Aus der Abteilung Experimentelle Zahnheilkunde (Leiter: Univ. - Prof. Dr. R. J. Radlanski) der Klinik und Poliklinik für Zahn -, Mund - und Kieferheilkunde des Fachbereiches Humanmedizin der Freien Universität Berlin

Der Haftverbund zwischen einer Kobalt – Chrom – Legierung und Keramik nach Anwendung eines neuen Sol – Gel – Tauchverfahrens zur Oberflächenkonditionierung

Inauguraldissertation zur Erlangung der zahnmedizinischen Doktorwürde am Fachbereich Humanmedizin der Freien Universität Berlin

> vorgelegt von Zahnarzt Detlev Rüdiger Rose aus Görlitz

Referent:PD Dr. rer. nat. R. StrietzelKorreferent:Prof. Dr. G. Sauer

Gedruckt mit Genehmigung des Fachbereiches Humanmedizin der Freien Universität Berlin Klinik und Poliklinik für Zahn -, Mund - und Kieferheilkunde

Promoviert am: 07.09.2001

Widmung

meinen Eltern meinen Lehrern

INHALTSVERZEICHNIS

1	EINLEITUNG	9
2	SCHRIFTUM	11
2.1	Entwicklung der Metall – Keramik –Verbundsysteme	11
2.2	Keramik	12
2.3	Metalle	14
2.4	Theorien zum Haftverbund Metall – Keramik	16
2.4.1	Kontraktionskräfte	17
2.4.2	Mechanische Bindung	18
2.4.3	Adhäsive Bindung	18
2.4.4	Chemische Bindung	18
2.5	Einflußfaktoren auf den Haftverbund	20
2.5.1	Oberflächenvorbehandlung	20
2.5.2	Einfluß des Brandes	20
2.5.3	Elastizitätsmodul	20
2.5.4	Haftvermittler	21
2.5.5	Verarbeitungsfehler	22
2.5.6	Oxidbrand	23
2.6	Verfahren zur Prüfung des Metall – Keramik – Haftverbundes	23
2.7	Sol – Gel – Technik	26
2.7.1	Definition von Solen und Gelen	26
2.7.2	Aufbringen von Schichten mit Hilfe der Sol – Gel – Technik	28
3	MATERIAL UND METHODE	31
3.1	Material	31
3.1.1	Aufbrennfähige NEM – Legierung Wirobond C	31
3.1.2	Verblendkeramik Omega 900	32
3.1.3	Konditionierungsverfahren	34
3.2	Methode	34
3.2.1	Prüfkörper	34
3.2.2	Prüfmethode	35

INHALTSVERZEICHNIS

0 0 0	A sus sus to us	00
3.2.3	Apparatur	30
3.2.4	Verfahren	36
3.2.5	Bestimmung der Scher – Verbundfestigkeit	38
3.2.6	Experimentelle Bestimmung des Elastizitätsmoduls	40
3.3	Durchführung	41
3.3.1	Vorversuche	41
3.3.2	Herstellung der Prüfkörper	44
3.3.3	Oberflächenkonditionierung der Prüfkörper (1. Serie)	45
3.3.4	Aufbrennen der Keramik	46
3.3.5	Lagerung der Prüfkörper	49
3.3.6	Durchführung des SCHWICKERATH – Test	50
3.3.7	Modifikation der Titandioxidbeschichtung (2. Serie)	50
3.4	Oberflächenuntersuchungen	52
3.5	Statistisches Verfahren	55
3.5.1	Mittelwert	55
3.5.2	Median	56
3.5.3	Standardabweichung	56
3.5.4	Variationskoeffizient	56
3.5.5	Prüfstatistik	56
4	ERGEBNISSE	59
4.1	Ergebnisse SCHWICKERATH –Test	59
4.1.1	Scher – Verbundfestigkeit 1. und 2. Serie	59
4.1.1.1	Trockenlagerung	59
4.1.1.2	Naßlagerung	65
4.1.1.3	Thermocycling	70
4.1.1.4	Vergleich der Lagerungsarten	75
4.2	Ergebnisse der oberflächenanalytischen Untersuchungen	78
4.2.1	Ergebnisse der REM – Analyse	78
4.2.2	Ergebnisse der EDX – Analyse	79
5	DISKUSSION	85
5.1	Diskussion des Meßfehlers	85

6

INHALTSVERZEICHNIS

5.1.1	Einfluß der Verarbeitung	85
5.1.2	Eignung der Verfahren	87
5.1.3	Meßfehler des verwendeten Untersuchungsverfahrens	88
5.1.4	Meßfehler der verwendeten Beschichtungsmethode	88
5.2	Diskussion der Meßwerte	89
5.2.1	Schlußfolgerung	92
6	ZUSAMMENFASSUNG	93
6.1	Summery	94
7	LITERATURVERZEICHNIS	97
8	ANHANG	109
8.1	Verwendete Materialien	109
8.2	Verwendete Geräte	110
8.3	Meßwerte	111
8.3.1	Haftverbund	111
8.3.2	EDX – Analyse	135
8.3.3	Elastizitätsmodul	145

7

8 ANHANG

8.1 Verwendete Materialien

- ° Akemi Transparent, Fa. Jean Wirtz (Kunstharz)
- ° Begosol, Fa. Bego (Anmischflüßigkeit)
- ° Carat, Fa. De Trey Dentsply (Isolierflüßigkeit für Keramik)
- ° Metadi II Paste, Fa. Buchler (Diamantpolierpaste)
- ° Korox 110 µm Edelkorund, Fa. Bego
- ° Leit-C, Fa. Neubauer Chemikalien (kohlenstoffhaltige Fixiermasse)
- ° Polyethylenfolienstreifen
- ° Siliziumkarbidschleifpapier 200, 400, 600, 1000, 1200, Fa. Jean Wirtz
- ° Silver paint, Fa. Agar scientific LTD (Leitsilberbahnen)
- ° Sole: ZrO2 (Typ ZTP-A),

