CHAPTER &

Variational Perturbation Theory for
Density Matrices

We develop a convergent variational perturbation theory for quantum statistical density matrices,
which is applicable to polynomial as well as nonpolynomial interactions [20]. We illustrate the power
of the theory by calculating the temperature-dependent density of a particle in the double-well potential
to second order, and of the electron in the hydrogen atom to first order.

8.1 Introduction

Variational perturbation theory [4,46] transforms divergent perturbation expansions into convergent
ones, where the resulting convergence even extends to infinitely strong couplings [52]. The theory has
first been developed in quantum mechanics for the path integral representation of the free energy of the
anharmonic oscillator [47] and the hydrogen atom [4,53]. Local quantities such as quantum statistical
density matrices have been treated so far only to lowest order for the anharmonic oscillator and the
hydrogen atom [54,55].

In this chapter, we develop a systematic convergent variational perturbation theory for the path
integral representation of density matrices of a point particle moving in a polynomial as well as a
nonpolynomial potential. By systematically taking into account higher orders, we thus go beyond
related first-order treatments in classical phase space [56] and early Rayleigh-Ritz type variational
approximations [57]. With the help of a generalized smearing formula, which accounts for the effects
of quantum fluctuations, we can furthermore treat nonpolynomial interactions, thus extending the
range of applicability of the work in Ref. [58]. As a first application, we calculate here the particle
density in the double-well potential to second order and then the electron density in the hydrogen
atom to first order.

8.2 General Features

Variational perturbation theory approximates a quantum statistical system by perturbation expansions
around harmonic oscillators with trial frequencies, which are optimized differently for each order of the
expansions. We have shown in Section 4.1.1 that, when dealing with the free energy, it is essential to
h/ksT

o dr x(T), since this

give a special treatment to the fluctuations of the path average T = (kgT/h)
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110 8. Variational Perturbation Theory for Density Matrices

performs violent fluctuations at high temperatures T. These cannot be treated by any expansion, unless
the potential is close to harmonic. The effect of these fluctuations may, however, easily be calculated at
the end by a single numerical fluctuation integral. For this reason, variational perturbation expansions
are performed for each position x( of the path average separately, yielding an Nth order approximation
W (zg) to the local free energy Veg (o), called the effective classical potential [59]. The name
indicates that one may obtain the full quantum partition function Z from this object by a simple
integral over xg just as in classical statistics,

oo d:l)'()
7 — e~ eff,cl(xo)/kBT. (81)
0 \/27rh2/Mk‘BT

Having calculated Wiy (), we obtain the Nth-order approximation to the partition function

+o0
Iy = / Mo -Wa@o)/ksT, (8.2)

/2rh2MkpT
—o00

The separate treatment of the path average is important to ensure a fast convergence at larger tem-
peratures. In the high-temperature limit, Wy (x¢) converges against the initial potential V' (xq) for any
order N.

Consider the Euclidean path integral over all periodic paths z(7), with 2(0) = x(h/kgT), for a
harmonic oscillator with minimum at z,,, where the action is

A ] = /O " {%Mﬁ(f) 2 MO[a(r) - mm]z}. (8.3)

Its partition function is

1

ZSbam — ]{Dx exp {—AQ7mm [z]/h} = 28inh h3Q/2’ (8-4)

and the unnormalized density matrix is given by

0w [ Mo MO P .
m g _— _ h Q — 2 .
% (b, 2a) 2mhsinh ABQ =P 2hsinh h3Q [(xb +&5) cosh b3 xbxa] ' (8.5)

where we have introduced the abbreviation
() = a(1) — .- (8.6)
At fixed end points xp, x4, the quantum mechanical correlation functions are

z(hB=xyp)

(O1((m)) Oa(a(ms)) - )2t = —— L D 04(2(71)) Oa(a (7)) -

éonxm (xb; xa)
z(0)=xzq

x exp { — A" [z]/R} . (8.7)
The classical path of a particle in a translated harmonic potential is

Zpsinh Q1 + &, sinh Q(hS — )
() = . 8.8
Zal(7) sinh A6 (88)
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8.3 Variational Perturbation Theory

To obtain a variational approximation for the density matrix, it is useful to separate the general action

hB
Ale] = /0 ar [%;ﬁ(THV(x(T)) (.9)

into a trial one, for which the density matrix is known, and a remainder containing the original
potential.

We have pointed out in Section 4.1.2 that a separate treatment of the fluctuations zg = T =
fohﬁ dr z(T)/hf is not necessary for paths with fixed ends. As a remnant of the extra treatment of xg
we must, however, perform the initial perturbation expansion around the minimum of the effective
classical potential, which will lie at some point x,, determined by the end points xp, x,, and by the
minimum of the potential V(z). Thus we shall use the Euclidean path integral for the density matrix
of the harmonic oscillator centered at x,, as the trial system around which to perform the variational
perturbation theory, treating the fluctuations of zy around z,, on the same footing as the remaining
fluctuations. The position x,, of the minimum is a function x,, = ,(xp, 2,), and has to be optimized
with respect to the trial frequency, which itself is a function 2 = Q(xp, z,) to be optimized.

