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Chapter 2

Regularity results for interface
problems for the Laplacian

2.1 Outline

In this chapter we discuss piecewise H s-regularity of interface problems for the Lapla-
cian which holds independently of the number and shape of the subdomains on which
the diffusion coefficient k is constant. Our main interest are H s-regularity results for
s > 1 which hold independently of the bound δ ≤ k ≤ δ−1 of the diffusion coeffi-
cient k. Such regularity holds only in the class of diffusion coefficients satisfying the
quasi-monotonicity condition introduced in [24].
Additionally we give regularity results in Sobolev spaces H s where s explicitly depends
on the bounds of the diffusion coefficient and we show that these results are sharp.
Most of the results given in this chapter were already shown in our recent article [50].
The interface problem will be posed in section 2.2. We restrict ourselves to piecewise
regularity on subdomains because global regularity is limited to H3/2−ε(Ω) for any ε > 0
(section 2.3.2).
In the first part of this chapter we discuss regularity in 2D. We give a short review of the
connection of regularity, singular functions and a Sturm-Liouville eigenvalue problem
(section 2.4.1, 2.4.2). Known regularity results are reviewed in section 2.4.3. Further we
give examples of problems with regularity H s, where s, depending on the geometry,
tends to the values s0 = 1 or s0 = 2 if δ → 0. This demonstrates that large variations of
the diffusion coefficient may lead but do not necessarily lead to low regularity.
We show, that quasi-monotonicity (section 2.5.1) is necessary and sufficient to yield reg-
ularity H1+1/4 that is independent of the global bounds of k and without restrictions on
the number of subdomains. We prove further that this result is optimal. For showing
this we need a lower bound of the eigenvalues of a Sturm-Liouville eigenvalue problem.
This bound is derived by investigating the structure of according eigenfunctions (sec-
tion 2.5.2). In some special situations the bound for the eigenvalues can be improved
further, see section 2.5.3.
The main result, where H5/4-regularity is shown in the quasi-monotone case, is given
in section 2.5.4. We show that the situations covered by known results are special cases
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of our approach. The reader interested in the regularity results may skip the preceding
sections 2.4.1, 2.5.2, 2.5.3.
In section 2.6 we derive piecewise H s-regularity results, where s depends on the global
bounds δ ≤ k ≤ δ−1 of the diffusion coefficient k. For these “worst case” results there
are no restrictions on the structure of the diffusion coefficient imposed, like the quasi-
monotonicity condition. The main result, where regularity H 1+δ/(2 π) is shown, is given
in section 2.6.2. Further we give slightly stronger regularity results being sharp with re-
spect to δ. Sharpness is shown by giving the explicit definition of a special singular func-
tion ψ2 defined on for checkerboard-like pattern of diffusion coefficients δ, δ−1. This
means that the singular function ψ2 has the lowest H s-regularity among all other sin-
gular functions arising from interface problems with the only assumption δ ≤ k ≤ δ−1.
We are able to establish a link between the regularity theory for the quasi-monotone
case and between the theory for the “worst case” introducing additional parameters
depending on the diffusion coefficient (section 2.6.3).
In the second part of this chapter we address regularity in 3D (section 2.7). This result
is based on a decomposition theorem [17]. In 3D-problems vertex and edge singular
functions occur (section 2.7.2 and 2.7.3). As the 3D vertex singular functions are closely
related to 2D singularities, we can use the results derived in 2D in section 2.4.
The bounds on the eigenvalues for the Laplace interface problem are directly applicable
to Maxwell interface problems [17].

2.2 The interface problem for the Laplacian

In this section we will define the interface problem for the Laplacian. Interface problems
for the Laplacian are also known as transmission problems or in the literature coming
from Numerical Mathematics as problems with discontinuous diffusion coefficients.
Let an open, Lipschitz domain Ω ⊂ Rd, d = 2, 3 which is polygonal (polyhedral) be
given. That means that its boundary ∂Ω is piecewise plane. Let its boundary be de-
composed into parts ∂Ω = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅, measd−1(ΓD) > 0, corresponding to
Dirichlet and Neumann boundary conditions. In this chapter we restrict ourselves to
homogeneous boundary conditions. Let f ∈ L2(Ω) be given.
Let us define the space V :=

{
v ∈ H1(Ω) : v|ΓD

= 0
}

. We pose the interface problem in
variational form: seek u ∈ V satisfying:

(2.2.1)
∫

Ω
k(x)∇u(x)∇v(x) dx =

∫
Ω

f(x) v(x) dx ∀v ∈ V .

We make the following assumptions on the diffusion coefficient k: Ω can be partitioned
in disjoint, open, polygonal (polyhedral) Lipschitz subdomains Ωi, i = 1, .., n, on which
the diffusion coefficient has the constant value ki. Additionally we impose the global
bound

(2.2.2) δ ≤ k(x) ≤ δ−1 , x ∈ Ω ,

for a constant δ > 0. Multiplying k by a constant one can assure that both bounds in
(2.2.2) are sharp.
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For a measurable subset Ω′ ⊂ Ωwe will use the Sobolev (semi-)norms

|u|H1(Ω′) := ‖∇u‖L2(Ω′) , |v|2kH1(Ω′) :=
∫

Ω′
k(x) (∇v(x))2 dx .

As measd−1(ΓD) > 0 relation (2.2.2) imply that | · |kH1(Ω) is a norm on V which is
equivalent up to a factor δ with ‖v‖H1(Ω) and hence existence and uniqueness of the
solution of (2.2.1) follow from Riesz’s Theorem [28].

2.3 Notation

We will use Sobolev Spaces of fractional order Hs, s ∈ R, as defined in [1] [30] [40]. If
s ∈ Z , then the Sobolev Space H s coincides with the usual Sobolev Space defined for
integer exponents.
In this chapter we will use the shorter term coefficient instead of diffusion coefficient.
The Sobolev Space Hs(Ω), s > 0, s /∈ N , can be defined as the space of all distributions
with finite norm:

(2.3.1) ‖v‖2
Hs(Ω) := ‖v‖2

Hm(Ω) +
∑

|α|=m

∫
Ω

∫
Ω

|Dαv(x) − Dαv(y)|2
|x − y|d+2σ

dx dy ,

where s = m + σ, m ≥ 0, σ ∈ (0, 1) and Dα denotes the derivatives with respect to the
multi-index α = (α1, .., αd) [30].
We define the interface Γ := Cl(

⋃
i ∂Ωi/∂Ω).

2.3.1 Notation in 2D

We can assume, that for subdomains Ωi,Ωm with measd−1(∂Ωi ∩ ∂Ωm) > 0 it yields
ki �= km. Otherwise define a new subdomains by the union ofΩi andΩm. Here measd(·)
denotes the d-dimensional Lebesgue measure.
To discuss regularity we introduce so-called singular points, which will be subdi-
vided into homogeneous singular points and heterogeneous singular points, depending
on whether the diffusion k is constant in a small neighbourhood or not.

Definition 2.1 A point x ∈ ∂Ω is a homogeneous singular point if in a neighbourhood of x
the diffusion coefficient k is constant and one of the following two conditions holds:

– the interior angle of Ω at x is greater than π

– the boundary conditions change in x and the interior angle of Ω at x is greater than π/2.

Definition 2.2 A point on the interface x ∈ Γ is a heterogeneous singular point if

– either x is an interior point x ∈ Γ/∂Ω and in any neighbourhood of x the interface is not
a straight line

– or x lies on the boundary x ∈ ∂Ω.
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Definition 2.3 If x is a homogeneous or a heterogeneous singular point we call x a singular
point.

Interior heterogeneous singular points are also called crosspoints. In Figure 2.1 several
singular points are depicted.

x1

x2

x7

x5x4

x6

x3 x8

Figure 2.1: Subdomains are shaded with different levels of grey, Dirichlet and Neu-
mann boundaries are shaded differently, xl, l = 1, 2 are homogeneous singular points,
xl, l > 2 are heterogeneous singular points (not all singular points are depicted)

ϕ0 = ϕ5 = ϕnl

ϕ1ϕ2

ϕ3

ϕ4

k0

k1

k2

k3
k4

xl

ϕ0

ϕ1ϕ2

ϕ3

ϕ4 = ϕnl

k0

k1

k2

k3

xl

Figure 2.2: Subdomains Ωl,i coincide with cones Cl,i in a neighbourhood of an interior
(left figure) and a boundary (right figure) heterogeneous singular point x l

Let xl be a heterogeneous singular point. We introduce polar coordinates (r, ϕ) with
respect to xl. We identify the unit sphere with the interval [0, 2π). Similarly the interval
[ϕ1, ϕ2] denotes the cone containing all rays ϕ in between ϕ1, ϕ2, where positive orienta-
tion is assumed. For instance any two intervals [ϕi, ϕj), [ϕj , ϕi) cover the sphere [0, 2π)
in a natural way.
Number the subdomains sharing the singular point xl with Ωl,i, i = 0, .., nl − 1, and
choose a radius rl > 0 such that Ωl,i ∩ Brl

(xl) coincides with a cone Cl,i. The cones Cl,i

are given by the rays ϕi and ϕi+1, i = 0, .., nl − 1 where ϕ0 < ϕ1 < .. < ϕnl−1. This
notation is illustrated with help of Figure 2.2. If xl is an interior point we see ϕnl

= ϕ0.
If not, the rays ϕ0, ϕnl

coincide with a part of ∂Ω. By the sequence ϕ0 < ϕ1 < .. < ϕnl−1

we describe the geometry around the singular point xl.
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We denote by kl,i the value of k on Ωl,i ∩ Bxl
(rl). Now let us define the local diffu-

sion coefficient kxl
(ϕ) on the interval [ϕ0, ϕnl

] that takes the value kl,i on the interval
(ϕi, ϕi+1), i = 0, .., nl−1. For simplification, we may drop the sub-indices l when choos-
ing a singular point xl.
The notation is valid also for homogeneous singular points. There n l = 1.

2.3.2 Restriction to piecewise regularity

In section 2.2 we have shown that the solution of problem (2.2.1) belongs to the Sobolev
space H1(Ω).
We want to discuss regularity of the solution u of problem (2.2.1). First we observe,
that the normal derivatives have a jump discontinuity across the interface. To see this,
choose two adjacent subdomains Ωi,Ωj and let ni, nj be the outward normals to the
interface. Note that ni = −nj .
Due to (2.2.1) the solution u fulfills

(2.3.2) ki
∂u

∂ni
|∂Ωi∩∂Ωj

= kj
∂u

∂nj
|∂Ωi∩∂Ωj

,

where the equality holds in the distributional sense. Since ki �= kj the normal deriva-
tives are discontinuous. Therefore, u /∈ H 3/2(Ω).
In the following we restrict ourselves to piecewise regularity u ∈ H s(Ωi) for i = 0, .., n−
1. Piecewise regularity is important for instance in Finite Element applications.
The following simple lemma establishes a connection between piecewise and global
regularity. Usually from regularity on subdomains H1+λ(Ωi), i = 1, 2 does not follow
regularity on the union of these subdomains H 1+λ(Ω1 ∪ Ω2). This may be true only for
0 ≤ λ < 1/2.

