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Chapter 3

Adaptive Finite Element Method

3.1 Introduction

As already pointed out in chapter 2, singularities occur in interface problems. When
discretizing the problem (2.2.1) with Finite Elements, the singularities impair the ap-
proximation properties of Finite Elements. To reduce the approximation error we will
use an a-posteriori approach relying on a-posteriori error estimates. This approach has
the advantage, that it allows for the treatment of the singularities in two and three space
dimensions and that it works without knowledge of parameters depending on the sin-
gularities. These estimates are reliable and efficient and for a large class of problems also
robust. Robustness means, that variations of the diffusion coefficient, i.e. the amount
of the jump discontinuity, does not enter in the error bounds. The adaptive procedure
consists in refining the mesh on the basis of the a-posteriori error estimators. Numerical
experiments show convergence rates measured in terms of nodes of the Finite Element
approximation scheme of the same order as for regular problems.

For the derivation of the error estimators we will use certain robust interpolation prop-
erties of Finite Element spaces. Therefore, it is necessary to restrict to the class of
quasi-monotone diffusion coefficients [62] [24]. In this class we prove robustness of
the a-posteriori error estimators. Recall from chapter 2, that quasi-monotone diffusion
coefficients guarantee regularity H'*'/4 independent of the bounds of the diffusion co-
efficient k.

The outline of this chapter is as follows. The problem setting and the notation used are
introduced in section 3.2. We discuss approximation properties of Finite Elements on
uniform grids (section 3.3) and on adapted grids (section 3.4).

To prepare the proof for the upper bound of the error by the error estimator, we need
interpolation results (section 3.5). In section 3.5.2 we extend the definition of the quasi-
monotonicity given in the chapter 2 to the 3D case. A robust interpolation operator,
which is a slight modification of that from [24], will be defined in section 3.5.3. We
address the open question about connections between regularity properties and inter-
polation properties in section 3.5.4.

The main results of this chapter are presented in section 3.6. We introduce resid-
ual based error estimators in section 3.6.2. Further we discuss estimators which are
based on the solution of local problems and propose a hew estimator in section 3.6.3.
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We also discuss an approach which relies on hierarchical bases in section 3.7.1 and a
Zienkiewicz-Zhu type estimator in section 3.7.2.

Extensions to problems with a mass term and Cauchy boundary conditions are given
in section 3.8. The application of the a-posteriori techniques to a parabolic problem is
demonstrated in section 3.9.

3.2 Problem setting

3.2.1 Approximation with Finite Elements

The continuous problem is essentially problem 3.2.2 of chapter 2, but as we allow
for non-homogeneous boundary conditions we repeat the definition of the continuous
problem.

Let © be a Lipschitz domain in R¢, d = 2, 3 with polygonal (polyhedral) boundary. The
domain 2 can be partitioned into a finite sum of subdomains 2; with polygonal (poly-
hedral) boundary. As before there is a function & being constant on each subdomain
and fulfilling the bounds

(3.2.1) §<k(x)<st Vren

for some § > 0. In distinction to section 2.2 we now do not demand that the subdomains
Q; are Lipschitz.

Let the boundary 02 be decomposed into 92 = I'p UT'y, measq—1('p NT'y) = 0 and
measq_1(Ip) > 0. Let gp € H'Y?(I'p) be given. There is an extension of g onto a
function defined in H'(Q2) and having gp as trace on I'p. Let us denote this extension
also by gp. Let gy € L?(I'y) and f € L?*(Q) be given. We define the space V :=
{ue HYQ) : ulp, = 0}.

The variational form of the problem is as follows: seek u € gp + V satisfying:

(3.2.2) /Qk(x)Vu(J:)Vv(x) dr = /Qf(x) v(x) dx —I—/F gy(z) v(z)de YveV

N

We introduce a discrete problem through Finite Element spaces V;, C V with continu-
ous and piecewise linear functions. The underlying triangulation is refered by 7;. We
assume that the triangulation is aligned with the partition of (2, that means that the
boundary 92, is made up of faces from simplices in 7.

Let gp , a Finite Element approximation of gp on I'p. Then the solution of the discrete
problem w, satisfies u;, € gp », + V}, and

(3.2.3)

/ k(x)Vup(x)Vup(x) de = / f(z) vp(z) do +/ gn(x) vp(z) de Vo, € V),
Q Q Iy

We disregard problems arising from the approximation of non-homogeneous boundary
conditions, that means we set gp = gp,, onI'p and assume that g is piecewise constant
on faces F' of simplices T" with measy;—1(0T N T'x) > 0. As I'p has positive measure
unigueness and solvability of problems (3.2.2) and (3.2.3) is given by Riesz’s theorem.
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3.2.2 Assumptions and Notation

The space dimension will be denoted by d. We use the terminus “2D case” or “3D case”
to indicate that d = 2 or d = 3. Unless stated otherwise all results cover the 2D and the
3D case simultaneously.

We define the weighted (semi-)norm

o = [ be) (Vo) da

In the following all integrals are over the space variable x and for the sake of shortness
we do not explicitly denote the dependence on .

The triangulation consists of simplices which intersect at most at a common face, edge,
or vertex. Such a triangulation is called admissible [15].

We make the following assumptions for the discrete problem (3.2.3): The family of tri-
angulations {7} is shape regular but not necessarily uniform [15]. The diameter of a
simplex 7" is denoted by hp. To ease notation we may drop the subindex 7" and take the
value of h from the simplex under consideration. We will use also the term mesh or grid
instead of triangulation.

The triangulation defines a set ;,, which coincides with Q. Further I'p and T consists
of whole faces of simplices from 7. To avoid ambiguity we suppose that ', is a closed
set.

Definition 3.1 For functions a, b depending on the data &, f, u, us, g, gp, With values in R
we use the notation

(3.2.4) a=b

to indicate, that it holds a < ¢ b for a further not specified constant ¢, that does not depend on
the data but only on the shape regularity parameter of the finite element mesh 7Z,. The bound
(3.2.4) will be called robust.

We write a =~ b, ifitholdsae < band b < a.

The set of nodes of the triangulation will be denoted by N;,. We denote by F;, all faces
from simplices from 7;, that are not contained in ' 5. The set of all edges will be denoted
by &,. All simplices T € 7, faces F' € Fy, and edges E € &, are closed sets. For a subset
S c Q we denote by A, (.S) the nodes contained in S and with £,(S) the edges in S.
For a node z resp. an edge FE or face F' we define w, resp wg or wp as the union of all
simplices T', which have x resp. E or F' in common.

The value of £ on a simplex T' will be denoted by k. For a face F' denote by T a
simplex from wg such that k7, = maxyc,, k7. We define kp := ZT@F kr. Clearly
k‘F ~ k’TF.

We define a simplex-wise constant approximation f;, of f. For instance one may choose
the average on the simplex T', fp|r := |T|~! [, f.
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Definition 3.2 Let I’ € F}, be not contained in I'y. Denote by np and ng the outward normal
of F C 9T resp. F' C 9T'. Let uy be the solution of problem (3.2.3) The jump of the normal
fluxes across the face F' is defined as

. Guh auh
=kr— + kp——
JE T 8nT + kT GnT/
Let F' be a face on the Neumann boundary. Denote by ng the outward normal of £ C 0€2. The
jump of the normal fluxes across this face I is defined as

. Ouy,
JF == gN|F — kT—a
np

The Finite Element shape function taking on the value 1 at the node z; and vanishing
on all other nodes of the triangulation are denoted by \;. We define so-called bubble
functions. These are non-negative shape functions with small support and which are
not contained in V3. An element bubble function can be defined as ¢ := (d+1)4+! [ 1., N
where the product is taken over all nodes of x; on T'. A face bubble function ¢ for the
face F will have wr as support. We define ¢ = d¢ Hm i, Where the product is taken
over all nodes z; on the face F.

3.3 Finite Element Method on uniform grids

Let us assume in this section that the mesh is quasi-uniform. That means, that the local
cell diameter h(T") ~ h is of the same order for each simplex 7". Then the approximation
error can be measured in terms of the mesh diameter h.

Usually the convergence rate of the solution u; of (3.2.3) to the solution u of (3.2.2)
depends on the number s which yields global regularity v € H*(Q). We show that in
the 2D case it is the piecewise regularity v € H'**(£;) and not the global regularity that
bounds the convergence rate. For a proof in 3D see [11].

Recall that regularity results from [33] [31] show v € H'**(Q) for a certain s > 0. The
dependence of s from § is given in 2D in Theorem 2.17. By Sobolev embeddings we
know that « is continuous in Q [1]. Thus, the interpolation operator Iy : V. — V},
which is given by taking the values in the nodal points is well defined. Exploiting
arguments given in Example 3 in [25], one has the following interpolation results in
fractional Sobolev spaces H'*% s > 0:

(3.3.1) |u - IN(U)|H1(T) = h5|u\H1+s(T) VI eT),

Combining this bound with Galerkin orthogonality shows an estimate in terms of piece-
wise contributions for u € H'5(Q;):

(332) |u—wlipq < lu—INWE 0 =

Z kJZ' |u — IN(U)|12L[1(QZ) = h2s Z ]fJU‘%{H—e(QZ)
=1 =1
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This bound shows that Finite Elements make in a certain sense use of piecewise regu-
larity. As global regularity is restricted to H3/2-¢(Q), for any ¢ > 0, (see section 2.3.2),
it follows, that for s > 1/2 the convergence is bounded by piecewise regularity and not
by global regularity.

As the regularity parameter s, which depends on k&, can be arbitrary small, the conver-
gence rate can deteriorate.

Remark 3.1 Take the singular function v, from example 2.2 on page 16 and choose A € (0, 1].
Using approximation results from [47, p.265] [60] we see that on a simplex T, containing the
singular point, the convergence of the solution wy, of problem (3.2.3) to the solution u of problem
(3.2.2) could be arbitrarily bad

c(u)h? = |u — uplpm(m) < hEC(u) Ve>0

This is also true for polynomial Finite Elements of higher order [20]. In view of higher order
convergence in regions where the solution is in H?, the singularity will asymptotically dominate
on uniform meshes leading to a global convergence rat of order O (%) for any ¢ > 0.