Al2O3 (Typ AcAc),

SiO2 (Typ TEOS),

TiO2 (Typ T42 und T43)

- ° Vita Omega 900 Dentin 3M1 (Chargennummer 5241) Fa. Vita
- ° Vita Omega 900 Opaque 3M1 (Chargennummer 5277) Fa. Vita
- ° Vita Omega Opaque Liquid, Fa. Vita
- ° Wachsentspannungsspray Wilanez W 2, Fa. Wiland
- ° Wachsdraht für Gußkanäle, Fa. Bego
- ° Wirobond C (Chargennummer 1300), Fa. Bego
- ° Wirowest, Fa. Bego (Einbettmasse)

ANHANG

8.2 Verwendete Geräte

- ° Bügelfeinmeßschraube, Fa. Helius
- ° Diamantscheibe, Diamantschleifkörper, Hartmetallfräsen, Fa. Komet
- ° EDX-Gerät PV 9100, Fa. EDAX
- ° Gußmuffel Größe 9 und Papiereinlage
- ° Gußtrichterformer für Nautilus T
- [°] Duostar F 2, Fa. Bego (Laborabstrahlgerät)
- ^o Nautilus T, Fa. Bego (Hochfrequenz-Vakuum-Druckgußmaschine)
- Rasterelektronenmikroskop Cambridge-Stereoscan 150 MK 2
- ° Sputtergerät SCD-40, Fa. Balzer Union
- ° Stereoauflichtmikroskop, Fa. Carl Zeiss
- ° Tischschleif- und -poliermaschine TF 250, Fa. Jean Wirtz
- ° Universalprüfmaschine Instron, Modell 6025, Fa. Wolpert
- [°] Vakumat 100, Fa. Vita (Keramikbrennofen)
- ° Vakuumanmischgerät Multivac 4, Fa. Degussa
- ° Vorwärmofen MIHM-Vogt

8.3 Meßwerte

8.3.1 Haftverbund

Meßprotokoll A1

Methode:	Biege - Scher - Versuch nach SCHWICKERATH
Metall:	Wirobond C
Keramik:	Vita Omega 900
Sol - Gel - Konditionierung:	ohne
Lagerungsart:	4 Wochen, 35 °C, trocken

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm -2	in Mpa
1	13,40	3,03	13,27	0,54	3,87	51,34
2	13,30	2,90	13,76	0,54	3,87	53,25
3	13,20	3,00	13,20	0,54	3,87	51,08
4	13,20	3,04	13,03	0,54	3,87	50,41
5	13,40	3,07	13,09	0,54	3,87	50,68
6	13,30	2,91	13,71	0,54	3,87	53,06
7	12,80	3,15	12,19	0,53	4,00	48,76
Mitt	elwert				MPa	51,23
Мес	Jian				MPa	51,08
Min	imum				MPa	48,76
Max	53,25					
Sta	ndardabweic	hung			MPa	1,56
Vari	3,04					

Tab. 8.1Meßwerte und beschreibende Statistik der unbeschichteten
Prüfkörper nach Trockenlagerung

Meßprotokoll A2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 ohne 4 Wochen, 35 °C, naß

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	12,90	2,95	13,12	0,54	3,87	50,77
2	12,50	2,89	12,98	0,54	3,87	50,22
3	12,00	2,96	12,16	0,54	3,87	47,07
4	14,66	3,10	14,19	0,54	3,87	54,90
5	13,90	3,03	13,76	0,54	3,87	53,26
6	10,70	2,94	10,92	0,52	4,14	45,20
7	11,90	3,00	11,90	0,52	4,14	49,27
Mitt	elwert				MPa	50,10
Med	dian				MPa	50,22
Min	imum				MPa	45,20
Max	54,90					
Sta	3,35					
Var	6,69					

Tab. 8.2Meßwerte und beschreibende Statistik der unbeschichtetenPrüfkörper nach 4-wöchiger Lagerung in Wasser

Meßprotokoll A3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 ohne

5000 Thermowechselzyklen

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	11,10	2,95	11,29	0,52	4,14	46,73
2	13,10	2,91	13,51	0,53	4,00	54,02
3	14,00	3,08	13,64	0,53	4,00	54,55
4	14,20	2,95	14,44	0,55	3,75	54,15
5	12,00	2,89	12,46	0,53	4,00	49,83
6	12,40	2,95	12,61	0,54	3,87	48,80
7	13,90	3,24	12,87	0,54	3,87	49,81
Mitt	elwert				MPa	51,13
Мес	dian				MPa	49,83
Min	imum				MPa	46,73
Max	54,55					
Sta	3,09					
Var	6,05					

Tab. 8.3Meßwerte und beschreibende Statistik der unbeschichtetenPrüfkörper nach 5000 Temperaturwechselzyklen

Meßprotokoll B1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Zirkoniumdioxid

4 Wochen, 35 °C, trocken

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	demessen	Prüfkörner	korregiert	Prüfkörner	Koeffizient	festiakeit 7
Nr	in N	h in mm	in N	d in mm	k in mm_2^2	in Mna
INI.				GIITIIII	K III IIIII-	πινιρα
1	11,40	2,95	11,59	0,53	4,00	46,37
2	12,00	3,05	11,80	0,53	4,00	47,21
3	12,40	3,04	12,24	0,53	4,00	48,95
4	12,40	3,15	11,81	0,52	4,14	48,89
5	11,82	2,96	11,98	0,53	4,00	47,92
6	12,50	2,93	12,80	0,53	4,00	51,19
7	12,60	3,06	12,35	0,53	4,00	49,41
Mitt	elwert				MPa	48,56
Мес	dian				MPa	48,89
Min	imum				MPa	46,37
Max	51,19					
Sta	1,58					
Var	3,25					

