
5 Model Formalization

This chapter gives a more precise definition of the model concepts that were introduced in the
previous chapter. These definitions of model properties are necessary to define a view–based
access decision algorithm, which is given in section 5.5.

Let O be the set of CORBA objects, and type : O → T a function that maps each object
to its type, which does not change during the lifetime of an object. The CORBA object model
defines a subtyping relation between object types, which has the usual substitution semantics
and is denoted here with the symbol v. Let Op be the set of operation names. The function
ops : T → P(Op) maps an object type to the set of operation names defined for this type, P

denoting the power set. Note that in CORBA IDL, ops(T) is indeed a set because all operation
names in a type must be unique which means that there is no overloading of operation names.

Let R be the set of roles and S the set of subjects, which have no common elements. The
active entities whose actions are to be constrained are principals from the set P = R∪S . The
sets O and P are disjoint, i.e., principals are not objects and cannot be accessed like objects by
other principals. V is the set of views, which will be examined in detail in section 5.3.

5.1 Protection State

An object system’s protection state is modeled as a matrix M : P× (O∪T) → P(V), i.e., as a
function that maps pairs of principals and objects or types to sets of views. The set of matrices
is called M. When compared with the original Lampson matrix, principals are the subjects,
CORBA objects and types are the objects, and matrix entries are sets of views. This matrix is
illustrated in table 5.1.

Subjects and roles have separate rows in the matrix because both discretionary and implicit
assignment need to refer to individual subjects, not just to roles. Types have columns in the
matrix because this permits assigning a view to a principal (or role) on all objects of a given
type t, i.e., on the entire extension of t. The extension of a type includes the extensions of all
its subtypes. It would be possible to implement this by simply breaking down the assignment
and entering the view in all the corresponding matrix entries, but the implicit assignment itself
would not be represented in this case. Moreover, it would then be possible to remove the
assignment individually for each object, which is undesirable.

The information about group, role, and view hierarchies is expected to be administered
centrally and shared among different policies. Therefore, this information is modeled sepa-

87

5 Model Formalization

o1 ... on t1 ... tm

r1 {Reading}

... {Creating}

ri {Updating}

s1

...

sj {Managing}

Table 5.1: An access matrix.

rately and not in additional matrix partitions. IDL type hierarchies are maintained in separate
data structures independent of the protection state.

5.2 Groups, Roles, and Accesses

Let G be the set of groups. Each group in the set G is associated with a set of member sub-
jects. In our model, the partial order < (“subgroup of”) implies a subset relation between
group member sets, so a subgroup’s members must also be members of the supergroup. Group
membership of subjects is modeled using a relation GA ⊆ G × S (“group assignment”) for
which the subset invariant (5.1) holds.

∀ g, g′ ∈ G, s ∈ S : ((g, s) ∈ GA ∧ g < g′) ⇒ (g′, s) ∈ GA (5.1)

Roles

A group g’s role assignments are modeled in a relation RA ⊆ G × R (“role assignment”).
The function roles : G → P(R) returns the roles directly assigned to a group, but it also
returns any super group’s role assignments because a subgroup in our model inherits the role
assignments of its super group. A second function subjectRoles returns all roles to which a
subject is assigned through its groups.

∀ g ∈ G : roles(g) = (5.2)

{r ∈ R | (g, r) ∈ RA ∨ (∃ g′ ∈ G : g < g′ ∧ r ∈ roles(g′))}

∀ s ∈ S : subjectRoles(s) = (5.3)

{r ∈ R | ∃ g ∈ G : (g, s) ∈ GA ∧ r ∈ roles(g)}

Role hierarchies are defined using a partial order 6 on roles. Individual authorizations on
objects that are assigned to a role are represented directly in the corresponding matrix entries.
In addition to its own, direct assignments, the complete set of a role’s authorizations for an
object includes those inherited from its super roles and those assigned on the object’s type and

88

5.2 Groups, Roles, and Accesses

its supertypes. This is captured in the definition of the function roleV iews : M×R×O →
P(V), which uses a function roleV iewstype defined in (5.5) to retrieve views assigned on type
extensions:

roleV iews(M, r, o) = roleV iewstype(M, r, type(o)) ∪ (5.4)

{v ∈ V | v ∈ M [r, o] ∨ (∃ r′ ∈ R : r 6 r′ ∧ v ∈ roleV iews(M, r′, o))}

roleV iewstype(M, r, t) = (5.5)

