DOCTORAL DISSERTATION

Access Control Management in Distributed Object Systems

Gerald Brose

2001

submitted at the
Department of Mathematics and Computer Science
Freie Universität Berlin

Supervisors:
Prof. Dr. Klaus–Peter Löhr
Prof. Dr. Dieter Gollmann
Datum der Disputation: 17. Oktober 2001

Gerald Brose
Marzahnstraße 23
13509 Berlin
gerald.brose@acm.org
Contents

1 Introduction 11
 1.1 Middleware and Security .. 11
 1.1.1 Security and Complexity in Distributed Systems 12
 1.1.2 Access Control ... 13
 1.2 Problem Statement ... 14
 1.3 Contributions .. 16
 1.4 Thesis Overview .. 16

2 Requirements for Manageable Access Control 19
 2.1 Policy-related Management Tasks 19
 2.1.1 Principals and Credentials Management 20
 2.1.2 Object and Domain Management 23
 2.1.3 Policy Management 24
 2.2 Policy Deployment ... 27
 2.3 Policy Issues in Application Development 28
 2.3.1 Requirements Analysis 28
 2.3.2 Design .. 32
 2.4 Summary of Requirements 33

3 Standard CORBA Security 35
 3.1 Overview of CORBA Security 35
 3.1.1 Principals and Authentication 36
 3.1.2 Secure Invocation 37
 3.1.3 Delegation and Secure Interoperability 40
 3.1.4 Non–Repudiation ... 44
 3.1.5 Security Policy Domains 44
 3.2 The default CORBA access model 45
 3.2.1 Principals and Attributes 46
 3.2.2 Rights .. 46
 3.2.3 An example policy 47
3.3 Evaluation of Requirements ... 50
 3.3.1 Principals and Roles .. 51
 3.3.2 Management ... 52
 3.3.3 Restrictions of the access model 52

4 View–Based Access Control .. 55
 4.1 The View Policy Language ... 55
 4.1.1 Policy ... 55
 4.1.2 Roles ... 56
 4.1.3 Views .. 57
 4.1.4 Implicit Authorizations, Denials, and Conflict Resolution 60
 4.1.5 Dynamic rights changes 64
 4.1.6 Conditional and Virtual Views 68
 4.2 A Discussion of the View–Based Access Model 69
 4.2.1 Principals and Roles 69
 4.2.2 A typed matrix model 71
 4.2.3 Constraints .. 72
 4.2.4 Views and Matrix Constraints 76
 4.2.5 Explicit Discretionary Assignment and Removal 77
 4.2.6 Implicit Assignment and Removal 79
 4.2.7 Conditional and Virtual Views 85

5 Model Formalization ... 87
 5.1 Protection State .. 87
 5.2 Groups, Roles, and Accesses 88
 5.3 Views ... 90
 5.3.1 Configuration Constraints 90
 5.3.2 Definition Constraints 91
 5.3.3 View extension .. 92
 5.3.4 Priorities and conflict resolution 92
 5.4 Authorization Scheme .. 93
 5.4.1 Creating and Deleting Principals 94
 5.4.2 Creating and Deleting Objects 95
 5.4.3 Creating and Deleting Matrix Entries 95
 5.5 Access Decisions ... 99

6 An Application Case Study .. 101
 6.1 Requirements Analysis ... 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1 Application Areas</td>
<td>151</td>
</tr>
<tr>
<td>9.3 Future Work</td>
<td>151</td>
</tr>
<tr>
<td>A VPL Grammar and XML DTD</td>
<td>153</td>
</tr>
<tr>
<td>A.1 LALR Grammar</td>
<td>153</td>
</tr>
<tr>
<td>A.2 XML Document Type Definition</td>
<td>156</td>
</tr>
<tr>
<td>B IDL and VPL Definitions for the conference example</td>
<td>159</td>
</tr>
<tr>
<td>B.1 IDL</td>
<td>159</td>
</tr>
<tr>
<td>B.2 VPL</td>
<td>161</td>
</tr>
<tr>
<td>C Zusammenfassung in deutscher Sprache</td>
<td>167</td>
</tr>
<tr>
<td>D Lebenslauf</td>
<td>169</td>
</tr>
<tr>
<td>E Erklärung</td>
<td>171</td>
</tr>
<tr>
<td>Bibliography</td>
<td>173</td>
</tr>
<tr>
<td>Index</td>
<td>182</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Steps in the Development of a Security Policy. 29
2.2 A Use Case diagram. 30