Tab. 8.4Meßwerte und beschreibende Statistik der mit Zirkoniumdioxid
beschichteten Prüfkörper nach Trockenlagerung

Meßprotokoll B2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Zirkoniumdioxid

4 Wochen, 35 °C, naß

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	12,30	2,97	12,42	0,53	4,00	49,70
2	13,70	3,20	12,84	0,54	3,87	49,71
3	16,30	3,20	15,28	0,58	3,45	52,72
4	15,19	3,05	14,94	0,57	3,54	52,89
5	14,30	3,06	14,02	0,57	3,54	49,63
6	12,60	2,95	12,81	0,57	3,54	45,36
7	15,50	3,20	14,53	0,58	3,45	50,13
Mitt	elwert				MPa	50,02
Мес	dian				MPa	49,71
Min	imum				MPa	45,36
Max	52,89					
Sta	2,50					
Var	5,01					

Tab. 8.5 Meßwerte und beschreibende Statistik der mit Zirkoniumdioxid beschichteten Prüfkörper nach 4-wöchiger Lagerung in Wasser

Meßprotokoll B3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C

Vita Omega 900

Zirkoniumdioxid

5000 Thermowechselzyklen

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-
	aemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festiakeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	13,90	2,90	14,38	0,55	3,75	53,92
2	11,90	2,95	12,10	0,53	4,00	48,41
3	12,30	2,92	12,64	0,53	4,00	50,55
4	12,20	2,80	13,07	0,52	4,14	54,12
5	13,30	3,12	12,79	0,52	4,14	52,94
6	11,50	2,93	11,77	0,52	4,14	48,75
7	11,40	2,90	11,79	0,52	4,14	48,82
Mitt	elwert				MPa	51,07
Med	dian				MPa	50,55
Min	imum				MPa	48,41
Max	54,12					
Sta	2,54					
Var	4,97					

Tab. 8.6Meßwerte und beschreibende Statistik der mit Zirkoniumdioxid
beschichteten Prüfkörper nach 5000 Temperaturwechslzyklen

Meßprotokoll C1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Aluminiumoxid

4 Wochen, 35 °C, trocken

	1					Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm- ²	in Mpa
1	13,10	2,90	13,55	0,55	3,75	50,82
2	12,20	2,90	12,62	0,54	3,87	48,84
3	11,70	2,90	12,10	0,54	3,87	46,84
4	12,40	2,88	12,92	0,56	3,64	47,02
5	12,10	2,97	12,22	0,54	3,87	47,30
6	15,00	3,27	13,76	0,55	3,75	51,61
7	12,20	3,07	11,92	0,54	3,87	46,14
Mitt	elwert				MPa	48,37
Мес	Jian				MPa	47,30
Min	imum				MPa	46,14
Max	51,61					
Sta	ndardabweic	hung			MPa	2,12
Var	4,39					

Tab. 8.7 Meßwerte und beschreibende Statistik der mit Aluminiumoxid beschichteten Prüfkörper nach Trockenlagerung

Meßprotokoll C2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Aluminiumoxid 4 Wochen, 35 °C, naß

-						
Nr.	Kraft F gemessen in N	Breite Prüfkörper b in mm	Kraft F´ korregiert in N	Dicke Prüfkörper d in mm	Koeffizient k in mm- ²	Scher- Verbund- festigkeit τ in Mpa
1	11,10	3,00	11,10	0,52	4,14	45,95
2	11,70	3,10	11,32	0,53	4,00	45,29
3	12,00	3,20	11,25	0,53	4,00	45,00
4	11,40	3,08	11,10	0,53	4,00	44,42
5	9,50	2,90	9,83	0,53	4,00	39,31
6	10,90	3,12	10,48	0,53	4,00	41,92
7	12,40	3,00	12,40	0,55	3,75	46,50
Mitt	elwert				MPa	44,06
Me	dian				MPa	45,00
Min	imum				MPa	39,31
Maximum MPa						
Standardabweichung MPa						
Variationskoeffizient %						

Tab. 8.8Meßwerte und beschreibende Statistik der mit Aluminiumoxid
beschichteten Prüfkörper nach 4-wöchiger Lagerung in Wasser

Meßprotokoll C3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900

Aluminiumoxid

5000 Thermowechselzyklen

						Scher-	
	Kraft F	Breite	Kraft F	Dicke		Verbund-	
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ	
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa	
1	13,80	3,40	12,18	0,54	3,87	47,12	
2	12,20	3,20	11,44	0,53	4,00	45,75	
3	13,10	3,12	12,60	0,54	3,87	48,75	
4	12,00	2,87	12,54	0,54	3,87	48,54	
5	11,70	3,00	11,70	0,53	4,00	46,80	
6	10,60	2,93	10,85	0,53	4,00	43,41	
7	10,40	3,00	10,40	0,53	4,00	41,60	
Mitt	elwert				MPa	46,00	
Мес	dian				MPa	46,80	
Min	imum				MPa	41,60	
Max	48,75						
Sta	Standardabweichung MPa						
Var	iationskoeffiz	zient			%	5,75	

Tab. 8.9Meßwerte und beschreibende Statistik der mit Aluminiumoxid
beschichteten Prüfkörper nach 5000 Temperaturwechselzyklen

Meßprotokoll D1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Siliziumdioxid 4 Wochen, 35 °C, trocken

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-	
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ	
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa	
1	13,00	3,20	12,19	0,54	3,87	47,17	
2	13,56	3,20	12,71	0,55	3,75	47,67	
3	12,00	3,03	11,88	0,54	3,87	45,98	
4	12,80	3,10	12,39	0,54	3,87	47,94	
5	12,00	3,08	11,69	0,54	3,87	45,23	
6	12,20	3,12	11,73	0,54	3,87	45,40	
7	11,00	2,85	11,58	0,54	3,87	44,81	
Mitt	elwert				MPa	46,31	
Мес	Jian				MPa	45,98	
Min	imum				MPa	44,81	
Max	Maximum MPa						
Star	Standardabweichung MPa						
Vari	iationskoeffiz	zient			%	2,73	

