
Chapter 3

Multi-Channel Scattering Theory

The two-centre Dirac equation has been introduced as a model, for describing charge
transfer, ionisation and pair creation in peripheral collisions of highly charged heavy-
ions. Intuition suggests that the two-centre Dirac equation should have solutions
which correspond to particles asymptotically bound to the electrostatic potential VΓ

of centre A or centre B, or move away from both centres, as time t tends to +∞ or
−∞. This corresponds to three different scattering channels or three different types
of scattering states: those, which are essentially subject to either one of the external
fields WA(t,x) or WB(t,x), and those, which are not significantly influenced by any
external field, as t tends to ±∞.

The scattering theory of the two-centre Dirac equation is presented here essentially
for two reasons. First, it seems that a formal discussion of this scattering theory is not
available; although several authors have discussed the scattering theory of the similar
two-centre Schrödinger equation from a conceptional and mathematical point of view
[Yaj80, Hag82, Wül88, Gra90]. Second, a precise definition of the transition
amplitude is given. This is a necessary prerequisite in order to prove the relativistic
invariance of the scattering theory. Boost invariance is not a trivial property in the
present case, as it is for the scattering theory of the two-centre Schrödinger equation:
Lorentz boosts transform the time axes, with respect to which the (necessarily) time-
dependent scattering theory is formulated.

3.1 Scattering channels

First, let us introduce some notation. The three different scattering channels men-
tioned above correspond to three different Dirac equations, describing Dirac particles,
which are bound to either of the external fields WΓ(t,x) or move freely. The Hamilton
operators of these scattering-channel Dirac equations are:

HA(t) = H0 +WA(t,x)

HB(t) = H0 +WB(t,x)

HC = H0.

(3.1)

As opposed to conventional quantum-mechanical multi-particle scattering theory
[San72, San74, Thi94], these scattering channel Hamiltonians have an explicit
time-dependence. The time-dependence of the Hamiltonian operators HA(t) and
HB(t) cannot be removed simultaneously by a Poincaré transformation, if the cen-
tres are moving with different velocities. The unitary time-evolution operators of the
scattering-channel Dirac equations are respectively denoted by,

UA(t, s), UB(t, s) and UC(t, s) = exp(−i(t− s)H0).

Solutions of the scattering-channel Dirac equations are denoted by the uppercase
Greek letter Φ, with a lower index indicating the respective scattering channel, for
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24 3. MULTI-CHANNEL SCATTERING THEORY

example:

[H0 +WA(t,x) − i∂t] ΦA,k(t,x) = 0.

The second index k is used to differentiate between different solutions of the same
Dirac equation symbolically. These wave functions ΦΓ,k(t,x), where Γ = A,B,C
will be referred to as asymptotic configurations, following [BH63, Tha92]. In other
literature, they are also called in- and out-states [New82, Wei95].

3.1.1 Scattering states. A principal problem of scattering theory, as presenting
itself in present context, is to find solutions Ψ+

Γ,k(t,x) and Ψ−
Γ,k(t,x) of the two-

centre Dirac equation, which asymptotically approach the asymptotic configuration
ΦΓ,k(t,x):

lim
t→−∞

‖ΦΓ,k(t) − Ψ+
Γ,k(t)‖ = 0

lim
t→+∞

‖ΦΓ,k(t) − Ψ−
Γ,k(t)‖ = 0.

Here ‖.‖ denotes the Hilbert-space norm of a wave function (cf. appendix C). The
wave functions Ψ+

Γ,k(t,x) and Ψ−
Γ,k(t,x) are usually referred to as the incoming and

the outgoing scattering states respectively. The seemingly paradoxical notation, in
which Ψ+ corresponds to the limit t → −∞ and vice versa, originates in the time-
independent formulation of scattering theory. Although the latter cannot be applied
in the present situation, this notation, common to many presentations of quantum
scattering theory [BD66, San72, RS79, New82, Hag82, Gra90], is employed
here as well. The question, whether scattering states Ψ+

Γ,k(t) and Ψ−
Γ,k(t) exist, for

an arbitrary solution ΦΓ,k(t,x) of the Dirac equation of the scattering channel Γ, is
known as the problem of asymptotic convergence. For certain classes of electrostatic
potentials VΓ(r) asymptotic convergence is proved in section 3.3 below.

In the case of the scattering channels A and B, only such asymptotic configurations
that correspond to bound states of the respective potential are admitted. Wave
functions corresponding to continuum eigenfunctions of the electrostatic potentials
in their respective rest frames are moving away from their centres as time increases.
Therefore, they are attributed to scattering channel C. Taking this convention into
account, it will be shown that scattering states corresponding to different scattering
channels are orthogonal to each other (see section 3.4 below):

(

Ψ+
Γ,k(t),Ψ

+
∆,l(t)

)

=
(

Ψ−
Γ,k(t),Ψ

−
∆,l(t)

)

= 0, if Γ 6= ∆.

This property is known as asymptotic orthogonality.

3.1.2 Wave operators. For the two-centre Dirac equation, asymptotic convergence
is equivalent to the existence of the following strong operator limits:

Ω±
A (s) = s-lim

t→∓∞
ΩA(t, s) = s-lim

t→∓∞
U(t, s)−1 UA(t, s)PA(s).

Ω±
B(s) = s-lim

t→∓∞
ΩB(t, s) = s-lim

t→∓∞
U(t, s)−1 UB(t, s)PB(s),

Ω±
C(s) = s-lim

t→∓∞
ΩC(t, s) = s-lim

t→∓∞
U(t, s)−1 exp(−i(t− s)H0).

(3.2)

The Møller operators Ω±
Γ (s) are time-dependent in the present situation, which has

its origin in the time-dependence of the scattering-channel Hamiltonians (3.1). In
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conventional multi-channel scattering theory the Møller wave operators are not time-
dependent. But the same time-dependence occurs for the scattering theory of the
two-centre Schrödinger equation (see e.g. [Hag82]).

