
6 An Application Case Study

This chapter presents an application case study that shows how VPL can be used to express
realistic, application–oriented access policies, and how the design of access policies can be
integrated into the general design process. The example policy is used to demonstrate the
use of a variety of policy language features in different design situations, including schemas,
conditional views, and denials.

The example application is a system that supports program committees in reviewing papers
for a conference and is a simplified version of the CyberChair system [van de Stadt, 1997],
which is used by the ECOOP conferences. The prototype application was implemented in Java
and tested on the security infrastructure presented in chapter 7. The following sections follow
a simplified development process for this system.

6.1 Requirements Analysis

The pseudo analysis in this section is used to present the functionality of the example appli-
cation in terms of use cases and to establish these use cases as a basis for the presentation of
security requirements, the application design, and the design of an access policy.

6.1.1 Functional Requirements

The use case diagram in figure 6.1 gives a high–level overview of the main areas of system
functionality. These use cases are described informally in textual form below. Only the main
flow of events during each use case is sketched, exceptional situations are omitted.

Use Case ConferenceSteering

1. The use case starts when the PC chair issues a call for papers.

2. The chair enables the subordinate Submission use case by declaring the submission phase
opened.

3. The chair declares that the deadline for submissions is reached, which terminates the
Submission use case.

101

6 An Application Case Study

Chair

ConferenceSystem

ConferenceSteering

Reviewer

Author

Reviewing

Submission

<<include>>

<<include>>

Figure 6.1: Actors and Use Cases for the Conference System.

4. Reviewers indicate their specific interests for reviewing certain papers.

5. The chair assigns reviewers to individual papers.

6. The Reviewing use case begins.

7. The reviewing phase is terminated by the chair calling for a final decision.

8. Potential conflicts between reviews for a single paper are resolved.

9. The final decision — approval or rejection — is made for each paper and must be unan-
imous.

10. Finally, authors are notified of the acceptance of their papers, at which stage this use case
ends.

The indication of interest to review individual papers and the assignment of reviewers
to papers is not supported by the example application. These two steps are assumed to be
performed through direct communication between the chair and the reviewers, i.e., outside of
the system.

Use Case Submission

1. Authors register a paper with the conference and receive a paper number.

2. Authors write and submit the paper to the conference using the paper number.

102

6.2 Application design

Use Case Reviewing

1. Reviewers write and submit reviews for their assigned papers.

2. After a reviewer has submitted a review for a paper, he may read other reviews for the
same paper and also modify his own review.

6.1.2 Application Security Requirements

The security policy for this application is not designed to meet any environment–specific se-
curity requirements. Rather, the focus is on application security exclusively, which is defined
here in terms of the need–to–know principle. This means that the policy is designed along
the application protocols and intended to allow only those interactions that are required by the
application and specified in the above use cases. Interactions between actors and the system
that are not legal scenarios in these use cases are not permitted, e.g., the policy must ensure
that conference steering operations are not performed by any other actor than the chair.

Other implicit restrictions are that existing reviews may only be modified by the reviewer
who wrote them, or that author access to the system is restricted to operations for registering
and submitting papers. An additional requirement is that there should only be one chair and
that the chair is not allowed to act as an author. This last requirement is intended to avoid
loyalty conflicts with reviewers.

An important property of this application are its state–based access rules. In particular,
authors must not be permitted to modify papers after submitting them or to submit registered
papers after the deadline. Also, reviewers must be prevented from submitting more than one
review per paper or from reading other reviewers’ reviews before submitting their own. The
idea behind this last requirement is to shield reviewers from the influence of others to ensure
independent reviewing. Reviews can then be aligned with each other to resolve conflicts before
the final meeting of the program committee.

6.2 Application design

This section briefly introduces the IDL interfaces that support the functionality described in the
previous section. There is no discussion of design decisions here, the presentation is mainly for
the purpose of describing the object accesses that later need to be controlled by the access pol-
icy. The identified actors are not represented in IDL because communication between actors is
supposed to happen through means outside the system rather than through remote invocations.
For example, authors receive notifications via e–mail and reviewers discuss their decision in
program committee meetings or in telephone or e–mail conversations.

Figure 6.2 lists the main interface in CORBA IDL. The complete set of interfaces for this
application can be found in Appendix B.

103

6 An Application Case Study

interface ConferenceManagement {
// navigation
SubmissionManagement getSubmissionManagement();
readonly attribute Document callForPapers;
// use case: ConferenceSteering
void issueCallForPapers(in string cfp);
void beginSubmission();
void deadlineReached();
void makeDecision();

};

Figure 6.2: The ConferenceManagement interface.