Tab. 8.10Meßwerte und beschreibende Statistik der mit Siliziumdioxid
beschichteten Prüfkörper nach Trockenlagerung

Meßprotokoll D2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Siliziumdioxid 4 Wochen, 35 °C, naß

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	11,30	3,00	11,30	0,54	3,87	43,73
2	10,80	2,97	10,91	0,53	4,00	43,64
3	9,90	3,03	9,80	0,53	4,00	39,21
4	9,20	2,87	9,62	0,53	4,00	38,47
5	9,50	2,95	9,66	0,53	4,00	38,64
6	9,60	2,88	10,00	0,53	4,00	40,00
7	11,10	3,20	10,41	0,54	3,87	40,27
Mitt	elwert				MPa	40,57
Med	dian				MPa	40,00
Min	imum				MPa	38,47
Max	43,73					
Sta	2,23					
Var	iationskoeffiz	zient			%	5,49

Tab. 8.11 Meßwerte und beschreibende Statistik der mit Siliziumdioxid beschichteten Prüfkörper nach 4-wöchiger Lagerung in Wasser Meßprotokoll D3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Siliziumdioxid

5000 Thermowechselzyklen

						Scher-		
	Kraft F	Breite	Kraft F	Dicke		Verbund-		
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ		
Nr.	in N	b in mm	in N	d in mm	k in mm- ²	in Mpa		
1	10,00	3,00	10,00	0,53	4,00	40,00		
2	11,47	3,09	11,14	0,54	3,87	43,10		
3	10,70	3,15	10,19	0,53	4,00	40,76		
4	9,70	3,05	9,54	0,53	4,00	38,16		
5	10,90	3,05	10,72	0,53	4,00	42,89		
6	11,10	2,98	11,17	0,53	4,00	44,70		
7								
Mitt	elwert				MPa	41,60		
Мес	Jian				MPa	41,82		
Min	imum				MPa	38,16		
Max	44,70							
Sta	Standardabweichung MPa							
Var	iationskoeffiz	zient			%	5,74		

Tab. 8.12 Meßwerte und beschreibende Statistik der mit Siliziumdioxid beschichteten Prüfkörper nach 5000 Temperaturwechselzyklen

Meßprotokoll E1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Titandioxid 4 Wochen, 35 °C, trocken

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-	
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ	
Nr.	in N	b in mm	in N	d in mm	k in mm-2	in Mpa	
1	12,50	2,98	12,58	0,54	3,87	48,70	
2	13,80	2,90	14,28	0,55	3,75	53,53	
3	11,30	2,78	12,19	0,53	4,00	48,78	
4	13,70	3,22	12,76	0,54	3,87	49,40	
5	11,60	3,05	11,41	0,52	4,14	47,24	
6	13,00	3,10	12,58	0,53	4,00	50,32	
7	12,70	3,20	11,91	0,53	4,00	47,63	
Mitt	elwert				MPa	49,37	
Мес	Jian				MPa	48,78	
Min	imum				MPa	47,24	
Ma>	Maximum MPa						
Sta	ndardabweic	hung			MPa	2,11	
Var	iationskoeffiz	zient			%	4,27	

Tab. 8.13 Meßwerte und beschreibende Statistik der mit Titandioxid beschichteten Prüfkörper nach Trockenlagerung Meßprotokoll E2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Titandioxid 4 Wochen, 35 °C, naß

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prufkorper	korregiert	Prufkorper	Koeffizient	festigkeit r
Nr.	in N	b in mm	in N	d in mm	k in mm- ²	in Mpa
1	14,30	2,96	14,49	0,54	3,87	56,09
2	14,20	3,27	13,03	0,53	4,00	52,11
3	14,90	3,23	13,84	0,53	4,00	55,36
4	11,86	2,88	12,35	0,53	4,00	49,42
5	12,10	2,84	12,78	0,54	3,87	49,47
6	12,70	3,05	12,49	0,54	3,87	48,34
7	12,60	2,98	12,68	0,54	3,87	49,09
Mitt	elwert				MPa	51,41
Мес	dian				MPa	49,47
Min	imum				MPa	48,34
Max	56,09					
Sta	3,18					
Var	iationskoeffiz	zient			%	6,18

Tab. 8.14 Meßwerte und beschreibende Statistik der mit Titandioxid beschichteten Prüfkörper nach 4-wöchiger Lagerung in Wasser Meßprotokoll E3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Titandioxid

5000 Thermowechselzyklen

						Scher-		
	Kraft F	Breite	Kraft F	Dicke		Verbund-		
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ		
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa		
1	12,50	3,05	12,30	0,53	4,00	49,18		
2	13,30	3,06	13,04	0,55	3,75	48,90		
3	13,40	3,05	13,18	0,55	3,75	49,43		
4	13,30	2,97	13,43	0,54	3,87	51,99		
5	11,40	2,79	12,26	0,54	3,87	47,44		
6	12,60	3,27	11,56	0,53	4,00	46,24		
7	14,50	3,05	14,26	0,54	3,87	55,20		
Mitt	elwert				MPa	49,77		
Мес	dian				MPa	49,18		
Min	imum				MPa	46,24		
Max	55,20							
Sta	2,99							
Var	Variationskoeffizient %							

Tab. 8.15 Meßwerte und beschreibende Statistik der mit Titandioxid beschichteten Prüfkörper nach 5000 Temperaturwechselzyklen Meßprotokoll F1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900