In equations (3.2) the projection operators PA(s) and PB(s) have been introduced,
in order to project onto the subspace of asymptotic configurations ΦΓ(t,x) that
correspond to bound states of the external fields WA(t,x) and WB(t,x) respectively.
The projection operators are included into the definition of the wave operators Ω±

A (s)
and Ω±

B(s), in order to obtain orthogonality of their ranges, which are then orthogonal
proper subspaces of the state space L2(R3)4 of the classical Dirac equation.

For later reference, explicit representations of these time-dependent projection op-
erators, PA(s) and PB(s), are given in the following. Let (ΛA, aA) denote the Poincaré
transformation from the unprimed reference frame to a primed rest frame of centre A
in which centre A is located at the spatial origin, i.e. R′

A(t′) = 0. In the primed
frame, the Hamiltonian H ′

A of scattering channel A does not depend on the time t′:

H ′
A = H ′

0 − eVA(|x′|).

Throughout this chapter, the potential VA is assumed to be of such a form that H ′
A

has bound states. In the primed frame, choose a complete set of orthonormal bound
state eigenfunctions, denoted by φA,k(x

′), with eigenenergies εA,k. Then the projector
P ′

A onto the subspace of the bound states of the potential VA in the primed frame is
time-independent and given by:

(P ′
Aφ)(x′) =

∑

k

(φA,k, φ)′ φA,k(x
′).

In the unprimed frame, the asymptotic configuration ΦA,k(t,x), corresponding to the
bound state φA,k(x

′) in the primed frame, is obtained by a Poincaré transformation:

ΦA,k(t,x) = S(ΛA)−1 exp(−it′εA,k)φA,k(x
′), (3.3)

Here S(ΛA) is the spinor-representation matrix of the Lorentz transformation ΛA and
the primed coordinates are given by (t′,x′) = ΛA(t,x)+ (a0,a). The time-dependent
projector PA(s) in the unprimed reference frame, projecting onto the bound states of
the external field WA(t,x), is thus given by:

(PA(s)ψ) =
∑

k

(ΦA,k(s), ψ) ΦA,k(s,x). (3.4)

An explicit representation of PB(s) is given analogously.

3.2 Transition amplitudes

The two-centre Dirac equation is used by many authors as a model in order to de-
scribe atomic processes in collisions of heavy and highly charged ions, like excita-
tion, ionisation, charge transfer and pair creation [EM95]. For example, an electron
initially bound to either of the colliding nuclei is represented in this model by an
incoming scattering state, Ψ+

A(t,x) or Ψ+
B(t,x). Electron states after the collision are

represented by outgoing scattering states Ψ−
Γ (t,x).
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Figure 3.1. This figure illustrates the scattering theory of the two-centre Dirac

equation. Transitions within the same scattering channel, i.e. excitation and free
pair production, are depicted by red arrows. Blue arrows correspond to processes
of ionisation and bound-free pair production. Finally, charge transfer is shown as

a green arrow. The three different energy spectra represent the three scattering
channels A, B and C.

The probability amplitude a∆l,Γk for a state of incoming configuration ΦΓ,k(s) to
have the outgoing configuration Φ∆,l(s) is given by,

a∆l,Γk =
(

Ψ−
∆,l(s),Ψ

+
Γ,k(s)

)

. (3.5)

Due to the unitarity of the time-evolution of the two-centre Dirac equation, the
definition of the transition amplitude is independent of the time s. The various
atomic processes are depicted in figure 3.1. There are other equivalent expressions
for the transition amplitude, some of them listed below. In particular, the post and
prior forms frequently appear in the literature.

a∆l,Γk =
(

Ω−
∆(s)Φ∆,l(s),Ω

+
Γ (s)ΦΓ,k(s)

)

= lim
t1→−∞
t2→∞

(

U(s, t2)U∆(t2, s)Φ∆,l(s), U(s, t1)U(t1, s)ΦΓ,k(s)
)

= lim
t1→−∞
t2→∞

(

Φ∆,l(t2), U(t2, t1)ΦΓ,k(t1)
)

= lim
t→∞

(

Φ∆,l(t),Ψ
+
Γ,k(t)

)

(post form)

= lim
t→−∞

(

Ψ−
∆,l(t),ΦΓ,k(t)

)

(prior form).

For the discussion of asymptotic completeness we refer to section 3.6 below.

3.3 Asymptotic convergence

In this section, we will prove the existence of the operator-limits (3.2), defining the
Møller wave operators Ω±

Γ (s), under the assumption that the external fields WA(t,x)
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and WB(t,x) are short-ranged. Asymptotic convergence is essential for an unam-
biguous definition of the transition amplitude a∆l,Γk in equation (3.5). The case of
particular interest, in which moving point charges are the source of external fields,
is not covered in this section. This principal model of the literature has long-range
external fields (cf. sections 3.6 and 3.7 below).

The material presented in the following has not appeared in literature, but some
aspects resemble a discussion of the nonrelativistic charge-transfer model in [Yaj80].
Furthermore, the first subsection recalls standard mathematical results. For detailed
explanations of the notation the reader is referred to appendix C.

3.3.1 Cook’s method. The proofs of convergence given below are based on a
method which was introduced by Cook [Coo57]. Cook’s method has become a
standard tool for convergence proofs of wave operators, see e.g. [Kat80, Dol64,
DV66, RS79, Yaj80, Wül88]. In this subsection Cook’s reasoning, as applicable
in the present context, will be reviewed shortly (see in particular [Kat80, subsec.
X.3.3] and [RS79, sec. XI.3]).