In order to enhance convergence for solutions with poor regularity, several techniques
have been developed. One possibility is the enrichment of the Galerkin space with
functions, that approximate the singular functions [56]. See also [20] for a modified
procedure. Another approach consists in refining the mesh around the singularities.

3.4 Finite Element Method on adapted grids

Let us start with an initial mesh. By refinement of the initial mesh around a singu-
lar point we understand the construction of a triangulation with additional degrees of
freedom around the singular point.

Here we differ between an approach, where the degree of the singularity should be
known a-priorily, and a competing approach, where no a-priori knowledge is required
and the mesh is refined on the basis of a-posteriori error estimators. The a-priori ap-
proach makes use of the fact that the form of the singular solution r*s,(y) is known.
Here (r, ) are polar coordinates with respect to a singular point.

A shape regular triangulation is constructed in such a way that the local mesh diameter
behaves like h ~ Hr'=* u < ), [47] [6]. Here H is a parameter and can be seen as
global mesh size. Additionally, the simplex containing the singular point should have
a diameter of order H'/#. In order to construct such meshes, X should be known or
approximated [32]. Within this setting the error reduction proceeds with optimal order
O(H).

In 3D the parameter r is the distance to the singular edge and anisotropic simplices that
are stretched in direction of the edge may be used. See [5] for the case of a constant
diffusion coefficient k(z) = 1.

The drawback of a-priori refinement is not only that A should be known but also that
there is no control of the refinement depth (the parameter H) in the vicinity of a singular
point: It may be the case that in a particular situation the contribution of a singular func-
tion is zero or very small, when compared to the regular part or to other singularities.
Then there is no need of refining the singularity.
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Besides varying the local grid-size one can increase the degree of the polynomial shape
functions. This leads to the p-version, developed for the case £ = 1 [7] [8] [53]. The
p-version has been extended to non-polynomial shape functions for interface problems
in [48]. Here again the method suffers from the drawbacks of a-priori refinement and
the convergence rate depends on the approximation of A . But the method leads to a
very high rate of convergence even in case of very low regularity.

An alternative a-posteriori approach is the construction of a new refined mesh by subdi-
viding simplices on which the error is large into smaller ones. This corresponds to an
introduction of new degrees of freedom. Since the error itself is not known, one uses
a-posteriori error estimators nr, which should reflect the behaviour of the error:

nr~ |u— uh’kHl(T)

The a-posteriori error estimators can be calculated with low numerical effort on the
basis of known data.

Such estimators have been derived for the Laplace equation. An overview is given in
[57]. For the interface problem there are recent independent articles [21] [11] and [49].
These articles impose different restrictions on the structure of k. In [21] the case of essen-
tially two subdomains is treated. In [11] a special criterion concerning the distribution
of diffusion coefficients is used; see remarks 3.3 and 3.4. In the present chapter weaker
assumptions on k are posed.

The reason for the restriction of the diffusion coefficient is that we will make use of in-
terpolation operators which are robust in respective function spaces. In the next section
we argue that the restriction imposed on & in the present work are necessary for the
existence of such robust interpolation operators.

3.5 Interpolation operators

3.5.1 A non-robust interpolation operator

In this section we use the shorter terminus coefficient for the diffusion coefficient k.
For simplices 7" and for faces F' we need estimates of the form
1/2
kpl? o= Io()l g2y = b uln

(or)

(3.5.1) s
B = L@l 2y =02 ulesrs ory)

where I, : V' — Vj, is an interpolation operator and wr, wr, consists of some neighbour-
ing simplices of 7" and F'. It is important that no additional factors depending on &k do
not enter into the bounds (3.5.1). An interpolation operator fulfilling the bounds (3.5.1)
will be called robust.

The Clement interpolation operator I [16] [57] fulfills only the non-robust bounds

Lemma3.1l Letd < k <6 L. Forany T € 7, and any F' € F}, the non-robust bounds

(35.2) bl = To@laey 2h 0" ulimer)

kllw/z lu—TIc(u)|lpzry = hi/2 5t Uk @p) >
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hold. Here wr,wr denote the union of simplices from 7;, that have a node with 7" resp. F'in
common. These bounds are optimal with respect to §.

PROOF. The proof is an easy consequence of the properties of the Clement interpolation
operator

lu = Te(llL2ery = b lulmer)

lu = Te()llzz2gry =B Jul g
Denote by k,,in, kmae the lower and upper bound of k on wp. It is easy to see that

ko 1 k
2 T 2 2 —1 2
[l @y < E T [l = e lulkm @y < kr kmax [ulkm @)

T/C(:JT min man min

The relation ke /kmin < 02 finishes the proof of the first inequality. The second
inequality is shown in the same way. [ ]

3.5.2 The quasi-monotonicity condition revisited

Robust interpolation operators have been derived under certain restrictions on the co-
efficient k [24] [13].

For some special configurations of diffusion coefficients it has been shown in [62] that
there are no robust interpolation operators. In 2D regard a checkerboard like distribution
of coefficients from {1,¢}. In 3D two cubes touch at a vertex or on an edge. Inside the
cubes the diffusion is k1 = 1 and in the remaining part of the domain &k, = ¢.

Following [24] we introduce the class of quasi-monotone coefficients. Within this class
one can define robust interpolation operators [24]. For 2D the class of quasi-monotone
coefficients was already defined in Definition 2.4 in chapter 2 and this class coincides
with the one defined below.

Definition 3.3 For a node = € Nj,(Q) we denote by 7). a simplex from w, where the coefficient
k1 achieves the maximum for T C w;..

Definition 3.4 Choose a node = € NV}, (€2). The distribution of coefficients k7, T C w, will be
called quasi-monotone with respect to a node « of a triangulation 7;, and the part of the
boundary I'p C 09 if the following conditions are fulfilled.

For each simplex T' C w, there exists a Lipschitz set &r ;. 4., containing only simplices from w,
such that

— if2 € Nj,(Q/Tp) then TU T, C &7 4 gm and

kT < kT’ VT/ g @T,m,qm

- ifx e Nh(fp) then 7' C @T,x,qmy mean_l(a@T,x,qm N FD) > 0 and

kT < kT’ VT/ - (DT,x,qm
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Figure 3.1: The distribution of coefficients kp, T C w, is quasi-monotone with respect
to the node z on the left figure but not on the right one. The simplex 7" is colored dark
and the set W, 4, is colored with different levels of grey in the left picture

Figure 3.2: The distribution of coefficients kp,T C w, is quasi-monotone with respect
to the node = € N} (T'p) on the left figure but not on the right. The simplex 7" is colored
dark and the set wr . 4, is colored with different levels of grey in the left figure

One checks that the definition does not depend on the choice of 7,. Further it is im-
portant to note that this definition is in 2D also independent of the triangulation and
describes a property of the diffusion coefficients.

If there is no danger of confusion, we will simply say that the distribution of coefficients
is quasi-monotone with respect to a node x if the above definition is fulfilled for z.

We say that the distribution of coefficients kr, T € 7;, is quasi-monotone if it is quasi-
monotone with respect to all nodes of Nj,.

Here we use the definition of Lipschitz domains as given in [15]. It follows that the
union of two simplices from 7}, sharing a node is a Lipschitz domain if and only if they
share a face.

We illustrate the guasi-monotonicity condition for an interior node (Figure 3.1) and for
anode z € I'p (Figure 3.2).

Note that a checker board like distribution of the coefficients is not quasi-monotone.

Remark 3.2 Definition 3.4 can be formulated in a more intuitive way. We give only the idea.
For a node z € N3, (€2/Tp) we demand that the trace of & on a small sphere B around x has
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only one local maximum. We say that a local maximum is attained on B N &, if k; > k; for
all adjacent subdomains €2, : measg—1(€2; N Q;) > 0 with node z € Q;. If z € N,(I'p) each
local maximum is adjacent to I'p.

Remark 3.3 Under the following restrictions any distribution of coefficients is quasi-monotone.
Let 2 € Q a point, denote by n the number of subdomain €2; to whose closure = belongs and by
m the number of boundary types from I'p, T'y to which z belongs. In other words set m = 1 if
pure Dirichlet or pure Neumann boundary conditions are imposed on x € 92, setm = 0 if z is
an interior point and otherwise m = 2. If in 2D n is restricted by

n<3—m ,

then the distribution of coefficients kpr, T € w,, is quasi-monotone for any values of k. A
similar bound holds in the 3D-case. If

n<2-m

the distribution of the coefficients is quasi-monotone independent of the values of k.

One checks that these restrictions on n are sharp, except for the case m = 2. To see this in
case of an interior node = in 3D regard to cubes 21, Q25, which touch only in . The diffusion
takes on the value 100 in the cubes and the value 1 in the remaining part (. Thenn =3,m =0
and the distribution of the diffusion coefficients is not quasi-monotone.

ko =101 k1 =1

Vs = 100 %, =10

Figure 3.3: quasi-monotone diffu-
sion coefficients which do not ful-
fill condition from [11]

The following restriction of the diffusion coefficient has been used in [11] to derive ro-
bust interpolation operators.

Remark 3.4 Suppose that the coefficients &+, T’ C w,, are distributed in such a way that for
any two simplices T;, T, C w, there are simplices T; C w,,i = 1,..,n,where Ty = T,,T,, =Ty
and measq_1(T; N T;41) > 0 for i = 1,.,n — 1. Suppose further that the sequence
kr,,kn,, .., k1, ., kr, IS monotone.

Then it is not hard to see that the distribution of coefficients k., 7’ C w, is quasi-monotone
with respect to a node x if the space dimension is 2 or if = does not belong to I'p. If in 3D a
node belongs to T'p this condition is not sufficient to define robust interpolation operators. To
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see this, regard the 3D example of a cube € touching the Dirichlet boundary I'p = 0f at one
vertex only. Define Qs to be the remaining part of the domain and set k; := 100,k := 1 as
proposed in [62].