{v ∈ V | v ∈ M [r, t] ∨ (∃ t′ ∈ T : t v t′ ∧ v ∈ roleV iewstype(M, r, t′))}

Role Constraints

The configuration constraints on roles that are directly expressable in VPL are cardinality,
prerequisite, and exclusion constraints. The predicate excludes is introduced to model mu-
tual exclusion between roles and the predicate requires models prerequisite roles. The role
exclusion and prerequisite constraints are written as:

∀ r1, r2 ∈ R :

excludes(r1, r2) : (5.6)

(¬∃ s ∈ S : r1 ∈ subjectRoles(s) ∧ r2 ∈ subjectRoles(s)) ∧

requires(r1, r2) : (5.7)

(∀ s ∈ S : r1 ∈ subjectRoles(s) ⇒ r2 ∈ subjectRoles(s))

The two cardinality constraints mincard and maxcard define a lower or an upper bound
on the number of subjects that can be assigned to a role via groups. This set of subjects
is retrieved using the function subjects : R → P(S). This function and the cardinality
constraints are defined as follows:

∀ r ∈ R : (5.8)

subjects(r) = {s ∈ S | ∃g ∈ G : (g, s) ∈ GA ∧ r ∈ roles(g)}

∀ r ∈ R, n ∈ N
+ :

mincard(n, r) : |subjects(r)| > n ∧ (5.9)

maxcard(n, r) : |subjects(r)| 6 n (5.10)

Accesses

When a principal accesses an object, it may be either a single subject or a compound principal,
i.e., a subject in one or more roles. Accesses are modeled as tuples from the relation Access ⊂
Op × O × S × P(R), i.e., an individual access contains an operation name, a target object,
a subject, and a set of active roles. The set of roles that a subject may play for an access is

89

5 Model Formalization

constrained to a subset of the roles to which it is assigned. This is expressed in (5.11), using
groups(s) = {g ∈ G | (g, s) ∈ GA} as a shorthand for a subject’s groups.

∀ (op, o, s, active_roles) ∈ Access : (5.11)

∀ r ∈ active_roles : ∃ g ∈ groups(s) : r ∈ roles(g)

To determine whether an access is allowed, the access decision function needs to retrieve
the views that are available for the principal and interpret these with respect to the operation
op. Views are formalized in the following section and the access decision function is described
in section 5.5.

5.3 Views

Views have names and optionally modifiers, a controlled object type, and optionally a role
restriction. Moreover, views may depend on other, required views. Finally, views define a set
of access rights for operations. Let ID be the set of view identifiers, Mode = {allow, deny}
the set of rights modes, Prio = {strong,weak} the set of priorities. The set of rights is
defined as Rights = Op × Mode × Prio, so rights are tuples (op,m, p) that comprise an
operation name, a mode, and a priority.

Let Modifier = {assignable, virtual, static} be the set of view modifiers. The set of
views can now be defined as V ⊂ ID × P(Modifier) × T × P(R) × P(Rights). A view
is thus a tuple (name,modifiers, controlledType, roleRestriction, rights), i.e., a name,
an optional set of modifiers, a controlled object type, a role restriction set, and a set of rights.
Views required by other, conditional views are recorded in the relation RV ⊂ V ×V , which is
a partial order.

A number of simple projections on views are declared here for convenience. Let rights :
V → P(Rights) return a view’s rights and modifiers : V → P(Modifier) return the
modifiers. The function controlledType : V → T maps a view to its controlled object
type, roleRestriction : V → P(R) returns a view’s role restriction set. The function
requiredV iews : V → P(V) returns the views required by a conditional view. It is defined as
requiredV iews(cv) = {v ∈ V| (cv, v) ∈ RV }.

5.3.1 Configuration Constraints

Using this definition of views, it is possible to express the following configuration constraints
on matrix entries. These constraints are checked whenever an attempt is made to enter a view
into the matrix.