Hence we start by decomposing the action (8.9) as

Alz] = A% 2] 4+ Aing 2] (8.10)

with an interaction
h3
A l2] = / 0 Vi (2(7)), (8.11)
0

where the interaction potential is the difference between the original one V(z) and the inserted displaced
harmonic oscillator:

Vi (a(7) = V(7)) = 5 MO [a(r) = ] (.12)

Now we evaluate the path integral for the unnormalized density matrix
z(hB)=zy
o(xp, zq) = / Dy e~ AlRI/R (8.13)
z(0)=xzq

by treating the interaction (8.11) as a perturbation, leading to a moment expansion

~ ~ Q,Tm 1 Q,zm
8@ 7) = 8 (T 2a) [1—E<Aim[x] o

1

572 (A7 [2]) ’“‘—..l, (8.14)

int Tp,Ta

with expectation values defined in (8.7). The zeroth order consists of the harmonic contribution (8.5)
and higher orders contain harmonic averages of the interaction (8.11). The correlation functions in
(8.14) can be decomposed into connected ones by going over to cumulants, yielding

Tb,Ta,C

~ ~ 1 xT 1 Q7-Tm
Q(Z‘b, :L‘a) = QOQ,GL‘m (ill'ba ill'a) exp |:_E <~Aint [ill'] >§;7;‘;C + ﬁ <Ai2nt LL‘} > — .. :| s (815)
where the first cumulants are defined as usual:

(Or((m)) o . = (Or(a(m)) ) o
(O1(2(m1))O2(x(r2)) Y2 = (O1(2(11))Oa(x(12)) ) 1rm — (Or (1)) )15 { Oa(a(m)) ),

(8.16)
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The series (8.15) is truncated after the Nth term, resulting in the Nth-order approximant for the
quantum statistical density matrix

N

~ Q,Tm ~ Qm ( 1)” Q,Tm

On (‘Tl” ill'a) =0 (.l'b,.l'a) exp lz nlhn <"4mt ]>mb,xy:a7c ’ (817)
n=1

which explicitly depends on both variational parameters 2 and x,.
In analogy to classical statistics, where the Boltzmann distribution in configuration space is con-
trolled by the classical potential V() according to

M

0a() = 4/ 5 3720 exp [—4V (z)], (8.18)

we now introduce a new type of effective classical potential Ve c1(2p, Tq), which governs the unnormal-

ized densi‘ S/ ma‘riX
Q b71a h /3 exX p C [eﬂ‘ Cl xb xa - 8‘19

Its Nth-order approximation is obtained from (8.5), (8.17), and (8.19) via the cumulant expansion

Qa 1 | sinh B30 MSQ 5 o L
9 m — _1 } Q _
Wy ™ (b, 2a) 25 n ) + A smh 30 {(:rb + %) cosh A3 2xbxa}
1 Y )
Q7 m
B Z lhn mt [‘T] >.’rb,xxa,c ) (820)

which is optimized for each set of end points xp, 2, in the variational parameters Q2 and x,,, the result
being denoted by W (7, 2,). The optimal values Q2(xp, 24) and @, (2p, 24) are determined from the
extremality conditions

BW%“’ (p, 74) L BWNQ’xm (wp,74)

=0 (8.21)
002 O v '

The solutions are denoted by Q2N, x| both being functions of zp, .. If no extrema are found, one
has to look for the flattest region of the function (8.20), where the lowest higher-order derivative
disappears. Eventually the Nth-order approximation for the normalized density matrix is obtained
from

2N N

—1-Q
on(Tp,20) = Z3' oy ™ (h, Ta), (8.22)
where the corresponding partition function reads
oo L Q2N N
ZN :/ dx 8y ™ (b, Tq)- (8.23)
—0o0

In principle, one could also optimize the entire ratio (8.22), but this would be harder to do in practice.
Moreover, the optimization of the unnormalized density matrix is the only option, if the normalization
diverges due to singularities of the potential. This will be seen in Section 8.7.2 by the example of the
hydrogen atom.

8.4 Smearing Formula for Density Matrices

In order to calculate the connected correlation functions in the variational perturbation expansion
(8.17), we must find efficient formulas for evaluating expectation values (8.7) of any power of the
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interaction (8.11)

Q 1 i L hi3 1 q
(A2 )anar =~z / i [] / d7y Vint (T(71) + Tm) | exp {_EA T+ mm]} .
) (xba 'Ta) 70 =1 0

(8.24)

This can be done by an extension of the smearing formalism, which is developed in Ref. [53]. To this
end we rewrite the interaction potential as

+oo +oo
dA ho
Vint (Z(71) + 2m) = / dz Ving (21 + ) / 2—7; exp{i\;z} exp l—/ driNo(T — TD:;?(T)} (8.25)
0
—00 —00

and introduce a current
n
J(r) =" ihnd(r —7), (8.26)
=1

so that (8.24) becomes

1
Al [x Qam .~
(Aule )22 = s
n hg 400 400 d)\l
<11 / dr / d2 Viat (21 + anin) / BN ep{inz) | Ko l]. (8.27)
=1 0 —00 —00 27