Titandioxid, T42, 900 °C

4 Wochen, 35 °C, trocken

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-
Nr.	gemessen in N	Prufkorper b in mm	korregiert in N	Prufkorper d in mm	Koeffizient k in mm- ²	festigkeit τ in Mpa
1	12,84	3,20	12,04	0,54	3,87	46,59
2	13,56	3,05	13,34	0,55	3,75	50,02
3	11,97	2,99	12,01	0,53	4,00	48,04
4	11,10	2,88	11,56	0,53	4,00	46,25
5	13,00	2,90	13,45	0,53	4,00	53,79
6	12,48	3,00	12,48	0,53	4,00	49,92
7	12,09	3,00	12,09	0,53	4,00	48,36
Mitt	elwert				MPa	48,99
Мес	dian				MPa	48,36
Min	imum				MPa	46,25
Max	53,79					
Sta	2,57					
Var	iationskoeffiz	zient			%	5,24

Tab. 8.16Meßwerte und beschreibende Statistik der mit Titandioxid (T42,
900 °C) beschichteten Prüfkörper nach Trockenlagerung

Meßprotokoll F2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Titandioxid, T42, 900 °C 4 Wochen, 35 °C, naß

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-			
Nr.	gemessen in N	b in mm	in N	d in mm	k in mm- ²	in Mpa			
1	10,86	2,88	11,31	0,53	4,00	45,25			
2	11,96	3,00	11,96	0,53	4,00	47,84			
3	10,98	2,95	11,17	0,53	4,00	44,66			
4	13,04	3,03	12,91	0,53	4,00	51,64			
5	11,24	2,85	11,83	0,53	4,00	47,33			
6	14,46	3,18	13,64	0,55	3,75	51,16			
7	13,75	3,02	13,66	0,54	3,87	52,86			
Mitt	elwert				MPa	48,68			
Med	dian				MPa	47,84			
Min	imum				MPa	44,66			
Max	52,86								
Sta	3,24								
Var	iationskoeffiz	Variationskoeffizient %							

Tab. 8.17 Meßwerte und beschreibende Statistik der mit Titandioxid (T42, 900 °C) beschicheten Prüfkörper nach 4-wöchiger Lagerung in Wasser

Meßprotokoll F3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900

Titandioxid, T42, 900 °C

5000 Thermowechselzyklen

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	12,79	2,95	13,01	0,54	3,87	50,34
2	12,23	3,06	11,99	0,54	3,87	46,40
3	11,65	3,12	11,20	0,54	3,87	43,35
4	12,65	2,98	12,73	0,54	3,87	49,28
5	12,19	3,10	11,80	0,54	3,87	45,65
6	12,74	3,15	12,13	0,54	3,87	46,96
7	12,15	2,96	12,31	0,53	4,00	49,26
Mitt	elwert				MPa	47,32
Med	dian				MPa	46,96
Min	imum				MPa	43,35
Max	50,34					
Sta	2,46					
Var	iationskoeffiz	zient			%	5,19

Tab. 8.18 Meßwerte und beschreibende Statistik der mit Titandioxid (T 42, 900 °C) beschichteten Prüfkörper nach 5000 Temperaturwechselzyklen Meßprotokoll G1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900

Titandioxid, T43, 600 °C

4 Wochen, 35 °C, trocken

	Kraft F	Breite	Kraft F'	Dicke		Scher- Verbund-
Nr.	gemessen in N	b in mm	in N	d in mm	k in mm- ²	in Mpa
1	11,26	2,80	12,06	0,52	4,14	49,95
2	12,81	3,03	12,68	0,54	3,87	49,08
3	12,39	2,98	12,47	0,53	4,00	49,89
4	12,57	2,93	12,87	0,53	4,00	51,48
5						
6	11,37	2,99	11,41	0,53	4,00	45,63
7	11,84	2,80	12,69	0,53	4,00	50,74
Mitt	elwert				MPa	49,46
Med	dian				MPa	49,92
Min	imum				MPa	45,63
Max	51,48					
Sta	2,05					
Var	iationskoeffiz	zient			%	4,14

Tab. 8.19 Meßwerte und beschreibende Statistik der mit Titandioxid (T 43, 600 °C) beschichteten Prüfkörper nach Trockenlagerung

Meßprotokoll G2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900 Titandioxid, T43, 600 °C 4 Wochen, 35 °C, naß

		1	1			<u> </u>	
						Scher-	
	Kraft F	Breite	Kraft F	Dicke		Verbund-	
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ	
Nr.	in N	b in mm	in N	d in mm	<u>k in mm-²</u>	in Mpa	
1	12,96	2,94	13,22	0,53	4,00	52,90	
2	13,52	3,00	13,52	0,53	4,00	54,08	
3	10,10	2,82	10,74	0,53	4,00	42,98	
4	13,44	2,90	13,90	0,53	4,00	55,61	
5	14,33	3,18	13,52	0,54	3,87	52,32	
6	13,05	3,00	13,05	0,55	3,75	48,94	
7							
Mitt	elwert				MPa	51,14	
Мес	Jian				MPa	52,61	
Min	imum				MPa	42,98	
Max	55,61						
Sta	Standardabweichung MPa						
Var	iationskoeffiz	zient			%	8,94	

Tab. 8.20 Meßwerte und beschreibende Statistik der mit Titandioxid (T 43, 600 °C) beschichteten Prüfkörper nach 4-wöchiger Lagerung in Wasser

Meßprotokoll G3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Biege - Scher - Versuch nach SCHWICKERATH Wirobond C Vita Omega 900