The typing constraint in (5.12) ensures that matrix entries are well–typed, i.e., that the
object (or type) in the column of the matrix has the same type or a subtype of the view’s
controlled type. This constraint guarantees that the views entered into the access matrix are

90

5.3 Views

always applicable to the object or object type:

∀ M ∈ M, v ∈ V, p ∈ P, o ∈ O, t ∈ T : (5.12)

(v ∈ M [p, o] ⇒ type(o) v controlledType(v)) ∧

(v ∈ M [p, t] ⇒ t v controlledType(v))

In addition to the typing constraint, matrix entries must respect any role restrictions. If the
set of roles to which a view v is restricted is non–empty, then v may only be entered into matrix
rows for roles that are included in the role restriction set or in rows for subroles of these:

∀ M ∈ M, r ∈ R, o ∈ O ∪ T , v ∈ V : (5.13)

(v ∈ M [r, o] ∧ roleRestriction(v) 6= ∅) ⇒

(r ∈ roleRestriction(v) ∨ ∃ r′ ∈ roleRestriction(v) : r 6 r′)

Note that (5.13) does not say anything about the assignment of views with role restric-
tions to individual subjects. It is thus necessary to dynamically check that only those views
from a principal’s matrix entry are considered in access decisions that do not violate the role
restriction. This check will be defined below in the definition of the access decision algorithm.

Finally, views marked as static are restricted such that they may only be assigned in
matrix rows for roles, but not for subjects. (5.14) requires that a static view may only exist in
role entries.

∀ M ∈ M, s ∈ S, o ∈ O ∪ T : (5.14)

¬∃ v ∈ V : v ∈ M [s, o] ∧ static ∈ modifiers(v)

5.3.2 Definition Constraints

We define a number of syntactic restrictions that ensure the well–formedness of view defini-
tions. First, the operations for all rights in a view must be supported by the object type that is
controlled by the view:

∀ v ∈ V : ∀ (op,m, p) ∈ rights(v) : op ∈ ops(controlledType(v)) (5.15)

Second, views may only contain a single right for any given operation, so that a single view
has no conflicting rights:

∀ v ∈ V : ∀ (opi,mi, pi), (opj ,mj , pj) ∈ rights(v) : opi = opj ⇒ i = j (5.16)

Third, as defined in section 4.2.5, an assignable view may not contain denials:

∀ v ∈ V : assignable ∈ modifiers(v) ⇒ (5.17)

¬∃ op ∈ Op : ∃ prio ∈ Prio : (deny, op, prio) ∈ rights(v)

91

5 Model Formalization

Fourth, as defined in section 4.1.6, a virtual view defines no rights:

∀ v ∈ V : virtual ∈ modifiers(v) ⇒ rights(v) = ∅ (5.18)

5.3.3 View extension

View hierarchies are represented by the extension relation 6 (“extends”) between views. This
relation is a partial order and has the following additional properties:

∀ v, w ∈ V : v 6 w ⇒

controlledType(v) v controlledType(w) ∧ (5.19)

(roleRestriction(w) 6= ∅ ⇒ roleRestriction(v) 6= ∅ ∧ (5.20)

∀ r ∈ roleRestriction(v) : ∃ r′ ∈ roleRestriction(w) : r 6 r′) ∧

requiredV iews(w) ⊆ requiredV iews(v) ∧ (5.21)

static ∈ modifiers(w) ⇒ static ∈ modifiers(v) ∧ (5.22)

rights(w) ⊆ rights(v) ∧ (5.23)

∀ (op,m, p) ∈ (rights(v) \ rights(w)) : m = allow

Property (5.19) requires an extending view to control the same or a more derived object
type than its base views. Property (5.20) means that an extending view must be role restricted
if the base view is role restricted. Also, all roles in an extending view’s role restriction must
be subroles of the roles in the base view’s role restriction, but there may be fewer roles than
in the base view’s role restriction. All required views of a base view are also required by the
extending view (5.21). An extending view inherits the static modifier from its base view
(5.22), which means that it also inherits the restriction that it cannot be entered into a matrix
row for subjects.

Property (5.23) requires all rights introduced in the extending view to be permissions, and
that the extending view has at least as many rights as the base view. Note that we do not
exclude extension of multiple base views here so that view hierarchies can be designed along
object type inheritance hierarchies, which permit multiple inheritance of object types.

5.3.4 Priorities and conflict resolution

Conflict resolution is based on priorities, in particular on the semantics of strong, which was
presented in section 4.1.4. To guarantee this semantics, it is necessary to restrict redefinitions
of rights such that strong rights may not be redefined in extending views. This latter restriction
is expressed by the following additional property of view extension:

92

5.4 Authorization Scheme

∀ v, w ∈ V : v 6 w ⇒ (5.24)

∀ (op,m′, p′) ∈ rights(v), (op,m, p) ∈ rights(w) :

(p = weak ∧ (m′ = m ⇒ p′ = strong))

Property (5.24) allows redefinitions that change an inherited right’s mode, but because of
property (5.23) only denials can be redefined as permissions and not vice versa. A redefinition
may also be used to make a right strong without changing the right mode, so that it cannot
be further redefined in more derived views.