The kernel K»*m[J] represents the generating functional for all correlation functions of the displaced
harmonic oscillator

ol hB m -2
KQ,xm[J] _ / Di exp{_% i dr {55 (1) + %MQZ;#(T) + J(T).%(T):l } (8.28)

Zq,0
For zero current .J, this generating functional reduces to the Euclidean harmonic propagator (8.5):
K& (] = 0] = 6, ™ (. Ta)- (8.29)

For nonzero J, the solution of the functional integral (8.28) is given by

o 1 (8 1 s B
K&em[]] = 0o ™ (xp, Ta) €XP | —— / dr J(1)za(T) + 575 / dr / dr’ J(t) G (r,m") I ()] .
hJo 2h% J, 0
(8.30)
where x¢1(7) denotes the classical path (8.8) and G®(7,7") the harmonic Green function

_h coshQ(|1 — 7| = h3) — cosh Q(1 4 7" — hf3)
- 2MQ sinh 73

G (1,7 . (8.31)

The expression (8.30) can be simplified by using the explicit expression (8.26) for the current J. This
leads to a generating functional

1
Kom [ J] = g, "™ (0, 24) €xp (—i)\Txcl ~3 AT GA) , (8.32)

where we have introduced the n-dimensional vectors A = (A1, ..., \)T, xa = (za(71), ... s za(m))”
with the superscript T denoting transposition, and the symmetric n X n-matrix G whose elements are
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G = G*(1, 7). Inserting (8.32) into (8.27), and performing the integrals with respect to A1, ..., A,
we obtain the nth-order smearing formula for the density matrix

O n hpg “+o0o
(An )2 =T / dn / o1 Vi (21 + )
=1 -0

w1
(2m)™ det G

Z (21 — za(Th)] Gy Yy —zaln)]p.  (8.33)

Icll

The integrand contains an n-dimensional Gaussian distribution describing both thermal and quantum
fluctuations around the harmonic classical path z¢(7) of Eq. (8.8) in a trial oscillator centered at ,,,
whose width is governed by the Green function (8.31).

For closed paths with coinciding end points (zp = x4), formula (8.33) leads to the nth-order
smearing formula for particle densities

1

Q(ma) =7

L (20, 7a) = ]4 Dar §(2(r = 0) — 24) exp{—Alz] /), (8.34)

which can be written as

0 n h3 +oo
< 1nt [.CL'] )m‘fz"; = Q l‘m H [/O dTl‘/i dz; Ving (Zl + xm)

l:l

1 1 & L
oxp | —3 Z 2 Qg 2 (8.35)

X J—
(2m)nt1 det a? Py

with zy = &,. Here a® denotes a symmetric (n 4 1) x (n + 1)-matrix whose elements a3, = a*(7x, 77)
are obtained from the harmonic Green function for periodic paths G**P(r,7') as (see Chapters 3 and
5in Ref. [4])

h coshQ(|T —7'| — h3/2)
MO sinth 732/ '

a(r,7') = P(r,7) = (8.36)

M
The diagonal elements a® = a?(, 7) represent the fluctuation width (4.8), which behaves in the classical
limit like (4.11) and at zero temperature like (4.9).

Both smearing formulas (8.33) and (8.35) allow in principle to determine all harmonic expectation
values for the variational perturbation theory of density matrices and particle densities in terms of
ordinary Gaussian integrals. Unfortunately, in many applications containing nonpolynomial potentials,
it is impossible to solve neither the spatial nor the temporal integrals analytically. This circumstance
drastically increases the numerical effort in higher-order calculations.

8.5 First-Order Variational Results

The first-order variational approximation gives usually a reasonable estimate for any desired quantity.
Let us investigate the classical and the quantum mechanical limit of this approximation. To facilitate
the discussion, we first derive a new representation for the first-order smearing formula (8.35), which
allows a direct evaluation of the imaginary time integral. The resulting expression will depend only
on temperature, whose low- and high-temperature limits can easily be extracted.

8.5.1 Alternative Formula for First-Order Smearing

For simplicity, we restrict ourselves to the case of particle densities and allow only symmetric potentials
V(z) centered at the origin. If V(x) has only one minimum at the origin, then also x,, will be zero. If
V(z) has several symmetric minima, then z,, goes to zero only at sufficiently high temperatures. To
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FIGURE 8.1: Temperature-dependence of the first 9 functions Cé”), where 8 = 1/kgT.

first order, the smearing formula (8.35) reads

h3

dz 1 1 (22 +22)ad, — 22z 402
{ Aing[2] )27% o /dT/ Vint —— exp{—i( “Z 00 < 01}, (8.37)

o5 (« %0 — Qg1 Qgo — Gp1

so that Mehler’s summation formula

L e {_ @+ ;éllfgz)) - 4”/’)} — exp {—%(:ﬁ + :ﬁ)} S @) L) (539)

V102 2nn!

n=0
leads to an expansion in terms of Hermite polynomials H,,(z), whose temperature dependence stems
from the diagonal elements of the harmonic Green function (8.36):

—+oo

> dZ 2 2
_ 2 4 —2%/2a 2
{ Aint [x - Z 2”n‘ Hn <xa/ 2a00> / 727ra30 Vint (2) € o0 H, (z/ 2a00) .