The convergence of the limit,

Ω−
Γ (s) = s-lim

t→∞
ΩΓ(t, s)

with respect to the strong operator topology (cf. [RS80]) is equivalent to,

‖(ΩΓ(t1, s) − ΩΓ(t0, s))φ‖ → 0,

as t0, t1 → ∞ for all φ(x), elements of the Hilbert space L2(R3)4. This equivalence
holds due to the completeness of L2(R3)4 (Cauchy criterion). The convergence on
a dense subspace already implies convergence on the complete state space in the
present situation (see e.g. [Kat80, p. 151]). The estimate,

‖ΩΓ(t1, s)φ− ΩΓ(t0, s)φ‖ =

∥

∥

∥

∥

∫ t1

t0

[

d
dt

ΩΓ(t, s)φ
]

dt

∥

∥

∥

∥

≤
∫ t1

t0

∥

∥

∥

d
dt

ΩΓ(t, s)φ
∥

∥

∥ dt,

leads to the following conclusion: A sufficient condition for the existence of the wave
operator Ω−

Γ (s) is the finiteness of the following time-integral,
∫ ∞

t0

∥

∥

∥

d
dt

ΩΓ(t, s)φ
∥

∥

∥ dt < ∞, (3.6)

for some (arbitrary but finite) time t0 and all φ(x) of a subspace of wave functions
that is dense in the state space L2(R3)4.

Obviously, a sufficient condition for the convergence as t→ −∞, i.e. the existence
of the wave operator Ω+

Γ (s), is established in a similar manner.

3.3.2 Asymptotically bound particles. In this subsection, we prove the exis-
tence of the strong operator limit Ω−

A (s). The other three wave operators Ω+
A (s) and

Ω±
B(s) are treated analogously. The Cook integral (3.6) for Ω−

A (s) reads:
∫ ∞

t0

∥

∥

∥

d
dt

ΩA(t, s)φ
∥

∥

∥ dt =
∫ ∞

t0
‖WB(t)UA(t, s)PA(s)φ‖dt. (3.7)
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Recalling the definition (2.14) of WB(t,x), the integrand on the right hand side of
equation (3.7) is estimated as follows:

‖WB(t)UA(t, s)PA(s)φ‖

=

∥

∥

∥

∥

∥

WB(t)
∑

k

ckΦA,k(t)

∥

∥

∥

∥

∥

≤
∑

k

|ck(s)| ‖WB(t)ΦA,k(t)‖

=
∑

k

|ck(s)| ‖γB(1 − vB · α)VB(rB(t,x)) ΦA,k(t,x)‖L2(R3,d3x)4

≤
∑

k

γB|ck(s)| ‖(1 − vB · α)‖2 ‖VB(rB(t,x))ΦA,k(t,x)‖L2(R3,d3x)4 ,

(3.8)

with ck(s) = (ΦA,k(s), φ) and ‖.‖2 denotes the matrix norm with respect to the scalar
product in C4 (see appendix C or [GV96]). The following inequality may be proved
for the straight line trajectories RA(t) and RB(t), as in equation (2.1), and arbitrary
x ∈ R3 and t ∈ R:

1

1 + |x − RA(t)|2
1

1 + |x − RB(t)|2
≤

2

1 + |RA(t) − RB(t)|2
.

In conjunction with inequality (2.5) and the Hölder inequality [For84, RS80] the
estimate of the integrand of the Cook integral (3.7) may be continued as follows:

‖WB(t)ΦA,k(t)‖

≤
2γB ‖(1 − vB · α)‖2

1 + |RA(t) − RB(t)|2
×

∥

∥

∥

(

1 + rB(t,x)2
)

VB(rB(t,x))
(

1 + rA(t,x)2
)

ΦA,k(t,x)
∥

∥

∥

L2(R3,d3x)4

≤
2γB ‖(1 − vB · α)‖2

1 + |RA(t) − RB(t)|2

∥

∥

∥

(

1 + rB(t,x)2
)

VB(rB(t,x))
∥

∥

∥

Lp(R3,d3x)
×

4
∑

i=1

∥

∥

∥

(

1 + rA(t,x)2
)

ΦA,k;i(t,x)
∥

∥

∥

Lq(R3,d3x)

Here, the positive real numbers p and q have to be chosen such that 1
p

+ 1
q

= 1
2
. The

index i denotes the spinor index of the Dirac four-spinor ΦA,k(t,x).
It remains to show that the norms,

∥

∥

∥

(

1 + rA(t,x)2
)

ΦA,k;i(t,x)
∥

∥

∥

Lp(R3,d3x)
and

∥

∥

∥

(

1 + rB(t,x)2
)

VB(rB(t,x))
∥

∥

∥

Lq(R3,d3x)
,

are finite and moreover time-independent. This is true for arbitrary p and q, if the
radial electrostatic potentials VΓ are of the form (2.10) with µΓ > 0 and ρΓ > 0.
Furthermore, it can be verified that suitable p and q can be determined also in the

case the Yukawa potentials, %Γ = 0, if e2ZB <
√

3
2

holds. The sum in equation (3.8)
is finite if µΓ > 0. In the cases mentioned, the estimate,

∫ ∞

t0

∥

∥

∥

d
dt

ΩA(t, s)φ
∥

∥

∥ dt ≤
∫ ∞

t0

const.

1 + |(bA − bB) + t(vA − vB)|2
dt <∞,

holds and, thereby, shows that the Cook integral (3.6) for Ω−
A (s) is finite.
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3.3.3 Asymptotically free particles. In order to show the existence of of Ω−
C(s)

we consider the Cook integral (3.6) for scattering channel C:
∫ ∞

t0

∥

∥

∥

d
dt

ΩC(t, s)φ
∥

∥

∥ dt =
∫ ∞

t0

∥

∥

∥[WA(t) +WB(t)] e−i(t−s)H0 φ
∥

∥

∥ dt

≤
∑

Γ=A,B

∫ ∞

t0

∥

∥

∥WΓ(t) e−i(t−s)H0 φ
∥

∥

∥ dt.