Titandioxid, T43, 600 °C

5000 Thermowechselzyklen

						Scher-
	Kraft F	Breite	Kraft F	Dicke		Verbund-
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa
1	11,26	3,00	11,26	0,53	4,00	45,04
2	11,62	2,95	11,82	0,53	4,00	47,27
3	12,03	2,90	12,44	0,53	4,00	49,78
4	13,31	2,91	13,72	0,53	4,00	54,89
5	12,26	2,90	12,68	0,53	4,00	50,73
6	11,82	2,91	12,19	0,53	4,00	48,74
7	13,85	3,38	12,29	0,53	4,00	49,17
Mitt	elwert				MPa	49,37
Med	dian				MPa	49,17
Min	imum				MPa	45,04
Maximum MPa S						
Standardabweichung MPa						
Var	iationskoeffiz	zient			%	6,19

Tab. 8.21 Meßwerte und beschreibende Statistik der mit Titandioxid (T 43, 600 °C) beschichteten Prüfkörper nach 5000 Temperaturwechselzyklen Meßprotokoll H1

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Wirobond C Vita Omega 900 Titandioxid, T42, 600 °C,abgestrahlt 4 Wochen, 35 °C, trocken

Biege - Scher - Versuch nach SCHWICKERATH

	Kraft F	Breite Prüfkörper	Kraft F'	Dicke	Kooffiziont	Scher- Verbund- festickeit r	
Nr.	in N	b in mm	in N	d in mm	k in mm- ²	in Mpa	
1	11,78	3,04	11,63	0,55	3,75	43,59	
2	13,29	3,18	12,54	0,53	4,00	50,15	
3	11,12	2,90	11,50	0,53	4,00	46,01	
4	13,43	3,00	13,43	0,55	3,75	50,36	
5	14,90	3,13	14,28	0,55	3,75	53,55	
6	12,13	3,00	12,13	0,53	4,00	48,52	
7	14,73	3,08	14,35	0,55	3,75	53,80	
Mitt	elwert				MPa	49,43	
Med	lian				MPa	50,15	
Min	imum				MPa	43,59	
Maximum MPa							
Standardabweichung MPa							
Variationskoeffizient %							

Tab. 8.22 Meßwerte und beschreibende Statistik der mit Titandioxid (T 42, 600 °C, abgestrahlt) beschichteten Prüfkörper nach Trockenlagerung Meßprotokoll H2

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Wirobond C Vita Omega 900 Titandioxid, T42, 600 °C,abgestrahlt 4 Wochen, 35 °C, naß

Biege - Scher - Versuch nach SCHWICKERATH

						Scher-	
	Kraft F	Breite	Kraft F	Dicke		Verbund-	
	gemessen	Prüfkörper	korregiert	Prüfkörper	Koeffizient	festigkeit τ	
Nr.	in N	b in mm	in N	d in mm	k in mm-²	in Mpa	
1	13,85	3,03	13,71	0,54	3,87	53,07	
2	13,30	3,06	13,04	0,54	3,87	50,46	
3	11,50	2,97	11,62	0,53	4,00	46,46	
4	10,66	2,82	11,34	0,53	4,00	45,36	
5	11,84	2,82	12,60	0,53	4,00	50,38	
6	13,37	3,18	12,61	0,54	3,87	48,81	
7	12,94	2,98	13,03	0,53	4,00	52,11	
Mitt	elwert				MPa	49,52	
Med	lian				MPa	50,38	
Min	imum				MPa	45,36	
Maximum MPa 53,07							
Sta	Standardabweichung MPa 2,83						
Var	ationskoeffiz	zient			%	5,71	

Tab. 8.23 Meßwerte und beschreibende Statistik der mit Titandioxid (T 42, 600 °C, abgestrahlt) beschichteten Prüfkörper nach 4-wöchiger Lagerung in Wasser Meßprotokoll H3

Methode:

Metall:

Keramik:

Sol - Gel - Konditionierung:

Lagerungsart:

Wirobond C Vita Omega 900 Titandioxid, T42, 600 °C,abgestrahlt 5000 Thermowechselzyklen

Biege - Scher - Versuch nach SCHWICKERATH

	Kraft F	Breite	Kraft F	Dicke		Scher- Verbund-
Nr.	gemessen in N	Prüfkörper b in mm	korregiert in N	Prüfkörper d in mm	Koeffizient k in mm- ²	festigkeit τ in Mpa
1	12,10	3,12	11,63	0,53	4,00	46,54
2	11,25	2,80	12,05	0,54	3,87	46,65
3	13,04	2,98	13,13	0,54	3,87	50,80
4	14,38	3,24	13,31	0,55	3,75	49,93
5	13,10	3,17	12,40	0,55	3,75	46,49
6	13,35	2,93	13,67	0,53	4,00	54,68
7	11,54	2,88	12,02	0,53	4,00	48,08
Mitt	elwert				MPa	49,02
Med	lian				MPa	48,08
Min	imum				MPa	46,49
Maximum MPa						
Standardabweichung MPa						
Var	iationskoeffiz	zient			%	6,18

Tab. 8.24 Meßwerte und beschreibende Statistik der mit Titandioxid (T 42, 600 °C, abgestrahlt) beschichteten Prüfkörper nach 5000 Temperaturwechselzyklen

8.3.2 EDX - Analyse

Meßprotokoll EDX - Analyse Metall: Keramik: Sol - Gel - Konditionierung:

Wirobond C Vita Omega 900 ohne

Kontrolle									
	Keramik	Opaker	Keramik- bruchseite	Legierungs- bruchseite	Legierung				
Element	c(100%)	c(100%)	c(100%)	c(100%)	c(100%)				
Со	0,25	0,51	3,55	47,00	61,52				
Cr	0,23	0,77	15,72	21,00	23,75				
Мо	4,07	3,51	2,72	3,45	5,66				
W	1,24	1,02	1,21	3,78	5,05				
Ce	4,08	20,93	20,01	5,86	1,85				
Si	39,67	30,59	17,67	4,32	0,00				
ln	21,84	11,18	10,28	1,94	0,99				
Al	15,19	13,82	13,58	9,16	0,44				
K	7,09	7,85	3,56	0,62	0,00				
Zr	3,50	5,64	6,76	1,70	0,48				
Ti	2,84	4,19	4,94	1,17	-				

