
1 Introduction

This chapter motivates why CORBA security in general — and the management of application–
level access policies for CORBA objects in particular — deserve dedicated research. Section
1.1 briefly introduces CORBA and typical properties of CORBA environments. Section 1.2
states the problem addressed by this thesis, and section 1.3 outlines the contributions made in
this work. Section 1.4 gives an overview of the contents of the thesis.

1.1 Middleware and Security

Distributed systems relying on middleware such as Java/RMI [Sun Microsystems, 1997] and
the Object Management Group’s (OMG) CORBA [OMG, 1999a], [Brose et al., 2001b] speci-
fication have seen widespread adoption. Both the Java platform and CORBA middleware are
used in the industrial development of large–scale applications (e.g., [Koch and Murer, 1999]),
and on a wide range of computing environments, including smart cards, PDAs [MICO, 1998],
embedded systems [OMG, 1998a], standard PCs and workstations, high–performance applica-
tion servers, and even parallel computers [Keahey and Gannon, 1997].

CORBA provides a unified data model that hides one main source of complexity in dis-
tributed systems, viz. the heterogeneity caused by diverse hardware platforms, operating sys-
tems, programming languages, and communication mechanisms. In particular, the abstraction
of a location–transparent CORBA object hides all the details of accessing potentially remote
data and functionality behind a well–defined interface that is declared in CORBA’s Interface
Definition Language (IDL). This interface language itself is entirely independent of imple-
mentation languages. Standardized IDL language mappings define how to generate code that
represents IDL constructs in programming languages such as C, C++, Java, COBOL, LISP,
Ada, Smalltalk, and Python. Interoperability between clients and servers written in different
languages and running on different CORBA implementations on different operating systems
is guaranteed through the use of a standardized protocol for request and response messages
and a canonical transfer syntax. CORBA implementations from different vendors running on
different operating systems thus allow programs written in different programming languages
to interoperate by making object invocations.

11



1 Introduction

1.1.1 Security and Complexity in Distributed Systems

[...] we all know that unmastered complexity is at the root of the misery.
[Dijkstra, 2001]

One of the main sources of security problems in distributed systems is their inherent com-
plexity. While CORBA hides heterogeneity behind standardized interfaces, many other sources
of complexity in distributed systems remain. In fact, these sources of complexity are often in-
herent in the motivation for using distributed systems in the first place.

One of the prime reasons for employing distributed rather than centralized systems is the
potential for combining resources to build systems that are more powerful than any single cen-
tralized system [Tanenbaum, 1995]. The problem of scale, i.e., the sheer number of users,
transactions, objects, and the potentially large number of messages exchanged between com-
municating entities is thus an inherent property of many distributed systems and contributes to
their complexity. Another reason why distributed systems are used is the increased availability
of resources that may be achieved if single points of failure are avoided and redundancy is
provided in the design of a system. If one computing node in a system goes down, others may
still be available. However, redundancy in the system design requires care to keep configura-
tions consistent. Further, resources are often made remotely accessible to enable sharing by
multiple applications. Sharing supports more efficient use of expensive resources, but it also
necessitates coordination and protection efforts to eliminate unwanted interference between
applications. Finally, many applications are not only logically but physically distributed be-
cause different parts of the applications must reside at different locations, for example, flight
reservation and booking systems that can be accessed from travel agencies, airport offices, and
perhaps even over the Internet.

An immediate consequence of all these uses of distributed systems is that multiple differ-
ent nodes and resources have to be installed and managed. Due to the number and complexity
of management tasks within distributed systems, different management tasks are usually sepa-
rated from each other and performed by different people. This might be done simply to share
the workload or because of logical or physical separations between subsystems, such as be-
tween different branches of an organization or because some tasks may require different skills
than others. As a result, management becomes a cooperative task carried out by a number of
different people, at potentially different locations, times, and levels.

Finally, complexity lurks not only in the computing environment and its management, but
also in the development and deployment of applications that make adequate use of these en-
vironments. In general, these kinds of applications are concurrent if not parallel, and rely on
communication. Not only is it technically challenging to develop these kinds of applications
according to their specification, but development projects themselves are likely to be complex
because the size of the task requires large development teams. Moreover, the technical skills
and expertise required by this kind of development often motivate the hiring of external de-
velopers which are not part of the organisation that eventually uses the software, so in general
deployment and management will not be carried out by the original developers of the software.

12



1.1 Middleware and Security

To summarize these issues, the kind of environments addressed here exhibit the following
general characteristics, all of which contribute to their overall complexity:

• Scale — systems comprise large numbers of entities (sites, users, machines, transactions,
network messages, application components),

• Redundancy — several instances of a functional component may exist in a system for
load balancing or availability purposes,

• Sharing — multiple entities may access the same resource,

• Distributed management, development and deployment — tasks are carried out by dif-
ferent parties, at different times and locations.