Lemma 2.1 Let the polygonal (polyhedral) Lipschitz domain Ω be decomposed into disjoint
polygonal (polyhedral) Lipschitz subdomains Ω1,Ω2. Let 0 ≤ λ < 1/2, v ∈ H1+λ(Ωi), i = 1, 2
and v ∈ H1(Ω). Then v ∈ H1+λ(Ω).

PROOF. The proof follows from Definition 1.2.4 and Theorem 1.2.16 of [30]. It suffices
to prove that ∇v ∈

(
Hλ(Ω)

)2. Denote by vj,i = ∂v
∂xj

the partial derivatives of v in Ωi.
Since vj,i ∈ Hλ(Ωi), i = 1, 2 and due to the implication given below [30, Thm 1.2.16] one
can extend vj,i by zero to v+

j,i ∈ Hλ(Ω). By Gauss’ theorem one checks ∂v
∂xj

= v+
j,1 + v+

j,2

and hence ∂v
∂xj

∈ Hλ(Ω).

The maximum piecewise regularity one can expect under the condition f ∈ L2(Ω) is
u ∈ H2(Ωi). In general such regularity does not hold for solutions of problem (2.2.1).
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2.4 Regularity in 2D

2.4.1 The Sturm-Liouville eigenvalue problem and regularity

Choose a singular point x. We regard the self-adjoint and positive definite Sturm-
Liouville eigenvalue problem given by

−s(ϕ)′′ = λ2s(ϕ) , ϕ ∈ (ϕi, ϕi+1) , i = 0, .., n − 1 ,(2.4.1)

with the interface conditions on lines ϕ = ϕi that coincide with a part of the interface

s(ϕi − 0) = s(ϕi + 0)
ki−1s(ϕi − 0)′ = kis(ϕi + 0)′

(2.4.2)

and, in case x ∈ ∂Ω, with the boundary conditions

either s(ϕ0 + 0) = 0 or s(ϕ0 + 0)′ = 0
either s(ϕn − 0) = 0 or s(ϕn − 0)′ = 0 .

(2.4.3)

Here we denote by s(ϕi− 0), s(ϕi +0) the left resp. right hand side limit of the function
s in the point ϕi.
If x is an interior singular point, the problem is posed in W = H 1

per([0, 2π]), the sub-
space of H1([0, 2π]) with periodic boundary conditions. In the case of x ∈ ∂Ω define W
as a subspace of H1([ϕ0, ϕn]) with appropriate homogeneous Dirichlet boundary con-
ditions, depending on whether the line ϕ = ϕ0 or ϕ = ϕn coincides with a part of ΓD or
ΓN .
We conclude that the eigenvalues are real and that the spectrum has no point of density
from R. We denote by λ the positive square root of λ2.
The above eigenvalue problem can be rewritten in a simpler form. The general solution
of equation (2.4.1) on an interval [ϕi, ϕi+1] has the form

ei cos(λϕ) + fi sin(λϕ) , ei, fi ∈ R ,

and can be written as
bi cos(λ(ϕ − ci))

for some bi, ci ∈ R. We conclude from (2.4.1), that the Sturm-Liouville eigenvalue prob-
lem (2.4.1), (2.4.2), (2.4.3) is equivalent to the following problem. There are real numbers
bi, ci, i = 0, .., n − 1, such that

s(ϕ) = bi cos(λ(ϕ − ci)) for ϕ ∈ [ϕi, ϕi+1], i = 0, .., n − 1 .

The interface condition reads for i such that the angle ϕ = ϕi coincides with a part of
the interface

bi cos(λ(ϕi+1 − ci)) = bi+1 cos(λ(ϕi+1 − ci+1)) ,

kibi sin(λ(ϕi+1 − ci)) = ki+1bi+1 sin(λ(ϕi+1 − ci+1)) .

For singular points x ∈ ∂Ω the boundary conditions read

either b0 cos(λ(ϕ0 − c0)) = 0 or − b0 sin(λ(ϕ0 − c0)) = 0
either bn−1 cos(λ(ϕn − cn−1)) = 0 or − bn−1 sin(λ(ϕn − cn−1)) = 0 .
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2.4.2 A decomposition theorem

The next lemma establishes a connection between the above Sturm-Liouville eigenvalue
problem and regularity.

Theorem 2.2 For any singular point xl denote by λ2
l,j, j = 1, .., ml all eigenvalues from the

interval (0, 1] of the respective Sturm-Liouville eigenvalue problem (2.4.1), (2.4.2), (2.4.3) and
suppose λ2

l,j �= 1, j = 1, 2, .., ml . Denote with sl,j(ϕ) the according eigenfunctions.
The solution u of (2.2.1) admits a decomposition

(2.4.4) u = w +
∑
xl

ml∑
j=1

cl,j η(rl) rλl,j sl,j(ϕ) ,

where w ∈ H2(Ωi), i = 0, .., ni − 1, and the sum is over all singular points xl. Here cl,j ∈ R
and η(rl) is a smooth cut-off function vanishing outside a neighbourhood of each singular point.
We call a rλl,j sl,j(ϕ) a singular function for the point xl.

PROOF. The proof of the representation (2.4.4) follows from [33, Thm 1] and section 3
of [33] with s = 0. The representation is also given in [43, Thm 2.27] [45].

We see that the regularity of u is restricted by the regularity of the singular functions
rλl,jsl,j(ϕ) /∈ H1+λl,j (Ωi), i = 0, .., nl − 1. Furthermore rλl,j sl,j(ϕ) ∈ H1+λl,j−ε(Ωi), i =
0, .., nl − 1 for any ε > 0. To show this one can use [30, Thm 1.2.18].
The probably first decomposition theorem for the case of a smooth diffusion coefficient
k can be found in [35].

Corollary 2.1 Let γ ∈ (0, 1) be given and let λ2 > γ2 for all nonzero eigenvalues λ2 of the
Sturm-Liouville eigenvalue problem (2.4.1), (2.4.2), (2.4.3) for any singular point x. Then u ∈
H1+γ(Ωi), i = 0, .., n − 1.

PROOF. The corollary follows directly from Theorem 2.2 if all eigenvalues are λ2
l,j

different from 1. If there is an eigenvalue λ2
l,j = 1 then one can rely on [43]. Using the

notation of [43, Cor 2.28] set p0 := 2/(2− γ). As p0 < 2we see that f ∈ L2(Ω) ⊂ Lp0(Ω).
Further γ = 2 − 2/p0 < λ and the assumptions of [43, Cor 2.28] are fulfilled. We
conclude that u ∈ W 2,p0(Ωi ∩ U), where W 2,p0 is the Sobolev space of functions having
all their derivatives (in distributional sense) up to order 2 integrable with the power of
p0. Use of the continuous embedding W 2,p0(Ωi ∩ U) ⊂ H1+γ(Ωi ∩ U) [29, Thm 1.4.4.1]
finishes the proof.

2.4.3 Known regularity results

In this subsection we want to briefly review known regularity results and point out
some open questions.
We conclude from corollary 2.1 that regularity is a local property. In a neighbourhood
U containing no singular point the regularity is u ∈ H2(U ∩Ωi) and in a neighbourhood
of a singular point x the regularity depends on the local diffusion coefficient kx(ϕ), that
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means on the geometry around the singular point and the values of ki. Most of the
known regularity results rely on decomposition theorems like Theorem 2.2.
A simple conclusion of Theorem 2.2 is the following lemma.

Lemma 2.3 Let u be a solution of problem (2.2.1). Then the solution has regularity u ∈
H1+ε(k)(Ω) where ε(k) > 0 depends on k.

PROOF. The proof follows directly from Theorem 2.2. See also [33].

The dependence of ε on k will be given in section 2.6. A similar result covering the case
of more general subdomains can be found in [31].
We classify different geometrical situations for several singular points in Figure 2.1. For
each of the depicted singular points xi in Figure 2.1 we will now discuss regularity.

Regularity for homogeneous singular points

For homogeneous singular points ( i.e. points x1, x2 in Figure 2.1) the following result
is well known:

Lemma 2.4 Let k = 1 and u be the solution of problem (2.2.1). Then for any neighbourhood of a
singular point x ∈ Ux, such that Ux contains no other singular points the solution has regularity
u ∈ H1+1/2(Ux ∩Ω), if the boundary conditions do not change in x, and u ∈ H1+1/4(Ux ∩Ω),
if they do.

PROOF. This is [30, Cor 2.4.4].

The strongest singularity is of type r1/4 cos(λ/4) and occurs in a slit domain with mixed
boundary conditions [30].

Regularity for heterogeneous singular points

Our concern is the regularity for heterogeneous singular points. To get more detailed
results we choose a heterogeneous singular point x and classify the geometrical situa-
tions according to the number of subdomains neighbouring on this singular point. Let
us denote by n the number of domains to whose boundary x belongs and by m the
number of types of boundary conditions. That means that m = 0 if x is an interior point
(points x4, x5, x6 in Figure 2.1). We set m = 1 if x ∈ ∂Ω and the boundary conditions do
not change in x (points x3, x7 from Figure 2.1). If they change, then m = 2 (point x8).
The following results are known:

Lemma 2.5 Let u be the solution of problem (2.2.1). Let x be a heterogeneous singular point
with a neighbourhood U containing no other singular points.
Then, if

n ≤ 3− m

u has regularity u ∈ H1+1/4(Ωi), i = 0, .., n − 1. If n > 3− m then u ∈ H1(Ωi).
If x is an interior singular point and n = 2 then u ∈ H1+1/2(Ωi), i = 0, 1.
These regularity bounds are sharp in the respective class of problems where no restrictions on
k and the geometry are made in the sense that the solution u does not belong to more regular
Sobolev Spaces Hs.
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PROOF. For the case of n = 2, m = 0 see [34] [33] or [56]. The case of n = 3, m = 0 and
n = 2, m = 1 has been studied in [36].
Let us discuss the case n = 4−m. For the case of n = 4, m = 0 Kellogg gives an explicit
solution uε with regularity uε /∈ H1+ε(Ω) for any ε > 0 (see [34]). The solution uε is
discussed in more detail in the following subsection. For the case n = 3, m = 1 and
n = 2, m = 2 a problem can be constructed by restricting the domain of definition of uε.
For the case n > 4− m one can define a function which will be a slight modification of
the function uε.
All of the assertions have been shown recently also in [17].

Related results are given in [61] [18] [39] and for the case of two Lipschitz subdomains
where a different technique has been used in [51].

Examples of singular functions for interior heterogeneous singular points

We want to discuss in more detail the case of an interior heterogeneous singular point
with two and with four adjacent subdomains.
Denote as before by (r, ϕ) the polar coordinates with respect to the singular point lo-
cated at the origin.
In the first example the interface will be an angle [56]. See point x4 of
Figure 2.1 for an example. Let Ω = (−1, 1) × (−1, 1) be decomposed to
Ω2 := {(x, y) ∈ Ω : 0 < ϕ(x, y) < θ}, and Ω1 := Ω/Ω2. The diffusion coefficient is piece-
wise constant:

k(x, y) :=
{
1, for (x, y) ∈ Ω1

k2, for (x, y) ∈ Ω2
.