We show that the above condition is stronger than quasi-monotonicity in the 2D case or if
r € N,(Q/Tp). Define in 2D four coefficients which are numbered clockwise and which take
on the value k; = 1, ky = 10, k3 = 100, k4 = 10 (Figure 3.5.2). Taking T, = Ty, Ty, = T, the
above condition is not fulfilled but the distribution of coefficients k; is quasi-monotone. In 3D
proceed similarly.

Remark 3.5 Using the counter examples from Xu [62] one notices that quasi-monotonically
distributed coefficients are the largest class of coefficients for which robust interpolation
operators exists. This is easily seen from remark 3.2. The counter examples in [62] exploit the
fact that there is more than one local maximum of the diffusion coefficient when restricted to a
small sphere around a vertex in the sense of remark 3.2.

We say that a triangulation 7}, is a refined triangulation of 7, if for the according Finite
Element spaces holds V}, € V.. In 2D quasi-monotonicity is preserved during refine-
ment of a triangulation.

1
10

Figure 3.4: three horizontal layers, in the middle layer there is a checkerboard-like
pattern of diffusion coefficients 1,10 around the edge F; for a new node on E quasi-
monotonicity will be violated

In 3D this is not true. For example regard the case of a domain Q2 = (—1,1) x (—1,1) x
(—1,2) subdived into three horizontal layers of equal size as shown in Figure 3.5.2. Each
layer is again subdivided into four similar cubes. In the bottom and upper layer the
coefficient is 100. For the four cubes sharing the edge E given by the points (0,0, 0) and
(0,0,1) the coefficients 1 and 10 are distributed alternately. Given Dirichlet boundary
conditions on 92 and given a triangulation with nodes on vertices of the 12 cubes, the
distribution of coefficients is quasi-monotone. But if in the course of refinement a new
node is created on the edge E, the quasi-monotonicity condition is violated for this
node.

To assure quasi-monotonicity also for triangulations obtained by refinement we intro-
duce the following
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Definition 3.5 Letd = 3. Choose an edge FE € &,. The distribution of the coefficients &/, T" C
wg Will be called quasi-monotone with respect to the edge F of a triangulation 7;, and the
part of the boundary I'p C 99 if following conditions are fulfilled:

Denote by Tr a simplex from wg where kp achieves the maximum in wg.

For each simplex T C wg; there exist a Lipschitz set &r i 4, containing only simplices from wg,
such that

- ifE e Eh(Q/fD) then TUTE - @T,E,qm and

kr <kp VT' CoOrpem

-ifE e Eh(Q/fD) then T' C a)T,E,qma mea52(8®T7E7qm N FD) > 0 and

kr < kp VYT' C o1 pgm

We say that the distribution of coefficients kp, T' € 7}, is quasi-monotone with respect to
edges of 7, if the above condition holds for all edges E € &;,.

To illustrate this condition in 3D, denote by G ¢ a 1-dimensional sphere perpendicular
to E, with center on E and contained in wg. This definition states that for interior edges
FE the coefficient function has only one local maximum on Gg.

Remark 3.6 If in 3D the distribution of coefficients kr, T € 7j, is quasi-monotone and ad-
ditionally quasi-monotone with respect to edges of 7, then the distribution of coefficients
kr,T € Ty, is quasi-monotone for any refined triangulation 7.

3.5.3 Arobust interpolation operator

In the case of a mass term occuring in the elliptic equation one may need an interpo-
lation operator which is continuous in L?(€2). Such stability does not hold in the case
of the interpolation operator defined in [24]. A further difference is that we allow also
for mixed boundary conditions. Our interpolation operator differs from the one pre-
sented in [24] only for nodes on the boundary 92. The same operator was proposed
independently in [11].

Let the distribution of coefficients k-, T' € 7;, be quasi-monotone. For a simplex T' define
a set containing some neighbouring simplices of T’

wr = U @T,x,qm
€N}, (T)

For a face F' define wr, by substituting in the above definition 7" with 7.
The quasi-monotonicity condition implies then

kr < kg vT' C wr

Remember that 7, is defined in definition (3.3). The interpolation operator is defined
by
1

ﬁ I .TZEN}L(QUFN)

Iru:= Z \iDz; » Wwhere p,, =
T, ENR (QUTN)
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and \; are the finite element shape functions of V},. Hence I, : V — V},.

For convenience define p, := 0 for nodal points z € I'p so that in fact Ipu := ) - AiDa;
where the sum is taken over /\fh( ). Alternatively I;, can be defined by substltutlng in
the definition of p,, the term T,.. by the union of simplices where k takes the maximum
inw,.

We need a scaled version of a standard trace inequality. It states that

Lemma 3.2 Let Qo € R d = 2,3, be a domain with diameter  and Lipschitz boundary. Let
F be a subset of £y with positive measure. Then for v € H* ()

[lZ2my =B 0lli2i00) + 7 03y

PROOF. This is a refined version of a standard trace inequality [29] for domains with
diameter O(1). The constant in the bound depends on the Lipschitz constant of Q2. B

Here we state the main result in this section.

Lemma3.3 Let d = 2,3. Let w € V. Choose a simplex T' € 7, and a face F' € Fy,. Let the
distribution of coefficients k7, T" C w, be quasi-monotone with respect to all nodes x of 7" and
Tr. Then the following bounds hold for any v € V'

(3.5.3) 1) llz2ry = vllze @)

(3.5.4) v =T()|l2(ry 2 h Vg = k;l/zh |V]kr @)
(3.5.5) =L@l = Plaren <k Pl en
(3.5.6) k2 o = )2y =072 olemon,)

PROOF. The proof is similar to that in [24]. As the definition of I, contains only integrals
on simplices but no integrals on faces it is possible to bound the L2-norm of I, in terms
of the L?-norm.

Choose a simplex 7' and number its nodes with z;,7 = 0, ..,d. Letx € N},(Q UT'y). Note
that p, can be written as P, (v) where P, is the L?-orthogonal projection on constant
functions in L2( ). Exploiting the property of this projection it yields for nodes z; €
Nu(T/Tp)andany c € R

(35.7) Ipz; = ellzeery = Pz = ellza g,
1Pei (v = T2z, , < llv—ellf

Further, we use the decompositions

d

(3.5.8) v=> Av and I(v Z AiDz,

1=0
We conclude from (3.5.7) with ¢ = 0 and (3.5.8) that

d

M ()3 anxzum =) SO
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This shows (3.5.3). Now let us prove (3.5.4). From (3.5.8) we obtain

d d

(3.5.9) lo = IL() 1132 Z i =pe)Feery <D v —peiliam

i= =0

Inequality (3.5.7) applied to nodes z; € N,,(T/T'p) yieldsforany c € R

o = pailliary < llo=eliser) + lIpa = elisr)
= H’U—CH%Q(T) + ||U_c‘|i2(fxi)

Recall that from definition 7 U T}, C OT.2,qm C wr. We use the last inequality and apply
the Poincaré inequality [4] to the Lipschitz set @t ,, 4 and arbitrary c to obtain

(3.5.10) lv = peillfzy = llo- CH%%@T,IZ,W) <12 ol

sz qm)
For nodes x; from 7" lying on the Dirichlet boundary we use p,, = 0 and the fact that v
vanishes on 00t ; ¢m N I'p. The Poincaré-Friedrichs inequality [4] yields

(3.5.11) ”U_p:EiH%Q(T) < ||U||%2(@T,xi7qm) < h? |U|H1

WT x; qm)

Collecting inequalities (3.5.10) and (3.5.11), together with (3.5.9), shows

(3.5.12) lo = L) |72y = B2 [0l

(or)

It remains to use the quasi-monotonicity condition which states

(3513) kp < kg vT' C wr

With this bound we prove

(3.5.14) ‘Uﬁ{l(@T) = Z k:Ffl !’v!im(m < k;l !’v!im(@ )
T'Cor

which yields due to (3.5.12) assertion (3.5.4).
For showing (3.5.5) we use as before (3.5.8) to conclude

d

[0 = I.(0) |31 1y Z — Pzl (1)
1=0

The properties of the shape functions \; imply then

asgy 0T lin S0 - plia 4 INTE =)l
<02 o = pa ey + olE
We combine again (3.5.10) and (3.5.11) to bound

d

(3.5.16) W23 o =peliemy = lien
=0
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From the last three inequalities and (3.5.13) follows now (3.5.5).
The trace inequality from Lemma 3.2 and inequalities (3.5.4) , (3.5.5) show

lo =Ty 207 o= TL@Eap) +h v =L@,
=h ”Uﬁ{l(TF)

Multiplication with k7, ~ kr proves due to (3.5.13) with & substituted by &7, the last
assertion (3.5.6). ]

3.5.4 Does regularity imply interpolation properties ?

In this section we set d = 2. We saw that the property of quasi-monotonicity implies
on the one hand regularity H5/* (section 2.5.4) and on the other hand approximation
properties of Finite Elements in norms depending on the coefficient & (see inequality
(3.5.5)). It is interesting whether there is a connection between regularity H°/* and
these approximation properties. This open question will be addressed in the following.
In classical interpolation results, as for instance for the Lagrange interpolation operator,
regularity H%/?*¢ (for some £ > 0) is needed [15] and the stronger semi -norm | - | pas2te
will appear on the right hand side of the interpolation inequality . This is a difference to
our approach since we want to use only the weaker norm ||k!/2V . 22 -

Fix an interior singular point =, and denote by B a ball centered at x(, and contained
in w, and with diameter approximately h. Suppose that B contains no other singular
point. Our aim is to have an interpolation result of the analogon of inequality 3.5.4 in
following form

(35.17) B2 (0 = vn)llz2y < e ATV R RV Vol s

for functions v € V of the special form v := u—uj; where u, uy, are solutions of problems
(3.2.2),(3.2.3) and u € H'*3(€),;) forany 0 < s < . Here v, € V}, is an approximation
of v and ¢ does not depend on the data £ nor on v, u or uj;. Comparison with inequality
3.5.4 shows an additional factor A~'/2 that depends on the regularity of v and thus on
k. This factor is necessary since it has been shown in [Xu] that inequalities like (3.5.17)
do not hold for arbitrary v € V and v;, € V}, without additional factors depending on v.
The bound (3.5.17) is stronger than (3.5.2) since we conclude from Theorem 2.16 that
5 < dand hence A\™1/2 < §~1/2 < §~1. Setting for a moment uy = 0, v, = 0 and v = o,
where 1, is defined in example 2.2, we see that the factor A\~1/2 is necessary. The same is
true for functions v, with a small norm with respect to v. We have to pay for decreasing
regularity with a higher factor.

