
Appendix A

Numerical and Algorithmic Details

In this appendix, the computer code is described which was used to produce the
numerical results presented in this thesis. It also comprises the details of the compu-
tational methods and explicitly some formulas which have been omitted in the main
part of this work. Furthermore, improvements of the code, which have not been im-
plemented yet, are proposed. The main aim of such changes must be the reduction
of the compute time, thereby making larger bases feasible.

The present program is the first of its kind which is capable of performing numeri-
cal computations in various different relativistic frames of reference. In any previously
existing computer code that numerically solves the relativistic coupled channel equa-
tions a particular frame of reference was chosen, namely the reference frame where
the initial electronic state was at rest. Moving initial configurations have not been
considered. Not only coupled channel codes, but also other numerical approaches
to solve the two-centre Dirac equation (like the momentum space approach, finite
element and finite difference calculations) have only considered initial configurations
at rest in the frame of the computation.

For coding the C/C++ programming languages have been used predominantly
[Str97, CSC

+
97]. For the convenience of readers who are interested in reading the

source code (although not reproduced here), we quote identifiers occasionally.

A.1 General definitions

At the time of writing, the program is capable of solving the coupled channel equa-
tions in those frames of reference where both nuclei, A and B, move along straight line
trajectories parallel to the e3-axis of the coordinate system. The impact parameter
plane is chosen to be the e1-e3-plane and the time of closest approach of the nuclei
is t = 0. In the subsequent discussion the trajectories are assumed to be of the form,

RA(t) = − b

2
e1 + tvA e3, RB(t) =

b

2
e1 + tvB e3, (A.1)

with

−∞ < b < ∞, −1 < vΓ < 1, with Γ = A,B, and −∞ < t < ∞.

However, recall that any translation of the origin of the spatial coordinate system
in the e1-e2-plane will yield an identical set of coupled equations (cf. section 5.1).
The input parameters of the computer program that determine these trajectories are
listed in table A.1. In terms of the rapidities χc

B and χc
frame the velocities vA and vB

are determined according to:

vA = tanh(−χc
B − χc

frame),

vB = tanh(χc
B − χc

frame).
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100 A. NUMERICAL AND ALGORITHMIC DETAILS

Table A.1. Command line parameters of the main program.

chi Rapidity χc
B of nucleus B in the collider frame.

chiframe Rapidity χc
frame of the frame of reference with re-

spect to the collider frame.
b Impact parameter b in relativistic units.

zA zB Charge number of projectiles A and B respec-
tively.

nmaxA nmaxB Maximum principal quantum numbers of bound-
state basis functions of centre A and B respec-
tively.

kappaA kappaB Maximum absolute values of the spin-orbit quan-
tum numbers κ of free-particle basis functions.

ti tf dt tinnr dtinnr Variables tf , ti, ∆t, tinner and ∆t,inner that deter-
mine the time grid (cf. section A.4), in relativistic
units.

infile Name of a checkpoint file. Necessary for the con-
tinuation of a previously interrupted computa-
tion.

id Identification string of a coupled channel calcula-
tion.

The Lorentz factor γ specifying the collision energy (i.e. the kinetic energy of one of
the projectiles measured in the rest frame of the other projectile) is then given in
terms of the rapidity χc

B by:

γ = cosh(2χc
B).

Half the distance between the centres A and B at time t in the unprimed frame,
denoted by f in the following, is equal to:

f =
1

2

√

b2 + t2(vB − vA)2 (A.2)

In the present context, primed rest-frame coordinates (t′, x′, y′, z′) of centre A and
doubly primed rest-frame coordinates (t′′, x′′, y′′, z′′) of centre B are defined as,

t′ = γA(t − vAz), x′ = x +
b

2
, y′ = y, z′ = γA(z − vAt) (A.3)

t′′ = γB(t − vBz), x′′ = x − b

2
, y′′ = y, z′′ = γB(z − vBt). (A.4)

These definitions are emphasised, because the definitions of the basis functions below
explicitly refer to the direction of the z′- and z′′-axis. Note that the directions have
been chosen to be equal to the direction of the z-axis of the computational frame of
reference. In the program radial coordinates (rA, ϑA, ϕA) for the rest frame of A are
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defined in terms of these Cartesian coordinates according to, 1

rA =
√

x′2 + y′2 + z′2, cos ϑA =
z′

rA
, ϕA = arg (x′ + iy′) , (A.5)

The spatial radial coordinates (rB, ϑB, ϕB) in the rest frame of B are given similarly
in terms of the doubly primed Cartesian coordinates (x′′, y′′, z′′).