If k2 > 1, the singular function is given by

(2.4.5) ψ1 := rλ
{
cos(λ(ϕ − θ/2)) for (x, y) ∈ Ω2

β cos(λ(π − |ϕ − θ/2|)) otherwise
,

where λ, β depend on k2. If k2 ≤ 1 the function ψ1 will be regular, i.e. ψ1|Ωi ∈ H2(Ωi)
and the singular function is given by a different function.
A calculation shows that ψ1 ∈ H1+s(Ωi) for s < λ [30, Thm 1.2.18].
In the case of a interface angle θ = π/2, the coefficients λ and β are given by:

λ =
4
π
arctan

(√
3 + k2

1 + 3k2

)
, β = −k2

sin(λπ
4 )

sin(λ3π
4 )

.

In the case θ �= π/2 they are given implicitly [39]. See [39] [44] [45] for numerically
calculated λ.

Example 2.1 Set θ = π/2. Let Ω = (−1, 1)× (−1, 1) and ψ1 be defined as in (2.4.5). As above
set k1 = 1 and take k2 as parameter.

The singular function ψ1(r, ϕ) is illustrated in Figure 2.3 a) for k2 = 100. Here λ ≈ 0.69.
According to the above formula for λ one sees that λ is monotonically decreasing with k2

to the value 3/4. Therefore, the solution of the interface problem belongs to H 1+3/4(Ω)
independently of the jump discontinuity of the diffusion coefficient.
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Figure 2.3: Different singular functions with δ = 0.1, regularity depends on the geom-
etry, a) λ ≈ 0.69, b) λ ≈ 0.99, c) λ ≈ 0.1

Now we show an example where the best regularity result one could get independently
of k is u ∈ H1(Ω). Such situations can occur if in 2D there are more than three subdo-
mains sharing an interior point (see point x5 from Figure 2.1).
Suppose that the interface consists in the vicinity of an interior heterogeneous sin-
gular point of two intersecting lines. Set Ω = (−1, 1) × (−1, 1) and define
Ω1 := {(x, y) ∈ Ω : 0 < ϕ < θ or π < ϕ < θ + π} and Ω2 = Ω/Ω1.
Define ψ2(r, ϕ) = rλs2(ϕ) where

(2.4.6) s2(ϕ) :=


cos(λ(π − θ − c)) cos(λ(ϕ − θ + b)) for 0 ≤ ϕ ≤ θ

cos(λb) cos(λ(ϕ − π + c)) for θ ≤ ϕ ≤ π

cos(λc) cos(λ(ϕ − π − b)) for π ≤ ϕ ≤ π + θ

cos(λ(θ − b)) cos(λ(ϕ − θ − π − c)) for π + θ ≤ ϕ ≤ 2π

,

see [34]. With given coefficients k1, k2, k3, k4 the parameters λ > 0, b, c are chosen in
such a way to satisfy the interface conditions (2.4.2). If 0 < λ < 1 then ψ2 defines a
singular function.
Conversely with given parameters 0 < λ ≤ 1, b, c the coefficients k1, k2, k3, k4 can be
defined (up to a multiplicative constant) by the interface conditions (2.4.2).

Example 2.2 Take Ω = (−1, 1) × (−1, 1) and ψ2 = rλs2(ϕ) , where s2 is defined in (2.4.6).
Set θ = π/2, b = 0.5θ, c = π/2(1 + 1

λ) − b and vary λ as a parameter within (0, 1]. Then
k1 = k3 = − tan(λc) = tan(λb)−1 and k2 = k4 = tan(λb).

The singular function ψ2(r, ϕ) is illustrated in Figure 2.3 c) for λ = 0.1. Here the ratio of
the maximum and the minimum value of k is kmax/kmin ≈ 100. This function has been
defined in [17] too.
In the setting of example 2.2 we see limλ→0 k2/(λπ

4 ) = 1 and k2 = k−1
1 .

Now we want to demonstrate that in general a large ratio kmax/kmin not necessarily
implies low regularity. We can construct a singular function with smoothness H 2−ε

where the ratio kmax/kmin increases to infinity as ε goes to 0:

Example 2.3 Let ε > 0 be given. Take Ω = (−1, 1) × (−1, 1) and ψ = rλs2(ϕ), where s2 is
defined in (2.4.6) . Choose ε > 0. Set λ = 1− ε, θ = π/2, b = ε and c = π/2(1 + 1

λ )− b.
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The coefficients in example 2.3 fulfill k2 < k1 = k3 < k4. An example of such a function
is depicted in Figure 2.3 b) for λ = 0.99. Also in this case kmax/kmin ≈ 100.

Remark 2.1 Examples 2.2 and 2.3 show that the regularity parameter λ where u ∈ H1+s(Ωi)
for any s fulfilling 0 < s < λ ≤ 1 may tend to a value λ0 = 0 or to a value λ0 = 1 if δ−1 → ∞.

2.4.4 Open questions

An open question is whether there are conditions on k such that regularity H s for some
s > 1 is guaranteed and s does not depend on the bounds of k or the geometry. Lemma
2.5 implies the necessity of certain conditions on k in order to guarantee regularity
Hs(Ω) for an s > 1 independent of the bounds of k. Such conditions will be introduced
in the next section 2.3.
A further question is about the lower bound of ε from Lemma 2.3 in terms of the global
bounds of k. We will give an answer to that question in section 2.6.

2.5 The quasi-monotone case

2.5.1 The quasi-monotonicity condition

We define the quasi-monotonicity condition for the diffusion coefficient k. This condi-
tion has been introduced in [24] in the context of Finite Elements. Remember that we
assumed that kl,i �= kl,i+1.
Roughly speaking the quasi-monotonicity condition means that the local diffusion co-
efficient kxl

(ϕ) has only one local maximum. Since kxl
(ϕ) is a function being piecewise

constant on intervals (ϕi, ϕi+1), it has infinitely many maxima. But we agree to identify
all maxima lying in the same interval (ϕi, ϕi+1). If xl ∈ Γ̄D, we demand alternatively
that each maximum touches the Dirichlet boundary ΓD.

Definition 2.4 Let a heterogeneous singular point x be given. The distribution of the coeffi-
cients ki, i = 0, .., n − 1 will be called quasi-monotone with respect to the singular point x, if
the following conditions are fulfilled:
Denote by Ni the indices of cones Cj that are neighbours of the cone Ci that is Ni :={
j : meas1(C̄j ∩ C̄i) > 0, j �= i

}
. The following condition holds

– if x ∈ Ω̄/Γ̄D, there is only one index i such that ki > maxj∈Ni {kj}

– if x ∈ Γ̄D, for each index i such that ki > maxj∈Ni {kj} the measure meas1(C̄i ∩ ΓD ∩
Bx(r)) is positive.

Definition 2.5 The diffusion coefficient k is quasi-monotone if for all singular points x the
distribution of coefficients ki, i = 0, .., n − 1 is quasi-monotone.

Remark 2.2 The quasi-monotonicity of k is necessary for Hs(Ωi)-regularity of solutions of
problem (2.2.1), where s > 1 is independent of k. In the case of an interior heterogeneous
singular point this follows from the local diffusion coefficient defined in example 2.2 that has
two local maxima and is not quasi-monotone. In order define a local diffusion coefficient which
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has any given number (greater than 2) of local maxima slightly perturb the diffusion coefficient
given example 2.2 by enlarging it in parts of the domain, where it takes the lower value. This
will change the singular function from example 2.2 and its low regularity only a little.
In case of a heterogeneous singular point on the boundary a singular function can be constructed
by restricting the domain of definition of the singular function defined in example 2.2.

We give conditions for the quasi-monotonicity conditions to hold without restrictions
on k but with restrictions on the maximum number of subdomains that share singular
points.

Remark 2.3 Choose a heterogeneous singular point x and denote as in section 2.4.3 by n the
number of subdomains Ωi to whose boundary x belongs and by m the number of types of bound-
ary conditions. Then if

n ≤ 3− m ,

then for any values of ki, i = 0, .., n − 1 the distribution of the coefficients ki, i = 0, .., n − 1 is
quasi-monotone with respect to x.
Observe that for exactly these restrictions on the maximum number of subdomains regularity
results with piecewise regularity Hs, s > 1, with s independent of δ, are known (Lemma 2.5).

Thus the distribution of the coefficients kl,i, i = 0, .., nl − 1 is always quasi-monotone
for points x1, x2, x3, x4, x5 from Figure 2.1. For points x6, x7, x8 from Figure 2.1 quasi-
monotonicity depends on k. For instance coefficients k6,0 = k6,2 = 1 and k6,1 = k6,3 =
100 are not quasi-monotonically distributed with respect to the singular point x6.

2.5.2 Quasi-monotonicity bounds eigenvalues from below

In this section we show that if the diffusion coefficient k is quasi-monotone, the eigen-
values of the Sturm-Liouville eigenvalue problem are bounded from below. We precede
the proof of this fact by two technical lemmas.

Lemma 2.6 Let functions ti(ϕ) = bi cos(ϕ − ci), i = 1, 2, be given that fulfill conditions

t1(ϕ1) = t2(ϕ1) and

k1 t′1(ϕ1) = k2 t′2(ϕ1) ,(2.5.1)

for some ϕ1, ki > 0, bi > 0, i = 1, 2.
If one of the following conditions is fulfilled

a) t′1(ϕ1) < t′2(ϕ1)

b) k1 < k2 and ( t′1(ϕ1) < 0 or t′2(ϕ1) < 0 )

then t1(ϕ) ≤ t2(ϕ), ϕ1 ≤ ϕ ≤ ϕ1 + π and t2(ϕ) ≤ t1(ϕ), ϕ1 − π ≤ ϕ ≤ ϕ1.

PROOF. Observe that t2 − t1 = b3 cos(ϕ − c3) for some b3, c3. It is not hard to see that
c3 ∈ {ϕ1 − π/2, ϕ1 + π/2} and we choose c3 = ϕ1 − π/2. Then b3 = (t2 − t1)′(ϕ1) and it
remains to show 0 < b3 = (t2 − t1)′(ϕ1).
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a) If t′1(ϕ1) < t′2(ϕ1) this is obviously true.
b) In this case we conclude from equation (2.5.1)

t′1(ϕ1)
t′2(ϕ1)

=
k2

k1
> 1 .

and that t′1(ϕ1) < 0 and t′2(ϕ1) < 0. This shows t′1(ϕ1) < t′2(ϕ1).