Given the definition of strong, it is possible to dynamically resolve all potential conflicts
between positive and negative rights except for one case. Section 4.1.4 explained that conflicts
between permissions and denials can always be resolved if the views that contain these rights
are related by view extension. The more derived view takes precedence in this case. Because
of property (5.24), this view’s rights are also guaranteed to be at least as strong as the rights in
the base view.

If the two views are unrelated, conflicts can still be resolved if the two rights have different
priorities. If rights priorities are equal and both rights are strong, the corresponding view defi-
nitions must be rejected because they could potentially violate the semantics of strong. This
case can be excluded by verifying the following definition constraint. If this verification fails,
the definitions must be rejected. Note that checking this condition requires global analysis, i.e.,
all existing views must be checked:

∀ v, w ∈ V, tv, tw ∈ T : (5.25)

(tv = controlledType(v) ∧ tw = controlledType(w) ∧

tv 6v tw ∧ tv 6A tw ∧ v 66 w ∧ v 6> w) ⇒

∀ (op,m1, p1) ∈ rights(v), (op,m2, p2) ∈ rights(w) :

(m1 6= m2 ∧ p1 = p2) ⇒ p1 6= strong

5.4 Authorization Scheme

In addition to the protection state represented by an access matrix, an access model describes
an authorization scheme, which defines a set of rules that controls how the protection state may
evolve. Traditionally, the authorization scheme in matrix–based models is expressed in terms
of commands. Commands are parameterized and conditional applications of the six primi-
tive matrix operations which create or delete rows (principals), create or delete and columns
(objects), and enter or delete authorizations in matrix entries [Harrison et al., 1976].

In the following description, creating and deleting principals or objects is understood as
making principals or objects known (or unknown) to the policy. These operations do not di-
rectly affect the life cycles of principals or objects, which we assume are not under the control
of a policy administrator. This section does not add new concepts to the ones already discussed

93

5 Model Formalization

but rather rephrases and formalizes discretionary assignments and schemas in terms of enter
and delete commands on the access matrix.

5.4.1 Creating and Deleting Principals

It is important to distinguish between the lifetime of principals and the matrix rows that hold
policy–specific authorization information. These lifetimes are controlled by potentially sep-
arate management authorities. Moreover, there is a varying degree of control that managers
can exercise over these lifetimes: the lifetime of roles is completely controlled by the man-
agement authority responsible for credentials management, because they can create and delete
roles in their administrative domains at will. Policy managers do not generally create or delete
subjects, which are potentially remote processes running “somewhere” in the distributed sys-
tem. Because policies refer to subjects using locally known names, managers can effectively
delete subjects by invalidating the name or the binding between the subject and its name. The
name and its binding are assumed to be under the control of a trusted certification authority for
names, which is part of the public key infrastructure.

Principals cannot independently create or delete other principals at all. Even though the
creation of processes is not controlled, it is not possible for an arbitrary subject to furnish a
newly created process with credentials that would turn it into a principal. It can only share its
credentials and secrets with such a process, and thus effectively create a copy of itself. Creating
new principals is only possible with the cooperation of trusted authorities that sign credentials.

Effects on the Protection State

Creating new and empty matrix rows has no immediate consequences for the overall protection
state. In contrast, deleting a row might affect the protection state if the matrix row still contains
views, which are deleted with the principal. This operation might have unexpected and unde-
sirable effects, e.g., if no other principals hold the same views and the views are the last ones on
the respective objects. If positive authorizations are deleted, existing applications might not be
able to continue operation because functionality is denied for lack of permissions, so liveness
is not guaranteed. In the case of application protocols involving discretionary assignments, the
deleted principal might have been the last source of a particular view or it might have been
the last principal allowed to revoke a particular view from another principal, which can now
only be done by an administrator. If the principal that is removed from the matrix is a role that
has subroles, the operation also effectively removes views from these subroles. If views with
denials are removed from subroles, these roles’ permissions are effectively increased, which
may be unsafe. For these reasons, deleting principals which still hold views and, in the case
of role principals, have subroles is thus a very sensitive operation and must be performed with
great care. Deleting principals that do not hold any views and have no subroles is not a critical
operation, however.