Tab. 8.25 EDX - Analyse der Elementeverteilung der Kontrollprobe

Abb. 8.1 Darstellung der Elementeverteilung in der Verbundzone der Kontrollprobe

Abb. 8.2 Konzentrationsgradienten ausgewählter Elemente in der Verbundzone einer unbeschichteten Kontrollprobe

Keramik:

Sol - Gel - Konditionierung:

Wirobond C Vita Omega 900 Zirkoniumdioxid

Zirkoniumaioxia									
	Keramik	Opaker	Keramik-	Legierungs-	Legierung				
			bruchseite	bruchseite					
Element	c(100%)	c(100%)	c(100%)	c(100%)	c(100%)				
Со	0,34	0,43	4,10	55,07	64,77				
Cr	0,33	0,63	18,85	22,44	24,99				
Мо	3,95	3,76	2,30	3,01	4,59				
W	0,52	0,26	0,48	4,19	4,43				
Ce	4,81	15,38	18,64	4,07	0,92				
Si	37,92	32,25	17,98	2,49	0,00				
In	23,36		7,93	0,96	0,11				
Al	15,64	13,25	11,42	4,00	0,09				
K	6,67	8,35	3,91	0,41	0,00				
Zr	3,47	7,61	9,89	2,62	0,06				
Ti	3,00	5,11	4,51	0,75	-				

Tab. 8.26 EDX - Analyse der Elementeverteilung der Zirkoniumdioxidbeschichteten Probe

Abb. 8.3 Darstellung der Elementeverteilung in der Verbundzone der Zirkoniumdioxidbeschichteten Probe

Abb. 8.4 Konzentrationsgradienten ausgewählter Elemente in der Verbundzone einer zirkoniumdioxidbeschichteten Probe

Keramik:

Sol - Gel - Konditionierung:

Wirobond C Vita Omega 900 Aluminiumoxid

Aluminiumoxid									
	Keramik	Opaker	Keramik-	Legierungs-	Legierung				
			bruchseite	bruchseite					
Element	c(100%)	c(100%)	c(100%)	c(100%)	c(100%)				
Со	0,45	0,29	5,69	55,10	63,14				
Cr	0,32	0,28	26,74	21,34	24,59				
Мо	4,16	4,49	2,63	4,07	5,00				
W	1,19	0,64	0,91	4,38	4,91				
Ce	4,95		17,10	3,58	1,31				
Si	37,81	36,73	14,32	2,17	0,00				
ln	22,58	13,28	8,53	1,46	0,40				
Al	15,43	15,97	11,57	5,81	0,30				
K	6,73		2,62	0,25	0,00				
Zr	3,35	3,68	5,74	1,21	0,24				
Ti	3,03	3,21	4,14	0,64	-				

Tab. 8.27 EDX - Analyse der Elementeverteilung der Aluminiumoxidbeschichteten Probe

Abb. 8.5 Darstellung der Elementeverteilung in der Verbundzone der Aluminiumoxidbeschichteten Probe

Abb. 8.6 Konzentrationsgradienten ausgewählter Elemente in der Verbundzone einer aluminiumoxidbeschichteten Probe

Keramik:

Sol - Gel - Konditionierung:

Siliziumdioxid

Siliziuma	IOXIQ				
	Keramik	Opaker	Keramik-	Legierungs-	Legierung
			bruchseite	bruchseite	
Element	c(100%)	c(100%)	c(100%)	c(100%)	c(100%)
Со	0,28	0,58	3,46	56,13	64,44
Cr	0,26	0,84	23,85	21,67	24,81
Мо	3,73	3,48	2,75	4,08	4,75
W	0,81	0,83	0,75	4,55	4,26
Ce	4,27	24,66	17,76	3,53	1,06
Si	39,60	28,63	17,12	1,83	0,00
In	22,05	12,48	9,32	1,19	0,17
Al	15,72	12,78	11,76	5,29	0,20
K	7,16	4,71	2,87	0,18	0,00
Zr	3,13	4,91	5,64	0,92	0,21
Ti	2,99	6,10	4,73	0,63	-

Tab. 8.28 EDX - Analyse der Elementeverteilung der Siliziumdioxidbeschichteten Probe

Abb. 8.7 Darstellung der Elementeverteilung in der Verbundzone der Siliziumdioxidbeschichteten Probe

Wirobond C

Siliziumdioxid

Vita Omega 900

Abb. 8.8 Konzentrationsgradienten ausgewählter Elemente in der Verbundzone einer siliziumdioxidbeschichteten Probe

Keramik: Sol - Gel - Konditionierung: Wirobond C Vita Omega 900 Titandioxid

Titandioxid									
	Keramik	Opaker	Keramik- bruchseite	Legierungs- bruchseite	Legierung				
Element	c(100%)	c(100%)	c(100%)	c(100%)	c(100%)				
Со	0,45	0,35	4,16	56,69	63,07				
Cr	0,26	0,70	22,67	22,31	24,25				
Мо	4,34	3,41	2,70	3,67	5,01				
W	0,87	0,49	1,52	4,56	5,16				
Ce	4,21	22,04	16,05	2,58	1,46				
Si	39,40	29,05	16,28	1,92	0,00				
In	22,10	10,98	9,33	1,25	0,29				
Al	15,07	12,52	11,31	4,37	0,25				
K	7,17	5,51	3,33	0,14	0,00				
Zr	3,19	9,33	5,38	0,84	0,40				
Ti	2,95	5,63	7,27	1,68	-				

Tab. 8.29 EDX - Analyse der Elementeverteilung der Titandioxidbeschichteten Probe