(8.39)

Here the dimensionless functions C’én) are defined by

or ()

We have plotted the functions C’é") for n = 0,...8 in Fig. 8.1. Inserting (8.36) and performing the
integral over 7, we obtain

(n) _ 1 " /ny sinhhBQ(n/2 — k)
G = m;o (k) heQn2 — k) (8.41)
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At high temperatures, these functions of 3 go all to unity,

lim C{Y = 1 8.42
Bll,% B ’ ( )
whereas for zero temperature we yield
(n) 1, n =0,
lim C3" = 2 (8.43)
— 00 B e — O-
¢ won "7

According to (8.20), the first-order approximation to the effective classical potential is given by

1 sinh A6 MQ hBQ

W(z,) = = In ——-— 4+ —z2 tanh + Vi (24) (8.44)

203 hBQ hg 2
with the smeared interaction potential
1 Q
Vot (za) = W (Aintlz] )z, o, - (8.45)

It is instructive to discuss separately the limits 8 — 0 and § — oo of dominating thermal and quantum
fluctuations, respectively.

8.5.2 C(lassical Limit of Effective Classical Potential
In the classical limit 8 — 0, the first-order effective classical potential (8.44) reduces to
1
W (z,) = §MQ%3 + lim V3 (24). (8.46)

The second term is determined by inserting the high-temperature limit of the fluctuation width (4.11)
and of the polynomials (8.42) into the expansion (8.39), leading to

4 2
3 i (VT

lim V3 (xa) =

+o0
dz 25,2
X | e Vi (2) MO 2, (NP2 2) 8.47
/ /27 /MQO23 (%) B/ (8.47)
Then we make use of the completeness relation for Hermite polynomials

(o9}

\%ﬂz 3 27%' H(2) Ho(a') = 6(z — ), (8.48)

n=0
which may be derived from Mehler’s summation formula (8.38) in the limit b — 17, to reduce the
smeared interaction potential V2(z,) to the pure interaction potential (8.12):

llaii% VE(24) = Ving (74)- (8.49)

Recalling (8.12) we see that the first-order effective classical potential (8.46) approaches the classical
one:

lim W z,) = V(zy). (8.50)
This is a consequence of the vanishing fluctuation width b [see Eq. (4.25)] of the paths around the

classical orbits. This property is universal to all higher-order approximations to the effective classical
potential (8.20). Thus all correction terms with n > 1 must disappear in the limit 8 — 0,

Za,Ta,C

lim i (=D (AR 2] =o. (8.51)
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8.5.3 Zero-Temperature Limit

At low temperatures, the first-order effective classical potential (8.44) becomes
m RQ
WA () = -+ ﬂlim V3 (z4). (8.52)
The zero-temperature limit of the smeared potential in the second term defined in (8.45) follows from

Eq. (8.39) by taking into account the limiting procedure for the polynomials Cén) in (8.43) and for the
fluctuation width a7, (4.9). Thus we obtain with Ho(z) =1 and the inverse length xk = /MQ/h:

B—o0

+oo
2
lim V¥ (z,) = / dz 1/ %Ho(nz)2 exp{—r%2%} Vine (2). (8.53)

Introducing the harmonic eigenvalues

1
E? = hQ (n + 5) , (8.54)
and the harmonic eigenfunctions
Q 1 K)2 1/4 2,2
¥, (z) = NAET (?) e T2 H, (k). (8.55)

we can re-express the zero-temperature limit of the first-order effective classical potential (8.52) with
(8.53) by

W™ (2a) = By + (U8 | Ve | 08 )- (8.56)

This is recognized as the first-order harmonic Rayleigh-Schrédinger perturbative result for the ground-
state energy.
For the discussion of the quantum mechanical limit of the first-order normalized density,

- _1 . Q
0 ) B0 _ o exp {~ (Amle] ).
01 (%a) = =—— = 00 (Ta) — . - — (8.57)
J23 dra g (@a) exp {4 (Ame])D, ., }
we proceed as follows. First we expand (8.57) up to first order in the interaction, leading to
1 I
Q Q
o (wa) = 05 (wa) |1 - 7 | (Aimele])a, 0, = / dzq 05 (2a) (Awmsla] )y, . | | - (8.58)

Inserting (8.5) and (8.39) into the third term in (8.58), and assuming € not to depend explicitly on
Tq, the x,-integral reduces to the orthonormality relation for Hermite polynomials

+oo
1 e
anlﬁ / dwaHn(ZL'a)Ho(xa)e @ = dpo, (859)

so that the third term in (8.58) eventually becomes

+00 +oo
_ / 020 6 (72) (Awele])2. . = — / dz@ Vi (2) exp{—r222} Ho(k2).  (8.60)
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But this is just the n = 0-term of (8.39) with an opposite sign, thus canceling the zeroth component
of the second term in (8.58), which would have been divergent for  — occ.
The resulting expression for the first-order normalized density is

+oo
— B [ K2
03 (xa) = o8 (z4) |1 — Zl S C’é )Hn(m:a) / dz — Vi (2) exp(—22%) Hy,(k2) ] . (8.61)

The zero-temperature limit of C[gn) is from (8.43) and (8.54)
2
1 C(") =
e
so that we obtain from (8.61) the limit

03 (z4) = 08 (24) 22 an' Fo = EQ n(K2q) /dZ\/ Vint (2) exp{—r>22} Hy(k2) Ho(k2)|.

