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Introduction

The exact calculation of path integrals is only possible, if they are or can be transformed in a Gaussian
shape. In Part IT of this thesis, we have considered a very general Gaussian action (3.1) and calculated
the quantum-statistical properties of systems governed by such an action. All Euclidean systems, where
the action only contains terms of the form z™(7)p™ () with (m,n) € {(2,0),(1,1), (0,2)}, belong to
this class of exactly solvable problems. An example is a particle in a harmonic potential and influenced
by external sources which linearly couple to particle position or momentum. In order to motivate the
general theory in Part II, we have investigated the quantum statistics of the one-dimensional problem
in detail. Another system in this class is a charged particle in static electric and/or magnetic field,
since the scalar potential of the electric field couples linearly to the position, and the vector potential
of the magnetic field is minimally coupled to the momentum. We will consider an application in
this part, where we investigate the quantum-statistical properties of hydrogen in uniform magnetic
field. As a warm-up exercise, we will treat there the exactly solvable problem of a single electron in
magnetic field at arbitrary temperature. It is worth noting that the calculation of the path amplitude
for the three-dimensional hydrogen atom is also exactly done after mapping it to a four-dimensional
oscillator [4].

Nevertheless, most of the interesting systems have nontrivial interactions, which prevent an exact
evaluation of quantum-statistical quantities. A characteristic property of such systems is that they
are usually governed by potentials, which “disturb” the Gaussian shape of the action, for example
the z* term of the anharmonic oscillator, its pendant in the field theory of critical phenomena, ¢*,
or the interaction 1,1 A* between matter fields ¢, ¢ and electromagnetic field A, in quantum
electrodynamics (QED). The coupling strength between these fields in QED is rather small, it is
the fine structure constant o = e?/dneghc ~ 1/137. In cases, where the coupling constant is small,
it is useful to expand the time evolution operator (or the corresponding action exponential in the
functional integral) into a Taylor series and to calculate perturbative corrections to the result of the
exactly solvable unperturbed system. Since it is usually impossible to evaluate the corrections in
all orders, the perturbation series must be broken up after any order n. For weak coupling, the
first contributing perturbative order yields already satisfactory results for many systems. There is
no guarantee, however, that, despite a small coupling constant, the perturbative series converges.
The reason is that the number of terms contributing to a certain order of perturbation is extremely
increasing from order to order. A practical quantity for checking the convergence of a series is its
radius of convergence, which is defined as the infinite-order limit of the absolute ratio of contributions
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a,, of successive orders:

(7.1)

The series converges, if R > 1, and diverges for R < 1. Since in nth order a, = ¢,g", where ¢, is the
expansion coefficient and ¢ the coupling constant, we find

Cn

. (7.2)

R:z, r= lim
g n—o0

Cn+1

In this relation, the competitive character of expansion coefficients and coupling strength turns out
clearly. Thus, a perturbative series converges, if r > g, since the overall contribution decreases for suc-
cessive orders of perturbation. A diverging series is characterized by r < g. Unfortunately, the radius
of convergence can only be evaluated exactly, if a recursion equation for the perturbative coefficients
exists, which relates ¢, and ¢, +1. For most problems, it is not possible to exactly determine R, and one
can only make an extrapolation estimated from successive low orders, for which the coefficients ¢, are
known. Following Dyson [42], even perturbative series in QED will diverge for orders of perturbation
higher than the inverse fine structure constant, i.e. n > 1/a.

In order to obtain finite results from truncated perturbative expansions, it is necessary to apply
methods, which perform an approximate summation of the series. It is even possible to use such
summation methods for strong-coupling series, where the perturbations are not small in comparison
with the unperturbed contribution. Well-known summation methods were developed by Euler, Borel,
and Padé. The applicabiltiy of such methods is usually restricted to series obeying some requirements
regarding the growth of the expansion coefficients for large orders [43]. Alternative promising proce-
dures are based on nonlinear transformations, e.g. sequence transformations [44], for accelerating the
convergence of originally diverging series.

We use a different powerful method for the summation of perturbative series, which is called
variational perturbation theory [4, Chap. 5]. A first approach was used by Feynman in 1954 for
discussing the polaron problem [45]. This procedure was improved by Feynman and Kleinert [8] and,
independently, by Giachetti and Tognetti [9] in 1985/86. In this approach, the action of a harmonic
oscillator with trial frequency (zq) serves as trial system and the remainder as perturbation. The
correctly treated zero-frequency mode xq of the path by a separate xp-integration makes it possible to
reexpress the quantum-statistical partition function by an integral over a classically looking Boltzmann
factor, which contains the effective classical potential. Based on the Jensen-Peierls inequality, variation
with respect to the trial frequency (zg) yields an upper bound for the effective classical potential.
Meanwhile, this method is denoted as variational approach, since a systematic extension to higher-order
variational perturbation theory was developed by Kleinert [4,46,47]. We will review the fundamentals
of the approach and the systematic theory in the following sections.