In the ConferenceSteering use case, the chair interacts with the system using the Confer-
enceManagement interface to a singleton object of that type. The ConferenceManagement
interface supports three operations to switch between processing phases, i.e., to start and end
the other two subordinate use cases. The ConferenceManagement interface is also used to
retrieve the call for papers and a SubmissionManagement object.

In the Submission use case, authors can create a Paper object by calling registerPaper()
on the SubmissionManagement object. This operation, which is shown in figure 6.3, raises
exceptions if the combination of author name and paper title is already registered or if the reg-
istration information is incomplete. The Paper interface in figure 6.4 inherits general document
writing operations from the Document interface, which was introduced in chapter 4. Authors
can submit using the operation submit() on their paper objects. Figure 6.5 shows a screen shot
of a simple graphical user interface that allows authors to retrieve the call for papers, register
papers, load a file as a means of writing a paper, and submit the paper.

In the Reviewing use case, reviewers can list available papers by calling listPapers() on the
SubmissionManagement object. They can then retrieve submissions by calling getPaper() and
giving a reference number as an argument. The interface Paper supports additional operations
to list and retrieve reviews that have been submitted for this paper. Reviewers submit reviews
by calling submitReview() and receive a reference to a Review object in return, which they can

interface SubmissionManagement {
// use case: Submission
Paper registerPaper(in string author_name, in string title)

raises(AlreadyRegistered, IncompleteInformation);

// use case: Reviewing
PaperIdSeq listPapers();
Paper getPaper(in long paperNumber);

};

Figure 6.3: The SubmissionManagement interface.

104

6.2 Application design

interface Paper: Document {
// use case: Submission
readonly attribute long number;
void submit();

// use case: Reviewing
Review submitReview(in string review, in long reviewerNumber);
longSequence listReviews();
Document getReview(in long reviewerNumber);

};

interface Review: Document {
readonly ReviewerId reviewer;

};

Figure 6.4: IDL Interfaces for the conference application.

use to modify their reviews. After calling submitReview() they may also retrieve the reviews
of other reviewers using getReview(). An example graphical tool for reviewers that support
submission of reviews is depicted in figure 6.5.

Figure 6.5: Author and Reviewer tools.

105

6 An Application Case Study

6.3 Policy design

The design of the access control policy has two main aspects. The first aspect concerns the
initial configuration of access rights and is defined by the roles, role constraints, and the initial
views held by roles at the time the system starts operation. The second aspect concerns the
dynamic evolution of the system’s protection state, which is determined by schemas and the
views that are assigned and removed by these schemas.

6.3.1 Roles, Constraints, and Initial Views

The actors identified in the use case analysis are directly mapped to the roles in figure 6.6.
The Author role is meant to be available to all users while the Chair role is restricted to allow
no more than one role member. Also, the Chair and Author roles are mutually exclusive.
The Chair role is a subrole of Reviewer, which models the fact that the program committee
chair participates in the reviewing process. The two constraints for the Chair role express the
requirements that there may only be one chair and that the Chair may not act as an Author.

roles
Author

holds SubmissionAccessing on ConferenceManagement
holds Registering on SubmissionManagement

Reviewer
holds Member on SubmissionManagement
holds SubmissionAccessing on ConferenceManagement
holds PaperReviewing on Paper

Chair: Reviewer
holds Steering on ConferenceManagement
holds PaperReading on Paper
maxcard 1
excludes Author

Figure 6.6: Role declarations, constraints, and initial views.

When the system starts operation, the three roles receive the views specified in their holds
clauses. The Author role initially holds a SubmissionAccessing view, which is defined
in figure 6.7. This view permits operations for reading the call for papers and for navigating to
the submission management interface. Additionally, authors hold a Registering view that
allows registering papers. This conditional view is not considered in access decisions at this
time, however, because it requires another view SubmissionPhase, which authors do not
hold at this time. This required view is defined in the next subsection and will be assigned and
removed when use cases are dynamically enabled and disabled.

The SubmissionAccessing view is also assigned to the Reviewer role, which holds
an additional Member view. This view permits its holders to list and retrieve papers. Both
views described so far are assigned on entire type extensions, but both these extensions are

106

6.3 Policy design

view SubmissionAccessing
controls ConferenceManagement

{
allow

getSubmissionManagement
callForPapers

}
view Member

controls SubmissionManagement
{

allow
listPapers
getPaper

}
view Registering

controls SubmissionManagement
requires SubmissionPhase

{
allow

registerPaper
}

Figure 6.7: Views.

assumed to have only a single instance at runtime of the system. Finally, the Reviewer role
holds a PaperReviewing view, which is shown in figure 6.8. Like the Registering
view held by authors, this view requires another view, so reviewers cannot use the permissions
of this view at this stage.

view PaperReviewing: PaperReading
controls Paper
restricted_to Reviewer
requires ReviewingPhase

{
allow

listReview
submitReview

}

Figure 6.8: The PaperReviewing view.

