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Effective Classical Theory for
Quantum Systems

We have shown in Section 3.3.1 that the quantum statistical density matrix can be expressed with the
help of a bilocal potential Vg c1(Xp, X4 ), which makes the density matrix classically looking (3.83). In
the following we will develop a similar formalism for the quantum statistical partition function and the
free energy. Since the path integral counts all paths in phase space, which satisfy periodic boundary
conditions x(0) = x(hf3), we first investigate the Fourier decomposition of such paths, and the influence
of the zero modes on the Green functions (3.157)—(3.160) [4,20]. Then, we consider the fluctuations of
paths with fixed end points.

After having separated the zero-frequency Fourier modes, which lead to diverging correlations in
the classical limit of high temperatures 8 = 1/kgT — 0, we finally turn to the derivation of the
smearing formula for restricted partition functions.

4.1 The Zero-Mode Problem

In order to illustrate the relation between zero-mode fluctuations and classical statistical properties
more obviously, we consider, once more, the example of the harmonic oscillator with the action

hg y
Aula] = /0 dr B’ ¢2(7>+%Mw2x2(7> , (4.1)

where the dot means differentiation with respect to 7.

4.1.1 Harmonic Fluctuation Width for Periodic Paths

According to Eq. (3.175), the partition function of the harmonic oscillator with the action (4.1) is
given by

" 1
_ —Aulal/h _
Zo % bre 2sinh Afw/2" (42)
Correlation functions of local quantities O1(z(71))O2(z(72)) - - - are then defined as
(O1(2(11))02(2(2)) ), = Z;* %DI O1(2(11))Oa(2(m2)) - - - e AN, (4-3)
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54 4. Effective Classical Theory for Quantum Systems

The path (1) shall be periodic: #(0) = (k). Thus, it can be expanded into the Fourier series

x(t) =z + Z (zme mT 4 af emT). (4.4)

m=1

Here, we have separated the zero frequency component z( from the sum. Since the quantities z(7),
Zo, and the fluctuations must be real, there is the constraint =}, = x_,,. The Matsubara frequencies
are as usual wy, = 2mrm/hg.

Now, we integrate (4.4) over 7 and divide the result by hS3. This entails

- 1 hg
x(r) = 73 o dr (1) = xg, (4.5)

where the contribution of the fluctuations around zo vanishes as a consequence of the orthogonality
relation

1o
bum = 75 /0 dr ' @n=wm)T, (4.6)

From Eq. (4.5), we conclude that the temporal mean value of the path is identical with the zero-
frequency component xg. In the following, we investigate the violence of these zero-mode fluctuations.
First we calculate the particle distribution of the harmonic oscillator at a certain position x = z(7).
This yields

P(z) = (5(x — 2(r))),, = \/ﬁ exp (-%) , (4.7)

where a is the Gaussian fluctuation width and is related to the Green function (3.166) for equal times:

h hfw
2=GP (1,7) = — coth . 4.
a GP.(1,7) Mo cot 5 (4.8)

At zero temperature, this is equal to the square of the ground-state wave function of the harmonic
oscillator, whose width is

h

2= 4.9
0 2Mw ( )

In the limit & — 0, from Eqs. (4.7) and (4.8) we obtain the classical distribution

Pulz) = — eXp( "”2), (4.10)

T 5.2
2a;,

with
9 1

Qe = W (411)

The linear growth of this classical width is the origin of the famous Dulong-Petit law for the specific
heat of a harmonic system. The classical fluctuations are governed by the integral over the Boltzmann
factor

e BMw?a®/2 (4.12)
in the classical partition function
[ee]
d 2,2
Zel :/ 7106*5]\4“ e°/2, (4.13)
oo \/2mh2B/M
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From this we obtain the classical distribution (4.10) as the expectation value

Pu(z) = (5(x — T T) e AMw?a?/2 (4.14)

Mo =23 [ e
z = ——(z —
w,cl cl . 27Th2ﬂ/]\/[
Which fluctuations cause the divergence of the Gaussian width (4.8) for high temperatures? In order
to answer this question we exclude from the path integral (4.2) the zero-frequency contributions, which
we have identified in (4.5) to be equal to the temporal mean value x(7) of the path. Thus, we define
for each o new local expectation values