(8.63)

(8.62)

Taking into account the harmonic eigenfunctions (8.55), we can rewrite (8.63) as

0 () = [o(@a)l? = (U8 @) — 268(xa) 3 ¥2(a M (8.64)

_Q
n>0 EO

which is just equivalent to the harmonic first-order Rayleigh-Schrédinger result for particle densities.

Summarizing the results of this section, we have shown that our method has properly reproduced
the high- and low-temperature limits. Because of relation (8.64), the variational approach for particle
densities can be used to determine approximately the ground-state wave function 1o (z,) for the system
of interest. Thus our method supplies earlier perturbative [60] and variational [61] attempts to directly
compute the ground-state wave function.

8.6 Smearing Formula in Higher Spatial Dimensions

Most physical systems possess many degrees of freedom. This requires an extension of our method to
higher spatial dimensions. In general, we must consider anisotropic harmonic trial systems, where the
previous variational parameter 2 becomes a d x d-matrix Q,QW with u,v=1,2,...,d.

8.6.1 Isotropic Approximation
An isotropic trial ansatz
02, = Q% (8.65)

can give rough initial estimates for the properties of the system. In this case, the nth-order smearing
formula (8.35) generalizes directly to

n

n h3
(Al [r] >ra . Q(lr )H l/o dTl/ddzl Vint(zz)] = 1 - exp —% Z Zy; a];ﬁ Z

- of(r, iy n+1ldet a? k,1=0
(8.66)
with the d-dimensional vectors z; = (217, 221, - - - , z1) T - Note, that Greek labels y,v,...=1,2,...,d
specify spatial indices and Latin labels k,[,... = 0,1,2,...,n refer to the different imaginary times.

The vector zg denotes r,, the matrix a? is the same as in Section 8.4. The harmonic density reads

d
1 1
o3 (r) = e yd P |~ Z ZEZ . (8.67)
) Qoo =1

(2mag,
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8.6.2 Anisotropic Approximation

In the discussion of the anisotropic approximation, we shall only consider radially-symmetric potentials
V(r) = V(|r|) because of their simplicity and their major occurrence in physics. The trial frequencies
decompose naturally into a radial frequency 2 and a transversal one Qp (see Ref. [4]):

xu malj xu malj
02, =02 ,; + Q2 <5W— ‘;2 ) (8.68)

a a

with 7, = |ry|. For practical reasons we rotate the coordinate system by X, = U x,, so that T, points
along the first coordinate axis,

= _ = Tas p=1,
(ra)u = Zuo = { 0’ 9 < i < d, (869)
and rotated Q2-matrix is diagonal
Q2 0 0 0
0 Q% 0 0
@=| 0 00 0 [_poy-1 (8.70)
0 0 0 02

After this rotation, the anisotropic nth-order smearing formula in d dimensions reads
(27T) d(n+1)/2 n

hB
(AL hin = g [ / dn / d'z th(|zl|)] (det a2) ™22 (det a2) 4=/

Q
%" (Ta)
1 & 1 .
_ _9_ _ _2_
X exp —3 Z ZRALy F10 0 eXP Y 5 Z Z ZukOT ) Zul ¢ - (8.71)
k,l=0 u=2k,l=1
The components of the longitudinal and transversal matrices a? and a3 are

aly = ai(te,m),  afyy = ap(me, m), (8.72)

where the frequency €2 in (8.36) must be substituted by the new variational parameters 2y, Qr, re-
spectively. For the harmonic density in the rotated system Q(? BT (t), which is used to normalize (8.71),

we find
1 1 <
QL T =2
T exp T — . (8.73)
\/277%00 \/ (27aigq) 4™ l 2aj o 2a2T00 Z

8.7 Applications

By discussing the applications, we shall employ for simplicity natural units with A =kp = M = 1. In
order to develop some feeling how our variational method works, we approximate at first the particle
density in the double-well potential in second order. After that we approximate the temperature-
dependent electron density of the hydrogen atom in first order.

8.7.1 The Double Well

A detailed analysis of the first-order approximation shows that the particle density in the double-well
potential is nearly exact for all temperatures if we use the two variational parameters Q2 and z,,,
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whereas one variational parameter Q2 leads to larger deviations at low temperatures and coupling
strengths. For such conditions, leading to a maximum of the density far away from origin z, = 0, the
displacement of the trial oscillator x,, may not be supposed to vanish. Considering that, our first-order
results improve those obtained in Ref. [58]. Since the differences between the optimization procedures
using one or two variational parameters become less significant in higher orders, the subsequent second-
order calculation is restricted to the optimization in 2.