Lemma 2.7 Let numbers 0 = ϕ0 < ϕ1 < ... < ϕn < π/2 and ki, i = 0, .., n − 1 with
0 < k0 ≤ k1 ≤ ... ≤ kn−1 be given. Denote by χ[ϕi,ϕi+1) the characteristic function of the
interval [ϕi, ϕi+1). Further let numbers ci, bi, i = 0, ..., n − 1 be given such that the function

(2.5.2) s(ϕ) =
n−1∑
i=0

bi cos(ϕ − ci) χ[ϕi,ϕi+1) ,

is continuous and its derivatives weighted with ki are also continuous:

bi cos(ϕi+1 − ci) = bi+1 cos(ϕi+1 − ci+1) , i = 0, .., n − 2 ,(2.5.3)

kibi sin(ϕi+1 − ci) = ki+1bi+1 sin(ϕi+1 − ci+1) , i = 0, .., n − 2 .(2.5.4)

Assume c0 = 0 and b0 > 0. Then s(ϕ) > 0 for all ϕ ∈ [0, ϕn].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϕ0 ϕ1 ϕ2 π/2 π

Figure 2.4: Function s from equation (2.5.2) is the upper envelope and depicted with a
continuous line in case of decreasing ki, functions ti are indicated by a dashed line

PROOF. Define auxiliary functions ti(ϕ) := bi cos(ϕ−ci). These functions are illustrated
in Figure 2.4. The idea is that if kj+1 > kj function tj+1 will dominate the function tj on
a interval of length π starting from the point where tj+1 and tj intersect.
Multiplying the function s(ϕ) by a constant we can assure b0 = 1. We want to prove

0 < cos(ϕ) = t0(ϕ) ≤ .. ≤ tj(ϕ) , ϕj ≤ ϕ ≤ ϕn < π/2
t′j(ϕj) ≤ 0

(2.5.5)
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with help of Lemma 2.6 by induction over j = 0, .., n − 1.
For j = 0 inequality (2.5.5) is clearly fulfilled.
Suppose i > 0 and inequality (2.5.5) is fulfilled for j = i−1. Observe that t′i−1(ϕi−1) ≤ 0
and ti−1(ϕ) > 0 for ϕi−1 ≤ ϕ ≤ ϕi implies t′i−1(ϕi) < 0. Condition (2.5.4) then gives
t′i(ϕi) < 0.
Setting in terms of Lemma 2.6 t1 = ti−1, t2 = ti and ϕ1 = ϕi we see that assumption b)
from Lemma 2.6 is fulfilled and obtain ti−1 ≤ ti for ϕ ∈ [ϕi, ϕi + π]. From assumption
0 ≤ ϕi < π/2 we see [ϕi, ϕn] ⊂ [ϕi, ϕi + π]. This together with t′i(ϕi) < 0 finishes the
proof of the induction step (2.5.5) for j = i.

Remark 2.4 Lemma 2.7 could be sharpened to hold also for ϕn ≤ π/2 if n > 1. To show this
use k0 < k1 and show that 0 < c1.

Theorem 2.8 Let an interior heterogeneous singular point x ∈ Ω be given and let the distribu-
tion of the coefficients ki, i = 0, .., n − 1 be quasi-monotone with respect to x. Then the smallest
non-vanishing eigenvalue of the associated Sturm-Liouville eigenvalue problem (2.4.1), (2.4.2),
(2.4.3) is greater than (1/4)2. This bound is sharp.

PROOF. We choose an eigenfunction of the associated Sturm-Liouville eigenvalue prob-
lem with eigenvalue λ2. The eigenfunction has the representation

(2.5.6) s(ϕ) =
n−1∑
i=0

bi cos(λ(ϕ − ci)) χ[ϕi,ϕi+1) ,

where bi, ci ∈ [0, 2π), i = 0, .., n − 1 are real numbers. The eigenfunction s(ϕ) fulfills the
interface conditions

bi cos(λ(ϕi+1 − ci)) = bi+1 cos(λ(ϕi+1 − ci+1)) ,(2.5.7)
kibi sin(λ(ϕi+1 − ci)) = ki+1bi+1 sin(λ(ϕi+1 − ci+1)) .(2.5.8)

The idea of the proof is to show that there is an index j ∈ 0, .., n − 1 such that
s(ϕ) ≥ bj cos(λ(ϕ − cj)) > 0 on the interval [cj , cj + π/(2λ)). Here we need the quasi-
monotonicity condition. Since s(ϕ) vanishes in some points the length of the interval
[cj , cj + π/(2λ)) is bounded by 2π. This yields the bound λ > 1/4.
Let us have a closer look onto s(ϕ). This periodic function is continuous and therefore
achieves a minimum at a point ϕmin and a maximum at ϕmax.
Choose j such that ϕmax ∈ [ϕj , ϕj+1). Possibly substituting cj with cj + π/λ we can
assume bj ≥ 0. The case bj = 0 can be excluded since then the interface condition
imply s ≡ 0 and hence λ = 0. If ϕmax lies (ϕj , ϕj+1) we conclude from bj > 0 that
ϕmax = 2 l π/λ + cj for a number l ∈ N . Possibly redefining cj we may set ϕmax = cj
and we see s(ϕmax) > 0.
If ϕmax = ϕj proceed as follows. Since ϕmax is a maximum it is clear that s(ϕj − 0)′ ≥ 0
and s(ϕj + 0)′ ≤ 0. Condition (2.5.8) implies on the other hand that s(ϕj − 0)′ and
s(ϕj +0)′ cannot have different signs. Hence s(ϕj − 0)′ = s(ϕj +0)′ = 0 and in this case
too it holds cj = ϕmax. From this follows s(ϕmax) > 0.
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Figure 2.5: eigenfunction sλ(ϕ) (black line) for quasi-monotonically distributed k and a
function bj cos(λ(ϕ − cj)) (black dashed line); both functions coincide at the maximum
ϕex of sλ(ϕ); for points ϕzero, ϕ

′ := cj+π/(2λ) holds sλ(ϕzero) = 0, bj cos(λ(ϕ′−cj)) = 0;
since k increases on [ϕex, ϕzero] it holds ϕ′ < ϕzero and we see cj < ϕ′ < ϕzero < cj+2π

Similarly s(ϕmin) < 0 and we conclude that there are at least two points ϕzero,1 and
ϕzero,2 with s(ϕzero,1) = s(ϕzero,2) = 0. Without loss of generality we assume

ϕzero,1 < ϕmax < ϕzero,2 < ϕmin .

Now we exploit the quasi-monotonicity condition. We want to show that the following
property P holds:
There is a extremum ϕex from {ϕmin, ϕmax} and a point ϕzero from {ϕzero,1, ϕzero,2} such that
kx(ϕ) does not decrease when going from ϕex to ϕzero. This means we want to show that
kx(ϕ) is increasing on [ϕex, ϕzero] or decreasing on [ϕzero, ϕex].
To do so denote by [ϕimin

, ϕimin+1), [ϕimax , ϕimax+1) the intervals where kx(ϕ) reaches the
minimum and maximum. The sphere [0, 2π) is then decomposed into two intervals
Idecr := [ϕimax , ϕimin

) and Iincr := [ϕimin
, ϕimax) on which kx(ϕ) is monotone as depicted

in Figure 2.6.
There are two possibilities: a) either there are three points from
{ϕzero,1, ϕmax, ϕzero,2, ϕmin} contained in Idecr or Iincr or b) there are two points
from {ϕzero,1, ϕmax, ϕzero,2, ϕmin} contained in Idecr and Iincr. In Figure 2.6 a possible
distribution of the points ϕzero,1, ϕmax, ϕzero,2, ϕmin in the intervals Idecr and Iincr in case
a) is shown. One notices that in the depicted distribution the diffusion is decreasing
on [ϕzero,1, ϕmax] and property P is fulfilled. For the other (essentially three) possible
distributions of points ϕzero,1, ϕmax, ϕzero,2, ϕmin it is easy to check that property P
holds too.
In case b) points from {ϕzero,1, ϕmax, ϕzero,2, ϕmin} could be distributed like
ϕzero,1, ϕmax ∈ Idecr and ϕzero,2, ϕmin ∈ Iincr. In this special case the function kx(ϕ)
is decreasing on [ϕzero,1, ϕmax] and property P is fulfilled. Other distributions of points
in case b) are checked in the same way to satisfy property P.
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Figure 2.6: local diffusion coefficient kx(ϕ) is piecewise monotone on two intervals
covering the sphere [0, 2π); possible location of points ϕzero,1, ϕmax, ϕzero,2, ϕmin; kx(ϕ)
decreases on [ϕzero,1, ϕmax]

Multiplying by−1 in (2.5.6), rotating the polar coordinate system and possibly reflecting
it on the x-axis we can assure

(2.5.9) 0 = ϕex = ϕmax < ϕzero < 2π .

Remember that kx(ϕ) increases on [ϕex, ϕzero]. If the function sλ(ϕ) vanishes on
[ϕmax, ϕzero) in some point(s), choose ϕ′

zero to be the minimum of these points and re-
define ϕzero := ϕ′

zero.
Choose j such that ϕex ∈ [ϕj , ϕj+1). The function bj cos(λ(ϕ − ci)) is depicted in Figure
2.5 with a dashed line. We show as before cj = ϕex = 0. Further since ϕex is a maximum
bj > 0. Renumbering the points ϕi we may assume j = 0.
Now we are nearly done with the proof. In the last step we restrict the function sλ to
the interval [ϕex, ϕzero] and apply a homogeneous scaling to transform functions

bi cos(λ(ϕ − ci)) to functions b̂i cos(ϕ̂ − ĉi)

which satisfy similar interface conditions and apply Lemma 2.7 to the transformed func-
tions.
Choose the largest m such that ϕm−1 < ϕzero. We introduce an homogeneous transfor-
mation

(2.5.10) F : [0 = ϕex, ϕzero]→ [0, λϕzero] with F (ϕ) := λϕ

and define sF (F (ϕ)) = s(ϕ), ϕ ∈ [ϕex, ϕzero].
Under this transformation we define a sequence ϕ̂0 < ϕ̂1 < ... < ϕ̂m where ϕ̂0 :=
F (ϕex) = 0, ϕ̂i := F (ϕi), 0 < i < m − 1 and ϕ̂m := F (ϕzero).
It follows that sF fulfills

sF (ϕ) =
n−1∑
i=0

b̂i cos(ϕ − ĉi) χ[ϕ̂i,ϕ̂i+1) ,
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and

b̂i cos(ϕ̂i+1 − ĉi) = b̂i+1 cos(ϕ̂i+1 − ĉi+1)

k̂ib̂i sin(ϕ̂i+1 − ĉi) = k̂i+1b̂i+1 sin(ϕ̂i+1 − ĉi+1) ,

for ĉi = λ ci, b̂i = bi, k̂i = ki with i = 0, .., m − 1. Due to the choice of ϕex, ϕzero we have
ĉ0 = 0 and sF (ϕ̂m) = 0with ϕ̂m = λϕzero < λ2π. Further k̂i ≤ k̂i+1, i = 0, .., m − 1.
Suppose λ ≤ 1/4. Thus ϕ̂m < λ2π ≤ π/2 and sF defined on [ϕ̂0, ϕ̂m] with the sequence
0 < ϕ̂1 < ... < ϕ̂m < π/2 fulfills the assumption of Lemma 2.7. We conclude from
Lemma 2.7 that sF does not vanish on [0, ϕ̂m]. But this is a contradiction with sF (ϕ̂m) =
0 and hence 1/4 < λ.
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Figure 2.7: eigenfunction s3(ϕ) for ε = 0.5 defined piecewise by functions bi cos(λ(ϕ −
ci)) , i = 0, 1, 2; here λ is close to 1/4