Abb. 8.9 Darstellung der Elementeverteilung in der Verbundzone der Titandioxidbeschichteten Probe

Abb. 8.10 Konzentrationsgradienten ausgewählter Elemente in der Verbundzone einer titandioxidbeschichteten Probe

8.3.3 Elastizitätsmodul

Meßprotokoll A

Legierung:	Wirobond	С
Brände:		0

		Auflagen-	Breite	Dicke	Durch-	Elastizitäts-
	Kraft	weite	Prüfkörper	Prüfkörper	biegung	modul
Nr.	F in N	L in mm	b in mm	d in mm	f in mm	E in Mpa
7	12,70	20,07	3,14	0,55	0,31	158492
8	11,82	20,07	3,14	0,55	0,31	147510
9	12,35	20,07	3,10	0,54	0,31	164947
10	13,37	20,07	3,30	0,54	0,31	167748
11	11,35	20,07	3,17	0,54	0,31	148244
12	11,00	20,07	3,00	0,53	0,31	160570
Mittel	wert		MPa			157919
Media	an		MPa			159531
Minim	num		MPa			147510
Maximum		MPa	1677		167748	
Standardabweichung		MPa			8430	
Variationskoeffizient			%			5,3

Tab. 8.30 Experimentelle Ermittlung des Elastizitätsmoduls der Legierung nach dem Gießen

Meßprotokoll B

Legierung: Wirobond C Brände: 5

		Auflagen-	Breite	Dicke	Durch-	Elastizitäts-
	Kraft	weite	Prüfkörper	Prüfkörper	biegung	modul
Nr.	F in N	L in mm	b in mm	d in mm	f in mm	E in Mpa
1	9,93	20,07	3,08	0,55	0,31	126337
2	9,70	20,07	3,11	0,54	0,31	129137
3	9,54	20,07	2,97	0,55	0,31	125871
4	11,26	20,07	3,08	0,55	0,31	143258
5	8,97	20,07	2,93	0,55	0,31	119966
6	9,96	20,07	2,87	0,54	0,31	143687
Mittel	wert		MPa			131376
Media	an		MPa			127737
Minimum			MPa			119966
Maximum			MPa			143687
Standardabweichung M			MPa			9835
Variationskoeffizient			%			7,5

Tab. 8.31 Experimentelle Ermittlung des Elastizitätsmoduls der Legierung nach 5 simulierten Bränden

DANKSAGUNG

Ich danke ganz besonders Herrn PD Dr. rer. nat. R. Strietzel für die Überlassung des Themas und die Bereitschaft, sich mit den anstehenden Fragen und Problemen zu befassen.

Ich danke den Mitarbeitern der Abteilung Experimentelle Zahn -, Mund - und Kieferheilkunde von Univ. - Prof. Dr. R. J. Radlanski für die Unterstützung bei der Durchführung der Versuche, ganz besonders Frau Bölling bei der Biege – Scherprüfung nach SCHWICKERATH.

Für den Einsatz am REM – und EDX – Gerät sowie die Anfertigung sämtlicher REM – Bilder und Hilfe bei den Analysen möchte ich mich bei Frau Scheidereiter bedanken.

Herrn Norby und seinem Labor danke ich für die Unterstützung bei der Prüfkörperherstellung. Für die Benutzung des Praxislabors bedanke ich mich bei Herrn Dr. Ratzel und Herrn Dr. Schmidt.

Der Firma BEGO – Bremen danke ich für die Bereitstellung der Materialien und Herrn Felde vom IWT – Bremen für die Beschichtung der Prüfkörper.

LEBENSLAUF

Persönliche Daten:

- Vor / Zuname: Detlev Rüdiger Rose
- Geburtsdatum: 06. 06. 1969
- Geburtsort
 Görlitz
- Eltern Helmut Rose und Gisela Rose, geb. Thomas

Schulbildung:

•	1976-1986	Zehnklassige Polytechnische Oberschule,
		Lodenau
•	1986-1989	Berufsausbildung zum Maschinen - und Anlagen -
		monteur mit Abitur, Görlitz / Niesky
•	15.07.1989	Erlangen der Hochschulreife, Facharbeiter
		Maschinen - und Anlagenmonteur für Turbinen -
		bau, Maschinenbau Görlitz

Wehrdienst:

•	1989-1990	Ausbildung zum Offizier auf Zeit für Nachrichten -
		technik, Zittau
•	1990-1991	Nachrichtenoffizier im Panzerregiment 15, Cottbus

Beruflicher Werdegang:

•	01.09.1991-01.06.1992	Erlangen der Hochschulreife im Fach Biologie, Abendgymnasium Niesky
٠	01.01.1992-30.09.1992	Vorpraktikum, Orthopädische Klinik "Martin - Ulbrich - Haus", Rothenburg
•	01.10.1992	Immatrikulation als Student der Zahnmedizien an der Humboldt - Universität zu Berlin, Medizinische Fakultät, Universitätsklinikum Charité
•	12.10.1992-01.04.1995	Vorklinische Ausbildung, Universitätsklinikum Charité
•	01.09.1993	Naturwissenschaftliche Vorprüfung
•	15.03.1995	Zahnärztliche Vorprüfung
•	01.04.1995-15.07.1997	Klinische Ausbildung, Zahnklinik der Charité, Berlin
•	04.08.1996-12.10.1996	Famulatur an der University of the Western Cape, Kapstadt, Südafrika
•	17.11.1997	Zahnärztliche Prüfung, Staatsexamen, Humboldt - Universität zu Berlin
•	24.11.1997	Approbation als Zahnarzt
•	01.01.1998	Assistenzzahnarzt in Berlin - Schöneberg
•	01.09.2000	In eigener Praxis in Berlin - Charlottenburg
•	07.09.2001	Promotion an der Freien Universität Berlin