
Appendix C

Units, Notation, and Other Conventions

In this work, the notation and most conventions of Bjørken and Drell [BD66] are
used whenever possible. Some important definitions and conventions are given in this
chapter for the convenience of the reader.

C.1 System of units and physical constants

If not stated otherwise, relativistic natural units are used for which the vacuum
velocity of light c, the reduced Planck constant ~ and the electron mass me all take
the numerical value 1. Then the unit of length is the reduced Compton wave length
λc = ~

mec
of the electron, the unit of time is λc/c = ~

mec2
, and the unit of energy is

equal to mec
2. Therefore, the relativistic natural units of length and time have the

following values in in MKSA units [MT00]:

quantity numerical value unit

~

mec
3.86 × 10−13 m

~

mec2
1.29 × 10−21 s

For the electrical charge Gaussian units are used, which are commonly preferred in
atomic physics. This means that the unit of electrical charge is chosen such that the
potential energy of two charges Q and q at a distance r is equal to,

Qq

r
.

In the Gaussian system the elementary charge e is related to the fine-structure con-
stant α by:

α =
e2

~c
.

The fine-structure constant α is the only physical constant which directly enters
the numerical calculations. The numerical value which has been used to obtain the
results of this thesis is [EM95],

α−1 = 137.0359895,

deviating insignificantly from the recently recommended value of α−1 = 137.0359998
[MT00]. In the system of units adopted here, we have α = e2. Cross sections are
conventionally given in barn. Regarding the conversion from relativistic natural units
to barn, note that the area of 1 barn corresponds to the 10−28 m2 in MKSA units and
to the area,

0.670605 × 10−3 r.u.,
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122 C. UNITS, NOTATION, AND OTHER CONVENTIONS

in relativistic natural units. The Lorentz factor γ associated with the kinetic energy T
of a heavy-ion collision given in GeV/u in a fixed target frame is defined as:

γ =
T

ma.m.u.c2
+ 1. (C.1)

For the purpose of conversion between these two quantities the value

ma.m.u = 0.931494 GeV/c2.

has been used for the the atomic mass unit ma.m.u [MT00].

C.2 Dirac matrices and discrete symmetry transformations

In terms of the Pauli matrices σ = (σ1, σ2, σ3) the standard Pauli–Dirac represen-
tation of the Dirac-matrices α = (α1, α2, α3) and β is given by the following 4 × 4-
matrices [BD66, Tha92]:

β =

(

1 0
0 −1

)

, αi =

(

0 σi

σi 0

)

. (C.2)

For numerical calculations the standard representation has been used. However,
analytical considerations of the present work do not refer to some particular repre-
sentation, if not noted otherwise.

We use the convention,

gµν = diag(1,−1 − 1 − 1),

for the signature of the Minkowski metric, following [BD66, BLP82, EM95, Sch95,
Jac99] and others. Since the Dirac-matrices are mutually anti-commuting and the
γ-matrices are required to satisfy,

γµγν + γνγµ = 2gµν, for µ, ν = 0, . . . , 3,

the two sets of matrices are related by:

γ0 = β, γi = βαi, for i = 1, 2, 3.

This relation is independent of the particular representation. However, it depends
on the signature of the Minkowski metric, which is sometimes chosen differently
[Wei95]. The definition of the matrix γ5 = γ5 adopted in this work is:

γ5 = iγ0γ1γ2γ3 = −iα1α2α3.

We refer to the following definitions of the operators of charge conjugation C,
time-reversal T and parity P acting on a classical Dirac field Ψ(t, x) [Sch95]:

(CΨ)(t, x) = γ0C Ψ∗(t, x), (C.3)

(T Ψ)(t, x) = γ5C Ψ∗(−t, x), (C.4)

(PΨ)(t, x) = γ0 Ψ(t,−x). (C.5)

These definitions are valid for any representation of the γ-matrices that is unitarily
equivalent to the chiral representation or the standard representation. The matrix C
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occurring in equations (C.3) and (C.4) is always unitary but depends on the repre-
sentation. It satisfies

C−1γµC = −γµT , CT = −C and C∗C = −1, (C.6)

and exits for any representation which is unitarily equivalent to the chiral represen-
tation as a consequence of Pauli’s fundamental theorem on the representation of the
γ-matrices. Furthermore, C is uniquely defined up to a complex phase, which may
be proved by means of Schur’s lemma [Goo55, Tha92, Sch95]. The commutation
properties of the discrete symmetry operators are summarised by the equation:

{C,P} = [P, T ] = [T , C] = 0 (C.7)

The operators C and P are involutions,

C2 = P2 = 1,

whereas the double application of the time reversal operation changes the sign of a
wave function,

T 2 = −1.

Note that the operators defined in equations (C.3–C.5) belong to a particular rep-
resentation of the covering group of the Poincaré group and that non-isomorphic
representations of this group exist. Nevertheless, all different possibilities yield the
same projective representation of the Poincaré group [Tha92, pp. 76, 104–105].

Due to the hermitian properties of the γ-matrices, namely γ0† = γ0 and γi† = −γi,
the following useful ‘commutation relations’ are easily obtained:

−Cγ0∗ = γ0C, (C.8)

Cγi∗ = γiC, i = 1, 2, 3, (C.9)

Cγ∗
5 = γ5C. (C.10)

For the standard representation (C.2) a common choice for C is [BD66, (5.6)],

C = iγ2γ0,

where the phase of C has been chosen such that C becomes a real-valued matrix.