A.2 Basis functions

As described in sections 5.2 and 5.3, in the present impementation of the coupled
channel method the basis functions ΦΓ,i(t, x) are eigenfunctions of the spin-orbit
operator and the third component of angular momentum in their respective rest
frames. In this section we give the precise forms of the eigenfunctions φA,i(x

′) and
φB,i(x

′′), referred to in sections 5.3 and 5.5. The following presentation covers the
eigenfunctions φA,i(x

′) referring to the rest frame of centre A. Everything stated in
the following applies in an analogous way to eigenfunctions φB,i(x

′′) in the rest frame
of centre B.

A.2.1 Spin-angular functions. Numerical calculations make use of the standard
Dirac-Pauli representation of the Dirac matrices (see equation (C.2) of appendix
C). For this representation, the spin-orbit operator K ′ defined in equation (5.5) is
block-diagonal:

K ′ =

(

−1
2
σ · L

′ − 1 0
0 1

2
σ · L

′ + 1

)

.

In this case, the third component J ′3 of the angular momentum operator J
′ is a

diagonal block-matrix as well:

J ′3 = −i
∂

∂ϕA

+
1

2

(

σ3 0
0 −σ3

)

.

Both K ′ and J ′3 only contain differentiation operators with respect to the angular
variables ϑA and ϕA. Therefore, a simultaneous eigenstate φA(x′) of K ′ and J ′3, with
eigenvalues κ and m respectively, is of the form:

φA(x′) =
1

rA

(

iP (rA) χm
κ (ϑA, ϕA)

Q(rA) χm
−κ(ϑA, ϕA)

)

, (A.6)

with complex-valued radial functions P (rA) and Q(rA). The imaginary constant has
been added for later convenience. The two-spinors χm

κ (ϑ, ϕ) must satisfy the following
eigenvalue equations:

[
1
2
σ · L

′ + 1
]

χm
κ (ϑ, ϕ) = −κ χm

κ (ϑ, ϕ),
[

−i∂ϕA
+ 1

2
σ3

]

χm
κ (ϑ, ϕ) = m χm

κ (ϑ, ϕ).

1This notation represents a minor inconsistency with previous notation: In this appendix rA is

not primed, although it is identical to the Lorentz scalar r′

A
(t′, x′) as defined in section 2.1.
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A suitable choice for these spin-angular functions χm
κ (ϑ, ϕ) is given by the following

definition: 2

χm
κ (ϑ, ϕ) =

1√
2l + 1






−
√

l − m + 1
2

Y
m− 1

2

l (ϑ, ϕ)
√

l + m + 1
2

Y
m+ 1

2

l (ϑ, ϕ)




 for κ > 0, with l = κ,

χm
κ (ϑ, ϕ) =

1√
2l + 1






√

l + m + 1
2

Y
m− 1

2

l (ϑ, ϕ)
√

l − m + 1
2

Y
m+ 1

2

l (ϑ, ϕ)




 for κ < 0, with l = |κ| − 1.

In this work we refer to the following phase convention for spherical harmonic func-
tions Y p

l (ϑ, ϕ) and associated Legendre polynomials P p
l (cos ϑ):

Y p
l (ϑ, ϕ) = eipϕ

√
√
√
√

2l + 1

4π

(l − p)!

(l + p)!

(−1)l+p

2l l!
(sin ϑ)p

[

d

d(cos ϑ)

]l+p

(sin ϑ)2l

︸ ︷︷ ︸

= eipϕ

√
√
√
√

2l + 1

4π

(l − p)!

(l + p)!
P p

l (cos ϑ)

The spin-angular functions χm
κ (ϑ, ϕ) constitute a complete set of orthonormal func-

tions on the unit sphere. For the numerical evaluation of the spherical harmonics the
formula,

Y p
l (ϑ, ϕ) = eipϕ

√
√
√
√

2l + 1

4π

(l − |p|)!
(l + |p|)! P

|p|
l (cos ϑ) ×







(−1)p if p < 0,

1 if p > 0,

is most suitable, because numerically stable recursion relations exist, which allow
for the determination of associated Legendre polynomials P p

l of positive order p
[PTVF92]. Owing to the presently adopted phase conventions, the spin-angular
functions χm

κ (ϑ, ϕ) also satisfy the relation [Ros61, eq. (1.65’)],

er · σ χm
κ (ϑ, ϕ) = −χm

−κ(ϑ, ϕ), (A.7)

with er = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ).

