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CHAPTER 2

Perturbatively Defined Path Integral in
Phase Space

As an alternative to Feynman’s time-sliced definition, we introduce a perturbative definition of path
integrals in phase space [12]. This will be shown to lead naturally to a high-temperature expansion for
the effective classical Hamiltonian of quantum statistical systems. In this definition, the unperturbed
system 1is trivial and the calculation of Feynman diagrams is simple. As an application, we shall apply
this formalism to find the effective classical Hamiltonian for the harmonic oscillator.

2.1 Introduction

The definition of path integrals by time-slicing [4] becomes ambiguous for physical systems with non-
trivial metric, where operator quantum mechanics has an ordering problem and reparametrization
invariance has been a problem for many years [13]. It was solved recently by a perturbative defi-
nition of path integrals in configuration space [14] using dimensional regularization methods, which
successfully guarantees gauge invariance in the quantum theory of non-Abelian gauge fields [15]. Ul-
timately, rules were found for calculating integrals over products of distributions, which establish a
unique procedure for a perturbative calculation of path integrals, which fully respects reparametriza-
tion invariance [16]. The path integral of any system is expanded around that of a free particle in
powers of the coupling constant of the potential.

Here we extend the definition to path integrals in phase space and derive a short-time expansion
of the Hamiltonian quantum mechanical time evolution amplitude. In Euclidean space, the density
matrix is obtained as a high-temperature expansion. By a simple resummation, this series can be
turned into an expansion in powers of the coupling constant of the potential described above. In the
expansion to be derived the solution for an exactly known nontrivial path integral such as that of a free
particle is not required. The perturbative definition presented here is completely general. The usual
expansion around the free-particle system can always be reproduced by simply changing the order of
summations.

In a first step, the method is used to calculate the effective classical Hamiltonian of the harmonic
oscillator H,, ea(po, ©o) by exactly summing up the perturbation series. In terms of H,, o (po, o), the
quantum statistical partition function is given by the classically looking phase space integral

dxod
Zo = [ 5P exp (~BHoen(po. o)} (21)
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16 2. Perturbatively Defined Path Integral in Phase Space

where 3 = 1/kpT is the inverse thermal energy.

2.2 Perturbative Definition of the Path Integral for Density
Matrices

Slicing the interval [0, #5] into N +1 pieces of width ¢ = h3/(N + 1), the unnormalized density matrix
can be expressed by the continuum limit of a product of integrals as [4]

N 0 N+ poo gy N+1
~ T n ipp(zn—2n_1)/h —
0(zp, z4) = J\}gr;og {/Oo dz,, g {/Oo 5 etP } exp{ € ; H(pn,:rn)/h} , (2.2)

where z, = x¢ and z, = xn41 are the fixed end points of the path. Upon expanding the last
exponential in powers of £/h, we recognize that the zeroth-order contribution to the density matrix
(2.2) is an infinite product of 6 functions due to the identity

| S et §(a, — ). (2.3)
oo 2Th

This infinite product simply reduces to
[ee]
lim dey---dryd(xyyr —an) - 0(axa — x1)0(x1 — x0) = 0(zp — 24), (2.4)

N—oo
—0o0

which is the unperturbed contribution to the unnormalized density matrix (2.2) obtained here from a
trivial path integral. Thus, the phase space path integral for the unnormalized density matrix (2.2)
can be perturbatively defined as

SV &
o(zp, xg) = 6(xb—ma)+z / dﬁ.../ dry,
n= ©Jo 0

X (H(p(r1), z(11)) -+ H(p(ma), 2(70))) """ - (2.5)

with expectation values

N o
Tb,Ta __ :
n=1 -

These expectation values may be pictured by Feynman diagrams. This is possible for polynomial as
well as nonpolynomial functions of momentum and position [17]. We show this in detail in Section 3.4.
Note that the exponent on the right-hand side of Eq. (2.6) is the time-sliced version of the eikonal
S = —i [drp(r)dz(r)/dr.