In the following chapters, we present generalizations of this theory, which enable us to enlarge
the range of applicability of variational perturbation theory. We develop variational perturbation
theory for density matrices [20] and calculate the density of a particle in the double-well potential.
Furthermore, we investigate the pair-distribution function for hydrogen, which is a characteristic quan-
tity of hydrogen plasma. By extending variational perturbation theory for applications in phase space,
where we practically introduce the effective classical Hamiltonian, we calculate the quantum-statistical
properties of hydrogen in magnetic fields [18,19]. The zero-temperature limit of the effective classical
Hamiltonian yields the binding energy. This quantity possesses quite different asymptotic behaviors
for weak and strong magnetic fields. We investigate these limits in detail, and the results confirm
the power of the variational summation method. Finally, in Part IV of this thesis, we turn to mem-
brane physics, where we calculate the fluctuation pressure which fluid membranes exert upon hard
walls [48,49]. By an analytic strong-coupling calculation, we evaluate the constants occuring in Hel-
frich’s ideal-gas-like pressure law [50] to such a high accuracy that their values lie well within the error
bounds of Monte-Carlo simulations. Aside from the very successful calculation of critical exponents in
¢* theory [5], the results for the fluctuating membranes show that variational perturbation theory is
also applicable for the summation of perturbation series arising from field theories.
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7.1 Variational Approach via Jensen-Peierls Inequality

We review the variational approach [4,8,45] for the calculation of the quantum-statistical partition
function Z in the more general phase space representation. As shown in Eq. (4.29), we express the
partition function (4.28) as an integral of the restricted partition function ZP°*° over the zero-frequency
phase space coordinates pg and xg. The relation between ZPo*0 and the effective classical Hamiltonian
Hes(po, 2o) is given by Eq. (4.31). We write the restricted partition function for any system with an
dimensionless action A[p, x| as a path integral over the phase space coordinates w’ = (xT, pT) as

gwo — (%h)d?{Dzdw 5(wo — W(r)) e~ ANWI/A. (7.3)

In general, this quantity cannot be calculated exactly, and therefore we decompose the action A[w]
into a part AH°[w], for which the restricted partition function is known, and a remainder, which we
call the interaction term Ajy [w]:

Alw] = AG° [W] + Aing [W]. (7.4)

The action of the exactly solvable system shall be expressed as

K8 rhB
A lw] = g/o dT/O ar' (¥ (r) = wl) Sa(r, 7') (w(r') — wo) (7.5)

where we have subtracted the zero-frequency mode from the phase space coordinates. The elements
of the symmetric matrix Sq are of the form Sq ;; = €2;;S;;, where the 2d? + d parameters Qi = Q4
are still undetermined. The matrix S shall be of the form (3.10), which makes it possible to exactly
calculate the corresponding restricted partition function:

o e phB
zyo = (27rh)d%D2dw §(wog — w(7)) exp {—%/0 dT/O dr’ (wh(r) = w{) Sa(r,7') (w(') — Wo)}

_ L (7.6)

\/ detps Sao det Sq

Here, we have made use of the calculation for the restricted partition function in Section 4.2, with the
result (4.52). The exponential function occurring in (4.52) is absent in Eq. (7.6) due to the subtraction
of the zero-frequency modes of the phase space path in the action of Eq. (7.5). In analogy to Eq. (4.53),
we use the path integral (7.6) to define expectation values

(O1(w(1)O2(w(2)) - )g" = (2ﬂh)d[ZS°]_1%Dde 3(wo —w(7))

xO1(W(11))O2(W(72)) - - - e A’ /R, (7.7)

By adding and subtracting the trial action (7.5) to the full action in the Boltzmann factor of expression
(7.3), we obtain

7% = (21! § D 8(wo — W) A WP exp (= (Alw) = AW /1) (T8)

With the definition (7.7), the right-hand side of this equation can be written as expectation value of
the exponential function containing the perturbation A[w] — A$° [W] = Aint[W]:

Z%0 = Zwo <6—Am[w1/h>ﬂ°. (7.9)
With the help of the Jensen-Peierls inequality,
(@) >e (O, (7.10)