A.2.2 Radial Dirac equation. As explained in chapter 5, basis functions attrib-
uted to centre A are constructed either from eigenstates of the channel Hamiltonian
H ′

A = −iα · ∇′ + β − eVA(rA) (for bound states) or as superpositions of continuum
eigenfunctions of H ′

A (in the case of wave packets). A simultaneous eigenfunction

2Spin-angular functions χm

κ
(ϑ, ϕ) are also known as central field spinors [Ros61], spinor spher-

ical harmonics [Sch95], or spherical spinors [SFVW95b]. In the literature many different phase

conventions for spin-angular functions, spherical harmonics, and associated Legendre polynomials

can be found. For example, the present choice is in agreement with [AS65, PTVF92, Jac99]

regarding associated Legendre polynomials (but disagreeing with [Edm57]), in agreement with

[Edm57, Ros61, Dav65, PTVF92, Jac99] regarding spherical harmonics (but disagreeing with

[Sch55], [BS77], as well as [LL86, BLP82]), and finally in agreement with [Ros61] regarding the

Clebsch-Gordon coefficients which determine the spherical spinors. In consequence of different phase

conventions, equation (A.7) does not hold for spin-angular functions as defined, e.g., in [BD66] or

[BLP82]. However, similar equations are given by the latter authors. In the present work, the

numerical algorithm of [PTVF92, sec. 6.8] is used to compute associated Legendre functions, in

combination with the definition of spherical spinors χm

κ
(ϑ, ϕ) as in [Ros61, eq. (1.60’)].
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φA(x′) of the operators H ′
A, K ′ and J ′3, with eigenvalues ε, κ and m respectively,

is of the form (A.6). Owing to equation (A.7) it can be verified that the eigenvalue
equation,

[H ′
A − ε] φA(x′) = 0,

is equivalent to the following radial Dirac equation for the radial wave functions P (rA)
and Q(rA):

d

drA

(

P (rA)
Q(rA)

)

=







− κ

rA
−ε − eVA(rA) − 1

ε + eVA(rA) − 1
κ

rA







(

P (rA)
Q(rA)

)

. (A.8)

Note that the imaginary factor in equation (A.6) leads to the present form (A.8) of
the radial Dirac equation, which allows for real-valued solutions P (rA) and Q(rA).

An algorithm for an accurate numerical solution of the radial differential equa-
tion (A.8) has been published by Salvat et al. [SM91, SFVW95a, SFVW95b]. It
assumes that a singularity of the radial potential VA(r) at r = 0 is at most Coulomb-
like, more precisely,

lim
r→0

VA(r)r < ∞,

is assumed. Furthermore, it is assumed that the potential VA(r) vanishes as r tends
to infinity and that the limit

lim
r→∞

VA(r)r = Z̃A

exists. The algorithm of Salvat et al. allows for the computation of the radial wave
functions of normalised bound states and determines their eigenvalues at the same
time. Furthermore, radial wave functions corresponding to continuum eigenfunctions
with positive energy ε > 1 can be determined. The latter radial functions are nor-
malised by the code of Savat et al. such that the upper component P (r) is oscillating
with unit amplitude as r → ∞. Only regular solutions of the radial Dirac equation
are computed, which are distinguished by their property of square integrability at
the boundary r = 0. For this work the code of Salvat et al. has been ported to the
C programming language and extended to allow for the computation of radial wave
functions of negative energy ε < −1.

The normalisation of continuum eigenfunctions φA,ε(x
′) on the energy scale is

obtained by a multiplication of their radial wave functions P (rA) and Q(rA) by the
factor,

1√
π

(
ε + 1

ε − 1

)1/4

.

That normalisation of continuum wave functions provides that radial wave packets
of the form,

1√
∆ε

∫ ε+∆ε/2

ε−∆ε/2
φA,ε(x

′) dε,

are normalised in the primed frame.
For the numerical calculations presented in this work the Coulomb potential

VΓ(rΓ) = eZΓ/rΓ has been considered for both centres Γ = A, B. However, due
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to the fact that the radial wave functions of the basis functions are determined by
a numerical integration of the radial Dirac equation (A.8), it is straightforward to
extend the existing code to allow for a numerical coupled channel solution of a two-
centre Dirac equation with more general moving charge distributions. This possibility
has motivated the preference of the present determination of the radial wave func-
tions over other numerical methods to compute Coulomb-Dirac wave functions or the
related Whittaker functions [AS65, MRG73, GMR85, CEL].