Here φ(x) shall be a regular free Dirac wave packet,

φ(x) = (2π)−3/2
∫

ei ��� � φ̂(p) d3p,

with φ̂(p) ∈ C∞
0 (R3)4 (cf. section B.1). It is sufficient to consider regular wave

packets because they are dense in the state space L2(R3)4. The estimate is continued
as follows:

∥

∥

∥WΓ(t) e−i(t−s)H0 φ
∥

∥

∥

=
∥

∥

∥γΓ(1 − vΓ · α)VΓ(rΓ(t,x)) e−i(t−s)H0 φ(x)
∥

∥

∥

L2(R3,d3x)4

≤ γΓ ‖1 − vΓ · α‖2

∥

∥

∥VΓ(rΓ(t,x)) e−i(t−s)H0 φ(x)
∥

∥

∥

L2(R3,d3x)4

≤ 2γΓ ‖1 − vΓ · α‖2 sup
� ∈R3

∥

∥

∥e−i(t−s)H0 φ(x)
∥

∥

∥

2
‖VΓ(rΓ(t,x))‖L2(R3,d3x)

≤
const.

(1 + |t− s|3/2)

∫ ∞

0
|r VΓ(r)|2 dr

For the last step, a propagation estimate for regular free wave packets has been used,
which is reviewed in section B.1. Provided that the integral over rVΓ(r) is finite, the
Cook integral for a regular wave packet φ is finite as well:

∫ ∞

t0

∥

∥

∥

d
dt

ΩC(t, s)φ
∥

∥

∥ dt ≤
∫ ∞

t0

const.′

(1 + |t− s|)3/2
dt <∞.

The integrability of rVΓ(r) holds in particular for potentials VΓ(r) as in equation
(2.10), if µΓ > 0.

3.4 Asymptotic orthogonality

In this section, we demonstrate the asymptotic orthogonality of the wave operators.
The calculations are simple and given here for the sake of completeness. Asymptotic
orthogonality means that the ranges of the wave operators are mutually orthogonal
subspaces of the state space, i.e. RanΩ±

Γ (s) ⊥ RanΩ±
∆(s) if Γ 6= ∆ . By definition

this relation means that for any pair of states φ1 and φ2 the following scalar product
vanishes,

(

Ω±
∆(s)φ2,Ω

±
Γ (s)φ1

)

= 0, if Γ 6= ∆,

which is equivalent to,

lim
t→∓∞

(

U∆(t, s)P∆(s)φ2, UΓ(t, s)PΓ(s)φ1

)

= 0.
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Here the projector PC(s) is trivially defined as the unit operator. It is sufficient to
consider the following two cases:

RanΩ−
A (s) ⊥ Ran Ω−

B(s), (3.9)

Ran Ω−
A (s) ⊥ RanΩ−

C(s). (3.10)

3.4.1 Orthogonality of channels A and B. Recalling the form (3.4) of the pro-
jection operators PA(s) and PB(s), it must be shown for any pair of asymptotic
configurations ΦA,k(t,x) and ΦB,l(t,x) of the form (3.3) that

lim
t→∞

(

ΦA,k(t),ΦB,l(t)
)

= 0, (3.11)

in order to verify relation (3.9). We estimate the scalar product (3.11) as follows:

∣

∣

∣

(

ΦA,k(t),ΦB,l(t)
)∣

∣

∣

≤
∫

∣

∣

∣φA,k(x
′)†S(ΛA)†

−1
S(ΛB)−1φB,l(x

′′)
∣

∣

∣ d3x

≤ ‖S(ΛA)†
−1
S(ΛB)−1‖2

∫

‖φA,k(x
′)‖2 ‖φB,l(x

′′)‖2 d3x

≤
2 ‖S(ΛA)†

−1
S(ΛB)−1‖2

1 + |(bB − bA) + t(vB − vA)|2
×

×
∫

∥

∥

∥(1 + rA(t,x)2)φA,k(x
′)

∥

∥

∥

2

∥

∥

∥(1 + rB(t,x)2)φB,l(x
′′)

∥

∥

∥

2
d3x

≤
const.

1 + |(bB − bA) + t(vB − vA)|2
×

×
{

∫

(1 + x′2) ‖φA,k(x
′)‖

2

2 d3x′
}

1

2

{
∫

(1 + x′′2) ‖φB,l(x
′′)‖

2

2 d3x′′
}

1

2

Here, the Cauchy–Schwarz and Hölder inequalities have been used. Doubly primed
coordinates x′′ refer to the rest frame coordinates of centre B. The two integrals of
the last expression are independent of the time t and finite, provided the eigenfunc-
tions φA,k(x

′) and φB,l(x
′′) are decreasing sufficiently fast towards spatial infinity. In

particular, if the potentials VA and VB are of the form (2.10) the eigenfunctions have
the necessary fall-off property and equation (3.11) directly follows from the estimate
above.

3.4.2 Orthogonality of the channels A and C. Equation (3.10), which expresses
the asymptotic orthogonality of the outgoing channels A and C, is equivalent to,

lim
t→∞

(

UA(t, s)PA(s)φ2, e
−i(t−s)H0 φ1

)

= 0,

for any pair of states φ1(x) and φ2(x). However, it is again sufficient to assume that
φ1(x) is a regular wave packet (cf. section B.1). Therefore, it remains to show that,

lim
t→∞

(

ΦA,k(t), e
−i(t−s)H0 φ

)

= 0,
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for any regular wave packet φ(x) and asymptotic configuration ΦA,k(t) of scattering
channel A as in equation (3.3). The following sequence of estimates,

∣

∣

∣

(

ΦA,k(t), e
−i(t−s)H0 φ

)∣

∣

∣

≤
∫

∣

∣

∣ΦA,k(t,x)†
(

e−i(t−s)H0 φ
)

(x)
∣

∣

∣d3x

≤ ‖S(ΛA)−1‖2

∫

‖φA,k(x
′)‖2

∥

∥

∥

(

e−i(t−s)H0 φ
)

(x)
∥

∥

∥

2
d3x

≤ ‖S(ΛA)−1‖2
const.