(@0 = (MO (@())Oa(a(r2)) -+ )
(O1(2(1))O2(2(72)) - - )0 = <5( _(_))> = (4.15)

The original quantum statistical distribution of the harmonic oscillator (4.7) collects fluctuations of
2o = z(7) and those around xg, and can therefore be written as the convolution integral

w

o0
Plz) = / do Pay (2 — 70) Pa(0) (4.16)
over the classical distribution (4.10) and the local one
. 1 (z — z0)?
Py (x) = (0(x — x(1)))) = Wexp [_W . (4.17)

Such a convolution of Gaussian distributions as in Eq. (4.16) leads to another Gaussian distribution
with added widths, so that the width of the local distribution is given by the difference

h hBw 2
aio :az—aa: M (coth 5 hﬁw)’

which starts out at the finite value (4.9) for T = 1/kpf8 = 0, and goes to zero for T — oo with
the asymptotic behavior 73w/12 (see Fig. 4.1). The latter property suppresses all fluctuations around
2(7). Thus it turns out that the zero-frequency fluctuations xq lead to the divergence of the fluctuation
width for T" — oo. Such violent fluctuations cannot be treated by perturbation theory. They must
be separated from the path integral (4.2) and integrated at the end of the calculation. Thus we shall
revise the perturbative treatment for the free energy in Section 3.7.

(4.18)

4.1.2 Fluctuation Width for Fixed Ends

Now we dwell on the question how the fluctuation width behaves for a system with fixed ends. We
consider the unnormalized density matrix g(zp, 24), which is expressed by the path integral

x(hB)=xp
o(zp, g) = / Dz e~ Alzl/h (4.19)
z(0)=xzq

over all paths with the fixed end points z(0) = z, and z(h3) = z}. For a harmonic oscillator (4.1),
the path integral (4.19) can easily be done, with the result

N Mw Mw 2 2
=\ —_— h Afw — 2 . 4.20
0 (b, Ta) \| 27h sinh 78w b { 2hsinh ABw (2 + ) cosh Afiw = 2z42a] } (4.20)

At fixed end points xp, T4, the quantum mechanical correlation functions are
) z(hB)=zy
(O1(2(11)) O2(@(2)) - - )" = =——— / Dz O1(x(11)) Oz(x(72)) - -- e Al/M - (4.21)

@ @w(wlh wa) B
z(0)=xq
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FIGURE 4.1: Temperature dependence of fluctuation widths of any point x(7) on the path in a harmonic
oscillator (1° is a square length in units of i/Mw). The quantity a® (dashed) is the quantum mechanical width,
whereas aio (dash-dotted) is the width after separating out the fluctuations around the path average zo. The
quantity a2 (long-dashed) is the width of the classical distribution, and b (solid curve) is the fluctuation width
at fixed ends.

and the distribution function is found to be

p(z,7) = (0(z — z(7)))0 " = \/ﬁ@(p [_%} . (4.22)

The classical path of a particle in a harmonic potential is given by Eq. (3.47), and the time-dependent
width b%(7) is found to be

V(1) =GR (r,7) = N {coth hBw (4.23)

_ cosh[w(2r — AB)] }
2Mw ’

sinh Afw

and is thus identical with the harmonic equal-time Green function (3.54) for Dirichlet boundary con-
ditions. Since the Euclidean time 7 lies in the interval 0 < 7 < hf3, the width (4.23) is bounded
by

b2(r) < tanh hbw

—_— 4.24
~ 2Mw 2’ ( )

thus remaining finite at all temperatures. The temporal average of (4.23) is

2= /hﬁd bi(r) = f th 13 ! (4.25)
_hﬂ | TO(T = Mw Cco W 1w . .
2

Just as aj , this goes to zero for T' — oo with an asymptotic behavior hfw/6, which is twice as big
as that of a} (see Fig. 4.1). Because of the finiteness of the fluctuation width b* at all temperatures,
which is similar to that of aio, the special treatment of T = zg becomes superfluous for paths with
fixed end points zy, .. While the separation of zg was necessary to deal with the diverging fluctuation
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FIGURE 4.2: Temperature dependence of the width of fluctuations around the path average xo = T at fixed
ends. For comparison we also show the width aio of Fig. 4.1. The vertical axis gives these square lengths [? in
units of i/Mw again.