A.2.3 Implementation details. For bound states, the radial wave functions are
computed at the beginning of a coupled channel calculation and tabulated for a few
thousand radii for later linear interpolation. The size of the radial grid in relativistic
units was chosen according to rmax = (2n2 + Cn1.2)/(e2Z), with a constant C taking
a value between 15 and 20. Here Z is the charge number of the respective centre and
n the principal quantum number of the bound state. Wave functions of wave packets
are integrated using a Gaussian quadrature formula for the energy integration and
tabulated in the same way as bound state radial wave functions, to allow for the
later evaluation of the radial functions by linear interpolation. For the wave packets
as described in section 6.6 a radial grid of size 200 r.u. was used. To check the
code, radial wave functions obtained by the present program have been compared to
corresponding plots published in [BS85].

For numerical calculations, a finite coupled channel basis has to be specified. In
the present program this can be done partly by command line parameters, denoted
by nmaxA, nmaxB, kappaA and kappaB (cf. table A.1). The first two parameters
determine the maximum principal quantum number of bound-state basis functions of
centres A and B respectively. The second two parameters fix the maximum absolute
values of the spin-orbit quantum numbers κ of free-particle basis functions. The
mean energies ε̄ and the widths ∆ε of the energy interval of wave packets cannot be
chosen on the command line presently. In the source code tabulated radial Dirac
wave functions attributed to the same centre are subsumed by an object of the class
DiracRadialBasis. It is the constructor of this class that evaluates radial wave
functions according to the algorithm of Salvat et al..

A.3 Quadrature formulas

The three-dimensional integrals presented in section 5.3 have to be evaluated fully
numerically. This evaluation takes the major part of the computing time and is,
hence, the reason for the numerical complexity of the computational task of solving
the relativistic coupled channel equations (4.8). Efficient quadrature formulas for
these integrals will take into account the distance between the centres as well as the
fact whether the two states occurring in the integrand are located at the same or
a at different centres. Therefore, two different quadrature schemes are used in the
program. Both procedures introduce some curved spatial coordinates in the com-
putational, unprimed frame of reference. The three-volume integrals (5.10), (5.11),
(5.15) and (5.16) are then rewritten as a sequence of three nested one-dimensional in-
tegrals over these curved coordinates. The latter are evaluated successively by means
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Figure A.1. Prolate spheroidal coordinates. (a) The centres A and B are mov-
ing in the x-z-plane. The straight line going through the centres, from A to B,

defines the zp-coordinate axis. (b) A half-plane is rotated around the zp-axis. (c)
The half-plane is parameterised by elliptical coordinates.

of one-dimensional quadrature formulas. The first quadrature method described be-
low is based on prolate spheroidal coordinates, the second on contracted spherical
coordinates around one of the centres.

A.3.1 Quadrature using prolate spheroidal coordinates. If the distance of the
centres A and B is small compared to the extension of the integrand and in the case
of scalar products between states located at different centres, a quadrature method
based on prolate spheroidal coordinates is employed. These coordinates are elliptical
coordinates of the half-plane which are rotated into the third spatial dimension in
order to obtain coordinates of the whole three-dimensional space [AS65, MS88].
Their definition in the present context is depicted in figure A.1.

Elliptical coordinates are rotated around the zp-axis which is defined as the co-
ordinate axis passing through the centres from A to B at some fixed time t. Let

ρp =
√

x2
p + y2

p denote the distance of some point (x, y, z) from the zp-axis. Elliptical

coordinates (ξ, η) of the (zp, ρp)-half-plane can be defined in terms of a conformal
mapping, namely the principal branch of the complex arcsin-function [AS65, FL92],
as follows:

ξ = cosh

(

= arcsin
zp + iρp

f

)

,

η = sin

(

< arcsin
zp + iρp

f

)

.