We do not know if an estimate like (3.5.17) holds but we want to give some ideas how
to check it, if it holds. Defining vy, (xo) = v(xo) and vy, (z;) = p,, for points different from
x and using techniques from the proof of Lemmma 3.3 inequality (3.5.17) may be shown,
if we were able to show

(35.18) 182 (u = un)lg2gy = AP0 IRV (u = un) | r2(s)

Suppose that f|5 = 0. This implies that « is piecewise harmonic on BN ;. We now use
techniques based on decomposition into orthogonal bases, see for instance [56].
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In this subsection we use the notation ); , i = 1,2, .. for the eigenvalues )\? of the Sturm-
Liouville eigenvalue problem (2.4.1), (2.4.2). This shall not lead to confusion with the
similar notation for the Finite Element shape functions. Denote by s),,i = 1,2,.. the
according eigenfunctions. Therefore, functions s, sy,, @ # j are orthogonal in the scalar
products induced by the norm |[k/2(-)|| ;2(sp) and the norm [|kY/2(V+)||;2(sp) - Using
the expansion ulgp = ), a;sy,,a; € R and the fact that ris,, is piecewise harmonic
and satisfies the interface conditions we can expand « in the sequence [56]

(3.5.19) u= Z air’\is)\i

Regularity of « is restricted by regularity of functions r*is,, and we observe that it holds
piecewise H!*s-regularity for any s < A where \ = min; {\;}.

Orthogonality of the functions s, implies orthogonality of functions the r*is,. in the
scalar products defined by the norms ||k/2(-)|| 25y and [|k/2V(-)||2(p) . Further we

use [[kY2(rYisy)|r2m) & A2 [EY/2(V syl r2(p) - We may prove now
(3.5.20) 162 )| 2py 2 ATV2REY? Vul| 2y

by expanding « in the orthogonal basis given in (3.5.19), applying Parseval’s identity
and showing appropriate inequalities for each of the functions r*is, .
Using standard Finite Element techniques it is not hard to prove the estimate

(35.21) 16" unllpzmy = ATV2R RV Vg g2

If one wants to combine (3.5.20), (3.5.21) to show (3.5.18) one would need a sharpened
Cauchy-Schwarz inequality between the Spaces V' and V}, equipped with the norm
|kY2V - |12y (or an additional condition for the norm [|k/2 - ||12(5) ). We do not
know how to derive such an inequality or whether it holds at all.

Another attempt in proving the relation (3.5.17) could be to proceed as in the proof of
the Poincaré inequality which relies on compact embeddings L? cc H'. Therefore,
it suffices to check whether the function v = 1 defined on (0, 1) is not contained in the
closure of functions r*,0 < \g < \;,i = 1,2, .. defined on the interval (0,1) in the H/2-
semi-norm and does belong to the closure of that functions in L2(0, 1). Note that »*: are
the traces of functions r% sy ().

But this attempt fails as one can show that the function v belongs to the closure in
H'2(0,1) iff it belongs to the closure in L2(0,1). The proof of this fact is not straight-
forward. It uses ideas of the proof of MUntz theorem [19, p. 174]. Instead of using in
the proof the Hilbert space H'/2(0, 1) we can use the space H'(B,) where By is the unit
ball. The definition of the functions r*: remains the same.

3.6 Residual based error estimators

3.6.1 Theoretical basis for a-posteriori error estimators

We will use the interpolation operator defined in section 3.5. If the diffusion coeffi-
cients kr,T € 7y, are distributed quasi-monotonically, we can exploit the approxima-
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tion estimates (3.5.1). See remarks 3.3, 3.4 in section 3.5 for sufficient conditions for the
guasi-monotonicity.

If the distribution of diffusion coefficients is not quasi-monotone with respect to some
nodes, then there are no robust interpolation operators satisfying equations (3.5.1). In
this case we have to admit a constant § from relation (3.2.1).

We define the residual r(u) € V* for the solution u of (3.2.2) and u,, of equation (3.2.3):

r(u)(v) == / kV (u—up) Vo forveV
Q
The following decomposition of the residual will be used in the derivation of an upper

bound for the error

Lemma 3.4 For any v € V and any v, € Vj, we have the following representation of the

residual:
Z/f v — vp) Z/]F v —vp)

(3.6.1) / EV (u — up)
TET, FeF,

PROOF. Recall that we suppose gp = gp », that means that problem (3.2.2) and (3.2.3)
fulfill the same Dirichlet conditions. Integration by parts allows for splitting the
residual into local contributions. We use Galerkin orthogonality together with the
fact that Awuy, vanishes for linear functions. Note that in the definition of j» we have
included the Neumann boundary data. [ |

3.6.2 A residual based error estimator

Extending an estimator from [57] we define a residual based estimator nz. The global
estimator ng consists of the sum of local estimators g .

Definition 3.6
7712% = Z 7712%,T
TeT,
nE, HthLz(T + 2 g il
FCoT/Tp

The next theorem is the main result in this section. We show the estimator to be reliable
and efficient. A robust upper bounds holds in the case of quasi-monotone diffusion
coefficients. Otherwise additional constants enter in the upper bound for the estimator,
see remark 3.7.

Theorem 3.5 Let d = 2,3 and gp = gp, and let g be piecewise constant on faces F' €
Frn(Tn).

If the distribution of the diffusion coefficients ki, T € 75, is quasi-monotone, then for the so-
lution u of equation (3.2.2) and uy, of equation (3.2.3) it holds that the estimator 7y is globally
reliable, that is

(3.6.2) u—unlpgiy =D Mhr + Z — Hf fullizm

TeT), TGTh
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Without any assumptions about the distribution of the diffusion coefficients the estimator 7 is
locally efficient, that is for any simplex 7" € 7,

77RT = ‘U_Uh‘kHl wr) T Z P ||f fh”L?(T/ )
T'Cwr
where wr contains all simplices sharing a face with T". The constants in these bounds neither
depend on the diffusion & nor on other data, but only on the shape regularity parameter of Z,.

In the 2D-case it suffices to demand in Theorem 3.5 quasi-monotonicity for the initial
grid. But remember that the quasi-monotonicity is preserved during refinement in 3D
only under an additional condition given in Definition 3.5.

Corollary 3.1 Let d = 3 and let an initial triangulation 7, be given. The distribution of dif-
fusion coefficients kr, T € Ty, is quasi-monotone and additionally the distribution of diffusion
coefficients kp,T" € Ty, is quasi-monotone with respect to edges of &,,. Then for each triangu-
lation 7}, obtained by refining 73, (that means for the corresponding Finite Element spaces holds
Vi, C V) the error estimator 7y is reliable

‘U—Uhﬁﬂl = Z Mhr + Z _ Hf thL2

TeT), TGTh

Remark 3.7 With the bounds 6 < k(z) < §~! the non robust upper bound

(3.6.3) =l 2072 Y ke + Z — Hf ullZz

TeT, Telrh
holds. For a proof proceed as in [57] for the case k = 1.

Remark 3.8 In [11] similar error estimates were derived independently for the class of diffusion
coefficients, defined in remark 3.4, which is smaller than the class of quasi-monotone diffusion
coefficients. See also the independent article [21], where the case of essentially two subdomains
was considered.

PROOF of Theorem 3.5. The techniques used in the proof are essentially those of [57].
Define v = u — uy,, where v and uy, are solutions of (3.2.2) and (3.2.3) and observe that v
vanishes on I'p. Let vy, := I (v). Reliability will be shown using the representation of
the residual in Lemma 3.4 and Lemma 3.3 from section 3.5 for bounding the terms v —wvy,.
By Lemma 3.4 we split the residual into contributions [ f (v — v;) and [ jr (v — vp).
We use Lemma 3.3 from section 3.5 to bound

h
ka/?
In a second step we estimate the contributions from the terms j». Using the approxi-
mation inequality (3.5.6) from Lemma 3.3 from section 3.5 we have the local estimate

HfHL2 |U|kH1(<I;T)

(3.6.4) /T fw—om) < ey o —vnlzem =<

/F Jrw =) < lirlew I — ol
(3.6.5)

B\ 12
= <E> 13FllLzry |0lkm @r,)
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Now we use (3.6.1) together with the bounds (3.6.4), (3.6.5) and apply the Cauchy-
Schwarz inequality. Further we make use of the fact that each simplex 7" is covered
by finite number of wr or @7, and obtain

/Q/-cV(u—uh)V’U = "U’Z,Hl(g) = ’v’kHl(Q)'

h2 h 1/2
2 - 12
{ > (kT A2y + D T 17F (172 () )}

TeTy, FcaT/Tp

Cancelation and the triangle inequality | fl[ 2y < Ifallczery + If = fallzer finish
the proof of (3.6.2).

The proof of the lower bound goes in two steps. First we estimate the element residual.
We denote by ¢ an element bubble function vanishing outside T' as defined in section
3.2.2.