width of the path average T, paths with fixed ends have fluctuations of the path average, which are
governed by the distribution

— —\\Tb,Tq 1 1 1 2 hﬂw 2
Pao (T, ) = (0(x0 — T)) 0" = \/W R 5(% + xa)% tanh - (4.26)

with the width

1 2 hfw

b = 1— tanh , 4.27

o Mpuw? { hBw 2 } (4:27)

which goes to zero for both limits # — oo and f — 0 (see Fig. 4.2). At each Euclidean time, x(7)

fluctuates narrowly around the classical path z(7) connecting x and z,. This is the reason why we
may treat the fluctuations of T = xg by perturbation theory, just as the other fluctuations.

Thus there is no need for particularly treating certain fluctuations for quantities with fixed bounds.

4.2 Restricted Partition Function and Effective Classical
Hamiltonian

As was shown in the previous section, a separate treatment of the zero-frequency fluctuations for
periodic paths is necessary. We illustrate how this separation leads to a reformulation of quantum

statistics, which is then governed by an effective classical Hamiltonian.
We rewrite the partition function

7= f{ DigDlp e~ AlPxI/h (4.28)
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for an arbitrary system as

dzod%po dzod?pg
P ¢ OHee(Po,x0) / @10 DO oo 4.29
/ (2rh)d (2mh)4 (429

where we have introduced the restricted partition function
70 = DA (g — )0 ~ X)) e AP (1.30)

From (4.29) follows that the effective classical Hamiltonian Heg(po, Xo) and the restricted partition
function ZPo*° are related by

1
Hegr(Po, X0) = —Blnzpoxo- (4.31)

This expression for the effective classical Hamiltonian has a similar form like a free energy, which is
here local in phase space. Thus, we can also write

FPo¥Xo = Heff(po, Xo). (432)

Now we turn to the general Gaussian action (3.1), which we will use in the form (3.8), and calculate
the restricted functional

Zyo[C] = (2nh)? ]{ Dy §(wo — w(T))

X exp l—% /0 / dr'w (r)S(r, 7 yw (') _% /O hﬂchT(T)w(T)], (4.33)

with wT (1) = (XT(T),pT( )) and CT(7) = (j7(r),v"(r)). The temporal mean value of w(r) is
defined as before, w( jo dTW (1)/hB. The symmetric matrix S is given by (3.10). There is no

difficulty to calculate ZWO. Along similar lines as in Section 3.5, we express the § function by its
Fourier transform

4>k I
d(wo —w(7)) = / Wexp liwgk - E/o dr CgW(T)‘| , (4.34)
where Cy is a constant current vector,
Co = -k (4.35)
The functional (4.33) becomes

7Z3°[C] = (21h)!

oiwa kfpm
X exp l—§ /0 / dr'w (7)S(r, 7' yw (') —% /0 hﬂdTéT(ﬂw(T)], (4.36)

where we have introduced the current
C(r) = C(7) + Cy. (4.37)

The path integral is calculated on equal footing as for the particle density (3.144) and yields an
expression similar to the partition function (3.155). We obtain

T d 2d ~
zyejc) = I [ 4k Wokexp{%g [ [fwere (rf>c<r'>}, (4.39

det S J (2m)%
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with the 2d-fold k integral still to be done. Re-expressing the current C by (4.37) and inserting
(4.35), the integrations over k turn out to be simple Gaussian ones. Executing the usual procedure
of completing the square, rotation in phase space to find a diagonal representation to decouple the
k-components, and translation of the components of k enables us to solve the k integrals, yielding

1 262 1 1
Zwo — TBI _ T —1 \B’
10 =~ Sexp{ " wo— / Vi G ()5 (7 7) B g

xexp{%/o /dT c’(r { (r,7') /dﬁ/ drs S Tﬁ)B'15—1(72,7')]0(7')}.