N+1

([ o] o
o 2mh

n=1 -

2.3 Restricted Partition Function and Two-Point Correlations

The trace over the unnormalized density matrix (2.5) of our unperturbed system with vanishing Hamil-
tonian H(p, ) = 0 yields the partition function, which diverges with the phase space volume. This
divergence is the same as in the classical partition function. The regularization of these divergences
is possible by excluding from the phase space path integral the zero-frequency fluctuations xzg and pq
of the Fourier decomposition of the periodic path z(7) and momentum p(7), respectively [4,18,19]. At
the end, we may calculate the quantum statistical partition function from the classical phase space
integral

7 = / % ZPovo (2.7)
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The restricted partition function in the integrand contains the Boltzmann factor of the effective classical
Hamiltonian defined by the path integral

7ZPo%0 = exp {—(BHeg (po, x0)} = QWH%DxDp §(zo —T)6(po — D)

hB
X exp (—%/0 dr {—i[p(T) —po]%[w(ﬂ —xzo] + H(p(7), :17(7'))}) , (2.8)

with the measure

N+1

fouto= 1]
n=1

The quantities T and p are the temporal mean values T = fohﬁ drx(t)/h3 and p = fohﬁ dr p(T)/hp.
As illustrated in the preceding section, the unperturbed system can be assumed to have a vanishing
Hamiltonian. The calculation of the restricted partition function ZP9%° of this system, denoted by
ZE§°"° | is then as trivial as for its unnormalized density matrix in (2.4). A cancellation of § functions
yields Z5° = 1.
In what follows, we want to find the correlation functions of position- and momentum-dependent
quantities. For this purpose it is convenient to introduce the generating functional

[/Z d”;’;d}f"} . (2.9)

Zgomo [j, ’U] - QWH%'D;L"D}) (5(:E0 - 5)5(170 - ﬁ)

hpB
xexp { =i [ |ibtn) = ml o) = i)+ 0)atr) = 0]+ 0(0) o) = ]| } @10

with currents j(7) and v(7). The action in the exponent contains only the trivial Euclidean eikonal
S = —i [dr (p — po)d(z — xo)/dr. The calculation yields

1 hB hB
ZE" 4, v] = exp h_z/ d'r/ dr’ (T)GP (1,7 Yw(T") 3, (2.11)
0 0

where the periodic Green function has the Fourier representation

2i = sinw,,(r —7')
GPovo (7,71 = = _mr 2.12
) =53 e 2.12)
with Matsubara frequencies
2mm
= 2.13
Wm ng ( )
omitting the zero-mode. Evaluating the sum in Eq. (2.12) yields
GPomo (7, 7') = —% {2(r—7) = hB[O(r — ) — O(r — 7]} (2.14)
Observe the antisymmetry GPo%o (7, 7') = —GPo%0 (7', 7). As a consequence of reparametrization invari-

ance of the eikonal S = —i [ dr (p — po)d(z — xo)/dr, the Green function depends only on the reduced
variables

(2.15)

Rl
Il

@I

and can thus be written as

GPoro (7, 7) = —% 2F-7)—h[OF-7)-0(F —7)]}. (2.16)
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Introducing expectation values as

hB
<. .. >goxo = QWH% DxDp 5(1‘0 - T)(s(po —]_)) ---exp {% ‘/0 d'ri[p('r) — po]j—T[m(T) — 1‘0]} , (2.17)

the two-point functions are obtained from the generating functional (2.10) by performing appropriate
functional derivatives with respect to j(7) and v(7), respectively:

(@(r)z ()" =0, (2.18)
(#F(T)p(r")e"" = Grore(r,7"), (2.19)
(B(r)p(r")e"™" = 0. (2.20)

The off-diagonal nature of the trivial action in (2.17) entails that only mized position-momentum
correlations do not vanish.