By this mapping the (zp, ρp)-half-plane is mapped one to one and onto the strip,

1 ≤ ξ < ∞ and − 1 ≤ η ≤ 1.
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The inverse mapping is simply given by:

zp = fξη, ρp = f
√

(ξ2 − 1)(1 − η2). (A.9)

Therefore, while passing over from Cartesian coordinates (x, y, z) to prolate spher-
oidal coordinates (ξ, η, ϕ), where ϕ is the angle of rotation around the zp-axis, the
volume element transforms like:

dx dy dz = dϕ ρp dρp dzp = f 3(ξ2 − η2) dϕ dη dξ.

For large ξ the quantity fξ is approximately equal to the spatial distance of some point
with the coordinates (ξ, η, ϕ) from the origin of the (xp, yp, zp)-coordinate system.

For their numerical evaluation the infinite-volume integrals (5.10), (5.11), (5.15)
and (5.16) are approximated by nested one-dimensional integrals over finite intervals,

∫ ξmax

1
dξ
∫ 1

−1
dη
∫ 2π

0
dϕ f 3(ξ2 − η2) . . . ,

since the relevant integrands are expected to give negligible contributions to the in-
finite integral outside some sufficiently large ellipsoid characterised by ξ < ξmax. The
ξ- and η-integrals are then computed by Gauß-Legendre quadrature formulas which
corresponds to a polynomial interpolation of the integrand as a function of ξ and η
respectively, see e.g. [AS65, PTVF92, DH93]. The ϕ-integration is carried out
using the extended trapezoidal rule which is more simple than the Gauß-Legendre
quadrature. Nonetheless, it is appropriate because the integrand is periodic in ϕ and
the n-point extended trapezoidal rule is an exact quadrature formula for all trigono-
metric polynomials up to the order n− 1. The n-point extended trapezoidal rule for
the ϕ-integral corresponds to an integral over the interpolation of the integrand using
a trigonometric polynomial of the order n−1. Contrary to the Gauß-Legendre quad-
rature formula the trapezoidal rule takes into account the periodicity of the integrand
in ϕ [HH89, DR75, DH93].

In order to evaluate the integrand for some space-time point with coordinates
(t, ξ, η, ϕ) the space-time coordinates (t′, rA, ϑA, ϕA) and (t′′, rB, ϑB, ϕB) of this event
have to be computed. For the sake of completeness the transformations performed
by the program will be described here. Starting from prolate spheroidal coordinates
(ξ, η, ϕ) the spatial Cartesian coordinates (xp, yp, zp) are determined according to
equation (A.9) and the following relations:

xp = ρp cos ϕ, yp = ρp sin ϕ.

The Cartesian coordinates (x, y, z) are then obtained by a rotation around the yp-axis
followed by a translation in z-direction:

x = xp cos α + zp sin α, y = yp, z = −xp sin α + zp cos α +
t(vB + vA)

2
.

Here the coefficients of the rotation matrix are given by:

sin α =
b

2f
, cos α =

t(vB − vA)

2f
.

Finally the space-time coordinates (t′, rA, ϑA, ϕA) and (t′′, rB, ϑB, ϕB) are computed
from (t, x, y, z) by Lorentz boosts according to equations (A.3), (A.4) and (A.5).
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It is important to note that the times t′ and t′′ in the rest frames of the respective
centres, are functions of both t and z. For some particular time t they, therefore,
have to be evaluated for each spatial coordinate (ξ, η, ϕ) separately. For the purpose
of computational efficiency there are different functions implementing the coordinate
transformation for computations in the collider frame, where χA = −χB, for com-
putations in the rest frame of centre A, where χA = 0, and for arbitrary frames of
reference.

Quadrature methods based on prolate spheroidal coordinates have also been used
in nonrelativistic coupled channel calculations [Fri] and by Toshima and Eichler for
their relativistic calculations of excitation and charge transfer in the target frame
[TE88a].

A.3.2 Quadrature using contracted and translated spherical coordinates.
For scalar products at large times t, between states which are located at the same
projectile Γ (single centre integrals), a quadrature method is used that is based on the
radial coordinates (rΓ, ϑΓ, ϕΓ) defined in equation (A.5). A short calculation shows
that the volume element dx dy dz in the unprimed frame is given in terms of the
radial coordinates of the boosted frame at time t by:

dx dy dz =
r2
Γ

γΓ

drΓ dcos ϑΓ dϕΓ.