(1 + |t− s|)3/2

∫

‖φA,k(x
′)‖2 d3x′,

yields the desired convergence to zero as t → ∞, if the remaining spatial integral is
finite. Note that this remaining spatial integral does not depend on time t. It is finite
if the bound state eigenfunctions φA,k are L1-integrable, which is true in particular for
the class of electrostatic potentials VΓ(r) as in equation (2.10). The estimate again
makes use of estimate (B.2) for regular wave packets, described in the appendix B.

3.5 Relativistic invariance

The existence proofs in section 3.3 refer to some particular, although arbitrarily
chosen, Lorentz frame. In different, relatively moving Lorentz frames, the limits
appearing in the definition of wave operators and scattering states have to be taken
with respect to different time axes. It is, therefore, necessary to prove that the
transition amplitudes are nevertheless Lorentz invariant quantities.

Consider an arbitrary asymptotic configuration ΦΓ,k(t,x) and the correspond-
ing outgoing scattering state Ψ−

Γ,k(t,x) of the two-centre Dirac equation. Given a

Poincaré transformation, (t′,x′) = Λ(t,x) + (a0,a), to an arbitrary primed coordi-
nate system, the transformed wave functions in the primed coordinates are:

Φ′
Γ,k(t

′,x′) = S(Λ) ΦΓ,k(Λ
−1(t′ − a0,x′ − a)),

Ψ−
Γ,k

′
(t′,x′) = S(Λ) Ψ−

Γ,k(Λ
−1(t′ − a0,x′ − a)).

The question arises whether the transformed wave function Ψ−
Γ,k

′
(t′,x′) is identical to

the (unique) outgoing scattering state that corresponds to the asymptotic configura-
tion Φ′

Γ,k(t
′,x′) in the primed frame of reference. In other words, it has to be checked

whether the following holds:

lim
t′→∞

‖Ψ−
Γ,k

′
(t′,x′) − Φ′

Γ,k(t
′,x′)‖L2(R3,d3x′)4 = 0. (3.12)

Of course, the analogous convergence as t′ → −∞ is similarly conjectured for the
Poincaré-transformed incoming scattering state Ψ+

Γ,k
′
(t′,x′).

If these conjectures can be verified, then, in the primed frame, the transition
amplitude a′∆l,Γk is given in terms of the Poincaré-transformed scattering states of
the unprimed frame, according to:

a′∆l,Γk =
(

Ψ−
∆,l

′
(t′),Ψ+

Γ,k
′
(t′)

)

.

The relativistic invariance of the transition amplitude is then simply a consequence of
the Poincaré invariance of the scalar product between two wave functions that solve
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the same Dirac equation (cf. section B.2):

a′∆l,Γk =
(

Ψ−
∆,l

′
(t′),Ψ+

Γ,k
′
(t′)

)′
=

(

Ψ−
∆,l(t),Ψ

+
Γ,k(t)

)

= a∆l,Γk.

Note that in this equation the two scalar products refer to different spatial integra-
tions or hypersurfaces in Minkowski space.

Equation (3.12) is most easily verified, if the Poincaré transformation is only a
product of spatial rotations and space-time translations, which do not mix time and
spatial coordinates. For a verification of equation (3.12) only Lorentz boosts need to
be considered.

3.5.1 Boost invariance of the excitation and capture amplitudes. In this
subsection, it is demonstrated that (3.12) holds for Γ = A. The case Γ = B and
the limits t → −∞ are treated similarly. In the course of the following calculations,
several assumptions about the radially symmetric potentials VA and VB are necessary.
These assumptions hold in particular, if both electrostatic potentials VΓ(r) are of the
form (2.10) with %Γ > 0 and µΓ > 0.

Without loss of generality, it may be assumed that the unprimed Lorentz frame
is a rest frame of centre A, where centre A is located at the origin. This is sufficient
because the Poincaré transformation between two arbitrary Lorentz frames can be
decomposed into a product of a boost into a rest frame of centre A, spatial rotations,
space-time translations, and the inverse of another boost into a rest frame of centre A.
Hence, the primed coordinates, for which the convergence (3.12) must be proved, are
connected to the unprimed coordinates by a pure boost. In this section the velocity
of this boost is denoted by v. Again, without loss of generality, the parameter bB

of the trajectory RB(t) = bB + tvB of centre B in the unprimed coordinates can be
taken to be perpendicular to the boost velocity v. Hence, bB = b′

B holds. Assuming
this case, the following estimates hold for the Lorentz scalars rΓ(t,x) and r′Γ(t′,x′)
in the primed and unprimed frames respectively:

1

1 + rA(t,x)2

1

1 + rB(t,x)2
≤

2

1 + |bB + tvB|2
,

1

1 + r′A(t′,x′)2

1

1 + r′B(t′,x′)2
≤

2

1 + |bB + t′(v + v′
B)|2

,

(3.13)

where v′
B is the velocity of centre B in the primed coordinates.

The asymptotic condition ΦA(t,x) (for the sake of simplicity omitting the second
index in this subsection) may be chosen as,

ΦA(t,x) = exp(−itεA)φA(x),

where φA(x) is a normalised bound state eigenfunction of the electrostatic potential
VA. The statement, that Ψ−

A (t,x) is the outgoing scattering state which corresponds
to the asymptotic condition ΦA(t,x), is equivalent to the following convergence prop-
erty:

lim
t→∞

(

Ψ−
A (t),ΦA(t)

)

= 1. (3.14)
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Similarly, the asymptotic convergence of the two transformed Dirac wave functions
Ψ−

A
′
(t′,x′) and Φ′

A(t′,x′) in the primed frame is equivalent to:

lim
t′→∞

(

Ψ−
A

′
(t′),Φ′

A(t′)
)′

= 1. (3.15)

In order to prove that (3.15) follows from (3.14), the difference of both scalar products
is considered for some finite times t = ζ and t′ = γζ. Here γ denotes the Lorentz
factor corresponding to the boost velocity v. The limit of this difference of scalar
products is shown to vanish as ζ tends to +∞. Using the Gaussian integral theorem
in Minkowski space, the difference of the scalar products is transformed into a four-
dimensional integral:

(

Ψ−
A (ζ),ΦA(ζ)

)

−
(

Ψ−
A

′
(γζ),Φ′

A(γζ)
)′

=
∫

D(ζ)
∂µ

(

Ψ−
A (y) γµ ΦA(y)

)

d4y

=
∫

D(ζ)
Ψ−

A (y)†WB(y) ΦA(y) d4y.(3.16)

For the second step, we have used that Ψ−
A (t,x) solves the two-centre Dirac equation,

whereas ΦA(t,x) solves the Dirac equation of scattering channel A. The four-volume
of integration D(ζ) is given by:

D(ζ) =
{

y ∈ R
4 : 0 ≤ y0 − ζ ≤ v · y or 0 ≥ y0 − ζ ≥ v · y

}

.