2.4 Perturbative Expansion for the Effective Classical
Hamiltonian

Expanding the restricted partition function (2.8) in powers of the Hamiltonian,

hB h3
g — 1+Z St [ [ an (0.0 B 2N 2

rewriting this into a cumulant expansion, and utilizing the relation (2.8) between restricted partition
function and effective classical Hamiltonian, we obtain

n+1

h3 KB
Heg(po, xo) ﬁ Z h"n' /0 dry -+ -/0 dry, (H(p(m1), 2(71)) - - - H(p(7n), 2(0))) 0o - (2-22)

Using Wick’s rule, all correlation functions can be expressed in terms of products of two-point func-
tions. Since only mixed two-point functions (2.14) can lead to nonvanishing contributions to the
effective classical Hamiltonian, we use the rescaled version (2.16) of the Green function. The scaling
transformation gives a factor 3 from each of the n integral measures. Thus the expansion (2.22) is a
high-temperature expansion of the effective classical Hamiltonian:

n+1

h
Heg(po, z0) Zgn 1 ( h”n' /O dTl.../O A7y (H(p(T1), (1)) - H(p(Tn), z(Tn)))go - (2:23)

For the following considerations it is useful to assume the Hamilton function to be of standard form

(). 27) = 20 4 v (2(m)) (2.29)

where we have introduced the coupling constant g of the potential. Defining the functionals

h 2(7 h
alp] = /O D /0 47V (2 (7)), (2.25)

the high-temperature expansion (2.23) is expressed as

oo z0) = 320 S Sk (1) -t (2.26)

k=0

Before pointing out how this high-temperature expansion is connected with an expansion in powers of
the coupling constant g of the potential, we calculate the exact effective classical Hamiltonian of the
harmonic oscillator.
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2.5 Effective Classical Hamiltonian of Harmonic Oscillator

In this section, we calculate the effective classical Hamiltonian for the harmonic oscillator

2

Ho(p,z) = 2% + e (2.27)

by an exact resummation of the high-temperature expansion (2.26). For systematically expressing the
terms of this expansion, it is useful to introduce the following Feynman rules:

T T = (TR = (2.28)
T = Fem)) = (2:29)
L= T = @FEPER) = G, 7) 4 o (2.30)
TL-om- To = (p(T)a(T2))h0" = —GPO™ (71, T2) + poto, (2:31)
T = G =0, (2.52)
T — = (@) =0, (2:33)

where the current-like expectations in (2.32) and (2.33) arise from (5(7))5°** = 0 and (Z(7))°"° =
respectively. In order to simplify the calculation of the expectation values in the high- temperature
expansion of the effective classical Hamiltonian (2.26), we also define operational subgraphs

_ 1 L 2/~
. ﬂ/o a7 p*(T), (2.35)
1 2 (" 2
— = —M Tx (T 2.
o w /0 dr x*(T), (2.36)

which are useful for the systematic construction of the Feynman diagrams. These diagrams are com-
posed by attaching the legs of such subgraphs to one another or by connecting legs with suitable
currents. Note that only combinations of different types of subgraphs lead to nonvanishing contribu-
tions, since the connection of subgraphs of same type,

; : (2.37)

leads to a new subgraph, which contains a propagator (2.28) or (2.29), respectively. These propagators
are, however, independent of 7, such that the T-integrals related to the vertices in these subgraphs
are trivial. Thus, there does not really exist a connection between these vertices and the propagators
(2.28) and (2.29) can be expressed by the currents (2.32) and (2.33):

T1 Ty = T1 ~* *~ Ta, (2.38)

T1 To = T1 —* *— To . (2.39)

As a consequence, connected diagrams for n > 1 containing propagators of type (2.28) or (2.29) must
break up into disconnected parts. Analytically, this is seen by considering for example

<$(?1)w(?2)>gox0 = <:E(?1):E(Fz)>§°m° + (w(ﬂ))?% <w(F2)>§°m° : (2.40)

The first term on the right-hand side vanishes due to Eq. (2.18), while the second simply yields z3,
which proves Eq. (2.29). This means that only Feynman diagrams, which consist of a mixture of
subgraphs (2.35) and (2.36) contribute to the effective classical Hamiltonian. To illustrate this, we
discuss the first and second order of expansion (2.23) in more detail.