Note that since f}, is a constant on each simplex, the local equivalences

\fudrlmay =~ fallizay B0 Ifadrllzey = fnllzz
follow  directly  from  the  relation o7y = b1 1 2o and
o7l 2y =~ 22 -

Using v = fror as a test function and seting v, = 0 in (3.6.1) the Cauchy-Schwarz
inequality and the local equivalences imply

1 nll72 7y %/Tfh (fnor)
:/kv(u_uh) V (frnér) —/ (f = fn) (fnor)
T T

—1
h
< ((W) | — uplpEr () + fth?(T)) | fullz2(r)
T

Simplifying the last expression we get an upper bound
h h

(3.6.6) 7z [fellzery = lw—wnlemry + 7z If = frllz2er)
kT kT

To complete the estimate from below we need to estimate the jump term. We will exploit
local equivalences of the type

~ h1/2 | ~ h71/2 |

lirdrllL2r Urllzzry 5 liFdFIm (1) L2 (r)

These  equivalences  follow  from orll2ry =~ hY2 |12 (r) and

(6rlmry = b2 |12 -
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We insert v = jr¢p as a test function and let v, = 0 in (3.6.1) and obtain together with
the above local equivalences

il Z2 ) %/FjF (Jror)

—— [ atieor) = [ (= fGror) + [ BV (@) ¥ Gror)
< 3 { Wz + 15 = Fallzery ) Ddmllzacey b2
TCwp

o fu = unlmry irllze B

Cancelation and insertion of (3.6.6) into the last right hand side gives

@67 W2 plawy = 3 {BIS = fallzy + R fu = wilim ) |}

TCwp
<ShF = Fullzzgory + i = wnlkmn o)
Combing (3.6.6) and (3.6.7) we obtain the upper bound for ng
h2

1712%771 =< |U—Uh‘iH1(wT) + Z Kk Hf_th%2(T/)
T'Cwr T

3.6.3 Error estimators based on local problems

In the literature one finds estimators based on the solution of local problems [57]. Let
the domain €2 be covered by patches of simplices. On each patch one defines a Galerkin
space of bubble functions and solves within this space a local analogon of the continu-
ous problem. The energy norm of the resulting solution is taken as an error estimator.
The local problems can be classified into Dirichlet and Neumann problems.

Error estimators based on local Dirichlet problems

Here we present an approach with Dirichlet boundary conditions on a patch consisting
of two neighbouring simplices. For a face F € Fj, let T and T be simplices sharing
the face F. If F € F;,(I'y) regard only one simplex 7" with face F'. The Galerkin space
consists of two element bubble functions ¢, ¢+ vanishing outside 7" resp. 7" and one
bubble function aligned with the face ¢r vanishing outside wr. Let Vj be the space
spanned by three bubble functions ¢7, o7/, ¢r. Such bubble functions are defined in
subsection 3.2.2.

We seek vp € Vp fulfilling:

(3.6.8) /w ) EVupVe = /w ) frd + /F . gNG — /w ) EVup Ve Vo € Vi
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Definition 3.7 For aface I’ € Fj, we define
"D,F ‘= \UD|kH1(wF)

Similar estimators have been proposed in the context of hierarchical bases in [12], see
also section 3.7.1.
We show that the residual based estimator 1z and the estimator np are equivalent.

Theorem 3.6 Let d = 2, 3. For each face I’ € F;, and neighbouring simplices 7', 7" we have

np,r 2 MR + e and nrr X Z np,F
FcaT/Tp

PROOF. The proof uses techniques from [57] developed for the case £ = 1 adapted to
the case of piecewise constant diffusion coefficients as done in the proof of Theorem
3.5. [ |

Error estimators based on a local Neumann problems

It may be desirable to construct estimators based on local problems with just one sim-
plex as support for the bubble functions. Then one has to impose Neumann boundary
conditions. For varying coefficients it is not straightforward what Neumann boundary
conditions to impose in order to keep the resulting estimator robust.

We propose an estimator with one bubble function ¢ per face £’ of T" and one ¢ for
the simplex as done in the estimator ny in [57]. The Galerkin space spanned by these
functions is denoted by Vy.

We seek vy € Vi satisfying:

1/2
@69 [mvave= [ho- > () [ire veew

k
rcor/rp N F

The estimator n will then be defined as:

Definition 3.8

NN,T ‘= ‘UN|kH1(T)
Again we can show an equivalence.
Theorem 3.7 The estimators nr 7 and nx 7 are locally equivalent:
2 .2
NN ~ NRT

PROOF. The proof is done as the proof of Theorem 3.6. [ |
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3.7 Other estimators

3.7.1 Estimators based on hierarchical bases

In distinction from residual based error estimators, where one needs interpolation re-
sults for the derivation of upper bounds for the error, there is an alternative approach
based on hierarchical bases, see [12] [9]. Here the upper bound is shown by the so-called
saturation assumption.
The analysis in [12] was done for the case k£ ~ 1 but carries over directly to the case of
discontinuous diffusion coefficient.
Let V,, € Q C V where Q is for example the space of piecewise quadratic Finite Ele-
ments

Q=V, oV

Here V is called the hierarchical extension.
We define ug as the solution of the variational problem with Galerkin space Q:

UQ — gp,n € Q and

(3.7.1) /k:VuQVvQ :/va+/ gnvg Yvg € Q
Q Q o0

We define the saturation assumption.

Definition 3.9 We say that the saturation assumption is fulfilled if there exists a number g €
(0, 1) such that for the solutions u, u,, ug of problems (3.2.2) (3.2.3) (3.7.1) holds

lu —uqlrai) < B lu—uplka
and (3 does not depend on the data f, gp p, gn Or k.

The hierarchical extension V is spanned by face bubble functions ¢ for faces F' € F},.
We define the local error estimator for a face I’ € F},

2
Nirp = < [ or —/jF ¢F> |¢F|;;é1(wF)
wp F
and the global error estimator

2 . 2
Mg = E NH,F
FeFy,

Following [12] one can show
Lemma 3.8 For solutions u, uy, of problems (3.2.2) (3.2.3) holds the lower bound
M 2 Ju— uh’iHl(Q)

The saturation assumption is equivalent to the upper bound

2 2
lu— Uh‘kHl(Q) =N
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Similar estimators can be constructed for different spaces Q D V},.

The problem is to prove the saturation assumption. For the case of a constant diffusion
coefficient k£ this has been done recently using a-posteriori error analysis techniques
[23]. There it is shown that a small ratio between the oscillation > . || f — th%Q(T) and
HfH%Q(Q) implies the saturation assumption. However, for the case of a varying & until
now there is no result showing the saturation assumption on the basis of a-priori data
f. If one is solely interested in the saturation assumption, one can use reliability of the
adjoint error estimator to prove the saturation assumption [12]. This can be done if the
space V contains for each simplex T' € 7}, a shape function with support contained in T’
as o7 [12].

See [21] for connections between so called a-posteriori saturation assumption that drives
the quality of the approximation of the data and the refinement strategy and between
the above defined saturation assumption.

3.7.2 A Zienkiewicz-Zhu like estimator

Besides residual based and hierarchical based error estimators there is another approach
based on averaging techniques originating from Zienkiewicz and Zhu [63] [57]. This ap-
proach is popular among engineers and is validated for the case of a constant diffusion
coefficient. In this section we want to provide an argumentation that it may be not
possible to adapt this kind of estimators to the general case of discontinuous diffusion
coefficients in a robust way. We do this in the light that there are applications using aver-
aging techniques for mesh adaptation which fail to provide reasonable refined meshes
in case of discontinuous diffusion coefficients.

For the case of a constant diffusion coefficient these estimators are based on a reference
solution obtained by an averaging procedure of the numerical solution. Let G, € (V)4
defined by

T
(3.7.2) G ()= Y meas(T) krVuplr , €N,

o measq(wy)

An error indicator can then be defined as

1
(3.7.3) Noyr = o G, = krVullZap

In case of k = 1 we obtain the well-known ZZ-estimator. But in case of a discontinuous
diffusion coefficient 7z  cannot serve as indicator. This is clear if one observes that the
derivatives of the numerical solution tangential to the interface are continuous whereas
the derivatives normal to the interface are not continuous but close to be continuous
when weighted with k. Thus in a proper averaging procedure the tangential and the
normal part should be weighted differently. This may be hard to realize near singular
points z, that means on a part of the interface I'y which is not a straight line. The
direction normal to the interface is not constant in I'y N w, and this will cause serious
difficulties for properly defining the normal and tangential derivatives.
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3.8 Extension to more general problems

In this section we extend the estimators 7, np to diffusion problems with a mass term
and boundary conditions of Dirichlet-, Neumann- or Cauchy-type in polygonal (poly-
hedral) domains Q c R%,d = 2,3. As the mass term can become very big when com-
pared to the diffusion coefficient & these problem comprise the so-called singularly per-
turbed reaction-diffusion problems.

Let a function gp € Hl/Q(FD) be given that corresponds to the Dirichlet boundary data
and could be extended to gp € H'(Q). Further the function gy € L?(T'y) corresponds
to Neumann boundary data and functions gc € L?(T'¢),y € L?*(I'c),y > 0 to Cauchy
boundary data. Let m € L*>(2),0 < m be given. As in section 3.2 we define the space

Vi={ve HY Q) :v|r, =0}

Let use define the energy scalar product

al u,v) = /k:Vqu +/muv +/ Yuv
Q Q Y]

As before we do not explicitly denote that integration is done over the space variable z.
The variational form of the problem under consideration is as follows: we seek u, satis-
fyingu € gp + V and

(3.8.1) a(u,v)—/fv —I—/ Y gc v —|—/ gnv YoveV
Q T'c 'y
We introduce the energy norm:
ollgy == ‘kl/QUﬁIl(Q’) + \|m1/2v\|%2(9/) + ||’Yl/20||%2(asz'mrc) ,
and a norm that coincides with the energy norm in the case I'c = ()
oo = K720y + M2 032

for measurable subdomains ' C Q. Denote by b( -, - ), the scalar product for the norm
[RRIEXsT

For simplicity we assume measy_1(I'p) > 0. Using Riesz’s theorem one can show that
there exists a unique solution of problem (3.8.1).