94

5.4 Authorization Scheme

5.4.2 Creating and Deleting Objects

The operations to add or remove matrix columns for objects and object types should never
be explicitly performed by policy managers. Rather, these operations are invoked implicitly
as the consequences of operations by the manager of the policy domain. Since domains are
not explicitly modeled here, there is no difference between a domain operation and the ma-
trix operation, but it is important to point out the separation of concerns between these two
management roles.

In our model, an object is protected by a policy after the object becomes a member of
the policy domain. From this point on, every access to the object is checked for compliance
with the domain’s access policy. Thus, assigning an object to a policy domain means adding a
matrix column for that object. The inverse operation, removing an object from the domain and
thus from the matrix, has an analogue semantics and simply means that accesses are no longer
controlled by the policy. Any views on this object are no longer meaningful and are therefore
deleted with the object.

Note that both operations are not tied to the object’s actual life cycle. An object may be
added to a domain at creation time, but it is also possible to create initially unprotected objects
that only later enter a domain. Moreover, objects may be moved between different domains.
The only real lifecycle dependencies are obviously that an object cannot be protected before it
is created and after it is removed from the system. It is important, however, to define means
that ensure that an object can be protected by an access policy from its creation onwards if
necessary. These issues are discussed in more detail in chapter 7.

Columns in the access matrix are also used to hold authorizations on object type extensions,
but the life cycles of types are not defined in CORBA at all and there is no management role
directly responsible for object types. For the purposes of this model, we assume that a matrix
column for a type is created implicitly on two occasions. First, a type is added to the matrix
when the first object of that type is added. Second, for practical reasons it is desirable that
views can be assigned on types even before the matrix knows about objects of that type. Thus,
a type is added implicitly whenever a view assignment is performed on a type that is not already
known. Type columns are never removed from the matrix.

5.4.3 Creating and Deleting Matrix Entries

Administrators may assign or remove views by directly operating on the access matrix. In
addition to these administrator actions, the access control model supports two ways of statically
defining commands that are either invoked by principals, viz. discretionary assignments (and
removals), or automatically by the protection system itself, viz. implicit assignments (and
removals).

95

5 Model Formalization

Discretionary Assignments

Discretionary assignments and removals of views are possible with assignable views. A prin-
cipal may assign views on an object that he holds himself if these views are assignable and the
assign option was set when the principal received these views. He may then choose whether
this option should also be set when the view is passed on to the recipient principal, which may
be both a role or a subject. If the recipient does not already possess the view, it is assigned
and the assigning principal receives the right to revoke the view again. If a view is removed
that was assigned with the assign option set, the view must be recursively revoked from all
principals to which the recipient principal assigned the view. Cascading revocations are not
modeled here for brevity.

The ASSIGN command is defined to model discretionary assignment.

command ASSIGN(M : M, src : P, v : V, target : O ∪ T , dest : P, ass_opt : bool)
if

v 6∈ M [dest, target] ∧ (M,v, src, target) ∈ may_assign

then
v ∈ M ′[dest, target] ∧
(src,M ′, v, dest, target) ∈ may_remove′ ∧
(ass_opt = true ⇒ (M ′, v, dest, target) ∈ assign_options′)

end

The ASSIGN command relies on a relation may_assign ⊆ M×V × P × (O ∪ T) that
determines whether a principal src that is the source of a view assignment is an element of
the calling, potentially compound principal. This relation is defined in (5.26). The principal
src receives the remove right for a view in a matrix entry as a consequence of assigning the
view. The remove right for the assigning principal src is recorded in the new state of the
relation may_remove1, which is referred to as may_remove′. Note that src must be a simple
principal, i.e., either a subject or a single role because a remove right cannot be recorded for
compound principals.

∀ M ∈ M, v ∈ V, src ∈ P, target ∈ O ∪ T : (5.26)

(M,v, src, target) ∈ may_assign ⇔

src ∈ calling_principal ∧ v ∈ M [src, target] ∧

assignable ∈ modifiers(v) ∧

(M,v, src, target) ∈ assign_options

The may_assign relation relies on another relation assign_options ⊆ M × V × P ×
(O ∪ T) that records whether the assign option is set for a given view in a given matrix entry.