First-Order Approximation

In the case of the double-well potential

1 1 1
V(z) = —§w2x2 + Zgw4 + i (8.74)

with coupling constant g, we obtain for the expectation of the interaction (8.39) to first order, also
setting w? =1,

. 1 1 1
(Aing[7] >¥a;; = 5590 + iglcél)Hl <(l“a —Tm)/ 2“(2)0) + ZQQCEZ)HZ ((l"a — Tm)/ 2a(2)0>

1 1
+§ggcéS)H3 ((:ra — )/ 2a80) + Eg40[(34)H4 ((xa —Zm)/ 2a30> (8.75)

with
3 1 1 1
go = —ag(Q*+ 1)+ 59030 +3gagory, + 5955;1;1 + 2 555371-,
3
g1 = —\/2a8oTm + ZQ(QG%O)S/me + 91/ 205077
g2 = —ape(Q® + 1) + 3gagy + 3gagrr,,
g3 = 9(2a30)* *m,
g1 = gago.
Inserting (8.75) in (8.45), we obtain the unnormalized double-well density
1
~ Q,x Q,z
T () = exp|—pW;> ™ 8.76
oy (a) N xXp[—BW; " (24)] (8.76)
with the first-order effective classical potential
1, sinhpQ  Q 61 .
WTm () = st B(wa — @)’ tanh - + 3 (Ame[a] Yo . (8.77)

After optimizing ng "™ (1,), the normalized first-order particle density o;(z,) is found by dividing
01(x4) by the first-order partition function

+oo
1
4= / dza exp[—BW: (24)]. (8.78)

Subjecting W,"*™ (z,) to the extremality conditions (8.21), we obtain optimal values for the variational
parameters Q2(z,) and x,,(x,). Usually there is a unique minimum, but sometimes this does not exist
and a turning point or a vanishing higher derivative must be used for optimization. Fortunately,
the first case is often realized. Figure 8.2 shows the dependence of the first-order effective classical
potential Wlﬂ’mm (zq) at =10 and g = 0.4 for two fixed values of position x, as a function of the
variational parameters Q2(z,) and 2, (7,) in a three-dimensional plot. Thereby, the darker the region

Q,xm

the smaller the value of W;"*™. We can distinguish between deep valleys (darkgray), in which the



8.7 Applications 121

FIGURE 8.2: Plots of the first-order approximation WlQ m (14) to the effective classical potential as a function
of the two variational parameters Q2(,), Tm(zs) at g = 0.4 and 8 = 10 for two different values of 4.

global minimum resides, and hills (lightgray). After having determined roughly the area around the
expected minimum, one solves numerically the extremality conditions (8.21) with some nearby starting
values, to find the exact locations of the minimum.

The example in Fig. 8.2 gives an impression of the general features of this minimization process.
Furthermore we note that for symmetry reasons,

T (Ta) = —Zm(—24), (8.79)
and
Q% (24) = O (~124)- (8.80)

Some first-order approximations to the effective classical potential Wi (z,) are shown in Fig. 8.3, which
are obtained by optimizing with respect to Q%(x,) and z,,(z,). The sharp maximum occurring for
weak-coupling is a consequence of a nonvanishing 2, (2, = 0). In the strong-coupling regime, on the
other hand, where 2, (2, = 0) & 0, the sharp top is absent. This behavior is illustrated in of Figs. 8.4b)
and 8.5b) at different temperatures.

The influence of the center parameter x,, diminishes for increasing values of g and decreasing height
1/4g of the central barrier (see Fig. 8.3). The same thing is true at high temperatures and large values
of x,, where the precise knowledge of the optimal value of x,, is irrelevant. In these limits, the particle
density can be determined without optimizing in z,,, i.e. setting simply z,, = 0, where the expectation
value (8.75) reduces to

1 1
(Aucla])] ., = 105 Ho (ma/ 2a30> (91 + 392) + 75 92 o H, (a:a/ 2a30>

1 3
+6 (591 + 792 + gs) : (8.81)
with the abbreviations
1
g1 = _a30(92 + 1)7 g2 = gaéo-, g3 = E

Inserting (8.81) in (8.45) we obtain the unnormalized double-well density

5,2(wa) = ;ﬂ — cxpl =W () (8.82)
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FIGURE 8.3: First-order approximation to the effective classical potential, Wi(z,), for different coupling
strengths ¢ as a function of the position z, at 3 = 10 by optimizing in both variational parameters Q2, .,
(solid curves) in comparison with the approximations obtained by variation in Q only (dashed curves).

with the first-order effective classical potential

Q 1
+ _1'2 tanh B— + = <-Aint [w] >§a7$a .