Let V}, C V be an Finite Element space with continuous and piecewise linear functions.
Let gp,n € V}, be an approximation of gp. Then the solution of the discrete problem wu,
satisfies u;, € gp 5, + V3 and

(3.8.2) a(uhavh)—/fvh +/ Y gc vp +/ gy v, 5, Yup €V
Q T'e I'n

We assume that the diffusion coefficient & and the mass term m are piecewise constant
on simplices of 7;. Further we assume that functions gp = gpj and that gy, gc and
~ are piecewise constant on faces of 9{2. Otherwise an additional a-priori error occurs
which is due to the approximation of the boundary data.



62 3.8. EXTENSION TO MORE GENERAL PROBLEMS

A-posteriori error estimators were derived for the case £ = 1, ' = ) in [59] and for
the case £k = 1,m = 0 in [37]. Similar error estimators have been derived in the case
of a constant diffusion coefficient and pure Dirichlet boundary conditions in [2]. We
derive a-posteriori error estimators for the case of discontinuous diffusion coefficients
and Cauchy boundary conditions by adapting ideas from [59] [37]. We assume that the
mass term m is piecewise constant on simplices from 7; and does not vary too much
from simplex to simplex: For any neighbouring simplices T, 7’ with T'NT" # () it holds

mr = mrgr

where mr, m7 denotes the value of m on the simplices 7', 7. In the following we will
skip the index and simply write m.

3.8.1 Notation

We will frequently make use of the following terms defined for a simplex T resp. a face

F
h 1 hl/2
a7 = min —1/2,77”Fl/2 , ap = i min 1/4,77”Fl/4
kT kF kF

For each face I' € F;, we need a special shape function adapted to the energy norm
and with support in wp . This function was introduced in [59]. We shortly sketch
its definition. Denote by T the reference simplex with vertices given by the unit vec-
tors e;,i = 1,..,d and the point e, := 0 € RY. Let F be the face opposite to the
vertex e;. For a given number 0 < § < 1 we introduce an affine transformation
Us @ (21, 2g-1,24) — (x1,..,24-1,0 4) @and denote the barycentric coordinates of the
image Ts := ¥(T) C T by A\is,i = 1,..,d + 1. Now define the shape function on the
reference simplex 7' by:

Olp s = d* Nav1s Wizt a-1Mis

with support in ﬁg. Let us choose a simplex T C wp. By the affine transformation
G : T — T mapping F onto F we define ¢s(z) := 6|7 5(G~1(x)). The function ¢,
will be defined on the other simplex sharing the face F' in the same way. That means
that ¢ 5 and ¢ coincide on the face ' and in the case § = 1 they coincide everywhere.
For § < 1 the function ¢rs will have smaller support. With an appropriate value of
§ = o2 kph~!and for k = 1 the function ¢ s can be viewed to be a function which
energy || - |l is close to the extension from F to wy with minimal energy || - [|o [2].
Further we extend the definition of the jump term j  to the case of boundary conditions
of third kind. For a face F' denote by 7', T’ the simplices from wp.

L (ke +kp i) ifFCQ
Jr = gn — kp 2 if FCTy
’YF(QC — uh) — kJT%LT;’ if FCl¢

In the following we denote as usual the L2-scalar product on a subdomain Q' C by
(+, ). IFQ = Q, we write (-, -).
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3.8.2 Stability of the interpolation operator in mixed norms

In this section we assume that I'c = (. The aim of this subsection is to show that the
interpolation operator Iy, : V' — V}, has the following interpolation properties with
respect to the energy norm defined in section 3.8

(38.3) lu—TIc()llL2ry 2 or ||lullper

(3.8.4) lu—TIc(ulzery 2 ar llullber,

under the restriction to quasi-monotone diffusion coefficients. Here &7 and &7, con-
tains some neighbours of 7" or F. For a definition of @y or wr, see section 3.5.3. Similar

estimates have been shown for the case & = 1 [59]. For the proof we use a trace inequal-
ity [59].

Lemma3.9 Let T C R¢,d = 2,3 be a simplex with diameter h. Let F C 0T a face of 7. Then
for u € HY(T) it holds

lullZamy =71 ullfey + llulle@y lulm

PROOF. See [59]. n

Here we state the interpolation results:

Lemma 3.10 Let I'c = () and let the distribution of weights k7, T € 7}, be quasi-monotone.
For each simplex T' € 7}, and for each face ' € F;, the bounds (3.8.3), (3.8.4) hold.

PROOF. For the proof we exploit Lemma 3.9 and Lemma 3.3. A combination of (3.5.3),
(3.5.4) yields

lu = I ()| F2y <m™" Jlullf g,
2 h2 2
lu = TL@)lZery < 3 luliia,
proves (3.8.3). Choose a face F' and the neighboring simplex T». Through inequalities
(3.8.3), (3.5.5) and Lemma 3.9 and we establish the bound
lu = IL()|F2my =A™ lu— I,

+ v = Io(u)ll 2y [u = TL(W)] gy

9 1
ullozr, + are lulosr, —75 [uler @r,)
Tr

<h! a2TF

1
—-1 2 2
= <h ar, + arp W) ullpzr,
Tr

It remains to show

(3.8.5) h=" ar, + arp ~ ap
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This is done by observing

h? h 1
-1 . —1 . —1/2
h mm{a,m }—l—mm{m,m / }W

3.8.3 Stability of a modified interpolation operator

Now we allow for Cauchy boundary conditions. In this section we define the interpola-
tion operator I : V — V}, which is a modification of the operator ;. The modification
is done in order to take into account the Cauchy boundary conditions. The new oper-
ator I fulfills the following interpolation properties with respect to the energy norm
(where now the Cauchy boundary data are included)

(38.6) lu—Ie@)llzam) = ar lulley YueV

(38.7) lu = To@)lpzgry = min{ ar 7z 2} ulloy, Yuev

The last inequality remains valid for a face £ ¢ T'¢ if we define formally v = 0 and
7;1/2 = +4o0. Defining the new operator we follow an idea of [37], where the prob-

lem of a globally constant diffusion coefficient was regarded. We define two subsets of
boundary faces:

I'g:=T'pUTl¢xg, wWhereT'¢g := {F € fh(fc) oap -2 < ’YF}

The interpolation properties (3.8.6) and (3.8.7) hold if the distribution of coefficients
kr, T’ C w, is quasi-monotone with respect to any node z of a triangulation 7; and
the part of the boundary I'y C 99).

The new operator I is defined by its values in the nodal points

0 ifz; € Np(To)
pz, Otherwise

Io(v)(zi) = {

For a definition of p,, see section 3.5.3. We see that I and I, coincides in all nodal
points but those on I'¢y. We need the following Poincaré inequality:

Lemma3.11 Let Qy ¢ R* d = 2,3, be a Lipschitz domain with diameter h. Let F' C
9Q0, measq_1(F) ~ h. Then for u € H(Qo)

ulZoqy = h° lulfngy +P lullzz
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PROOF. This is a refined version of a standard Poincaré inequality [4] for domains with
diameter O(1). The constant in the inequality depends on the Lipschitz constant of Q. B

Lemma 3.12 Let the distribution of coefficients kr», T’ C w, be quasi-monotone with respect
to any node x of the triangulation 7;, and the part of the boundary Iy C 02. Then for each
simplex T" € 7, and for each face F' € F, the bounds (3.8.6), (3.8.7) hold.

PROOF. In the proof we exploit elements from the proofs of Lemma 3.3 and Lemma 3.10.
Choose a simplex T' € 7, and denote its vertices by x;,i = 0,..,d. Clearly u — Io(u) =
Z?:o Ai(u — ps,;). We set p,, = 0, if there is a face F' C I'y with node z;. We show as in
the proof of Lemma 3.3 that

o (llz2ry = llull2
Accordingly
(3.8.8) He@)l|Fzry =m ™" Im'Pullfay <m™ Julz

Now we want to show
2 h2 h 2
(3.8.9) lu—=Te(@llzeery = {7+ 17 OT el
T

As in the proof of Lemma 3.3 we use ||u — Ic(u)||%2(T) <34 flu— pxi||%2(T) . Thus
in order to show (3.8.9) it suffices to prove

W2oh
(3.8.10) lu = o, 2y = (E o T ) llullZ,
T

For nodes x; € N (T/T'¢o) we show as in Lemma 3.3

(3.8.11) lw = pa 2y = B2 Julin

(‘:’T,xi,qm)

We use the quasi-monotonicity condition

(3.8.12) kr <kr . T'COrg.qm
to bound
2 1 2
(3.8.13) ]u\Hl(@T’Ii,qm) = Z k,_T/’u‘k:Hl(T’)
T/C‘:JT,zi,qm
1 9 1 9 1 2
D D O TR 1 o

P
T CUJT@i’qm

Hence we are done with nodes x; in NV, (T/T'¢).
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If a node z; belongs to NV, (T N T'¢p), there is a face ' C T'co N w1 4, gm Where Ty C
T 2;,qm and we may use Lemma 3.11

(3814) [u—polPery = luldery < lulBog. )

<12 ufpgsy ) Rl

(‘:’T,xi,qm,

Using the relation 7;1 < o2 the last term of ineq. (3.8.14) is bounded by
_ 1/2

(3.8.15) hllulZom = hypt e <hokluld,, .