It is the volume of space-time bounded by the two spacelike hypersurfaces, which are
determined by t = ζ and t′ = γζ. (See section B.2 for a similar calculation.)

According to the inequalities (3.13), the following estimate holds for sufficiently
large parameter ζ:

sup
y∈D(ζ)

1

1 + rA(y)2

1

1 + rB(y)2
≤

1

C1ζ2
(3.17)

Here the constant C1 > 0 depends on bB, vB and v only.
Since the time-dependence of the scattering state Ψ−

A (t,x) is not known explicitly,
the integral (3.16) must be estimated in order to demonstrate that it converges to
zero as ζ → ∞. The following estimate is based on the assumption that the solution
Ψ−

A (t,x) of the two-centre Dirac equation is bounded in space-time by some constant
C2:

∥

∥

∥‖Ψ−
A (y)‖2

∥

∥

∥

L∞(R4)
≤ C2 (3.18)

This cannot be expected to be true in general. In fact, it is false if the external
fields WΓ(t,x) correspond to linearly moving Yukawa potentials. But a suitable
assumption on the electrostatic fields VΓ(r) should be sufficient in order to obtain
this property. Although a proof is not given here, (3.18) is expected to hold in
particular if the radial potentials VΓ(r) are of the form (2.10), with %Γ > 0 and
µΓ > 0. The latter condition provides that the potentials VΓ(r), their eigenfunctions,
and the multiplication operators WΓ(t,x) are bounded.
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The estimate of the integral (3.16) is done as follows:
∣

∣

∣

∣

∣

∫

D(ζ)
Ψ−

A (y)†WB(y) ΦA(y) d4y

∣

∣

∣

∣

∣

≤
∫

D(ζ)
‖Ψ−

A (y)‖2 γB ‖1 − vB · α‖2 |VB(rB(y))| ‖ΦA(y)‖2 d4y

≤
γB‖1 − vB · α‖2

C1ζ2

∫

D(ζ)
‖Ψ−

A (y)‖2 (1 + rB(y)2) |VB(rB(y))| (1 + rA(y)2) ‖ΦA(y)‖2 d4y

≤
C2C3γB‖1 − vB · α‖2

C1ζ2

∫

D(ζ)
(1 + y2) ‖φA(y)‖2 d4y

≤
C2C3γB‖1 − vB · α‖2 |v|

C1ζ2

∫

R3

|y|(1 + y2)‖φA(y)‖2 d3y.

The remaining integral is finite, in particular, if the bound state eigenfunction φA(x)
is exponentially decreasing towards spatial infinity. Furthermore, it has been used
that the term |(1 + r2)VB(r)| is bounded by a constant C3. Both requirements are
satisfied for the class of potentials VΓ(r) of equation (2.10) with µΓ > 0 and %Γ > 0.
Therefore, the integral (3.16) vanishes as ζ approaches infinity.

3.6 Remarks

3.6.1 Two-centre Dirac equation with moving point charges. In section 3.3,
asymptotic convergence has not been shown for the two-centre Dirac equation with
moving unscreened point charges. The proofs cannot be extended to include Coulomb
potentials, because the inverse screening lengths µA and µB must not vanish. This
means that the radial potentials VΓ(r) have to be short-ranged.

Furthermore, it seems hardly possible that asymptotic convergence can be proved
for long-range electrostatic potentials VΓ(r), like the Coulomb potential, without a
modification of the dynamics of the scattering channels. The reason for this con-
viction is as follows: For the nonrelativistic and relativistic quantum mechanical
scattering by a single Coulomb potential, the corresponding fact has been demon-
strated by Dollard in [Dol64, DV66] (reviewed in [Tha92]). Also, the scattering
theory of the two-centre Schrödinger equation with long-range potentials has been
investigated by Wüller in [Wül88]. There, it was found that modified dynamics for
the scattering channels of the two-centre Schrödinger equation are necessary, in order
to prove the existence and asymptotic completeness of the Møller wave operators if
long-range forces are present. The modified dynamics of each of the three different
scattering channels closely resembles the distorted free-time-evolution that was given
by Dollard for the nonrelativistic case.

Wüller, in his analysis [Wül88], made use of geometrical methods of scattering
theory, which have been developed by Enß and have also been applied to the discus-
sion of the Dirac equation [Tha92]. Therefore, a proper discussion of the scattering
theory for the Dirac equation with moving point charges may be feasible by using
similar methods as in [Wül88]. Such a mathematical investigation does not exist in
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the literature, but it is required, in particular, for a proof of relativistic invariance
in the long-range case. See, however, the next section for the discussion of Coulomb
boundary conditions.

3.6.2 Asymptotic completeness. Note that asymptotic completeness of the scat-
tering theory of the two-centre Dirac equation is neither proved in this thesis nor has
it been considered in the literature. It is conjectured that it can be shown similarly
to the complicated, corresponding proofs that have been published for the nonrela-
tivistic charge-transfer model [Yaj80, Hag82, Wül88, Gra90].

Asymptotic completeness is defined as the existence of complete sets of orthonor-
mal incoming scattering states Ψ+

Γ,k(t,x) and outgoing scattering states Ψ−
Γ,k(t,x).