The complexity inherent in distributed systems constitutes a major problem for overall se-
curity. Complex systems are hard to understand, build, verify, and manage: “Almost all secu-
rity failures are in fact due to implementation and management errors” [Anderson, 1994]. The
chances for human error in the stages of developing and using these systems are significant,
and some of these errors are particularly critical for security: incomplete or inconsistent spec-
ifications that do not correctly state security requirements, vulnerabilities due to exploitable
implementation errors or even undetected backdoors, management errors that lead to insecure
system states, etc. Any comprehensive approach to securing distributed systems must take
factors like these into account.

Abstracting from individual platforms by allocating security functions at the middleware
level and not at the level of individual operating systems is an important first step to reduce
the complexity incurred by heterogeneity. The CORBA Security Service takes this approach
and provides mechanisms to address security requirements at the level of abstract CORBA
objects, which hides much of the heterogeneity and provides a single, homogeneous layer.
For the remainder of this thesis, it is assumed that security functionality is allocated at this
level to enable building and operating non–trivial applications in a heterogeneous distributed
system. The primary focus of this work are thus security policies for application objects that
are expressed in terms of the CORBA object model.

1.1.2 Access Control

The security requirements that are predominant in CORBA environments are integrity require-
ments that can be addressed by employing access control. These are sometimes also referred
to as “commercial” security policies [Clark and Wilson, 1987]. This is not to say that com-
mercial environments do not also have confidentiality requirements, but for most non–military
organizations (perhaps excluding organized crime) the damage that can be caused by leakage
of information generally does not pose an existential threat, even if it may lead to severe com-
petitive disadvantages. Loss of integrity of critical data, however, may put a company out of
business altogether. For the purpose of this thesis, the discussion is therefore narrowed further

13



1 Introduction

to access control. Other classical security requirements, such as confidentiality or availability
of resources, are beyond the scope of this work when not enforced by access control.

Access control is concerned with preventing unauthorized accesses to shared resources.
For any access to an object the caller’s authorizations need to be checked before the access
can be allowed. The mechanism that makes access decisions is called access decision function
(ADF) [ISO/IEC, 1996a, ISO/IEC, 1996b]. This function takes access control information as
an argument, which describes the initiator, the attempted access itself, and its context. This
data is compared with an access control policy. In the most general sense, a security policy
is a set of rules or constraints that defines those states of a given system that meet its security
requirements. An access control policy describes which accesses in a system are authorized
and which are not. The notion of the term policy that is used in this thesis implies that this
representation is in terms of a formal access model and can be directly evaluated by an access
control mechanism.1 A more formal definition will be given in chapter 4.

The security requirements that are enforced by access control policies include the integrity
or confidentiality of data. Access control policies can also be used to enforce general resource
usage restrictions, e.g., to ensure availability or even coordination policies in CSCW systems
[Edwards, 1996]. As an example, consider a set of product design documents that are critical
assets in a company. A potential security requirement for these documents is to keep them
private from competitors or protecting them from malicious modification by external saboteurs
or even corrupt or disgruntled staff. Commonly, security requirements like these are initially
specified in natural language at an abstract level and later refined and “implemented” by poli-
cies in terms of a particular access control model.

1.2 Problem Statement

The worst problem with access control policy, especially in object systems, is that
there’s so much of it. [Blakley, 2000, p. 45]

Addressing security at the level of CORBA objects does not positively affect the com-
plexity dimensions of scale and of division of labor. The number of objects that need to be
protected and the number of accesses to these objects must be expected to be high, so scalable
approaches are required. Also, it must generally be assumed that development, deployment,
and management will be carried out by independent or only loosely–coupled entities, each of
which may be further structured internally. In order to be manageable in such an environment,
a security infrastructure must support means for modularization of tasks, e.g., hierarchical
structures that support modeling of refinement. Finally, because of the wide–ranging applica-
tions of CORBA, the security infrastructure must be flexible in order not to restrict the general
applicability of the middleware.

This thesis focuses on policies rather than mechanisms. A well–established set of security
mechanisms is available for implementations of security services for CORBA, so the need

1 This corresponds to the notion of an Automated Security Policy (ASP) in the terminology of [Sterne, 1991].

14



1.2 Problem Statement

for new mechanisms is small. With regard to access control, for example, the allocation of
a reference–monitor–like [Department of Defense, 1985] protection mechanism in CORBA is
technically straightforward because every invocation of a remote object is mediated by the
middleware, so accesses to objects can always be intercepted. The OMG’s Security Service
Specification [OMG, 2001b] defines a component called access control interceptor which is
responsible for access control enforcement in CORBA.