From the above proof it is not hard to see how to construct an eigenfunction s3(ϕ) with
eigenvalue λ2 arbitrarily close to (1/4)2. We see in the following example that λ → 1/4
when the interior angle of a subdomain tends to 2π.
Choose ε > 0 and n = 3. The idea is to construct an eigenfunction s3(ϕ) as depicted in
Figure 2.5.2. The interval (ϕ0, ϕ1) will have length of order 2π − O(ε) and k0 = 1. The
other two intervals will have length O(ε) and k1 = O(ε−1), k2 = O(ε). The constructed
eigenfunction will have the eigenvalue λ2 where λ := π/2

2π−4ε → 1/4 as ε → 0.
For the interested reader we will give the details below: Define ϕ0 = −ε, ϕ1 = 2π − 3ε.
The remaining parameter ϕ2 will be defined below. The aim is define a function that
achieves a maximum at ϕ = 0 and vanishes at ϕ = 2π−4ε and ϕ = 2π−2ε. Furthermore
a minimum is attained in ϕ ∈ (ϕ1, ϕ2).
To do so set c0 = 0, b0 = 1. Define c2, b2 in such a way that cos(λ(ϕ − c2)) vanishes in
ϕ = 2π − 2ε and that b2 cos(λ(ϕ − c2)) = cos(λϕ) for ϕ = ϕ0.
Further choose ϕ2 > ϕ1 such that cos(λ (ϕ2 − c2)) = cos(λ (ϕ1 − c0)) . Set c1 =
0.5 (ϕ1 + ϕ2) and b1 = − cos(λ(ϕ1 − c0))/ cos(λ(ϕ1 − c1)).
The definition of the eigenfunction s3 is finished by setting k0 = 1 and choosing k1, k2

in such a way that interface conditions for the derivatives (2.5.8) are fulfilled.
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Theorem 2.9 Let a heterogeneous singular point x ∈ ∂Ω on the boundary be given and let the
distribution of the coefficients ki, i = 0, .., n − 1 be quasi-monotone with respect to x.
Then the smallest non-vanishing eigenvalue λ2 of the associated Sturm-Liouville eigenvalue
problem (2.4.1), (2.4.2), (2.4.3) fulfills (14)

2 < λ2. This bound is sharp.

PROOF. The proof runs similar to that of Theorem 2.8. The eigenfunction of the associ-
ated Sturm-Liouville eigenvalue problem with eigenvalue λ2 has the representation

s(ϕ) =
n−1∑
i=0

bi cos(λ(ϕ − ci)) χ[ϕi,ϕi+1) ,

where χ[ϕi,ϕi+1) denotes the characteristic function of the interval [ϕi, ϕi+1) and bi, ci, i =
0, .., n−1 are real numbers. The eigenfunction s(ϕ) has to fulfill the interface conditions
for i = 0, .., n − 2

bi cos(λ(ϕi+1 − ci)) = bi+1 cos(λ(ϕi+1 − ci+1))(2.5.11)

kibi sin(λ(ϕi+1 − ci)) = ki+1bi+1 sin(λ(ϕi+1 − ci+1))(2.5.12)

and some boundary conditions that will be specified later.
Since we deal with two different boundary conditions there are three possibilities how
to combine them. We will treat each case separately. In any case s(ϕ) is not a constant
function. Denote by F1, F2 parts of the boundary on both sides of x ∈ ∂Ω ∩ Bx(r).
Case I. F1 ⊂ ΓD, F2 ⊂ ΓD
We deduce that there exists a local extremum ϕex of the function s(ϕ) and multiplying
s(ϕ) by −1we may assume that ϕex is maximum. We choose j such that ϕex ∈ [ϕj , ϕj+1)
and show as in the proof of Theorem 2.8 that cj = ϕex. The quasi-monotonicity con-
dition implies now that kx(ϕ) is monotonically increasing on [ϕex, ϕn] or decreasing on
[ϕ0, ϕex]. We may suppose without loss of generality that kx(ϕ) is increasing on [ϕex, ϕn]
and since s(ϕn) = 0we may define ϕzero := ϕn.
By rotation of the coordinate system we can assume

(2.5.13) 0 = ϕex < ϕzero ≤ θ < 2π ,

where θ is the interior angle of Ω at x. Possibly redefining ϕzero we can assure s(ϕ) > 0
for ϕ ∈ [ϕex, ϕzero].
Choose m such that ϕj+m−1 < ϕzero.
We transform the sequence ϕex < ϕj+1 < ... < ϕj+m−1 < ϕzero < θ with the affine
transformation defined in (2.5.10) and obtain a new sequence ϕ̂0 < ϕ̂1 < ... < ϕ̂m where
ϕ̂0 = 0, ϕ̂i = F (ϕi+j) = λϕi+j , 1 < i < m − 1 and ϕ̂m = F (ϕzero) = λϕzero.
Suppose λ ≤ 1

4 . Defining sF (F (ϕ)) := s(ϕ) we obtain a scaled function which fulfills
the modified conditions (2.5.11) and (2.5.12) that is

b̂i cos(ϕ̂i+1 − ĉi) = b̂i+1 cos(ϕ̂i+1 − ĉi+1)

k̂ib̂i sin(ϕ̂i+1 − ĉi) = k̂i+1b̂i+1 sin(ϕ̂i+1 − ĉi+1) ,

for ĉi = λ ci, b̂i = bi+j and k̂i = ki+j with i = 0, .., m − 1. Further ĉ0 = 0, sF (0) > 0 and
sF (ϕ̂m) = 0with ϕ̂m ≤ λθ ≤ 1

4θ < π/2 and k̂i ≤ k̂i+1, i = 0, .., m − 1.
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Hence sF fulfills the assumption of Lemma 2.7 and it follows that sF does not vanish
on [0, ϕ̂m]. But this is a contradiction since sF vanishes at ϕ̂m.
Case II. F1 ⊂ ΓN , F2 ⊂ ΓD
Suppose that the Dirichlet conditions are set on the angle ϕn. Define ϕex = ϕ0 and
ϕzero = ϕn. The quasi-monotonicity condition implies that the local diffusion coeffi-
cient kx(ϕ) has not more than one local maximum [ϕi, ϕi+1] and this local maximum is
achieved for i = n − 1. Hence kx(ϕ) is monotone increasing on [ϕex, ϕzero].
It follows from k ∂u∂n = 0 at ϕ = ϕex that cj = ϕex. Using remark 2.4 we show as in the
case I that 1

4 < λ.
Case III. F1 ⊂ ΓN , F2 ⊂ ΓN
Set ϕex,1 = ϕ0 and ϕex,2 = ϕn. As in case II we conclude c0 = 0 and cn−1 = ϕn. Denote
by ϕzero a point where s(ϕ) vanishes. The quasi-monotonicity condition implies that
the local diffusion coefficient kx(ϕ) has not more than one local maximum [ϕj , ϕj+1].
Using the quasi-monotonicity property we show that there is an number ϕex ∈
{ϕex,1, ϕex,2} such that kx(ϕ) increases monotonically, when going from ϕex to ϕzero.
If ϕzero < ϕj then kx(ϕ) is monotonically increasing on [ϕ0, ϕzero] and ϕex := ϕ0. Other-
wise kx(ϕ) is monotone decreasing on [ϕzero, ϕn] and ϕex := ϕn. We may suppose that
the first case holds. The remainder of the proof is similar to case II and we show λ > 1

4 .
To prove sharpness we use the example from the proof of Theorem 2.8. Denote by I the
closure of the supportmax {0, s3(ϕ)}. We define the eigenfunction s4(ϕ) := s3(ϕ) on I .
This eigenfunction has the eigenvalue λ = π/2

2π−4ε .

Remark 2.5 Denote by θ the interior angle of Ω at x ∈ ∂Ω. Under assumptions of Theorem 2.9
and using the bound θ < 2π in inequality (2.5.13) it is not hard to show the improved bound(

2π
4θ

)2
< λ2. Similarly one could derive better estimates for the lowest non-vanishing eigenvalue

in Theorem 2.8 if one substitutes in equation (2.5.9) 2π by θ, where θ is the length of the largest
interval on which kx(ϕ) is monotone.

2.5.3 Special cases

As pointed out in remark 2.5 one can use the above techniques to derive in special situ-
ations sharper bounds of the minimum eigenvalue of the Sturm-Liouville problem. We
illustrate this for the case of three subdomains sharing an interior heterogeneous singu-
lar point and the one of four subdomains and an interface consisting of two intersecting
lines.
Although the interesting case of an interior heterogeneous singular point that belongs to
three subdomains has been already studied independently in [36] [17] we give a proof
which is simple and which slightly extends these results.

Lemma 2.10 Let a heterogeneous singular point x ∈ Ω̄ be given such that if x ∈ Ω, there
are at most three subdomains to whose boundary x belongs. In case of x ∈ ∂Ω there are only
two subdomains x ∈ ∂Ωi and the boundary conditions do not change in x . Let the maximum
interior angle of these subdomains be smaller than θ.
Then the smallest non vanishing eigenvalue of the associated Sturm-Liouville eigenvalue prob-
lem is greater then (π/(2θ))2. This bound is sharp.
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PROOF. The proof is a special case of Theorem 2.8 and Theorem 2.9. Let us first consider
the case x ∈ Ω. Since there are four points

ϕzero,1 < ϕmax < ϕzero,2 < ϕmin

and only three subdomains we conclude that there is an interval [ϕj , ϕj+1] containing
an extremum ϕex ∈ {ϕmin, ϕmax} and a point ϕzero ∈ {ϕzero,1, ϕzero,1}.
As before we can assume 0 = ϕex = ϕmax < ϕzero < θ. Further cj = ϕex = 0.
Thus s(ϕ) = bj cos(λϕ), ϕ ∈ [ϕex, ϕzero) and s(ϕzero) = 0. Possibly redefining ϕzero we
see that λϕzero = π/2. This together with ϕzero < θ implies π/(2θ) < λ.
The case x ∈ ∂Ω is dealt with similarly.
Sharpness of the bound follows by rescaling functions s3(ϕ), s4(ϕ) defined in the proof
of Theorem 2.8 and 2.9, respectively.

Another interesting situation is the special case of an interior heterogeneous singular
point, where the interface consists of two lines intersecting with angle ψ. This sit-
uation has been considered also in [34]. Let the coefficients ki be distributed quasi-
monotonically with respect to this singular point.
As before, the idea is to show that there is an extremum ϕex and a zero point ϕzero of s(ϕ)
such that, either kx(ϕ) is monotonically increasing on [ϕex, ϕzero] and the length of the
interval [ϕex, ϕzero] is smaller than π or kx(ϕ) is monotonically decreasing on [ϕzero, ϕex]
and the length of the interval [ϕzero, ϕex] is smaller than π. This is easily checked. Now
we can show

Lemma 2.11 Let a heterogeneous singular point x ∈ Ω be given such that the interface consists
of two intersecting lines. Let the coefficients ki, i = 0, .., 3, be distributed quasi-monotonically
with respect to x.
Then the smallest non-vanishing eigenvalue of the associated Sturm-Liouville eigenvalue prob-
lem is greater than (1/2)2. This bound is sharp.

PROOF. The proof follows from the above considerations. To see that the bound is
sharp, regard the special case k1 = k2 = k3, that means the case of two subdomains
only. Define an eigenfunction as done in equation (3.17) in [34].