1 N sinh g Q
B B 2 B

W(z,) = 51 (8.83)

The optimization at z,, = 0 gives reasonable results for moderate temperatures at couplings such as
g = 0.4, as shown in Fig. 8.6 by a comparison with the exact density, which is obtained from numerical
solutions of the Schrodinger equation. An additional optimization in z,, cannot be distinguished on
the plot. An example, where the second variational parameter z,, becomes important, is shown in
Fig. 8.7, where we compare the first-order approximation with one () and two variational parameters
(Q, x,,,) with the exact density for different temperatures at the smaller coupling strength g = 0.1.
In Fig. 8.4 we see that for z, > 0, the optimal z,,-values lie close to the right hand minimum of the
double-well potential, which we only want to consider here. The minimum is located at 1/ Vg9 = 3.16.
We observe that, with two variational parameters, the first-order approximation is nearly exact for all
temperatures, in contrast to the results with only one variational parameter at low temperatures (see
the curve for 8 = 20 in Fig. 8.7).

Second-Order Approximation

In second-order variational perturbation theory, the differences between the optimization procedures
using one or two variational parameters become less significant. Thus, we restrict ourselves to the
optimization in (z,) and set z,, = 0.

The second-order density

~ Q _ 1 Q
02 (¥a) = —5=5 X[ Wy (2a)] (8.84)
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FIGURE 8.4: a) Trial frequency Q2(x,) at different temperatures and coupling strength g = 0.1. b) Minimum
of trial oscillator xm(z4) at different temperatures and coupling g = 0.1.
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FIGURE 8.5: a) Trial frequency Q%(z,) at different temperatures and coupling strength ¢ = 10. b) Minimum
of trial oscillator xm,(z,) at different temperatures and coupling g = 10.

with the second-order approximation of the effective classical potential

1. sinhpQ  Q 6 1 Q 1 Q
Q _ 2 _ AT
WQ (.’L'a) = 5 In 6T —+ Bl'a tanh 7 =+ B <v41nt [ZE] >-Ta7ll‘a QB <"4int [CU] >:L‘a,1‘a,c (885)
requires evaluating the smearing formula (8.33) for n = 1, which is given in (8.81) and n = 2 to be
calculated. Going immediately to the cumulant we have

B B
1
(Abel] >$a,xa,c = /dTl/de {Z(QZ + 1)? [Io2(71, 72) — Ia(71) 2 (72)]
0 0
1 1
—19(92 + 1) [L2a(71, 72) — I2(11) La(72)] + 1_692 [Laa(71, 72) = La(71)La(72)] } (8.86)
with
om 32 + 2402, 7
I (k) = (ago — ag)™ 7= €xp [ Ok } . k=12 8.87
00 TORTgym 2ago(ago — agy) j=0 (557
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FIGURE 8.6: First-order approximation of the double-well particle density for 8 = 10 and g = 0.4 compared
with the exact particle density in a double well from numerical solution of the Schrédinger equation. All values
are in natural units.

01(q)
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FIGURE 8.7: First-order particle densities of the double well for ¢ = 0.1 obtained by optimizing with respect
to two variational parameters Q2, z., (dashed curves) and with only % (dash-dotted) vs. exact distributions
(solid) for different temperatures. The parameter =, is very important for low temperatures.
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QQ(xa)
7 \
5 // \
0.2 L_== \ |
0.25
\
\
B \ ]
0.1 \
\\
\ \
\
0.0 ‘ ‘
0.0 1.0 Tq 2.0 3.0

FIGURE 8.8: Second-order particle density (dashed) compared with exact results from numerical solutions of
the Schrodinger equation (solid) in a double well at different inverse temperatures. The coupling strength is
g =0.4.

and

Im"(’l'l, TQ) = (—det A)

o P
min O O { (1. J2) (8.88)

951" 073 2ag,(det A)? } j1=72=0
det A = afy + 2ag,a55035 — ago(agy + agy + afy).
The generating function is

F(j1,j2) = ago(43 +43) — 2ad0(agij1 + afaja)Ta + 2ad0(aiaiiiz + (agy + ags + als)(agijr + agajz)Ta)
—(ag1J1 + adoj2)(adii1 + adojz + 4agagyai,za). (8.89)

All necessary derivatives and the imaginary time integrations in (8.86) have been calculated ana-
lytically. After optimizing the unnormalized second-order density (8.84) in Q we obtain the results
depicted in Fig. 8.8. Comparing the second-order results with the exact densities obtained from nu-
merical solutions of the Schrodinger equation, we see that the deviations are strongest in the region
of intermediate 3, as expected. Quantum mechanical limits are reproduced very well, classical limits
exactly.

8.7.2 Distribution Function for the Electron in the Hydrogen Atom

With the insights gained in the last section by discussing the double-well potential, we are prepared to
apply our method to the electron in the hydrogen atom, which is exposed to the attractive Coulomb
interaction

V() =——. (8.90)

Apart from its physical significance, the theoretical interest in this problem originates from the non-
polynomial nature of the attractive Coulomb interaction. The usual Wick rules or Feynman diagrams
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do not allow to evaluate harmonic expectation values in this case. Only by the aid of the above-
mentioned smearing formula we are able to compute the variational expansion. Since we learned from
the double-well potential that the importance of the second variational parameter r,, diminishes for
a decreasing height of the central barrier, it is sufficient for the Coulomb potential with an absent
central barrier to set r,, = 0 and to take into account only one variational parameter Q2. By doing so
we will see in the first order that the anisotropic variational approximation becomes significant at low
temperatures, where radial and transversal quantum fluctuations have quite different weights. The
effect of anisotropy disappears completely in the classical limit.