Using the relation o2, =~ ﬁaTF and the quasi-monotonicity assumption (3.8.12) we
show

h h
(3.8.16) ha% =~ 0T < 0T
kTF kT
Again we use the quasi-monotonicity condition to bound the term |u|? in

HY (& 2, ,qm)
ineq. (3.8.14) like in ineq. (3.8.13).
With ineq. (3.8.13), (3.8.14), (3.8.15), (3.8.16), the definition of &y = U] @74, 4m and
help of ineq. (3.8.10) we are able to show ineq. (3.8.9).
Combining ineg. (3.8.8) and ineq. (3.8.9) we conclude

' . h? h . h o _
lu = Io(u)||72¢ry = min {m 1,k—+1—/2mm{1—/zvm 1/2}} el
T ky ki

. o 2
<min § om ! Jul,

what shows assertion (3.8.6).
For a fixed face F' we want to derive assertion (3.8.7). We set T' = T'». We first bound
lu — Ic(u) 1 qy interms of |||uH\§TF. We conclude as in Lemma 3.3 (ineg. (3.5.15) and

(3.5.16) ) that

d
lu—Io(W) Firy 2B llu—paliemy + luling
=0
With help of the bounds (3.8.10), (3.8.13) we see

o [ h? h -
(3.8.17) ’u - IC('UJ)’%{l(T) = [h 2 <H + W ar ) + le} H‘UW%TF

Now using the bounds (3.8.6) and (3.8.17) we proceed as in the proof of ineq. (3.8.4) and
apply Lemma 3.9. We reach at
1/2
) ull?,,

B 1 1 )
o T agey = (h '} + ar [<E+W”T> s i

1/2
1 1
<(hrad oL +<— aT) or | Bul?
= 1/2 1/2 v
( el k) "
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It remains to bound the factor in the right hand side of the last inequality by «ar . From
inequality (3.8.5) we know that A1 o2, + ar kl% is bounded by o2 . The third addend
T

is estimated by
1/2 1/4
1 1 kp
<W ary ) ar = W QT <h1—72 Carg 1/2> < ap -1
TF TF

This shows

(3.8.18) lu = Io()|[f2my = o lulll,,

Suppose fy;l < o2 .Then F C I'co and I (u)|r = 0. Hence it is easy to see that

_ 1/2 _
(3.8.19) lu = T2y = ez =75 I ull2em < vmtlull,,

Combining the bounds (3.8.18) and (3.8.19) we have shown assertion (3.8.7).

3.8.4 Theoretical basis for the lower bound

In the following using ideas from [59] we define § in such a way that hé = kr o4 .
Observe that then

F F

according to our assumptions.

We will use an extension operator Er : L (F) — L*®(wp) as defined in [57, p. 58]. It
relies on constant extension onto the simplices T, 7’ C wp containing the face F.

For the proof of the lower bound of the error estimator defined in the next section we
need a technical lemma

Lemma 3.13 Let V7 be the finite dimensional space spanned by the linear functions on 7" and
denote by V- the space of functions which are linear on F.
For any linear function ¢ € Vi holds

(3.8.21) ot lloreler ~ loreliemy = lellizm ~(@.ére)r

where the bounds are independent of .
The following estimates hold for any 0 < § < 1 and ¢ € Vr independent of § and ¢

(3.8.22) orselery = leliew = (érse)p
(3.8.23) l6rsEr() 72y = hd llol7ar)
(3.8.24) ot 0rsBr(P)lbw, =~ lorselTzcm
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PROOF. Note that [¢r¢|g1 () is @ norm in the finite dimensional space V- and since
norms in finite dimensional spaces are equivalent we show after transformation to a
reference element 7" that [¢7p| g1y =~ ht orellr2(ry - Hence, it is easy to see that

(3.8.25)
lorelsr =mlléreliay +kr loreling

~ (Fr 2 ~ N - 2
~ ﬁ—l—m lérellz2¢ry ~ | min E’m lérellz2(m

Similarly, ( ¢, ¢rp )y ~ \\@H%z(T) ~ qupr%Q(T) what proves (3.8.21).
Inequalities (3.8.22) follow from equivalence of norms on finite dimensional spaces.
Argumenting as in the proof [59, Lem. 3.4] we get

||¢F,6EF(§0)H%2(T) ~ hd quFvWH%Q(F) ’

what proves (3.8.23).

Before we prove (3.8.24) observe first that [V ps|ja () = 1/(6h). Performing transfor-
mation to a reference simplex and applying standard arguments (see the proof of [59,
Lem. 3.4]) we arrive at

0rsEr (@) iy = (00) " lorspllizm
Straightforward calculation shows

kp(h6) ! o =1

m(hd) o2 =mkpak = min {mh*k;',mm™'} <1

Combining the last three inequalities with (3.8.23) we obtain

I6rsBr(O)hwr = Y, ml¢rserwllizay + D kr 16psEr(@)inm

Tewpr Tewr

~ {mho ke (0) 7} IorselBam ~ i lonsldam

This finishes the proof of (3.8.24). [ |

3.8.,5 Residual based error estimator

We define the residual r(u) € V*
r(uw)(v) :==a(u—up,v) forveV

where v and uy, are solutions of (3.8.1) and (3.8.2).
The following representation of the residual holds.
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Lemma 3.14 For any v € V and any v, € V} we have the following identity:

r(u)(v) —/Qk(Vu—Vuh)v —I—/m(u—uh)’u—l—/ vr(u — up)v

|Ne]
Z/ (f —mup)v + Z /]Fv
TeTy, FeF, Q)
+ 0y (gn — K2Ry Z ) — k2 L,
(3.8.26) N on Yr(9c — un o
FEFy(Tx) FEFu(
Z/ (f —mup)v + Z /JFU
TeT;, FeFy/Tp
Z/ (f —mup) (v—up) + Z /Jpv—vh
TEeT, FeF,/Tp

Here Jr denotes the jump term defined in definition 3.2.

PROOF. The proof follows from Galerkin orthogonality and partial integration. |

We extend the residual based estimator in [59] to the class of problems (3.8.1) with dis-
continuous diffusion coefficients. For the case of £ = 1, m = 0 and Cauchy boundary
conditions a similar residual based a-posteriori error estimator has been proposed in
[37].

Definition 3.10

nhr = o ||fn—munliap + > of 1Te 32
FCF,(0T/(TpUTc))

. -1
4 Z mln{ a% yVE } ||JFH%2(F)
FCFIL(QTOFC)

If m = 0 the definition of a7 and ar has still a meaning setting formally m—! = oo.
In this sense the error estimator nr r defined in section 3.6.2 coincides we the new one
defined above in the case m = 0 and I'¢ = () and we agree to use the same symbol.

We define the global error estimator as the sum of the local contributions

(3.8.27) Thi= Y Nhr

TeT,
The following theorem states robust efficiency and reliability of the estimator 7.
Theorem 3.15 Set d = 2,3 and let u, uy, be the solutions of problems (3.8.1), (3.8.2). For any

simplex T" € 7}, the estimator is locally efficient, that is

Mhr 2 lu—wli, + Y & If = fullZfery
T Cwr

where wp contains all simplices sharing a face with T..
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Let the distribution of coefficients kr, T C w, be quasi-monotone with respect to any node =
of a triangulation 7, and the part of the boundary I’y C 0f2. Then the estimator 7y is globally
reliable, that is

o=l =Y mkr + 3 o I = fullzry
TeTy, TeT,

The constants in these estimates depend only on the shape regularity and not on the parameters
like k£, m and boundary data.

PROOF. The proof goes essentially like that for the case £ = 1 in [59] [37]. We choose
v=u—uy € Vandsetv, = Ic(v). From the representation of the residual (Lemma
3.14) and interpolation inequalities from Lemma 3.10 and Lemma 3.12 follows

a(u—wo) = 3 [ (Fmmu)e-v) + 3 [ Irw-u)

TeT, FeF,Tp T

< Z If —munlp2r) lv—vnllL2er)

TeTy,
+ > el llv = onllzz
(3.8.28) FeFn/To

<> or lvller I1f — mupll 2

TeTy,

+ Y o vler, 1F e
Fth/(FDUFc)

. 2 -1

+ > min{ o} 5} lar, 17002
FeF,Nl'c

Now we apply the Cauchy-Schwarz inequality and make use of the fact that each sim-
plex T' is covered at most by finite number of &7 or wr, that depends on the shape
regularity parameter of 7;,. At the end substitute f by the approximation f;, and use the
triangle inequality

I = munlay =2 1w = munlFary + 1f = falltaey

This proves reliability of the error estimator np.
The proof of the efficiency goes in two steps. First estimate the element residual using
the bubble function
wr = (fp — muy) ér
In the identity
(fn—mup, 0 )p =alu—upn, o)+ (f~=fre)r

we substitute ¢ by wr and exploit inequality (3.8.21) to get

| fn = munlZziry = (fo—mun,wr )p = a(w—up,wr )+ (f = frwr )p
v —unllor llwrllor + IIf = fallezery llwrllzzo

1fn = mun|72 {o7" lu—wpllor + IIf = fullzeery b -

VANVAN
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After cancelation we arrive at the bound

(3.8.29) o Hfh—muh||%2(T) = ||U_Uh‘|g,T + aof Hf—th%%T)

In a second step we estimate the jump term Jp. Let us first take an interior face F' or a
face from I'y. We exploit the following identity which follows from partial integration

(3.8.30) (Jr,wp )= b(u—up,wrp) — ( fo—mup,wr),, —(f— fo,or),,

Here wr := Jr¢r, is a special trial function. Note that Jr is a constant. Aswr € Vi we
can apply Lemma 3.13 with inequalities (3.8.22), (3.8.23) , (3.8.24).