In order to verify this relation, it must be remembered that the Cartesian coordinate
z at time t in the unprimed frame may be written as,

z =
rΓ cos ϑΓ

γΓ

+ vΓt, (A.10)

due to the uniform motion of centre Γ. For a numerical evaluation, the matrix
elements (5.11) and (5.16) are approximated by nested one-dimensional integrals of
the form,

∫ rmax

0
drΓ

∫ 1

−1
d cos ϑΓ

∫ 2π

0
dϕΓ

r2
Γ

γΓ

. . . ,

similarly to the previous subsection. Gauß-Legendre quadrature formulas are used
for the computation of the rΓ- and cos ϑΓ-integrals and the extended trapezoidal rule
for the ϕΓ-integral for the same reasons as described above.

In order to evaluate the integrand of an interaction matrix element between two
basis functions located both, e.g., at centre A (cf. equations (5.11) and (5.16)) it is
necessary to calculate times t′ and t′′, the distance dB, and the radius rB. Here the ra-
dius rB must correspond to a space-time point with spatial coordinates (rA, cos ϑA, ϕA)
in rest frame A, but with time t in the unprimed coordinate system.

The times t′ and t′′, of the rest frames of centre A and B respectively, are ob-
tained by first determining z, as in equation (A.10), and then using the relations
t′ = γA(t − vAz) and t′′ = γB(t − vBz). The radius rB must be computed according
to,

rB =
[

(rA sin ϑA)2 + b2 + z′′
2 − 2b rA sin ϑA cos ϕA

] 1

2 ,
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where z′′ = γB(z − vBt), as already defined above, and sin ϑA =
√

1 − (cos ϑA)2. The

distance dB, as given in equation (5.3), can be expressed simply in terms of t′′.
An analogous procedure has been implemented for the numerical determination

of matrix elements between two basis functions that are both located at centre B.

A.3.3 Discussion and improvements. The evaluation of the elements of the in-
teraction and overlap matrices, N(t) and V (t), is the main reason for the compu-
tational complexity of relativistic coupled-channel calculations as presented in this
thesis. In [RSG93, BRBW94] single-centre coupled channel calculations of heavy-
ion collisions using much larger bases have been reported. As the coupled channel
basis in that approach is comprised of eigenstates (and wave packets) of one centre
only, there are no two-centre matrix elements. However, in the present two-centre
calculations the number of two-centre integrals that have to be evaluated is nearly
twice as large as the number of single-centre integrals, showing that the major effort
is to compute the former.

In [RSG93, BRBW94] Coulomb boundary conditions have not been used and
calculations have been carried out in the rest frame of the basis functions (target
frame). As described in [RSG93] the external field of a point-like projectile can be
decomposed into a multipole series (see also [EM95]). Although, compared to the
nonrelativistic case, this expansion is complicated slightly by the Lorentz contrac-
tion of the projectile potential, angular momentum algebra can be used to reduce
the computational effort of determination of the matrix elements. Three-dimensional
integrals for the interaction matrix elements Vij(t) can be reduced to infinite sums
over two one-dimensional integrals, one of which does not need to be evaluated for
every pair of indices (i, j) separately, because it mainly depends on the spin-angular
quantum numbers of the corresponding basis functions [RSG93]. This integration
method is not applicable if coupled channel calculations with phase-distorted basis
functions are considered, as done in this work. If coupled channel calculations not
satisfying Coulomb boundary conditions are an option, the program can be opti-
mised by evaluating the single-centre integrals according to the method described in
[RSG93].

We conclude this section with a few remarks about further ideas to optimise the
numerical quadrature. Two-dimensional quadrature formulas for the integration on
the unit sphere have been developed for numerical calculations of quantum chem-
istry [Del96]. These might turn out to be more efficient than the present integra-
tion method for the unit sphere using nested one-dimensional quadrature formulas.
Another feature of the presently adopted quadrature formulas is the use of a fixed
number of points, independent of, e.g., the distance between the centres. One should
expect, however, that the convergence of the quadrature formulas with respect to
the number of points at which the integrands must be evaluated does depend on the
distance of the centres and the different types of wave functions. Therefore, adaptive
quadrature methods based on extrapolation techniques (Romberg quadrature) might
be more powerful [PTVF92, DH93]. On the other hand, the Romberg quadrature
method requires sufficient smoothness of the integrand, which is not provided by the
present evaluation of radial wave functions by linear interpolation of tabulated data.
Finally, there are alternatives to the use of prolate spheroidal coordinates for the
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quadrature of two-centre integrals. Different multi-centre integration schemes have
been developed for calculations in quantum chemistry. E.g., the decomposition of
multi-centre integrals into a sum of weighted single-centre integrals, as described in
[Bec88, PJB94], is applicable in principal also in the present context. In conclu-
sion, we have proposed improvements of the present quadrature schemes. It must be
remembered, however, that all these proposals require careful and time-consuming
implementation, testing and evaluation before they can replace the present methods.
They should be object of future work.

