinite order. It is useful to extend
this sequence by one more value at the lower end, ag = 0, which follows from the one-loop energy
(11.14) at m? = 0. This sequence is now extrapolated towards a hypothetical exact value ey by
parameterizing the approach as

Oex — an = exp (—n — ENF). (11.43)

The parameters 1, &, €, and the unknown value of aey are determined from the four values ag, ... , as,
with the result

n = 2.529298, ¢ = 0.660946, = 1.976207, (11.44)

and the extrapolated value for the exact constant:

Qex = 0.0797149. (11.45)

This is now in perfect agreement with the Monte Carlo values (11.3).
The approach is graphically shown in Fig. 11.2, where the optimized values ayg, ... ,as all lie on a
straight line (solid line). For comparison, we have also extrapolated the first four values o, ..., ag

in the approach of Ref. [89] yielding a value aexk ~ 0.0759786, which is 4.9% smaller than (11.45).
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11.5 Comparison with the Renormalization Group Approach

Rewriting the perturbation series (11.21) as f = [g-(§)] ~'7?/d? with the dimensionless function

N - N _ _ _ 1. a1- a?  as) .
9-(9) = glao + a1 + azg® + azg® +...) 7t = — {g — =5+ (—é - —2) 3>+ } (11.46)
ag ag %) ag

of the reduced coupling constant § = g/m?, its logarithmic derivative s(§) = dlog g.(§)/9log § vanishes
at infinitively strong coupling since ¢,(§ — o0) = g; = const. This constant determines the pressure
constant as

2
™ 1—

In analogy to the renormalization group method in field theory, we may now define a -like function
by 8(3) = —gr(3)s(g), as done in Ref. [97]. Since this function vanishes in the limit of infinitely strong
coupling § — oo, we invert the series (11.46) for g(g,) and re-expand the f-like function in powers
of g, obtaining 3(g,). This function vanishes at the value g} determining once more the pressure
constant via Eq. (11.47). The terms in Eq. (11.46) yield successively the values a; = 0.038553, az =
0.064308, a3 = 0.075265, which approach the estimate (11.45). Figure 11.3 shows the first three [3-like
functions for different orders and their zeros together with the zero corresponding to our value (11.45).