A special case of this lemma is the case of two subdomains sharing a singular point. In
this case we get the same bounds as [34].

2.5.4 Regularity results in the quasi-monotone case

Here we present our main results.

Theorem 2.12 Let the distribution of coefficients ki, i = 0, .., n − 1 be quasi-monotone with
respect to all singular points x. The solution of (2.2.1) fulfills u ∈ H1+1/4(Ω). This is the
maximum regularity independent of the bounds of k.

PROOF. The assertion follows with corollary 2.1 from Theorem 2.8, 2.9, Lemma 2.4 and
Lemma 2.1 .
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Note that we get in principle the same regularity as for k = 1 were regularity H 1+1/4 is
the maximal regularity at a reentrant corner with changing boundary conditions.

Corollary 2.2 Quasi-monotonicity of the diffusion coefficient k is necessary and sufficient for
regularity of the solution of problem (2.2.1) u ∈ H1+1/4(Ωi), i = 0, .., n − 1, which is indepen-
dent of the bounds of k.

PROOF. Necessity follows from remark 2.2. The regularity result follows from Theorem
2.12.

If one does not want to impose restrictions on k one has to restrict the number of sub-
domains nl to whose boundary the singular point xl belongs.
Additionally in some special cases sharper bounds are possible if one introduces further
parameters depending on the geometry.

Theorem 2.13 Let a singular point x ∈ Ω be given. Denote by n the number of subdomains
that meet in x and let U be a neighbourhood containing no other singular points. Denote by θ
the maximum interior angle of subdomains Ωi, i = 0, .., n − 1 at x.
If x is an interior singular point let n ≤ 3. If x ∈ ∂Ω then let n ≤ 2 and additionally the
boundary conditions do not change in x.
Then the solution u of (2.2.1) fulfills u ∈ H1+1/4(Ω ∩ U).
Further u ∈ H1+max(1,π/(2θ))(Ωi ∩ U), i = 0, .., n − 1.
The restrictions on n are sharp.

PROOF. One checks that under the above restrictions on n the diffusion coefficient k
is quasi-monotone. The first part follows from Theorem 2.12. The second part follows
from Lemma 2.10 together with corollary 2.1. To see that the restrictions on n are sharp
we refer to example 2.2.

For heterogeneous singular points on the boundary with quasi-monotonically dis-
tributed coefficients ki the results could be sharpened:

Corollary 2.3 Let x an boundary heterogeneous singular point and U a neighbourhood con-
taining no other singular points. Denote by θ the interior angle at x ∈ ∂Ω. Assume that the
distribution of coefficients ki, i = 0, .., n − 1 is quasi-monotone with respect to x. Then the
solution u of problem (2.2.1) has regularity u ∈ H1+max(1,π/(2θ))(Ωi).

PROOF. For a proof use remark 2.5.

The special case, where the interface consists locally of two intersecting lines, has been
already studied in [34]. We state a regularity result for the quasi-monotone case.

Theorem 2.14 Let an interior heterogeneous singular point x ∈ Ω be given and let U be a
neighbourhood of x containing no other singular points. The interface consists in a neigh-
bourhood of x of two intersecting lines. Let the distribution of coefficients ki, i = 0, .., 3, be
quasi-monotone with respect to x.
Then the solution of problem (2.2.1) fulfills u ∈ H1+1/2(Ωi ∩ U), i = 0, .., 3. This bound is
sharp.
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PROOF. The assertion follows from corollary 2.1 and Lemma 2.11, Lemma 2.4. To prove
sharpness use the singular function ψ1 defined in example 2.1.

Our regularity results are sharp and in this sense regularity results from [34] [45] [61]
[18] [36] are a special case of Theorem 2.13 or Theorem 2.14.

Remark 2.6 One notices that Lemma 2.7 is the key ingredient for deriving lower bounds for
the eigenfunctions of the Sturm-Liouville problem. It uses explicitly that the eigenfunctions
of the Sturm-Liouville problem are piecewise scaled and shifted cosines. One could prove a
similar result by using only concavity of the positive part of the cosine function. In such a way
extensions to other problems are possible.
Our consideration were restricted to problems with piecewise constant diffusion coefficients. But
the definition of the quasi-monotonicity condition and the idea of the proof of the lower bound for
the eigenvalues of the Sturm-Liouville eigenvalue problem may be applicable to a more general
class of coefficients too.

2.6 The general case

2.6.1 Eigenvalue bounds in the general case

We conclude from corollary 2.2 that in the case of a non-quasi-monotone diffusion coef-
ficient, the regularity may go down to H 1. This may happen if δ−1 becomes large.
In this section we derive explicit bounds of the regularity depending on δ. We show
that u ∈ H1+δ/(2π). Moreover, we can derive slightly better results, which are sharp.
To our knowledge a result which gives explicit Hs-regularity where s depends on k is
new.
The following technical lemma is the equivalent of Lemma 2.7. Before formulating the
lemma we will sketch its content. We have given a piecewise constant function k(ϕ)
defined on [0, 2π) fulfilling k(0) = 1 and k(ϕ) ≥ kmin, where 0 < kmin < 1 is a given
constant. The function k defines a continuous function s(ϕ) which has piecewise the
form bi cos(ϕ − ci) and whose derivatives satisfy interface conditions of type [ks′] = 0.
We demand s′(0) = 0, s(0) = 1.
Let ϕmin be the infimum of all roots ϕzero of these functions s(ϕ). The question is about
the dependence of ϕmin on kmin. To answer the question we look for the function k which
defines the function s(ϕ) that has ϕmin as a root. This function k is defined by k = 1 on
[0, ϕmin/2) and k = kmin on [ϕmin/2, ϕmin)where ϕmin = 2 arctan(k

1/2
min) (see figure 2.9).

Lemma 2.15 Let a number 0 < kmin < 1 and numbers 0 = ϕ0 < ϕ1 < ... < ϕn =
2 arctan(k1/2

min) be given. Further there are coefficients ki given where k0 > 0 and ki/k0 ≥
kmin, i = 0, .., n − 1. Denote by χ[ϕi,ϕi+1) the characteristic function of the interval [ϕi, ϕi+1).
Let numbers ci, bi ≥ 0, i = 0, ..., n − 1, be given which define a function

(2.6.1) s(ϕ) =
n−1∑
i=0

bi cos(ϕ − ci) χ[ϕi,ϕi+1)
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that is continuous and whose derivatives weighted with ki are also continuous:

bi cos(ϕi+1 − ci) = bi+1 cos(ϕi+1 − ci+1) , i = 0, .., n − 2 ,(2.6.2)

kibi sin(ϕi+1 − ci) = ki+1bi+1 sin(ϕi+1 − ci+1) , i = 0, .., n − 2 ,(2.6.3)

Assume c0 = 0, b0 = 1. Then s(ϕ) > 0, 0 ≤ ϕ < ϕn.

PROOF. We define ti(ϕ) := bi cos(ϕ − ci). Dividing ki by k0 we may set k0 = 1. But
in order to make the dependence on k clear we will use in the proof the notation k0

remembering k0 = 1. We first assume k0 > k1. Otherwise regard the discussion at the
end of the proof.
The proof is done in three steps.
The idea is to bound function ti from below by functions tji. Here we write ji to denote
the dependence of j on i. Then we show that the function t ji is greater than a function
uji . In the last step we discuss the functions uji .
In the first step our goal is to show that for i = 1, .., n − 1 there is a index 0 ≤ j ≤ n − 1
and a number ϕ−

j fulfilling

tj(ϕ−
j ) = t0(ϕ−

j ), 0 < ϕ−
j ≤ ϕi and tj(ϕ) ≤ t0(ϕ), ϕ−

j ≤ ϕ ≤ ϕn

tj(ϕ) ≤ ti(ϕ), ϕi ≤ ϕ ≤ ϕn .
(2.6.4)

First Step. The proof of the first step is somewhat technical. We show equation (2.6.4)
by induction with respect to i = 1, .., n − 1.
Initial step i = 1. Simply define ϕ−

j1
:= ϕ1 and j1 = 1. As k0 > k1 Lemma 2.6 implies

tj1(ϕ) ≤ t0(ϕ), ϕ−
j1

≤ ϕ ≤ ϕn. We showed equation (2.6.4) for i = 1.

0

0.2

0.4

0.6

0.8

1

ϕ0 ϕ1 ϕ2 ϕ3 π/2

tJ ti

ti−1

t0

ϕ−
J

ϕi

ϕ−
i

ϕ+

Figure 2.8: Step i = 3 is illustrated, here J = 1, note ϕJ ≤ ϕ ≤ ϕi ≤ ϕ+
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Induction for i > 1. Set J := ji−1. There are two cases.
In the first case tJ(ϕ) ≤ ti(ϕ), ϕi ≤ ϕ ≤ ϕn. We define ji := J and proved (2.6.4).
In the second case we define ji := i. This case is illustrated in Figure 2.8. There is a
ϕ+ ∈ (ϕi, ϕn]with

tJ(ϕ+) = ti(ϕ+) .

Further due to equations (2.6.2), (2.6.4) tJ(ϕi) ≤ ti−1(ϕi) = ti(ϕi). The last equations
imply 0 ≤ (tJ − ti)′(ϕ+). We may use Lemma 2.6 to show tJ(ϕ) ≤ ti(ϕ), 0 ≤ ϕ ≤ ϕ+.
From equation (2.6.4) and from ϕ−

J < ϕi < ϕ+ follows

t0(ϕ−
J ) = tJ(ϕ−

J ) ≤ ti(ϕ−
J ) .

We conclude that there is a number ϕ−
i fulfilling ϕ−

J ≤ ϕ−
i ≤ ϕi with t0(ϕ−

i ) = ti(ϕ−
i ). It

is not hard to see that ti(ϕ) ≤ t0(ϕ), ϕ−
i ≤ ϕi ≤ ϕ ≤ ϕn and hence we proved (2.6.4).

Second Step. For i = 1, .., n − 1 set j = ji and define uj by

(2.6.5) uj = aj cos(ϕ − dj) ,

where aj , dj are chosen in such a way that the following interface conditions are fulfilled

t0(ϕ−
j ) = uj(ϕ−

j )

k0t′0(ϕ
−
j ) = kmin k0 uj(ϕ−

j ) ,
(2.6.6)

for ϕ−
j ∈ [0, ϕn]. Remember k0 = 0. Since uj(ϕ−

j ) = t0(ϕ−
j ) = tj(ϕ−

j ) and kmin < 1 we
conclude with help of Lemma 2.6 that uj(ϕ) ≤ tj(ϕ), ϕ−

j ≤ ϕj ≤ ϕ ≤ ϕn ≤ π/2. This
yields together with equation (2.6.4)

(2.6.7) uj(ϕ) ≤ tj(ϕ) ≤ ti(ϕ) , ϕi ≤ ϕ ≤ ϕn .

Third Step. We want to show 0 < uj(ϕ), ϕ ∈ [0, ϕn), i = 0, .., n − 1 by showing that
dj ∈ (ϕn − π/2, 0).
Therefore, we choose ϕ = ϕ−

j , d := dj and rewrite (2.6.6)

cos(ϕ) = aj cos(ϕ − d)
k0 sin(ϕ) = kmin k0 aj sin(ϕ − d) .