While the complete mediation property of middleware makes interception conceptually
simple, it also means that the middleware must now be trusted, which significantly extends the
trusted computing base (TCB) [Department of Defense, 1985] and thus the effort required to
reach some level of assurance. At the time of this writing, the number of interoperable security
products for CORBA is still very small and high–assurance CORBA security mechanisms are
virtually non–existent. None of the existing products is certified according to security criteria
such as TCSEC [Department of Defense, 1985] or CC [Common Criteria, 1999]. How and
how much assurance for complex middleware can be achieved is an important problem that
requires more research, but these issues are beyond the scope of this work.

A basic premise of this thesis is that the correct design, specification and management of
security policies is a central problem in distributed systems because these tasks are both error–
prone and by their very nature security–critical. This observation corresponds directly to the
design principle of psychological acceptability in [Saltzer and Schroeder, 1975]: “[...] to the
extent that the user’s mental image of his protection goals matches the mechanisms he must
use, mistakes will be minimized. If he must translate his image of his protection needs into a
radically different specification language, he will make errors.”

The potential damage caused by inadequate handling of policies is significant and there are
currently no standard methods or tools that provide appropriate support to application designers
and security administrators. Moreover, it is not sufficient to support these roles in isolation.
Because of the potentially large number of objects and complex interaction patterns in object–
oriented applications, a security administrator cannot be expected to completely understand the
logic of all applications running under his supervision. Thus, the security implications of, e.g.,
introducing a new right or object type into a running system might be unclear, so managers
need security documentation at a suitable level of abstraction. This information can only be
provided by application designers.

The problem that this thesis addresses is the following: Given these general character-
istics of CORBA environments, how can the specification, deployment and management of
application–oriented access control policies be supported in a way that increases overall secu-
rity? In particular, how can the task of writing, deploying and managing access control policies
be divided between application developers, deployers and managers of distributed object sys-
tems such that indeed only legitimate accesses will be allowed? What are the right abstractions
and tools that help to increase the involved parties’ understanding of their task and decrease the
probability of error? What kind of security architecture is required to provide these abstractions
and tools?

The main focus of this work is on security policies for application objects because policies

15



1 Introduction

for application objects are typically both more interesting and more complex than those for sys-
tem objects because application objects tend to be more dynamic and fine–grained, and because
these objects exhibit shorter lifetimes and more complex interactions. It is expected, however,
that any approach that adequately supports managing the security of application objects will
also support managing system objects, i.e., system resources with CORBA interfaces.

1.3 Contributions

This dissertation takes a classical software engineering approach to the problem of specifying
and managing access control policies. In essence, a formal language called VPL (view policy
language) is devised, which allows designers and administrators to deal with abstractions that
are adequate for their respective tasks. We claim that this approach reaps the general benefits
of language support like documentation, structuring, support for static analysis, specification
reuse and enhanced communication. It thus significantly reduces the potential for vulnerabili-
ties introduced by human error and increases the overall system security.

The main contribution of this thesis is the new access control model underlying the specifi-
cation language. The model is based on a new authorization concept called view and combines
role–based and matrix–based access control concepts. It is shown how this model addresses
the requirements of distributed object systems, and that it is better suited to express advanced
policy concepts than the default access model specified in the OMG’s Security Service Specifi-
cation [OMG, 2001b]. A comprehensive, fully implemented case study is presented that shows
the applicability of this model to realistic applications.

Another contribution of this thesis is the presentation of a general architecture of the secu-
rity infrastructure required for this approach. Its feasibility is demonstrated by a Java imple-
mentation of an access control mechanism that uses the view–based access model for represent-
ing policies. Moreover, prototype implementations of the required management infrastructure
are provided, in particular a VPL compiler, a role server, a policy server, and a management
service for object domains.

1.4 Thesis Overview

This thesis is structured es follows:

• Chapter 2 introduces terminology and identifies the requirements for a manageable se-
curity architecture for distributed object systems.

• Chapter 3 gives an overview of the standard CORBA Security Framework and evaluates
its access control concepts with respect to the management requirements established in
chapter 2.

16



1.4 Thesis Overview

• Chapter 4 introduces a policy language and a new, view–based access control model that
is designed to meet the requirements identified in chapter 2.

• Chapter 5 formalizes the access model presented in chapter 4.

• Chapter 6 presents an application case study that demonstrates the use of the policy
language.

• Chapter 7 describes the architecture and implementation of a security infrastructure that
supports the view–based access control model.

• Chapter 8 discusses related work.

• Chapter 9 summarizes this thesis and discusses options for future research.

17



1 Introduction

18