3.1 Credentials. 37
3.2 Secure Invocation. 38
3.3 ISO Access Control Model. 39
3.4 Delegation of Invocations. 40
3.5 Name server interface. 47
3.6 Name Service use cases. 48
3.7 Principals make statements. 51
3.8 Principals invoke operations. 52

4.1 An example policy. 56
4.2 Role declarations. 57
4.3 A view definition. 58
4.4 The Document interface. 58
4.5 View extension. 59
4.6 Denials and explicit priorities. 61
4.7 Potentially conflicting views. 62
4.8 Conflict between strong rights. 62
4.9 Types and the inheritance of operations. 63
4.10 An assignable view. 65
4.11 Interface DocumentFactory. 66
4.12 Views and schema for document creation. 66
4.13 Conditional access rights. 68
4.14 Groups and Roles. 71
4.15 Role declarations. 75
4.16 A conflict–free schema. 82
4.17 Potential conflicts in a schema. 82
4.18 Multiple Schemas. 83
List of Figures

4.19 Matrix restrictions. .. 86
6.1 Actors and Use Cases for the Conference System. 102
6.2 The ConferenceManagement interface. 104
6.3 The SubmissionManagement interface. 104
6.4 IDL Interfaces for the conference application. 105
6.5 Author and Reviewer tools. .. 105
6.6 Role declarations, constraints, and initial views. 106
6.7 Views. .. 107
6.8 The PaperReviewing view. ... 107
6.9 Views on documents and papers. 108
6.10 The Steering schema and virtual views. 109
6.11 The Submission schema and views for authoring. 110
6.12 The Paper schema (submission part). 110
6.13 The Paper schema (reviewing part). 111
6.14 Views for the reviewing phase. 112
6.15 The NoMorePaperReviewing view. 113
7.1 Policy development. .. 116
7.2 Policy deployment. .. 117
7.3 The DeploymentTarget interface. 117
7.4 Access Control with Interceptors. 118
7.5 Authentication and Interceptors. 119
7.6 A client–side role interceptor. 121
7.7 A server–side role interceptor. 122
7.8 The RoleServer interface. ... 123
7.9 Role server and repository. ... 124
7.10 Role Management GUI. ... 125
7.11 A group graph with role assignments. 126
7.12 A domain graph. .. 128
7.13 A domain graph in the Domain Browser. 131
7.14 A meta–policy. ... 131
7.15 Object associations. .. 133
7.16 The PolicyContainer interface. 134
7.17 The Policy Management GUI. 135
Abstract

The main question addressed in this work is how the specification, deployment and management of application-oriented access control policies in distributed object systems can be supported in a way that increases the overall security. The first chapters of this thesis examine the problems that need to be addressed and identify a number of requirements for manageable access control. The overall management task is analyzed and structured into subtasks that are performed by potentially separate managers: principals or credentials management, object and domain management, and policy management. Also, the tasks of policy deployment and development are examined. As a result, we identify the requirements for documentation, support for communication between the involved parties, and for suitable management abstractions. It is concluded that an integrated approach to secure software development and management is required and that it can best be supported by the definition of a declarative policy language. Looking at the current technology for CORBA security reveals conceptual scalability problems and lack of structured support for policy design.

Therefore, this thesis proposes a new view-based access model and a declarative specification language called *view policy language* (VPL). The abstractions of this language are designed to support deployment and development as well as management of application policies. The central concepts of VPL are views as a first-class concept for the type-safe aggregation of access rights, roles as a task-oriented abstraction of callers, and schemas as a means of specifying triggered dynamic changes in the protection state. To prove the practical relevance of these concepts, a comprehensive case study is analyzed and implemented. The technical feasibility of view-based access control is shown through an implementation of the required security infrastructure, which includes an interceptor-based access control mechanism, a language compiler, view and role repositories, and graphical management tools.