(4.39)

We have introduced the 2d x 2d matrix

e e
B’ :/ dr | dr’' S (r,7'), (4.40)
0 0
which is constant in time and therefore its determinant is calculated in phase space only. This differs
from the calculation of the determinant of S, which is done in phase and time space. A similar case
has been considered below Eq. (3.153).
It is revealing to continue the discussion of the expressions (4.39) and (4.40) in frequency space.
We write the matrix S(7,7’) and its inverse in Fourier space as

1 1 & : , : ,
S N — S S m —twm (T—7") S(— m iwm (T—7") 4.41
(r.7") _hﬁﬁ_ﬁﬁmzl[(“ Je + S(—wm)e . (4.41)
1 1 & : , : '
G l(r ) = Lg1 S (wyy)e~wm(T=T) 1 g1y Nelom(T=T) | 4.42
(r7) = 355 +hﬂmzl[ (m)e + 57 (—wm)e |, @ay

where we have abbreviated the zero-frequency components by Sy = S(w,, = 0) and S;*' = S~ (w,, =
0), respectively. In particular, we are interested in time integrations of S~!(7,7’). Inserting the Fourier
decomposition the integration over one time argument yields the result

h3
/ dr 51 (r,7') = S5, (4.43)
0

which is independent of time. This is obvious, since S~'(r,7’) = S~'(r — 7/) is invariant under
translations of time. Thus, an additional integration of (4.43) over 7/ only contributes a “volume

factor” hp:
/ / dr St =hpSyt = (4.44)
0

An alternative representation is to use temporal mean values:

S1(r, 1) = h2162/() / dr' S~ (r,7') = _65_ (4.45)

These results are very useful to simplify the expression (4.39). We obtain

1 1 1
Zy°|Cl = exp —5/ / dr’ wlS(r,7")wo — E/ dr C* (1)wyq
1/ detps Syt det S 0 0

hﬁ h3
X exp { 572 / / dr' CT()GY° (1, T )C(TI)} : (4.46)
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where the 2d x 2d matrix GV (7, 7’) of Green functions is defined as

(4.47)

_ PoXo / PoXo ’
GWhWZSlﬁﬂ—SﬁﬂﬂE<%xhﬁ)aphﬁ».

G (r, ') G (r, )

The elements are d x d block matrices and identified with the Green functions (3.157) (3.160) with
excluded zero-frequency mode:

GRX (1, 7") = G2 (1, 7") — Gix(7, 7)) = GR (7, 7") — G§x7cl, (4.48)
GR(r. 1) = GRp(1.7') = GRp(7, 7)) = GRp(1,7') = G, 415 (4.49)
Gbhoxo (r,7) = ng(’l', ') — Gpx (7, 7') = ng(’r, ') — ng7cl =GR (', 1), (4.50)
GBoxo(r, ) = Goo(T, ') — Gop(r,7') = G (T, ') — Ggpyd, (4.51)

where we have used the identity of the zero-frequency component of the quantum statistical Green
functions and the classical fluctuation width. As a consequence of the relations (4.31) and (4.32), and
the zero-temperature limit (3.191), the restricted partition function (4.46) is the fundamental quantity,
which enables us to calculate the free energy and the effective classical Hamiltonian of any system with
Gaussian action. For later use, we introduce expectation values in phase space with the zero-frequency
modes excluded in a similar manner as in Eq. (4.15). Defining the restricted partition function as the
functional (4.46) with vanishing currents,

1 1
zZyo = z3°0] = exp {—5/ / dr' wlS(r, 7 )wo}, (4.52)
1/ detps Syt det S 0

the restricted expectation value for any quantity, which depends on position and/or momentum is
expressed as

(P = Ca (Z3)7 f DHwd(wo = W) - exp l—% /0 / dr' w¥ (7)S(r, T')W(T')l .
(4.53)

Similar to the method of calculating expectation values and the results obtained in Section 3.2.3, we
find that the one-point function is