The Feynman diagrams of the first-order contribution to the effective classical Hamiltonian are
simply constructed from the subgraphs

H&ig(po,wo) et
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1 1 1 1
= — —Muw? = ——— vk + — M
2Mh<:> +opMw @ 9MT tgptw
2

Do 1 2,2
where we have used the identities (2.38) and (2.39) in the second expression of the second line. Note
that the first-order term (2.41) obviously reproduces the classical Hamiltonian. This is the consequence
of the high-temperature expansion (2.26), since only the first-order contribution is nonzero in the limit
B =1/kgT — 0. The second-order contribution reads
H 2P0, w0) o (~ome o —o— )(omn 4 —— )
w,eff Po, To

w2

= —gg (B e +0) (2.42)

The chain diagram is zero, while the loop diagram has the value —h*((2)/2m2, where

1
() =) — (2.43)
n
n=1
is the Riemann ¢ function. Thus we obtain
HE) i (po, o) = BI2w?((2)/4n. (2.44)

This second-order contribution (2.42) shows the characteristic types of Feynman diagrams appearing
in each order n > 1 of the expansion (2.23) for the harmonic oscillator: chain and loop diagrams.
In order to calculate the nth-order contribution, we must evaluate these diagrams more general. By
constructing Feynman diagrams from the product of n sums of subgraphs,

Hi?gﬂ(po,wo)d(m e e D (O (2.45)

n times

it turns out that only following chain and loop diagrams contribute:

-t - -0 07474\,\*’ . e

2.46
P —— -k ¢ ¢ ( )
h—o-a-o-p -0 07474\1«*’ '\‘ .

The evaluation of the chain diagrams is easily done and yields zero. An explicit calculation in Fourier
space shows that there occur Kronecker symbols §,,¢. Since the Matsubara sum of the Green func-
tion (2.12) does not contain the zero mode m = 0, all chain diagrams are zero.

Determining the values of loop diagrams is more involved. It is obvious that loop diagrams can
only be constructed in even order (n = 2,4,6,...), since for a loop diagram with mixed propagators
(2.30) or (2.31) pairs of different subgraphs (2.35) and (2.36) are necessary. Thus we have found the
result that odd orders of expansion (2.26) vanish, and only loop diagrams for n € {2,4,6, ...} must be
calculated. Evaluating loop diagrams of nth order in Fourier space is straightforward and entails

AT, ok

( \ W (12

S = 2(-1) <%> ¢(2K), (2.47)
~ .

where k = n/2. The multiplicity of such a diagram with 2k vertices is easily determined, yielding

22k (2k)!
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Thus the high-temperature expansion for the effective Hamiltonian of the harmonic oscillator can be
written as

o _1\k+1 2k
Heeft (Po, 20) = 2M+ e +;B2’“‘1% (%) C(2k). (2.49)

Substituting the ¢ function by its definition (2.43) and exchanging the summations, the last term in
Eq. (2.49) can be expressed as a logarithm

k+1 hw 2k 1 o0 hzﬁzwz
Z ﬁ% 1 (%) C(2k) = Eln <11 [1 + Tnin? }) . (2.50)

Applying the relation
1 a 22
~sinh z = 1+ —— 2.51
Pt "1;[1 ( + n27r2) ; (2.51)
we find the more familiar form of the effective classical Hamiltonian for a harmonic oscillator

R 1 1,
QJU B 2sinh hwfB/2°

Hy, et (po, 20) = (2.52)

Performing the xo- and po-integrations in Eq. (2.1), we obtain the well-known form of the partition
function of the harmonic oscillator Z,, = 1/2sinh hw(/2.