The Chair role holds an initial Steering view for the ConferenceManagement object
and a PaperReading view on all Paper objects. These views are defined in figure 6.9. The
Steering view contains the rights to issue a call for papers and to switch between processing
phases. It is restricted to the Chair role to emphasize that these operations are for exclusive use
by the chair. The PaperReading view, which extends the Reading view, is assigned on

107

6 An Application Case Study

the extension of Paper and permits the chair to read any paper as soon as it becomes a member
of the policy domain.

view Steering: SubmissionAccessing
controls ConferenceManagement
restricted_to Chair

{
allow

issueCallForPapers
beginSubmission
deadlineReached
makeDecision

}

view Reading view PaperReading: Reading
controls Document controls Paper

{ {
allow allow

read number
title author

} listReviews
}

Figure 6.9: Views on documents and papers.

6.3.2 Dynamic aspects

A characteristic feature of this application policy are the regular dynamic changes in the pro-
tection state. The first source of changes is the ordering of use cases and the way these use
cases are enabled and disabled in the encompassing workflow. The second source of rights
changes are requirements from the application policy, viz. that authors lose the right to modify
a paper when it is submitted and that reviewers get rights when reviews are submitted: before
this point, reviewers may not read other reviews; from then on, they may. They also lose the
right to submit a second review for the same paper at this point. Which accesses are permitted
thus depends on earlier accesses, similar to the Chinese Wall policy [Brewer and Nash, 1989].

When use cases are enabled and disabled, a number of views need to be either assigned
or enabled, or removed or disabled, at the same time. This contrasts with more fine–grained
changes that affect individual objects and principals when papers or reviews are submitted.
Therefore, these different kinds of changes are modeled using different design approaches in
VPL. Switching between processing phases and thus between use cases is modeled using the
Steering schema. Figure 6.10 shows this schema, which describes how the protection state
changes in reaction to operations in the ConferenceManagement interface.

If issueCallForPapers() is called, all roles receive a Reading view on the call for papers
document, which is referenced as this.callForPapers, i.e., using its attribute name in

108

6.3 Policy design

schema Steering
observes ConferenceManagement

{
issueCallForPapers

assigns
Reading on this.callForPapers

to Author, Chair, Reviewer
beginSubmission

assigns
SubmissionPhase on Object to Author

deadlineReached
assigns

ReviewingPhase on Object to Reviewer
removes

SubmissionPhase on Object from Author
makeDecision

removes
ReviewingPhase on Object from Reviewer

}

virtual view SubmissionPhase
virtual view ReviewingPhase

Figure 6.10: The Steering schema and virtual views.

the ConferenceManagement interface. Note that a reference to the call for papers can be ob-
tained by authors even before issueCallForPapers() is called because the Author role holds an
initial SubmissionAccessing view which allows this, but the read() operation on this document
was not allowed at this time.

To enable the submission use case, the chair calls beginSubmission(), which will assign the
virtual SubmissionPhase view on all objects to the Author role. This view, which is de-
fined in figure 6.10, is removed again when the chair calls deadlineReached(). This operation,
in turn, triggers the assignment of the virtual view ReviewingPhase, which enables the
Reviewing use case. This view is removed again when the chair finally calls makeDecision() to
disable the Reviewing use case. The important point here is that the use of conditional views
permits a policy design where only a single view is assigned and another single view removed
at each change of processing phases. Since a number of other views depend on these virtual
views, a collective change of fine–grained authorizations is achieved without complex schema
clauses.

6.3.2.1 The Submission Use Case

After the virtual SubmissionPhase view is assigned to the Author role, authors can use
the permissions in their initial Registering view. Thus, they can register papers by call-

109

6 An Application Case Study

ing the registerPaper() operation on the SubmissionManagement object. To model the more
fine–grained authorization changes connected with registering and submitting papers, a second
schema is defined in figure 6.11 for the submission phase. When the registerPaper() operation
is called, the Submission schema assigns a PaperSubmitting view on the Paper object
that is returned as the result of the operation to the caller, which means that authors can now
call submit() on the paper. To allow modifications, i.e., to enable writing of the paper, authors
also receive a Modifying view on the paper.

schema Submission
observes SubmissionManagement

{
registerPaper

assigns
PaperSubmitting, Modifying on result to caller;

}

view PaperSubmitting: PaperReading view Modifying: Reading
controls Paper controls Document
restricted_to Author {
requires SubmissionPhase allow

{ update
allow write

submit append
} }

Figure 6.11: The Submission schema and views for authoring.