(2.6.8)

Now we look for the minimum value of d depending on ϕ. Dividing the two equations
by each other we obtain

d(ϕ) = ϕ − arctan(k−1
min tan(ϕ)) .

Differentiating with respect to ϕ reveals that minimum is attained for tan(ϕ$) = k
1/2
min.

Insertion of the minimum leads to

d(ϕ$) = arctan(k1/2
min)− arctan(k

−1/2
min ) = 2 arctan(k

1/2
min)− π/2 = ϕn − π/2 .

Here we used the trigonometric relation arctan(x) + arctan(x−1) = π/2. Thus we fin-
ished the proof of the third step.



CHAPTER 2. REGULARITY RESULTS FOR INTERFACE PROBLEMS 31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

•
ϕ′

•
ϕ$

•
d(ϕ$)+ π

2

•
d(ϕ′)+ π

2

a′ cos(ϕ − d(ϕ′))

a$ cos(ϕ − d(ϕ$))

cos(ϕ)

Figure 2.9: the black functions a′ cos(ϕ − d(ϕ′)), a$ cos(ϕ − d(ϕ$)) fulfill interface
conditions (2.6.8) with diffusion coefficients k0 = 1, kmin ≈ 0.08 at points ϕ ∈{

ϕ′, ϕ$ = arctan k
1/2
min

}
, they vanish at d(ϕ′) + π/2, d(ϕ$) + π/2; for the black func-

tion depicted with a continuous line the value d(ϕ$) + π/2 is the minimal one for all
possible values of ϕ′, we show d(ϕ$) + π/2 = ϕn = 2arctan k

1/2
min = 2ϕ

$

Now we collect the results from the previous three steps to obtain from inequality (2.6.7)

0 < uj(ϕ) ≤ tj(ϕ) ≤ ti(ϕ) , ϕi ≤ ϕ ≤ ϕi+1, i = 1, .., n − 1 .

This shows the assertion for the case l = 0.
If there is an index l > 0 such that k0 < k1 < ... < kl, we use Lemma 2.7 to prove that
functions ti, i = 0, .., l do not vanish on [ϕ0, ϕn]. It remains to prove the assertion for
functions ti, i > l. From the relation k0 < k1 < ... < kl follows 0 = c0 < c1 < ... < cl. We
shift the functions ti, i > l to the left by cl > 0 and prove the assertion for the shifted
functions as in the case l = 0.

2.6.2 A “worst case” regularity result

We use Lemma 2.15 to derive bounds for the eigenvalues of the associated Sturm-
Liouville eigenvalue problem. Comparing these bounds with the function defined in
example 2.2 we can show that our bounds are sharp. The main result in this section is
Theorem 2.17.

Remark 2.7 The singular function defined in example 2.2 fulfills the conditions

(2.6.9) δ = tan(λπ/4) ≤ k ≤ tan(λπ/4)−1 for any number 0 < λ < 1 .



32 2.6. THE GENERAL CASE

Recall that λ2 is the eigenvalue of the associated Sturm-Liouville eigenvalue problem. Rewriting
(2.6.9) we get

λ =
4
π
arctan δ .

Theorem 2.16 Let a heterogeneous singular point x ∈ Ω̄ be given and let δ ≤ ki ≤ δ−1, i =
0, .., n−1. Denote by λ2 the smallest non-vanishing eigenvalue of the associated Sturm-Liouville
eigenvalue problem.
If x is an interior heterogeneous singular point, then it holds

(2.6.10)
(
2 δ

π

)2

<

(
4
π
arctan δ

)2

≤ λ2

and the bound
(

4
π arctan δ

)2 ≤ λ2 is sharp with respect to δ.
If x is a boundary heterogeneous singular point, denote by θ the interior angle of Ω at x. It holds

(2.6.11)
(
2δ
m θ

)2

<

(
4

m θ
arctan δ

)2

≤ λ2 ,

where m = 1 if the boundary conditions do not change in x and m = 2 if they do. The bound(
4
mθ arctan δ

)2 ≤ λ2 is sharp with respect to δ and θ.

PROOF. Dividing k by a δ−1 we may assume δ2 ≤ ki ≤ 1. If x is an interior singular
point we conclude as in the proof of Theorems 2.8 that there are two points {ϕmin, ϕmax}
where s(ϕ) achieves an extremum and two zero points {ϕzero,1, ϕzero,2}. It is easy to
see that we can order these points like ϕmin < ϕzero,1 < ϕmax < ϕzero,2. If x is an
interior heterogeneous singular point we are free in the choice of ϕex ∈ {ϕmin, ϕmax} ,
ϕzero ∈ {ϕzero,1, ϕzero,2} and we may additionally assume |ϕex − ϕzero| ≤ π/2.
If x is a boundary heterogeneous singular point we may assume there is an extremum
and a zero point of s(ϕ) such that |ϕex−ϕzero| ≤ θ/2, if the boundary conditions do not
change in x and |ϕex − ϕzero| ≤ θ, if they do. For the sake of brevity we continue the
proof in the case of an interior singular point.
We choose j such that ϕex ∈ [ϕj , ϕj+1) and show as in the proof of Theorem 2.8 that
cj = 0. Further we choose the maximum n such that ϕj+1 < ... < ϕn ≤ ϕzero. Changing
the coordinate system we may set ϕex = 0 < ϕzero < π/2.
We introduce the homogeneous scaling F : [0, ϕzero] → [0, ϕ̂zero] with F (ϕ) = ϕ̂ = λϕ.
Define sF (F (ϕ)) := s(ϕ), ϕ ∈ [ϕex, ϕzero]. Then it holds ϕ̂zero ≤ λ π/2.
Observe that sF (ϕ̂) fulfills the assumption of Lemma 2.15 with kmin := δ2 as ki/k0 ≥
ki ≥ kmin for all i = 0, .., n−1. Since sF vanishes in ϕ̂zero we conclude from Lemma 2.15
that

(2.6.12) 2 arctan δ = 2 arctan(k1/2
min) ≤ ϕ̂zero ≤ λ π/2 .

The inequality c < 2 arctan(c) for any 0 < c < 1 is checked easily. This shows assertion
(2.6.10). Sharpness follows from remark 2.7.
The case x ∈ ∂Ω is proved similarly. To show sharpness of the bound (2.6.11) modify
the singular function defined in example 2.2 by restricting the domain of definition and
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applying an suitable affine transformation.

According to Theorem 2.16 we are now able to give a regularity result which will de-
pend on the bounds of k.

Theorem 2.17 Let δ < k(x) < δ−1,∀x ∈ Ω for a number 0 < δ < 1.
Then the solution of problem (2.2.1) has regularity

u ∈ H1+δ/(2π)(Ω) .

Let a heterogeneous singular point x ∈ Ω̄ be given and let c ν ≤ ki ≤ c ν−1, i = 0, .., n − 1 for
some constants c > 0, ν > 0. Denote by U a neighbourhood containing no other singular points
and with θ the interior angle of Ω at x (if x ∈ Ω, set θ = 2π).
Then

u ∈ H1+(4 arctan ν)/(mθ)−ε(U ∩ Ωi) ⊂ H1+2ν/(mθ)(U ∩Ωi) , i = 0, .., n − 1 ,

where

m =


1/2 if x ∈ Ω
1 if x ∈ ∂Ω and the boundary conditions do not change in x

2 if x ∈ ∂Ω and the boundary conditions change in x

and ε > 0 is arbitrary.
This is the maximum regularity with respect to δ and ν independent of the number and interior
angles of the subdomains.

PROOF. The assertion follows with corollary 2.1 from Theorem 2.16. Sharpness follows
from remark 2.7.

An easy consequence of the above theorem is

Corollary 2.4 Let δ > 0 be given. The singular function ψ2 defined in example 2.2 with
λ = 4π−1 arctan(δ) is the function with lowest regularity among all singular functions
for interior heterogeneous singular points under the restriction δ ≤ k ≤ δ−1 and with no other
restrictions on the geometry (that means there are no restrictions imposed on the number and
interior angles of the subdomains).

2.6.3 Regularity between the quasi-monotone and the “worst case”

We may say that Theorem 2.17 states regularity results in the “worst case”. On the other
hand results from section 2.5.4 show regularity for the “regular” - the quasi-monotone
- case. The question arises about regularity for diffusion coefficients that are not quasi-
monotonically distributed but which have also no checkerboard-like pattern as in the
“worst case”. In this context it seems naturally to expect that a slight perturbation of
quasi-monotonically distributed diffusion coefficients will not result in large changes
of the regularity. These questions will be answered in the next theorem. Although a
sharp regularity result is given in Theorem 2.17 it can be partly improved introducing
additional parameters depending on the diffusion coefficient.
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Theorem 2.18 Let a heterogeneous singular point x ∈ Ω be given. We assume that kx(ϕ)
has more than one local maximum. Denote by kmax,1, kmax,2 the two largest local max-
ima and let kmax,1 ≥ kmax,2. Let kmin,1, kmin,2 be the two smallest local minima where
kmin,1 ≤ kmin,2. Denote by U a neighbourhood containing no other singular points and de-
fine δ′ :=

√
kmin,2/kmax,2.

Then the solution of problem (2.2.1) has regularity

u ∈ H1+(arctan δ′)/π(U ∩ Ωi) ⊂ H1+δ′/(2π)(U ∩ Ωi) , i = 0, .., n − 1 .

Note that in the limiting case, when the second maximum kmax,2 and the second local
minimum kmin,2 vanishes, that means in the case kmax,2/kmin,2 → 1, we reach H1+1/4-
regularity as in the quasi-monotone case. In the “worst case” example 2.2 it holds
kmax,1 = kmax,2 and kmin,1 = kmin,2. Accordingly δ = δ′ and we note that regularity
implied by Theorem 2.17 differs only by the constant 4 from the “worst case” result
from Theorem 2.17. Hence, we can interpret Theorem 2.18 as a link between the the-
ory of robust regularity results for quasi-monotically distributed diffusion coefficients
and results for the “worst case”, where no assumptions on the structure of the diffusion
coefficients is made.
The case of boundary singular points for pure boundary conditions can be treated a
similar fashion. In case of pure Dirichlet conditions Theorem 2.18 is valid with δ′ =√

kmin,2/kmax,1 and in case of pure Neumann conditions with δ′ =
√

kmin,1/kmax,2.
PROOF. The proof is not self contained but it runs similar to the proof of Theorem 2.17.
There Theorem 2.16 is used and we have to prove an analogon of inequality (2.6.10) to
hold namely

(2.6.13)
(
1
π
arctan δ′

)2

< λ2 ,

where λ2 is the smallest positive eigenvalue of the eigenfunction s(ϕ) for the respective
Sturm-Liouville eigenvalue problem. Additionally we will use elements of the eigen-
value bounds for the quasi-monotone case as in Theorem 2.8. We now proceed as in
the proof of Theorem 2.17 and therefore give only the differences. The most important
point is to observe that we are free in the choice of the local extrema of kx(ϕ) and we
may use the local extrema kmax,2, kmin,2 in place of the global ones kmax,1, kmin,1.
Let the maxima kmax,1, kmax,2 of kx(ϕ) be attained on the intervals [ϕimax,1 , ϕimax,1+1)
and [ϕimax,2, ϕimax,2+1) respectively. The minima are attained on [ϕimin,1

, ϕimin,1+1) and
[ϕimin,2

, ϕimin,2+1). Without loss of the generality we may assume that ϕimax,1 < ϕimin,1
<

ϕimax,2 < ϕimin,2
(Figure 2.10). We define the intervals I := [ϕimax,1 , ϕimin,1

) and J :=
[ϕimin,1

, ϕimax,1) covering the sphere [0, 2π).
It is easy to see that there is an extremum ϕex and a root ϕzero of the eigenfunction s(ϕ)
such that [ϕex, ϕzero) ⊂ J or [ϕzero, ϕex) ⊂ I . Without loss of generality we may suppose
that [ϕex, ϕzero) ⊂ J .
By rotating the coordinate system we obtain

(2.6.14) ϕex = 0 < ϕzero < 2π .