2.6 High-Temperature Versus Weak-Coupling Expansion

In Section 2.4 we have shown that the perturbative expansion around a vanishing Hamiltonian leads
to a perturbative series in powers of the inverse temperature in a natural manner. Now we elaborate
its relation to more customary perturbative expansions in powers of the coupling constant g of the
potential. Changing the order of summation in Eq. (2.26), we obtain

k41
kot (kY (DT e oo L
He(po. 70 Zggp (") o B @)
which is rewritten, after explicitly evaluating the (n = 0)- and (k = 0)-contributions, as
2

1 o0
Heg(po, o) = W‘FQV(xO) Bzgk
k=1

s ( 1)n+k:+1

2 T R

K hB3 fw: h3
X /0 dry - - -/0 di/O dAT41 -~ -/0 AT+4n
x (V((m)) - V(@(m)p? (Te1) - -9 (Thein) Jgn - (2.54)

In this expression, we have inverted the scaling transformation in Eq. (2.15), and used the expectation
values

KB - hB
.Amw%ﬁfﬂ%,ﬂdumwwmwwm> (2.55)

All higher-order expectations of functions, which only depend on x or p are zero, due to the vanishing
of expectations of functions of Z or p in a Wick expansion into products of two-point functions (2.18)
and (2.20). All other possible contributions are disconnected.
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We now observe that the expansion (2.54) is equal to a perturbation expansion around a free-particle
theory

1 i k:+1 hB3 h3
Heﬂ(p07 $0> = m + gV .TO B Z klhk /0 dTl .. /0 d/rk
k=1

X (V(@(m) -+ V(@ () ree.c (2.56)

in which cumulants are formed from position-dependent expectation values

<. )free 27Th’66p0/2M % Dpr 6(x0 - il}')(s(po - ﬁ)

hB
X exp {—% /0 dr {—i(p(T) — po)%(x(ﬂ —x9) + ﬁpZ(T)} } . (2.57)

This expression is identical with

<..,>gfée:,/2”h2 %D'mé To—T) - exp{ gffi/ dTi‘Z(T)}, (2.58)

with the dot denoting the derivative with respect to 7. The new measure is

D'z = lim (2.59)

v I ]

In the following section we will consider how the expectation values appearing in the high-temperature
expansion (2.54) of the effective classical Hamiltonian go over into the cumulants in the weak-coupling
expansion (2.56). We thus study the relation between both expansions and we are led to the so-
called smearing formula for arbitrary expectation values of functions depending on position or/and
momentum. Being a Gaussian convolution of these functions, its application will be in particular useful
for calculating expectation values of nonpolynomial expressions.

2.7 Free-Particle Smearing Formula

Consider a general correlation function appearing in the expansion (2.54) of the effective classical
Hamiltonian, which can be written as

k+n K3 k n PoZo
Min =[] l /O dTm] <H[V(a¢(n))]H [p2(7k+5)]> . (2.60)

m=1 =1 s=1 0

In order to reduce the expectation value to an expression, which has already been calculated we split
off the time dependences by Fourier transformations. This yields

M = kﬁl hﬁd rk[ dK’l V( ) iK1 TO ﬁ > dl_)s —2 = d i(Ps—po)&s/h
kn — o Tm 27Thps 53 e
m=1 =1 —00 s=1 —00 —00
k PoTo
X <exp {ZZ ki[z(T1) — 0] Z&s[p Thts) — ]}> . (2.61)
=1 0

By introducing currents

n

k
T)= —ihz5(7 -7k, v(T)= ’LZ (T — Tiots)Es, (2.62)

s=1
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the expectation value in Eq. (2.61) can be rewritten as the generating functional (2.10) with the result
(2.11). We reinsert now the expressions (2.62) for the currents into the functional (2.11) and perform
the T-integrations. This leads to

Zpomo[ﬁ &l =exp l ZZMGWDO °(7y, Tk+8)§81 . (2.63)

=1 s=1

Using this result in Eq. (2.61), the &;-integration can be done and yields

o0 . ke k
dés | . - _ . z
27§hexp{ﬁ [ s—Do—iY mG™ O(leTk+s)] fs} =9 <p5 —po—iY mG"” D(TlaTk+s)> ;

=1 =1

— 00

(2.64)

leaving us with

k h < g n k 2
Mn, = H l/ dn/ 2—? m’m”} H / dTk+s (po —H’Z K GPO™0 (1, Tk+s)> . (2.65)
=1 0 —0o0

=1

After expanding the squared parentheses, terms like

1B hi h3
/ dTp(k+1)P / dTp(k+2) - - / dTp(k+s) J1(TP(kt2)s - -+ > TP(k+s)) (2.66)
0 0 0
and
KB B h3
/ dTp(k41) GpoxO(TP(k+1)aTl)/ dTP(k+2)"'/ dp(its) f2(TP(k+2)s - -+ TP(kts)) (2.67)
0 0 0
occur, where fi(Tp(k42): .-+ TP(k+s)) and fo(Tp(k42), ... TP(k+s)) are functions independent of 74 .