C.3 Symbols and Notation

Table C.1: Table of symbols

a∆l,Γk Transition amplitude from an initial
configuration (Γ, k) to a final configuration (∆, l).

cΓ,k(t) and ci(t) Coefficients of a coupled channel expansion.
dA(t, x) Distance between the centres A and B as

measured in a rest frame of centre A (section 2.1).
dB(t, x) The same as dA(t, x), but with respect to a rest

frame of centre B.
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e The physical unit charge e > 0. For natural
relativistic and Gaussian units related to the fine
structure constant by e2 = α.

g(t, x) Gauge function.
rA(t, x), rB(t, x) Distance from a the centres A and B respectively

in their respective rest frames (section 2.1).
vA, vB Velocities of the centres A and B respectively.
vA, vB Scalar three-velocities, which may be either

positive or negative, in a frame where the centres
move in the same direction. Hence, not the
moduli of vA and vB.

x = (x1, x2, x3) Three-vectors. (In appendix A describing the
numerical code x = (x, y, z) is used.)

xµ, xi When using Einstein’s summation convention,
Greek indices µ, ν, σ, ρ, . . . are running from 0 to
3 and Latin indices i, j, k, l, . . . running from 1 to
3 only.

(t, x) and (A0, A) Four-vectors.
C, R The complex and real numbers respectively.
D0, Di, D A notation for partial differential operators,

useful in calculations using the chain rule of
differentiation: Partial differentiation with
respect to the i-th argument of some function.

H0 = −iα · ∇ + β Free Dirac-Hamiltonian in relativistic units and
in general for an arbitrary representation of the
γ-matrices.

P (b) Impact parameter dependent probability.
PA(t) and PB(t) Projectors onto the subspace spanned by the

bound states of centre A and B respectively
(section 3.1).

< and = Real and imaginary parts respectively of some
complex number.

T Collision energy in GeV/u.
Ti,Pi Discrete symmetry operators (section 2.4).
V (t) Interaction matrix in the matrix notation of the

coupled channel equation (section 4.2).
VΓ(r) Spherically symmetric electrostatic potential in a

rest frame of centre Γ (sec. 2.2).
W (t, x) A hermitian 4 × 4-matrix-valued function, acting

as an external potential matrix of a Dirac
equation. (Not necessarily an external
electromagnetic field minimally coupled to the
Dirac field [Tha92].)
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WΓ(t, x) External potential of the two-centre Dirac
equation due to a static charge distribution in a
rest frame of centre Γ (section 2.2).

W∞
Γ (t, x) Residual external field caused by a long range

force of centre Γ that remains for bound states at
the other centre, even at large times (section 3.7).

∂t, ∂1, ∂2, ∂3 Partial derivatives with respect to the variables
t, x1, x2, x3 respectively.

γi = βαi and γ0 = β Dirac matrices. If not indicated otherwise the
equations are stated without reference to a
particular representation.

γ5 = γ5 = iγ0γ1γ2γ3 Definition of the matrix γ5.

γA and γB Lorentz factors, γΓ = [1 − v
2
Γ]

−1/2
for Γ = A, B.

µA and µB Inverse screening length of the model potential in
section 2.2.

%A and %B Nuclear radius in the model potential in
section 2.2.

σ1, σ2, σ3 Pauli matrices.
χA and χB Rapidities of the respective centres in a frame of

reference where the centres move along parallel
trajectories.

Γ, ∆ Indices for the scattering channels, which may
principally take the values A, B and C.

ΦΓ,k(t, x) If not indicated otherwise, it denotes either a
solution of a scattering-channel Dirac equation
(an asymptotic configuration), or a basis function
of the coupled-channel ansatz.

Ψ(t, x) Usually denotes a solution of the two-centre
Dirac equation.

Ψ±
Γ,k(t, x) Incoming (+) and outgoing (−) scattering states,

which correspond to the asymptotic configuration
ΦΓ,k(t, x) (section 3.1).

ΩA(t, s), ΩB(t, s), ΩC(t, s) Product of time-evolution operators (section 3.1).
Ω±

A (s), Ω±
B(s), Ω±

C(s) Møller operators of the three scattering channels
(section 3.1).

{·, ·}, [·, ·] Anticommutator and commutator brackets.
(Ψ1(t), Ψ2(t)) Scalar product of wave functions.
|x| Modulus of a three-vector.

‖Ψ(t)‖ =
√

(Ψ(t), Ψ(t)) Norm of the wave function Ψ(t, x) at time t.

‖v‖2 =
√

∑n
i=1 v∗

i vi Norm of a finite vector v ∈ Cn, as in
[Kat80, DH93, GV96].

‖M‖2 = supv∈Cn

‖Mv‖2

‖v‖2

Matrix norm corresponding to the finite-vector
norm ‖v‖2 [GV96].
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‖Ψ(t, x)‖L2(R3,d3x)4 The same as the Hilbert space norm ‖Ψ(t)‖, i.e.
the square root of the spatial integral over
‖Ψ(t, x)‖2

2. This alternative notation is helpful, if
the variable over which is integrated, must
appear for some reason.

‖f‖Lp(R3) and ‖f(x)‖Lp(R3,d3x) Lp-norm of a function f , which is defined as,

‖f‖Lp(R3) = (
∫

|f(x)|p)1/p [For84, RS80].
‖f‖L∞(Rn) Suprenum norm of the function f [RS80].
NT, ΨT, . . . Transposed of matrices, spinors, vectors etc.
v†, Ψ†, N † Hermitian conjugates (i.e. the transposed and

complex conjugated objects) of finite vectors,
spinors, and finite matrices.

z∗, Ψ∗, N∗ Complex conjugate of a number z, Dirac spinor
Ψ, matrix N .

H∗, U(t, s)∗ Adjoint of an operator acting on an infinite
dimensional Hilbert space [RS80].