(W(r))P = wo, (4.54)
and the two-point functions are evaluated as

(Wi (T)wy (T))PO7° = GPOXS 4 W0, mWo,n, mn=1,...,2d. (4.55)

This makes it possible to rewrite the Green functions (4.48)—(4.51) as two-point correlation functions

GRaR (. 7") = (@u(D) @ (7)P, GRR(r.7) = (Br(T)mi(7)™™

G (1. 7) = (@ (n)p (7)™ GRIr(r,7') = (Br(r)3u(7))7™

TrPL PrZlL

ki=1,....d, (4.56)

with abbreviations

x(r) =x(1) —x0,  P(7) =P(7) — Po. (4.57)

For the calculation of an expectation value of a quantity, which is a nonpolynomial function F' of x
or p, we need the smearing formula. The derivation of this multiple convolution integral follows along
a similar procedure as presented in Section 3.3.2 for the density matrix. We do not repeat it here
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and give only the result for the general case of a product of N 4+ M functions, where N of which may
depend on x and M on p:

(Fi(x(m)) Fa(x(72)) - - - FN(X(T8 ) FN 1. (P(Th41)) N2 (P(Tv42)) - - Fivgnr (X(7var))) P07

- 1 [ e pit) 11 e Exmton) | e { -y TGP v (wss)

m=1
where y is the (N + M)d-dimensional vector
y' = (x1(r1) = %0, -, xn(78) = %0, P1(TN11) = Po, - - - P (TN 21) = P0) - (4.59)

The (N + M)d x (N + M)d-matrix

o A B

is composed of the Nd x Nd-matrix A and the Md x Md-matrix C,

GRYO(t1, 1) GREO(T1,m2) --- GRYXO(T1,7N)
GRX (11, 72) GRYO(7y,71) - GRYX(T2,7n)

A= : : . . , (4.61)
GRYO (11, 7n) GRS (T2, 7n) -+ GRYO(71,71)
gg%"‘]gﬁ,ﬁ; ggg""gﬁ,ﬁ; GB%XOETL,TM;
PoXo T1, T2 PoXo T1,T1 Gpoxo To, TM

C = PP PP . PPt , (4.62)
GBoxo (11, 7ar) GREO (72, Tar) -+ GBYXO(71,71)

as well as the Nd x Md-matrix

—GROX(1y, 1) —GRYO(11,79) -0 —GRY(Ty, Tar)
_GEDXO(TQ,Tl) —G)lzoxo(/rl’/rl) _GEOXU(T%TM)

B= . i . " : (4.63)
—GRY (TN, 1) —GRYO (TN, T2) -+ —GRY (TN, Tar)

The inverse and the determinant of the block matrix GP°*0 are calculated as described in Appendix 3A.

We calculate now the appropriate Green functions and the partition function (4.46) for the harmonic
oscillator. The calculation of the Green functions with the zero-frequency components excluded is
simply done, since we know the complete Green functions for the harmonic oscillator from Egs. (3.166)—
(3.169). Subtracting the twice-averaged terms, we obtain

Ggom:ﬁg (T’ T ) = ng7w(’r5 TI) - Mﬂwz ) (464)
(T ) = G, (T, (4.65)
P (T T) = Gy (T, (4.66)

z M
gg#—g (T’ TI) = ;Ep,w (T7 TI) - ? (467)

The zero-frequency modes of the mixed two-point functions vanish. Thus, the matrix of the zero
components simply reads

So = (Mholwz (m?)—l ) . (4.68)
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The determinant is easily calculated and yields det,s So = w? in units, where h = 3 = M = 1. Together
with the result (3.175) for the partition function of the harmonic oscillator, this gives the restricted
partition function

hBw pe 1.5,
oo — Y oen |5 (20 4 S . 4.
Z 2sinh h3w/2 eXp[ b <2M Tyt )| (4.69)

where the exponential contains the effective classical Hamiltonian of the harmonic oscillator, Heg,, =
pa/2M + Mw?x2/2. Performing the integral over the zero-frequency components zo and pg leads to
the known partition function (3.175) of the harmonic oscillator.