It means that any solution Ψ(t,x) of the two-centre Dirac equation can be written
rigorously as linear combination of either incoming or outgoing scattering states:

Ψ(t,x) =
∑

Γ,k

a+
Γ,k Ψ+

Γ,k(t,x) =
∑

Γ,k

a−Γ,k Ψ−
Γ,k(t,x).

As the scattering states Ψ±
Γ,k(t,x) are asymptotically equal to asymptotic configu-

rations ΦΓ,k(t,x) as t → ∓∞, formally the linear expansions above turn into linear
combinations of asymptotic configurations ΦΓ,k(t,x) in the limit t → ∓∞ (cf. chap-
ter 4).

If the solution Ψ(t,x) is itself a scattering state, the coefficients of linear expansion
are identical to the transition amplitudes a∆l,Γk defined in section 3.2:

Ψ+
Γ,k(t,x) =

∑

∆,l

a∆l,Γk Ψ−
∆,l(t,x),

Ψ−
Γ,k(t,x) =

∑

∆,l

a∗Γk,∆l Ψ
+
∆,l(t,x).

Therefore, the ‘conservation of probability’,

‖Ψ±
Γ,k(t)‖ =

∑

∆,l

|a∆l,Γk|
2 = 1, (3.19)

is a consequence of asymptotic completeness. Suppose that an initial configuration
(Γ, k) is a bound state of either centre A or centre B. In general, the sum over
transition probabilities |a∆l,Γk|

2 to final configurations (∆, l) which are not asymptotic
configurations of channel C with negative energy is strictly less then one. This means
that the naive interpretation of the initial configuration as a one-particle state is not
entirely correct, since the total probability of finding an initial bound state (Γ, k) in
a final configuration of positive energy is not one, as it must be for a single-particle
theory. This reflects that the Dirac theory can only be interpreted as a multi-particle
theory.

3.6.3 Problem of second quantisation. A multi-particle theory requires a multi-
particle state space, namely the Fock space of quantum field theory. The Fock space
formalism of pair creation in external fields makes use of the fact that the time-

dependent external fields vanish everywhere in space as time t tends to ±∞. This
property is necessary, it allows for the construction of the Fock space (the ‘second
quantisation’) based on a spectral decomposition of the state space of the classical
Dirac field with respect to the time-independent Hamiltonian at t = ±∞ [Tha92,
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Sch95].1 This time-independent Hamiltonian is identical to the Hamiltonian the in-
teraction picture of quantum field theory refers to (see e.g. [RS75, FGS91, Sch95]).
In common presentations of quantum field theory this is frequently the free Hamil-
tonian H0 = −iα · ∇ + β (e.g. [FGS91, Sch95, Wei95]) or the free Hamiltonian
plus a stationary Coulomb field, referred to as the Furry picture of quantum field
theory [MPS98].

Clearly, for the two-centre Dirac equation there is no such limit of the time-
dependent Dirac Hamiltonian as t→ ±∞. Therefore, the usual Fock space construc-
tion is not possible, although, as we have seen above, a multi-particle interpretation
of the transition amplitudes is inevitable. The problem of second quantisation of the
scattering theory presented in this chapter remains unsolved. For the present work
we take the pragmatic point of view that transition amplitudes between an asymp-
totic configuration of negative energy and an asymptotic configuration of positive
energy have to be interpreted as probability amplitudes of single pair production or
annihilation processes, as depicted in figure 3.1. Furthermore, in numerical calcula-
tions of this work these amplitudes are so small that the ‘one-particle’ interpretations
of other transition amplitudes, namely those between asymptotic configurations of
positive energy as depicted in 3.1, are reasonable, because numerical uncertainties
are much larger than the ‘error due to a loss of probability’ as a consequence of
transitions to negative energy configurations of scattering channel C.

Finally, we take a look at the role of quantum field theory in other approaches
to pair creation in peripheral heavy-ion collisions. Note, that the scattering channels
A and B of the two-centre Dirac equation can be removed by an adiabatic switching
formalism, namely by replacing the external fields WΓ(t,x), for example, by fields

e−ε2t2 WΓ(t,x) that vanish as time t tends to infinity. For a Dirac field with such
an external potential all particles are asymptotically free. The scattering channels A
and B are removed by the exponential damping factor and the scattering theory can
be formulated with respect to the free particle Fock space (Feynman–Dyson QED).
Although not mentioned explicitly, this point of view is taken implicitly, e.g., in
[BS89, WBS90]. A second possibility, allowing for an asymmetrical description of
bound-free pair production, is given by exponentially damping only the external field
of one of the centres, say WB(t,x). Then, in a rest frame of centre A, the total two-
centre Hamiltonian also becomes stationary as time t tends to ±∞. This allows for a
proper Fock space theory as well and corresponds to the single-centre approaches to
pair creation making use of the Furry picture. It is clearly asymmetrical, since one
of the nuclei only acts as a perturbation.

It is well-known that in quantum field theories, subject to asymptotically vanish-
ing time-dependent external field, transition amplitudes of the multi-particle theory
are directly related to transition amplitudes of the scattering theory of the classical
Dirac field (e.g. [FGS91, Sch95]) and it is, therefore, sufficient to consider the lat-
ter. In conclusion, we have argued in this subsection that the scattering theory of the

1Strictly speaking even stronger assumptions on the time-dependent external fields are necessary

for a second quantised field theory: The scattering matrix of the classical Dirac field must be

implementable in Fock space. A sufficient condition for the implementability is known as the Shale–

Stinesping criterion. (See e.g. [Rui77a, Rui77b, Rui77c, Tha92, Sch95].)
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two-centre Dirac equation, which allows for bound states of both centres, represents
a more complicated case, for which a proper multi-particle theory is not known.