106 7. Introduction

we can estimate Eq. (7.9) by
70 > Zwo e AmlwI/R)G? (7.11)
Since the restricted partition functions are related to the effective classical Hamiltonians via,
Z%0 = ¢ BHerr(wo) 730 = ¢~ BHetr a(wo) (7.12)

the inequality (7.11) can be written as

Heg(Wo) < Hemro(Wo) + 7= (At [W])5° = HG (o). (7.13)

L
hB
We express the action Ajnt[w] as a time integral over an interaction potential Vipt (w (7)),

h3
Aint [W] :/0 A7 Vint (W(T)). (7.14)

The invariance of the expectation value under time translations makes the time integral trivial and
the expectation value of the action becomes

hg
(Ame[W])" = /0 dr (Viue (W (7)))5" = 73 (Vi (W) ° - (7.15)

Thus the estimate Hg )(wo) can be written as

My (wo) = He.0(Wo) + (Vias (W))5r° - (7.16)

This quantity is now optimized with respect to the set of parameters €2;; to yield the optimal upper
bound for the effective classical Hamiltonian:

6‘{8)(“0) !
‘)Qij 0 ( )

Let us denote the set of optimal parameters satisfying these 2d? + d equations as QS) (wg). Inserting

these results into (7.16), the optimal upper bound for the effective classical Hamiltonian is given by
HD (wo) = HU, (wo). (7.18)

If more than one solution to the equations (7.17) exist, the smallest must be chosen, since the effec-
tive Hamiltonian (which can also be considered as a local free energy F™¥°) must be minimal in the
equilibrium state of the system. Should no solutions exist, the parameters are chosen from the flattest
region, i.e. where ’HS()U (wo) depends minimally on the parameters €;;. This is the principle of mini-
mal sensitivity, which states that the best estimate possesses the least dependence of the variational
parameters [51]. This is a conclusion of the independence of the exact effective classical Hamiltonian
from these parameters.
The simplest case for the trial action (7.5) is the usual harmonic oscillator in one dimension

h3
Agyolp.al = / dr {ﬁ[pm — pal? + 5 MO[a(r) - xoP} , (7.19)

where only the potential contains a trial parameter ().
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7.2 Variational Perturbation Theory to Any Order

A Taylor expansion of the exponential function in the expectation value of Eq. (7.9) in powers of
the interaction Ajy[w] makes it possible to systematically improve the variational approach. Since
the summations of perturbative expansions truncated in different orders of perturbation can yield
approximations for the effective classical Hamiltonian, which alternate around the exact result, the
inequality (7.10) does not hold in general.

Performing the Taylor expansion, Eq. (7.9) becomes

© / 1\n B ny Wo
Zwo _ Zgo;)(hng! << /0 dTvim(w(T))> > . (7.20)

Q

This can be written in the exponential form

0o \n % ny Wo
ZWo = Z5° exp Z (hnlg! << ; dTVint(w(T))> > , (7.21)

Q,c

where the subscript ¢ indicates as usual cumulants. The lowest cumulants are related to the full
expectation values as follows:

(O1(w(m)))ge = (O1(w(m)))a"
(O1(W(m1)) 02 (W(m2))) g = (O1(W(11))O2(W(72)))g" = (O1(w(m1)))g" (O2(W(72)))g" »

: (7.22)

where O;(w(7;)) denotes any observable depending on position and momentum. Recalling the rela-
tions (7.12) between partition functions and effective classical Hamiltonians we obtain from (7.21) the
effective classical Hamiltonian as a cumulant expansion:

0 1\n+l %] my\ Wo
Heff(wO):_%lnzguéz%« / dTwnt<w<T>>>> . (129

Q,c

Up to now, we did not make any approximation. The expansion on the right-hand side is an exact
expression for the effective classical Hamiltonian for all components of (2.

For systems with a nontrivial interaction, we are capable of calculating only some initial trun-
cated part of the series (7.23), say up to the Nth order, leading to the approximate effective classical
Hamiltonian

N \ntl B ny\ Wg
HQ’(wO):—%ansu%;%« / drvmt<w<f>>>> SR (A2

Q,c

This depends explicitly on the parameters €. Since the exact expression (7.23) is independent of ,

the best approximation for Hgv) (wg) should depend on 2 minimally. Thus the optimal solution will
be found by determining the parameters from the 2d? + d conditions

7] !
9% HG (wo) = 0. (7.25)

Let us denote the optimal variational parameters to Nth order by Qg\/) (wp). Inserting these into
Eq. (7.24) yields the optimal effective classical Hamiltonian HN) (wy).