1 The contents of the may_assign and may_remove relations could have been stored in the access matrix. The
matrix was deliberately kept simpler in the previous sections for presentation purposes, however.

96

5.4 Authorization Scheme

When a view is entered with the ASSIGN command, a new tuple is added to this relation
if the assign option is set. The new state is referred to as assign_options′. The identifier
calling_principal denotes the set of principals that constitute the calling principal.

The REMOVE command refers to the may_remove relation to determine whether the
principal is allowed to remove the view. The remove right itself is removed after successful
removal of the view. Unlike for the ASSIGN command it is not necessary to explicitly name
a simple principal as the remover in the arguments to the REMOVE command because for
any given view there can only be a single principal with a remove right. The condition of the
REMOVE command is only true if this principal is an element of the calling principal.

command REMOVE(M : M, v : V, target : O ∪ T , recp : P)
if

v ∈ M [recp, target] ∧
∃ p ∈ calling_principal : (p,M, v, recp, target) ∈ may_remove

then
v 6∈ M ′[recp, target] ∧
(p,M ′, v, recp, target) 6∈ may_remove′

end

Implicit Assignments

Implicit assignment and removal operations are specified using schemas. This section formal-
izes schemas and their definition constraints.

Clauses ⊂ MOp × V × P(R ∪ {caller}) × (T ∪ {this,result}) × bool (5.27)

OC ⊂ Op × Clauses (5.28)

Schemas ⊂ T × OC (5.29)

A schema is modeled as a tuple (t, OC), where t ∈ T and OC is a relation between
operations and clauses. Schema names are not explicitly modeled because schemas are never
referenced by name. The characteristic property of a schema is the IDL type which it observes.
Multiple schemas with different names observing the same type are treated as a single schema
definition for that type.

A clause is a tuple (m_op, v,R, t, ass_opt), i.e., a matrix operation name from MOp =
{assign, remove}, a view, a set of recipients, a target object or type, and a boolean value
that specifies whether the recipient should be allowed to assign an assignable view to other
principals. The set of recipients to which schemas can refer is the set of roles extended with
the identifier caller that is bound at to the calling subject runtime. Similarly, the target is
either a type or one of the two object identifiers this and result.

A number of restrictions are verified statically to catch definition errors, as explained in
section 4.1.5.2. A schema’s clauses may only refer to operations in the interface type for which

97

5 Model Formalization

the schema is defined (5.30). If a view occurring in a schema clause is marked as static, the
recipient must not be the calling subject (5.31). If the assign option is set, the matrix operation
must be an assignment and the view must be assignable (5.32). If two clauses for the same
operation both assign and remove the same view and the intersection of the recipients sets is
non–empty, then the two targets must not both be objects. Otherwise, it cannot be guaranteed
that the assign and the removal operation do not operate on the same matrix entry, i.e., that the
clause is free of conflicts (5.33).

∀ (t, oc) ∈ Schemas : ∀ (op, (m_op, v,R, o, ass_opt)) ∈ oc :

op ∈ ops(t) ∧ (5.30)

(static ∈ modifiers(v) ⇒ caller 6∈ R) ∧ (5.31)

(ass_opt = true ⇒ (m_op = assign ∧ assignable ∈ modifiers(v))) (5.32)

∀ (op′, (m_op′, v′, R′, o′, ass_opt′)) ∈ oc : (5.33)

(op′ = op ∧ m_op′ 6= m_op ∧ v′ = v ∧ R′ ∩ R 6= ∅) ⇒

(o ∈ {this,result} ⇒ o′ ∈ T)

Similar to condition (5.33), it must be verified that there can be no conflicts between clauses
in different schemas that observe operations on objects of related types:

∀ (t, oc), (t′, oc′) ∈ Schemas : (t v t′ ∨ t A t′) ⇒ (5.34)

∀ (op, (assign, v,R, o, ass_opt)) ∈ oc, (op′, (remove, v′, R′, o′, ass_opt′)) ∈ oc′ :

(op′ = op ∧ v′ = v ∧ R′ ∩ R 6= ∅) ⇒

(o ∈ {this,result} ⇒ o′ ∈ T)

To model the fact that schemas listen to operations, we introduce a matrix command NO-
TIFY that is called automatically by the system whenever an operation returns.

command NOTIFY(op : Op, target : O, schemas : P(Schemas))
∀ (t, oc) ∈ schemas :

type(target) v t ⇒
∀ (op′, (m_op, v,R, o, ass_opt)) ∈ oc :

op = op′ ⇒
∀ rcp ∈ R :