3.7 Coulomb boundary conditions

In this section, the case of long-range forces is considered. This means that the
electrostatic potential of a charge distribution ρΓ in its rest frame is Coulomb-like
at large distances from the corresponding centre. It has been argued in the previous
section 3.6 that scattering theory as described in section 3.1 is not applicable in this
case, because the potential is not decreasing sufficiently fast towards spatial infinity
to obtain asymptotic convergence. A workaround for that is the modification of the
wave equations for the scattering channels.

Modified Dirac equations for the scattering channels A and B have been proposed
in [Eic87], and reviewed in [TE90] and [EM95, ch. 5], where they have been termed
asymptotic equations. In these wave equations the residual interaction of centre B
with bound states of centre A is added to the corresponding channel Hamiltonian of
centre A, and vice versa, leading to modified scattering-channel Hamiltonians.

A relativistically moving point charge not only induces a long-range electric-field,
but also a long-range magnetic field. The magnetic field only vanishes in the rest
frame of the point source. Therefore, the asymptotic influence of centre B on bound
states of centre A is best considered in the rest frame of centre B. A state bound
to centre A means here that it is localised in the vicinity of centre A for all times.
Such a bound state is subject to the long-range Coulomb potential of centre B also
at arbitrarily large times. This is expressed by the fact that asymptotic convergence
is not achieved, if this large-time influence of centre B is neglected. It has, therefore,
been proposed by Eichler [Eic87, TE90, EM95] to include the following residual
interaction into the Hamiltonian of scattering channel A:

W∞
B

′′(t′′,x′′) =
−e2Z̃B

d′′B(t′′,x′′)
. (3.20)

Here, doubly primed coordinates denote rest frame coordinates of centre B and the
distance between the centres A and B as determined in the rest frame of centre B is
given by the Lorentz scalar d′′B(t′′,x′′) (cf. section 2.1). The charge number Z̃B has
been introduced to indicate the strength of the Coulomb-like tail of the electrostatic
potential of centre B. It is distinguished from the charge number ZB, since the latter
has been used as well for the Yukawa potential, in order to indicate its field strength
near the origin. Clearly, ZB = Z̃B for the Coulomb potential.

In fact, in the doubly primed frame the external fieldW∞
B

′′(t′′,x′′) does not depend
on spatial coordinates x′′. In the rest frame of centre B, it corresponds to the Coulomb
potential at the position of the moving centre A, of a point charge eZ̃B located at the
origin. A Poincaré transformation from the doubly primed coordinates back to an
unprimed coordinate system yields the residual external field of centre B on bound
states of centre A,

W∞
B (t,x) =

−e2Z̃B

dB(t,x)
γB(1 − vB · α), (3.21)
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where vB is the velocity of centre B in the unprimed frame. Similarly, the residual
external field of centre A on bound states of centre B is given in terms of the parameter
Z̃A and the Lorentz scalar dA(t,x). These residual fields have non-vanishing magnetic-
field components, to which bound states are exposed at arbitrarily large times.

The modified Hamiltonians of the scattering channels A and B are therefore:

H∞
A (t) = H0 +WA(t,x) +W∞

B (t,x),

H∞
B (t) = H0 +WB(t,x) +W∞

A (t,x).
(3.22)

These Hamilton operators are time-dependent in any Lorentz frame. For the rest
frames of centre A and B they have been described in the works of Eichler and co-
workers. It was recognised first in [Eic87] that the corresponding scattering-channel
Dirac equations have bound-state solutions, because the residual fields W∞

Γ (t,x) can
be removed by a gauge transformation.

A gauge function suitable to remove the external field W∞
B (t,x) is given by:

gB(t,x) =
e2Z̃B

v
log

[

dB(t,x) −
γAvA · d

γv
+
γBvB · d

γ2v
+ vγB

(

t− vB · (x − bB)
)

]

.

(3.23)

The abbreviations v, γ and d have been introduced in section 2.1, where dB(t,x)
has been defined as well. Similarly a gauge function gA(t,x) removing W∞

A (t,x) is
obtained, by interchanging in equation (3.23) the indices A and B and reversing the
sign of d, which was defined as d = bB − bA. These gauge functions satisfy:

{∂t + α · ∇} gΓ(t,x) = −W∞
Γ (t,x).

The gauge functions gΓ(t,x) are determined only up to constant and, therefore,
other, equivalent gauge functions exist. Given a solution ΦA(t,x) of the unperturbed
scattering channel Dirac equation,

[H0 +WA(t,x) − i∂t] ΦA(t,x) = 0,

the gauge transformed wave function Φ∞
A (t,x), given by,

Φ∞
A (t,x) = exp(igB(t,x)) ΦA(t,x),

then solves the Coulomb-distorted channel Dirac equation,

[H0 +WA(t,x) +W∞
B (t,x) − i∂t] Φ

∞
A (t,x) = 0.

By virtue of this connection, Dirac equations of the scattering channels A and B,
with Hamilton operators according to equation (3.22), have solutions which perma-

nently remain localised in the vicinity of their respective centre. Therefore, they are
appropriate for the description of bound states, if Coulomb forces are present. Fol-
lowing Eichler and Dewangan the wave function Φ∞

A (t,x) is said to satisfy Coulomb

boundary conditions [EM95].
Recently, it has been asserted in [WSE99] that the asymptotic equations, as

presented in this section, are ‘not formally correct’ (see in particular appendix A of
[WSE99]). Another residual interaction has been proposed by Segev in the article
quoted. The present author does not agree with Segev for the following reason:
The Hamilton operator of the asymptotic equation, as proposed by Segev, is time-
dependent in a nontrivial way in any Lorentz frame. This means that there are no
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solutions of Segev’s asymptotic equations, which remain localised at a single centre
for all times. Clearly, the asymptotic equations of Segev are not suitable to describe
bound states. Contrary to the argument in [WSE99], the earlier proposal of Eichler
[Eic87] seems to be the only appropriate choice for the Coulomb-modified Dirac
equations of the scattering channels A and B, corresponding to asymptotically bound
particles of the two-centre Dirac equation with unscreened nuclear charges.