A.4 Integration of the coupled channel equations

A.4.1 Matrix computations. The program integrates the coupled differential equa-
tions (4.8) for undistorted and phase-distorted bases simultaneously. For the inte-
gration of these differential equations the coefficient matrices,

−iN(t)−1V (t),

must be determined for both choices of the basis functions. This is achieved by
means of an LU-decomposition [PTVF92, DH93] of the respective overlap matrix
N(t). For matrix computations the ‘Template Numerical Toolkit’ (TNT) [Poz00]
has been used and slightly extended to allow for the LU-decomposition of complex-
valued matrices.

Singular value decompositions of the fundamental solution matrices F (t, ti), as
described in subsection 4.2.1 and presented in figures 5.3 and 5.4, have been per-
formed by interfacing the TNT package to the Fortran library for linear algebra
LAPACK [ABB+99]. The latter is optimised and available in binary format for
many computing architectures. It provides the Fortran routines ZGESVD and CGESVD,
which implement the singular value decomposition for complex-valued matrices.

A.4.2 Time integration. The overlap and interaction matrices N(t) and V (t) are
numerically evaluated only for the times of a time grid. This time grid has upper
and lower boundaries tf and ti, usually chosen in a symmetrical manner as ti = −tf .
The spacing of the time grid is chosen to be equidistant, with a time step ∆t, except
for an inner time-interval. In this inner time-interval, ranging from −tinner to tinner,
the equidistant spacing can be made smaller, using the time step ∆t,inner. These five
parameters defining the time grid are controlled by command line parameters of the
program, which are summarised in table A.1.

For times t not part of the time grid, the matrix −iN(t)−1V (t) of coefficients
of the linear differential equation (4.8) is linearly interpolated. In the program this
is achieved by means of the class MatrixInterpolationTNT. The integration of the
coupled channel equations is, therefore, based on this linear interpolation function of
the coefficient matrices.

For the integration of the differential equation over time intervals of the time
grid, a sophisticated algorithm described in [PTVF92, ch. 16] is used. The powerful
Burlisch–Stoer extrapolation technique is combined with a stepsize-control algorithm
proposed by Deuflhard. In the present numerical code this integration method has
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been implemented for differential equations with complex-valued coefficients as a class
called GBSDIntegrationTNT.

The integration method works as follows: For a given stepsize H the so-called
modified midpoint method is used to integrate the fundamental solution F (t, ti) from
some time t to the time t + H. This method subdivides the stepsize H into n
substeps each of size h = H/n. The modified midpoint rule is applied several times
with increasing n, yielding several results for the same integration step from t to t+H.
These different results are then extrapolated to the limit of vanishing substep-size,
h = 0, using a polynomial interpolation (Richardson’s deferred approach to the limit).
If the (estimated) numerical error of this extrapolation is larger than a given error
bound the stepsize H may be reduced. The stepsize adjustment strategy proposed by
Deuflhard, described in [PTVF92, sec. 16.4], has been used with minor modifications
for the present program.

A time grid has been used for the integration of the coupled channel equations
also in [TE88a]. The effect of the Burlisch–Stoer–Deuflhard integration method in
the present context is that the accuracy of the numerically evaluated fundamental
solution F (t, ti) is practically determined by the choice of the time grid only. In order
to control this accuracy the asymptotic unitarity of the fundamental solution can be
verified. As described in section 4.2 asymptotic unitarity is provided, if the singular
values of the fundamental solution are all equal to one at large times t. The smaller
grid spacings in the inner time-interval [−tinner, tinner] of the time grid allows for a
rough adaption: At small times t the coefficients of the differential equations grow
strongly as t tends to zero, due to maximum interaction at the closest approach of
the centres (see e.g. figures 5.1 to 5.4).