((m_op = assign ∧ v 6∈ M [rcp, o]) ⇒
(v ∈ M ′[rcp, o] ∧
opt = true ⇒

(M ′, v, rcp, o) ∈ assign_options′)) ∧
((m_op = remove ∧ v ∈ M [rcp, o]) ⇒

(v 6∈ M ′[rcp, o] ∧
¬∃ p ∈ P : (rcp,M ′, v, p, o) ∈ may_remove′))

end

98

5.5 Access Decisions

The command evaluates all applicable schemas and performs the necessary matrix enter
and remove operations. If an assignment is made with the assign option set the command
records the permission to pass on the view. If a removal is performed, the command ensures
that no remove rights remain for the view that was removed.

5.5 Access Decisions

Decisions about attempted accesses are made by an access decision function adf : Access ×
M → {allow, deny}. For an access request (op, o, s, active_roles), the function first needs
to determine which policy must be applied to the target object, i.e., find the access matrix M .
In a distributed system, this may involve finding out about the target’s domains and looking up
the policy in the domain scope. This process is not described here.

To look up a compound principal’s views on object o, the views on o that were assigned
to the principal’s subject s and kept in the matrix entry M [s, o] have to be combined with
the views assigned to s on the object’s type and its supertypes. This set of views then
has to be combined with the views assigned to the principal’s active roles. The function
validSubjectV iews : M × S × O × P(R) → P(V) retrieves views from the principal’s
subject entries and returns all views that either have no role restriction or whose role restric-
tions match the currently active roles for the access. To retrieve the subject’s views the function
relies on the function subjectV iews in (5.36) which is defined similar to roleV iews in (5.4).

validSubjectV iews(M, s, o, active_roles) = (5.35)

{ v ∈ V | v ∈ subjectV iews(M, s, o) ∧ (roleRestriction(v) 6= ∅ ⇒

∃ r ∈ active_roles, r′ ∈ roleRestriction(v) : r 6 r′)}

subjectV iews(M, s, o) = M [s, o] ∪ subjectV iewstype(M, s, type(o)) (5.36)

subjectV iewstype(M, s, t) = (5.37)

{v ∈ V | v ∈ M [s, t] ∨ ∃ t′ ∈ T : t v t′ ∧ v ∈ subjectV iewstype(M, s, t′)}

The complete set of views available to a principal for an access can be retrieved using the
function principalV iews : M×S ×O × P(R) → P(V), which combines the valid subject
views with the views assigned to the principal’s roles, which are retrieved using the function
roleV iews that was defined in 5.4:

principalV iews(M, s, o, active_roles) = (5.38)

validSubjectV iews(M, s, o, active_roles) ∪

{ v ∈ V | ∃ r ∈ active_roles : v ∈ roleV iews(M, r, o)}

Before this set of views can be consulted for permissions or denials, however, those condi-

99

5 Model Formalization

tional views must be removed from the set that have unresolved dependencies on other views,
i.e., that require views not in the set. The function resolvedV iews : P(V) → P(V) filters out
views with unresolved dependencies:

resolvedV iews(V) = (5.39)

{ v ∈ V | ∀ v′ ∈ requiredV iews(v) : v′ ∈ V }

The set of applicable views for a principal’s access (op, o, s, active_roles) is thus

applicableV iews(M, s, o, active_roles) = (5.40)

resolvedV iews(validSubjectV iews(M, s, o, active_roles))

To determine whether the access is allowed, a permission for the operation op must be
found in the views returned by applicableV iews. If no permission is found, the access is
denied. Because (5.25) statically excludes conflicts between strong rights, the access is allowed
if a permission is found that has a strong priority. No further checks for denials are necessary
in this case. If a permission with weak priority is found, however, it is necessary to check for
conflicting denials. If no denial is found, the access is granted. If a strong denial is found, it is
denied. A conflict between two (or more) weak rights, however, needs to be resolved.

Let Vconflict(op) = {v1, .., vn} ⊆ applicableV iews be the set of views with conflicting
rights regarding operation op. All subsets of Vconflict that are partially ordered by the relation
6 on views are replaced by the single “most derived” view, so the conflicting set now contains
only unrelated views. Denials take precedence in the case of conflicts between unrelated views,
so if any denials remain, the access is denied. Otherwise, it is allowed.

100