1P Z2 ) = (Jr wr)

< 3 { -l Jwrlor

TCSF
(3.8.31) + (1fn = munllzay + 1 = fullzery ) Nwrllzea b
< el { Y2 ap lu—unlor

TCSFg
1
+ (1) (Ifn = munllizry + 1 = fullezry)
Cancelation and application of equation (3.8.29) yields
(3832) |l = D { (ap? +héap”) |lu—unllr + 0o | f = fullzr }
TCSFg
Multiplication (3.8.32) with o, and the fact hd of, = kraj, = of, < of imply
(3.8.33) ar elfege = lu—wlizm, + > o If = fulfem
TCTg

an upper bound for the jump term. If ' = () we are done.
Otherwise take F' C I'¢. As before due to definition of Jg we get

(3.8.34) (Jp,wr )= blu—up,wr )+ /F’yp(u — up)WE

— (fo—mup,wp ) = (f— frn,wr)

We proceed as in the case of ¥ C F},/I'c and set wp := Ep(Jp) ¢rs € Vp. Here Ep
is the extension operator introduced in section 3.8.4. We bound the additional term in
(3.8.34) by applying the Cauchy-Schwarz inequality and inequality (3.8.22)

1/2
/FVF(U—Uh)wF <p lu—unllra) lwellzee =98 e = wnllze 17722y

Proceeding as before ( compare with inequality (3.8.32) ) we gain

(3835 Ul = Y { (ai® +hiaz®) Ju—unliyr
TCSF

+ 0|1 = ulldary +vellu = unll, }
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respectively

(3.8.36) 1ol 72 = (ap® +78) lu—unld, + oz Y oy If = falliaen
TCTg

Observe

(3.8.37) ap? +p ~max{ ap? ,yp}t = {min{a? 4537

Thus from inequality (3.8.36) follows

3838)  min{ af vp'} 1ellTaey 2 Mu—wld, + D oF If = falliem
TCTg

Here we used min { o ,7;'} oz® < land of < o} . Combining inequalities
(3.8.29), (3.8.33) and (3.8.38) we finish the proof of local efficiency:. |

3.8.6 Error estimators based on local Dirichlet problems

We define an estimator based on solutions of local Dirichlet problems. The estimator is
similar to that derived in section 3.6.3. For each face I' € F}, the estimator is based on a
Dirichlet problem on wg.

Denote by ¢ and ¢ s the shape functions that are defined as before. The local Galerkin
Vp will be:

(3.8.39) Vp={pors:peVrt + |J {edr:pevr} ,

TCwr

where the spaces Vp, Vi are defined in Lemma 3.13. If F' ¢ T then V can be modified
to contain only constant functions. In this case Vp will be spanned be seven (four if
F C T'y) shape functions in the 2D case. In the 3D case the maximum dimension of V/
is 9.

We seek vp € uplw, + Vp fulfilling

(3.8.40) a(vp,p )= (fo—munp)— (Jr,o)p , Yo €Vp

The solution vp can be viewed as the solution of a Dirichlet problem with vp a7, = up,
and with the Galerkin space Vp.
We define the estimator 7p in the following way:

Definition 3.11 For a face F' € F;, we define
np,r = [[vpllr,

We can then show that the residual based estimator n and the estimator np are equiv-
alent.
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Theorem 3.16 For each face F and neighboring simplices 7', T it yields

np,F I MR + MR ANd NrT =< Z nD,F
FCOT

PROCOF. For the proof of the upper bound for np r use vp as a trial function in (3.8.40).
Lemma 3.13 implies then

WUDW?S‘F < Z ”UD”B(T) ”fh—muh”L2(T) + ”UD”L2(F) ”JF”L2(F)
TCSpg

< Y aFlvpllsy 1fa —munlary + oF llvpllse 1Fl2)
TCSFg

what proves after cancelation the upper bound for np r.
For the proof of the lower bound for p » we proceed as in the proof of Theorem 3.15.
We define bubble functions

wp = (fh — muh) QZ)T and WE = EF(JF)QZ)F,é

Substitution of ¢ = wr in equation (3.8.40) shows as before
(3.8.41) ar |[fn—=munllL2ry = llvpllr
Insertion of wg in equation (3.8.40) and the bound (3.8.41) allows to establish the bound

ob |rli2gey = Nopllos

This finishes the proof of lower bound. |

3.9 Application to transient problems

There is a variety of articles about error estimators for transient problems. There are arti-
cles based on the dual problem which require H2-regularity of the according stationary
problem [26]. Due to the singularities of interface problems this higher regularity is not
given and estimators of this type are not applicable. Another approach allows for lower
and upper bounds of the error [58] within the abstract framework developed in [57].

In order to demonstrate the application of the a-posteriori techniques developed for the
case of discontinuous diffusion coefficients we use a simple approach based on known
energy techniques [46] [14]. The resulting error estimators combines errors which are
due to time and space discretization and allow for an upper bound of the error.

In the following we apply the notation for the stationary problem given in section 3.2.1
and 3.8.1. For a positive time T we pose the transient problem in weak form and seek
u € CY[0,T],V)

(3.9.1) <%,v> + (kVu,Vv) =(f,v) YveV | Vte (0,T)
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with homogeneous boundary conditions of Dirichlet or Neumann type and an initial
condition u(-,0) = ug(-) € V.

Problem (3.9.1) will be first discretized in time. Attime-stepstyg =0 < t; < ... <ty =
T we define Finite Element spaces V' containing linear Finite Elements. The spaces
Vit,n = 0,.., N satisfy the conditions posed in section 3.2.2. That means, among other
things, that the shape parameter of the underlying triangulation 7," is not too small
and that 7," is aligned with the diffusion coefficients and parts of the boundary I' p and
I'y. Let us define the time-step size 7, :== t, — t,_1,n = 1,.., N. At each time-step
tn,n = 1,.., N we solve the discrete elliptic problem: seek u} € V"

n

(3.9.2) (g ) + RV, Vo) = ( f(t) + 7 g ) Yo e Vi

Here v is an approximation of uy. A straightforward approach is to apply to each
discrete problem the error estimator defined for the perturbed elliptic problems as dis-
cussed in section 3.8. Here the mass factor is m := 1/7,. The error introduced by use of
the term uZ‘l instead of u(-,t,_1) in right hand side of (3.9.2) can be controlled by sub-
sequently applying the estimator for the previous time-step as done in [2]. However,
this approach does not make use of the parabolic nature of the problem.

Instead we define a-posteriori error estimators for n = 1,.., N by

n n—1

2 . h? v — g 2 n_ o n—1p2
Mo = Z T HT = f T2y + Jup — ™ g )
hoo
+ Z T H]FH%Q(F)
FcaT/Tp  ©

Here j7 denotes the jJump of the flux of »} normal to the face I". We denote the piecewise
linear interpolant of the sequence {u}} ,n =0,.., N by

Ut i= "t + (12 ) g

Tn
With the above estimator we prove the upper bound for the error:

Theorem 3.17 Letd = 2, 3. If the distribution of the diffusion coefficients kr, T € 7;" is quasi-
monotone for n = 1, .., NV, the following upper bound holds for the solution « of equation (3.9.1)
and uy, of equation (3.9.2):

T
(39.3)  sup [(u—U)(W)F2q) + / |(w = U)(O) 41
te(0,T] 0

N
= Hu(v O) - U?L()H%Q(Q) + ZTn 77721
n=1

In our analysis we assume that the terms ( qul, vy ) from equation (3.9.2) are evaluated
exactly for u ' € V;*~! and v} € V;*. A formal evaluation is not a problem, but if the
calculation of the integral is done in course of mesh adaptation in a computer code,
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proper evaluation requires a suitable implementation. See for instance the software
package ALBERT [52] where hierarchical bases have been used. If the exact evaluation
of (u~", 41 ) is not possible, an additional error of the form [[u} ™" — I7'(u} )|l g-1()
enters in the error estimator 7, and has to be controlled. Here I}' : V. — V" is an
interpolation operator. Similarly to [14] one can regard additional errors which arise if
the right hand side f(¢,) in (3.9.1) has to be approximated.

PROOF. The proof uses standard energy techniques for linear parabolic problems. We
refer to [46] for an application of these techniques to a more complicated problem.

The idea is to apply the residuum to the error £ := u— U and to make use of the discrete
problem (3.9.2). First we calculate the residuum on the basis of equation (3.9.1).

<aa—f,’l)> +(kVE,Vv) _—<aa—(t],v> — (kVU,Vv) +(fv)

In a second step we set v = £ and substitute in the discrete problem (3.9.2) v} by I7,(E)
where [ is the interpolation operator I;, defined in section 3.5.3.

(3.9.4)
50 1By + Bl
:_(aa—(t],E> —(kVU,VE) +(f.E)
oU
_ ( o ) -k ) + (kVuf, VIL(E) ~ E)) + (kV(uf ~U),VE)
=L +1L+13

The terms I, I3 will be bounded using techniques already applied in the derivation
of Theorem 3.5. We exploit interpolation estimates from Lemma 3.3 and the Cauchy-
Schwarz inequality.

ou h  oU
Il = Z (E _fajL(E) _E> = Z W Ha_fHLQ(T) ’E‘kHl(T)

TeT, T TeT, R
1/2
B2 o ,
< (Z { o ”EU_J[HLQ(T) }) |Elkm (@)
TeT,

The term I is estimated using Gauss’s theorem and the fact that £Auj vanishes on the
simplices T € 7,".

L= (kVup, VIL(E)=E))r = Y (i E)p
TeT,, FeFy,

» 1/2
h . hom
< E (_kF> 177l L2y |E‘k:H1(CuTF) < (Z T ]F%2(F)> |Elkm (o)

Fer,, FeFy
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To bound the term I3 we apply simply the Cauchy-Schwarz inequality

1/2

Ii=(kV(up —U),VE) < | Y Jup = Ulipn
TeTy

|Elkm (@)

The above estimates of I, I> and I3 and inequality (3.9.4) yield together with Young’s

inequality which states ab < ea® + (4¢)~'b? for any real numbers a,b and ¢ > 0 the
bound

(3.9.5)
10
25 1ElZ2) + [Elim @

W2 oou S— honge
TeT,

FCoT/Tp
h? “Z_UZ_I 2 1,2 hoon2
< Z kr HT_fHLQ(T) + lup — |kH1(T) + Z Tm HJ%HLQ(F)
TeTy, FCoT/Tp
n_,n—1
In the last step we exploited the identities 57 = “2—2— and u} — U =

(1 — 2=t)(upp — up~"). Integration of (3.9.5) over the time interval [0, 7] finishes
the proof. [ |