Choose the index j such that ϕex ∈ [ϕj , ϕj+1) and note cj = ϕex = 0. Note that kx(ϕex) =
kj . In the following we regard separately the cases that kj ≥ kmax,2, kj < kmin,2 and
kj ∈ [kmin,2, kmax,2).
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Figure 2.10: local diffusion coefficient kx(ϕ) has several maxima and minima; possible
location of points ϕex, ϕzero, ϕ′

ex, ϕ′
zero; function kx(ϕ) on interval J is depicted with a

black line; grey dashed lines indicate the values kmax,2, kmin,2

If kj ≥ kmax,2, then kx(ϕ) is increasing on [ϕex, ϕimax,1), since otherwise there would a
local maximum of kx(ϕ) on [ϕex, ϕimax,1) which is larger than kmax,2. We conclude that
kx(ϕ) is increasing on [ϕex, ϕzero) ⊂ [ϕex, ϕimax,1) and proceed as in the quasi-monotone
case to bound λ from below by 1/4 (Theorem 2.8).
If kj < kmin,2 it is easy to check that ki ≥ kj , i = j, .., imax,1. Otherwise there would be a
local minimum of kx(ϕ) on [ϕex, ϕimax,1) that is smaller than kmin,2. As before we apply a
homogeneous scaling F , use inequality (2.6.14) and Lemma 2.15 for the scaled function
sF (·). Renumbering the subdomains we can assure j = 0. Now the assumptions of
Lemma 2.15 are fulfilled for kmin := 1 since it holds ki ≥ kmin kj , i = j, .., imax,1. This
shows the eigenvalue bound (2.6.13).
It remains the case that kj ∈ [kmin,2, kmax,2). Then it holds ki ≥ kmin,2, i = j, .., imax,1. In
the opposite case there would be a local minimum of kx(ϕ) smaller than kmin,2. Defining
in terms of Lemma 2.15 kmin := (δ′)2 we see ki ≥ kmin,2 ≥ kj kmin,2/kmax,2 = kj kmin.
Now we apply homogeneous scaling F and Lemma 2.15 to show the eigenvalue bound
(2.6.13). This finishes the proof.

2.6.4 W 2,p-regularity

Using the bounds of the eigenvalues in Theorems 2.8, 2.9 and 2.16 it is straightforward
to formulate regularity results in Sobolev spaces W 2,p for p ∈ (1, 2). A decomposition
theorem which relates the eigenvalue bounds to W 2,p-regularity can be found in [43,
Thm 2.27] resp. [43, Cor 2.28].
Calculation shows that the singular function rλsλ(ϕ) belongs piecewise to W 2,p for
p < 2/(2 − λ). Accordingly, if for a positive number γ holds, γ2 < λ2 for all positive
eigenvalues λ2 of the respective Sturm-Liouville eigenvalue problem, each singular so-
lution rλsλ(ϕ) and the solution u will have piecewise regularity W 2,p for p = 2/(2− γ).
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Corollary 2.5 Denote by u the solution of problem (2.2.1). Let a singular point x ∈ Ω̄ with
neighbourhood U containing no other singular point be given.
If the distribution of coefficients ki, i = 0, .., n − 1 is quasi-monotone with respect to x, then u
has regularity

u ∈ W 2,1+1/7(Ωi ∩ U) , i = 0, .., n − 1 .

If for a δ > 0 holds δ ≤ ki ≤ δ−1, i = 0, .., n − 1, then u has regularity

u ∈ W 2,1+δ/(4π)(Ωi ∩ U) , i = 0, .., n − 1 .

PROOF. The result for the quasi-monotone case follows from Theorems 2.8, 2.9 and
corollary [43, Cor 2.28]. We check 2/(2− 1/4) = 1+ 1/7. Regularity for the general case
follows from Theorem 2.16 and corollary [43, Cor 2.28]. Here we use the inequality

2
2− δ/(2π)

=
1

1− δ/(4π)
> 1 + δ/(4π)

together with the embedding W 2,p ⊂ W 2,q for 1 ≤ q < p. If all eigenvalues λ2

are different from 1 instead [43, Cor 2.28] one use Theorem 2.2 and the embedding
H2 ⊆ W 2,p for any p ≤ 2.

2.7 Regularity in 3D

2.7.1 Overview

In 3D the polyhedral Lipschitz domain Ω is decomposed into polyhedral Lipschitz sub-
domains Ωi, i = 1, .., n and the interface consists of plane faces, with edges and vertices.
Singularities occur along edges and at vertices of the interface. A decomposition theo-
rem [17] [45] states that the solution of problem (2.2.1) can be decomposed into a regular
part with piecewise H2-regularity and into a singular part. The singular part can be de-
composed into singularities at vertices and on edges. We will shortly review vertex and
edge singularities and give regularity results based on those derived in section 2.4.
In the following we rely on results from [17] which were presented for the case of pure
Dirichlet or pure Neumann boundary conditions. As in the 2D-case the decomposition
into vertex and edge singular functions is more complicated if an exponent λ equals 1.
Let us assume in this section that this is not the case.

2.7.2 Vertex singularities

We fix a vertex x of the interface as depicted in Figure 2.7.2 and introduce spherical
coordinates (r, ϕ, ψ) with respect to the vertex. As in the 2D case the vertex singular
solutions come from an positive definite eigenvalue problem.
The Laplace operator can be written in spherical coordinates as

(2.7.1)
∂2v

∂r2
+
2
r

∂v

∂r
+
1
r2
∆′v = 0 ,
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Figure 2.11: Vertex x and edge E of the interface, cylindrical coordinates (r, ϕ, z) with
respect to the edge E

where ∆′ denotes the Laplace-Beltrami operator, that is the Laplace operator acting on
the sphere.
Then the vertex singular functions are solutions of the homogeneous problem (2.2.1),
that means they are piecewise harmonic functions satisfying the interface conditions
and having the form [17]

vx(r, ϕ, ψ) = rλsx(ϕ, ψ) ,

where the piecewise identity

−∆′sx(ϕ, ψ) = µ sx(ϕ, ψ)

holds for the eigenvalue µ > 0 on each subdomain Ωi intersected with the unit sphere.
Here for better readability the dependence of λ and µ on the vertex x is not denoted.
Insertion of vx into (2.7.1) yields a relation between λ and µ

λ(λ − 1) + 2λ − µ = 0 resp. λ = −1
2
±
√
1
4
+ µ .

Here admissible values of λ are λ = −1/2 +
√
1/4 + µ ≥ 0 and we conclude from [17]:

Remark 2.8 For the vertex x the vertex singularity has the form of the function vx and has
regularity vx ∈ H3/2+λx−ε(Ωi), i = 1, .., n independent of the diffusion coefficient k, where
ε > 0 is an arbitrary number. Therefore, vertex singularities are not critical with respect to
H1+s-regularity with 0 < s ≤ 1/2 and in particular with respect to deteriorating regularity
with 0 < s � 1. They are important for regularity H1+s(Ωi) where s > 1/2. Multiplying vx
by a smooth cut-off function it can be assured that the singular function vx vanishes outside a
neighbourhood of the vertex x.

2.7.3 Edge singularities

The considerations concerning the regularity of 3D edge singularities can be reduced
to 2D vertex singularities. Given an edge E let us introduce cylindrical coordinates
(r, ϕ, z) with respect to the edge. Here r denotes the distance from the edge E (see
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Figure 2.7.2). Denote by Ω0, ..,Ωn(E)−1 the subdomains which share the edge E. They
introduce in a natural way a partition of a plane H perpendicular to the edge E by lines
ϕ = ϕ0, .., ϕ = ϕn(E)−1 which coincide with a part of the boundary of Ωi and meet at
edge E. In the same manner let the diffusion coefficients ki, i = 0, .., n(E)−1 be defined.
We identify the plane H with R2.
On R2 the same Sturm-Liouville eigenvalue problem as in section 2.4.1 is defined. If
E ⊂ ∂Ω, set appropriate homogeneous boundary conditions for the Sturm-Liouville
eigenvalue problem. Denote by λ2 the lowest non-vanishing eigenvalue and by wE =
rλsλ(ϕ) the associated singular solution which is piecewise harmonic and satisfies the
interface conditions. Again the dependence of λ on E is not explicitly denoted.
Following [17] with each 2D singular function wE , 0 < λ < 1, there is associated a 3D
edge singular function through a function bE(r, z) of the form

vE(r, ϕ, z) = bE(r, z) wE(r, ϕ) .

2.7.4 Regularity results in 3D

The following theorem is shown in [17]:

Theorem 2.19 Let γ < min {λx + 1/2, λE , 1} where the minimum is taken over all vertices x
and all edges E of the interface and the boundary. Then the solution of (3.2.2) has regularity

u ∈ H1+γ(Ωi) , i = 1, .., n .

We conclude that in case of regularity below H1+1/2-regularity it suffices to investigate
for each edge the singular exponents for the according 2D problems since the vertex
singularities have regularity at least H1+1/2. For this we use the lower bounds of eigen-
values of 2D Sturm Liouville eigenvalue problems derived in section 2.4.

Theorem 2.20 If δ ≤ ki ≤ δ−1, i = 1, .., n, for a certain δ > 0, then the solution of problem
(2.2.1 fulfills u ∈ H1+δ/(2 π)(Ω).
If for each edge E of the interface the diffusion coefficients k0, .., kn(E)−1 of the according 2D
problem are distributed quasi-monotonically, then λE > 1/4 and u ∈ H1+1/4(Ω).
For each edge quasi-monotonicity of the diffusion coefficients k0, .., kn(E)−1 is necessary for reg-
ularity of the solution of problem (2.2.1) u ∈ H1+1/4(Ωi) independent of the global bounds of
k.

PROOF. The proof is based on the regularity result in Theorem 2.19. The first assertion
follows from Theorem 2.16. The second assumption is stated in Theorem 2.12. To see
that quasi-monotonicity is necessary for H1+1/4-regularity which is independent of
the bounds of k see remark 2.2 and observe that 2D singular functions can be trivially
extended to be constant in the direction of the edge to yield 3D edge singular functions.
Global regularity follows from local regularity by Lemma 2.1.