A.4.3 Improvements. It may be attempted to apply the Burlisch–Stoer–Deuflhard
integration method directly, without using a time grid and interpolating the coeffi-
cient matrices. However, it must be remembered that the numerical calculation of
the overlap and interaction matrices by three-dimensional quadrature is very time-
consuming and the use of directly evaluated coefficient matrices may actually in-
crease the computing time. Furthermore extrapolation techniques, as the integration
method described, require sufficient smoothness of the numerically evaluated coeffi-
cients as a function of time [PTVF92]. This may not be provided due to numerical
inaccuracies of the quadrature formulas described above, but it is clearly true for
the linear interpolation used for numerical calculations of this work. Finally note
that using cubic splines for the interpolation of the coefficient matrices is presum-
ably a valuable improvement of the present code, allowing for a larger spacing of the
time grid and providing the necessary smoothness of the coefficients necessary for the
Burlisch–Stoer–Deuflhard method.

A.5 Distributed computations

The numerical code has to perform two different tasks: On one hand, the numerical
evaluation of the matrix elements, on the other hand the time integration of the
coupled channel equations. In principle these two tasks can be separated from each
other. They may be implemented in different programs, provided the matrix elements
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can be passed from one program to the other. The latter could be achieved by storing
the matrix elements, or the coefficient matrices of the differential equation, on mass
storage devices. Another possibility is to write software that is able to exchange data
using communication links.

The latter approach has been implemented. In this approach the process integrat-
ing the differential equations (master process) sends requests for matrix elements to
a process only evaluating matrix elements (server process). A single master process is
able to communicate with several different server processes. In the present program,
a request of the master process sent to a server process contains the values of the
following parameters:

χc
B, χc

frame, b, t, i and j. (A.11)

Here i and j are the row and column indices of the requested matrix elements.
After the computation, of overlap and matrix elements for undistorted as well as
phase-distorted bases, the server process returns four complex numbers to the master,
namely the values of the matrix elements:

Nu
ij(t), V u

ij (t), Np
ij(t) and V p

ij (t).

Here the superscripts u and p refer to undistorted and phase-distorted bases respec-
tively. As soon as the master process receives these results from a particular server
process the former sends a new request to the server. The master process communi-
cates with all server processes simultaneously, assembles the overlap and interaction
matrices, determines the matrix of coefficients −iN(t)−1V (t), integrates the differen-
tial equations and writes the results to several output files.

The program is constructed such that it can either take the role of a master or
a server process. Typically, several processes are started simultaneously on different
processors or networked computers. These processes are numbered and the first pro-
cess automatically takes the role of the master process, establishing communication
links to the other processes, which automatically start their operation in the server
mode. If only a single process is started, it carries out both tasks, evaluating matrix
elements and integrating the differential equations.

The principal advantage of the multiple-processor over single-processor compu-
tations is the much increased computing speed. E.g., a computation taking several
days on a single-processor workstation could be executed on a network of worksta-
tions and personal computers during several hours. In many numerical calculations
of this work multiple-processor computations have been necessary in order to get
acceptable compute times. In addition, the parallelisation of the code allowed for
the use of massively parallel processor systems, providing access to such powerful
computing machinery.

A.5.1 Implementation details. Two different kinds of computing facilities have
been used for the present work. On one hand, a heterogeneous network of work-
stations and personal computers connected via standard ethernet hardware, on the
other hand, massively parallel processor systems of type Cray T3E. The commu-
nication between processes was realised by means of the massage passing interface
[MPI96, GLS99]. Due to the fact that an implementation of the message passing
interface is available both for TCP/IP-connected workstations [MPI00] and for the
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proprietary hardware of the Cray T3E, it was technically feasible to write a portable

code that could be used on both types of hardware.
We would like to close this appendix with a few remarks about technical aspects.

The network of workstations and personal computers, connected via ethernet, in-
cluded several different computing architectures, namely: Compaq True64 Unix run-
ning on workstations with Alpha processors, Sun Solaris for Sun Sparc computers,
Hewlett-Packard Ultrix on HP-RISC computers, and Linux for personal computers
with Intel processors. For all these systems (and additionally the Cray T3E archi-
tecture) the program sources had to be compiled and linked using different, partially
incompatible compilers and linkers. This fact required adapting of sources to the
various environments, selectable by preprocessor directives [Reg96] and compiler
options. Having made available binaries of the program for the different comput-
ing architectures, the latter have been used simultaneously for a single, distributed
coupled channel calculation. Typical distributed computations lasted several hours.

Finally, it should be emphasised that priority has always been given to numerical
accuracy leading to long compute times. The optimisation of both accuracy and
computing speed at the same time must be an object of future work. The potential
for such improvements has been partly described in this appendix.