Isotropic First-Order Approximation

In the first-order approximation for the unnormalized density, we must calculate the harmonic expec-
tation value of the action

hB
A 1] = / d71 Vet (£(m) (8.91)
0
with the interaction potential
ez 1 T 3
‘/int(r> = — 7 + 5[‘ Q r y (892)

where the matrix 7, has the form (8.68). Applying the isotropic smearing formula (8.66) for n =1
to the harmonic term in (8.91) we easily find

4 o4 4
(o)) —pthozaby ab s (5.9
fta ado g0

For the Coulomb potential we obtain the local average

2 Q 2 2 2
< _c > — e_a_go erf ; a‘il —7, | - (8.94)
r(11) /porn  Ta Qo1 2ag0(agy — agy)

The time integration in (8.91) cannot be done in an analytical manner and must be performed numer-
ically. Alternatively we can use the expansion method introduced in Section 8.5.1 for evaluating the
smearing formula in three dimensions, which yields

—ra/2ag0 H /242

€ T a 2

(Aint[r] >?a7ra = [Qg(ra)] ! Z 2n41(Ta/ 00 an)/dnyint( 2ag0y)e™" Hany1(y)-
-0 5

m2ator, 22041 (2n 4 1)!
(8.95)
This can be rewritten in terms of Laguerre polynomials L¥(r) as
/ 2%0 o)
< int [I‘ ra,rq p— g 2n + 1 B H2n+1 TQ/ 2@00
x / dy y' Ving < 203,y /2> e VLY 2 () Ly (1) (8.96)

0

Using the integral formula [62, Eq. 2.19.14.15]

(1 + V)m()‘ —a+ l)nF(O‘)

minlc

o0
/dm e LY (cx) L) (cx) = sFay(—m,a, a0 — Ny + 1, — A —n; 1),
0

(8.97)
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FiGURE 8.9: Radial distribution function for an electron—proton pair at different temperatures. The first-
order results obtained with isotropic (dashed curves) and anisotropic (solid) variational perturbation theory
are compared with Storer’s numerical results [63] (dotted) and an earlier approximation derived from the
variational effective potential method to first order in Ref. [55] (dash—dotted).

where the («), are Pochhammer symbols, pFy(a1,. .., ap;b1,...,bg x) denotes the confluent hyper-
geometric function, and I'(x) is the Gamma function, we apply the smearing formula to the interaction
potential (8.92) and find

2 K (=D)"2n =D o
(Ale] )2, = = 30 L0 (v 2080
4 n=0 '

3 1 0 1 2
—Z\/Qagoﬂ‘ia {C[(;)Hl(rq/ 2a30)+gcg>H3(ra/ zago)}. (8.98)

The first term comes from the Coulomb potential, the second from the harmonic potential. Inserting
(8.98) in (8.17), we compute the first-order isotropic form of the radial distribution function

g(r) = V/27B a(r). (8.99)
This can be written as
91 (ra) = exp[—BW7* (ra)] (8.100)
with the isotropic first-order approximation of the effective classical potential

Q s 1 Q

Wl (ra) = %ln ﬁT + E TZ tanh 7 + B <"4th [r] >!‘a,1‘a ’
which is shown in Fig. 8.9 for various temperatures. The results compare well with Storer’s precise
numerical results [63]. Near the origin, our results are better than those obtained with an earlier
approximation derived from lowest-order effective classical potential Wi(zq) [55].

nh 0 O
3, Sinh g (8.101)
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Anisotropic First-Order Approximation

The above results can be improved by taking care of the anisotropy of the problem. For the harmonic
part of the action (8.91),

Ains[r] = A%[r] + Ac|r], (8.102)

the smearing formula (8.71) yields the expectation value

rg,lq

Q 1
(AT = —5 {atan (O + SCTLalra) o) ) + 20 abun(C) — 8D} (s.109

where the CB L(T)

quency. For the Coulomb part of action, the smearing formula (8.71) leads to a double integral

T / tll-at) )7
(eliling = —¢ [an |2 [ {1“2 [“TOO at _1”
e ] 7TaLoo —aj ] Loo(1 ar)

are the polynomials (8.41) with  replaced by the longitudinal or transverse fre-

2 412
ToAT A
X exXp { 7} (8.104)
2a3 (1 —a})
with the abbreviations
2 2
a a
aj = =%, af = F0 (8.105)
AT.00 A700

The integrals must be done numerically and the first-order approximation of the radial distribution
function can be expressed by

9YE 7 (4) = exp[—BW;H7 (r,)] (8.106)
with
Qr.r 1 sinh BQL 1 sinh BQT QL 2 ﬁ L 1 Qr.r
Wi T () = —=In T 2 g g T TR g2 gy R A e]) 05 8.107
1 ( ) 26 BQL B ﬂQT B 2 6 < t[ ] > a ( )

This is optimized in Qp(r,), Qr(r,) with the results shown in Fig. 8.9. The anisotropic approach
improves the isotropic result for temperatures below 10* K.