Due to the separate time integration, expressions of the form (2.66) correspond to disconnected dia-

grams and may be omitted in the following. Since fohﬁ dr GPo*o (1, ') vanishes, terms like (2.67) do
not contribute. The permutation operator P exhibits that this is also right for any permutation of

the 7;’s (i € {1,...,s}). Since we shall omit disconnected contributions (2.66), we are left with the
cumulant
hpg
ckn = / dTl/ “ﬂmo
n hB
X H ( Z Kiy K, / di+SGp0x0 (Tll ) Tk+S)Gp0x0 (Tk+8’ 7-12) . (268)
s=1 l] ,lz 1

Using the Fourier decomposition of the Green function (2.12) with Matsubara frequencies (2.13), the
time integration in the second product is easily done yielding

hi 2h o= 1
/ AT oGP0 (713 Tht o) G707 (Thps, M) = =5 Z oo coswm(Ty, —Tiy)
0 m= Wm
M

= —— GpOxO(Tll,le,), (2.69)

free

where

G (o) = L <|T Pl — |+ éffﬁ?) (2.70)
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is the Green function for a free particle with periodic boundary conditions and the zero-frequency
mode excluded. It satisfies the equation of motion

M 9?

55 573 Chee (7)) =08(r=7), 77" €[0,hf]. (2.71)
with periodic boundary conditions Gpol(1,7") = GRLl (1 — 1) = GPL (T — 7/ + hB). Thus the

cumulant (2.68) can be written as

n

hi dr M F
c kn = [/ dT[/ l zmmo] E Z nlngee (Tl1 s le),‘il2 . (272)

lh,lo=1
The expansion (2.54) can now be expressed as

2 l S k+1 S (_1)n
Hegt(po, v0) = m + gV (o) B Z k'hk Z S Meen- (2.73)
n=1

Tt is useful to move the classical potential term gV (xg) into the last sum. This is done by extending
the second sum in (2.73) by the n = O-term:

0 1)k+1 k h3
ng k'hk / dTl/ o
=1
oo ]c-‘rl hB hpg
Z / dr ... / dre [V(zo)]F = gV (z0). (2.74)
k'hk 0 0

In the second expression we have utilized that terms with k£ > 1 lead to disconnected contributions,
which do not appear in M, g,,. Thus expansion (2.73) reads

2 1 & k+1 k hs 0
Hegr(po, 0) = 53+ BZ k'hk / de/ dry V(2 / 2—7:
k=1

1
X exp{ K(xg —x) — §RTG§;°£O } , (2.75)
where we have introduced the n-dimensional vectors k = (K1, ... , k,) and the symmetric n X n matrix
of Green functions
GPovo(r1,m1) -0 GRX(T1,7n)
Poxo __ . . .
Giree = : .. : : (2.76)
Gfr(:s-’io (7—1; Tn) o Glfflroe-’/io (Tn: Tn)

After diagonalizing this matrix, the rj)-integrals in Eq. (2.75) are easily calculated. The effective
classical Hamiltonian can then be expressed with the help of a Gaussian convolution integral, which
smears out products of the potential V' (z)

p(2) 1 oo k:+1 s 0o
Heff(p07w0) = 2— + B Z g / dTl/ dz; V(:El)
—00

k

—1
x 5 det Gﬁfgo l El :1 Liy — wO free (Tll’TZZ)] (wlz - ‘TO) : (2'77)
152

l\3|>—l

The extension of this result to higher spatial dimensions is straightforward.