To control rights changes caused by operations on papers, a further schema Paper-
Schema is defined. Figure 6.12 shows the part that is used in the submission use case. When
the submit() operation is called, the schema assigns a PaperReading view on the paper to
all reviewers. At the same time, the submitting author loses the Modifying view that he
received upon registering the paper.

schema PaperSchema
observes Paper

{
submit

assigns
PaperReading on this to Reviewer

removes
Modifying on this from caller

// ...
}

Figure 6.12: The Paper schema (submission part).

The Submission use case ends when the deadline is reached and the chair invokes dead-

110

6.3 Policy design

lineReached() to disallow further submissions. The Steering schema in figure 6.10 removes
the SubmissionPhase view from the Author role at this time, which disables the Reg-
istering view. However, disabling the Registering view is not sufficient to prevent
authors from submitting papers that are already registered at this time because submissions are
controlled by the PaperSubmitting view. Because this view was assigned to individual
callers and not to the entire Author role, it cannot be removed from all authors at once when the
submission phase ends. However, it can be disabled just like the Registering view because
it also requires the SubmissionPhase view, so it simply becomes unusable together with
the Registering view.

6.3.2.2 The Reviewing Use Case

Calling deadlineReached() to end the Submission use case also enables the Reviewing use case
because the Steering schema in figure 6.10 assigns the virtual view ReviewingPhase
on all objects to the Reviewer role. Reviewers may now use the permissions in their Paper-
Reviewing view, which required the ReviewingPhase view. The PaperReviewing
view permits reviewers to submit their reviews to any paper, but it is assumed that reviews
are only submitted according to a predefined distribution of papers to reviewers. The view
also allows reviewers to find out about existing reviews for any paper. Because the applica-
tion policy stated that reviewers lose their right to submit further reviews for the same paper
after submitting a review and that they may also read other reviews after handing in their own,
corresponding schema clauses for the submitReview() operation on papers need to be defined.
These are shown in figure 6.13.

schema PaperSchema
observes Paper

{
//...
submitReview

assigns
Modifying on result to caller

assigns
ReviewReading on result to Reviewer

assigns
ReviewAccess on this to caller

assigns
NoMorePaperReviewing on this to caller

}

Figure 6.13: The Paper schema (reviewing part).

The schema defines that a submitting reviewer receives a Modifying view on the Review
object that is the result of the submitReview() operation. While the caller may now update his
own review, the entire Reviewer role is assigned a ReviewReading view on the new review

111

6 An Application Case Study

object, which is shown in figure 6.14.

view ReviewAccess
controls Paper
restricted_to Reviewer

{
allow

getReview
}

view ReviewReading: Reading
controls Review

{
allow

reviewer // access to an attribute
}

Figure 6.14: Views for the reviewing phase.

This view assignment seems to violate the policy that other reviewers may only read a re-
view after submitting their own reviews for the same paper, and this view indeed allows any
reviewer who has access to the new review to read it. However, the only reviewers who have
access to the object itself are its author and those reviewers who also have the right to call ge-
tReview() to retrieve reviews for this paper. Because the getReview() operation is only allowed
by the ReviewAccess view and this view is only assigned upon calling submitReview(),
exactly those reviewers can use the ReviewReading view who have already submitted their
own reviews.

Finally, reviewers must be prevented from submitting further reviews for the same paper.
This cannot be done by simply removing the PaperReviewing view because this view was
assigned to the Reviewer role rather than individually, so removing it would prevent all review-
ers from submitting further reviews. Moreover, it would also remove the right to call listRe-
view(). The solution here is to individually assign a view that contains a denial and overrides the
permission for submitReview(). The view defined for this purpose is the NoMorePaperRe-
viewing view in figure 6.15. The denial for submitReview() will take precedence because the
two views that contain the permission and the denial, PaperReviewing and NoMorePa-
perReviewing, are not related by view extension. The conflict resolution strategy defined
in chapter 4 stated that denials take precedence in such a situation. Since NoMorePaperRe-
viewing is assigned to the individual caller, the denial is visible to the access decision func-
tion regardless of which roles the caller actually activates, i.e., the denial cannot be avoided by
selecting a different set of roles.

The Reviewing use case ends when the chair finally calls the makeDecision() operation. As
defined by the Steering schema in figure 6.10, the ReviewingPhase view is removed
from the Reviewer role, which disables the PaperReviewing view. The reviewing support
of the conference application ends at this stage. Any remaining conflicts between reviews for

112

6.3 Policy design

view NoMorePaperReviewing
controls Paper

{
deny

submitReview
}

Figure 6.15: The NoMorePaperReviewing view.

the same paper must be resolved by direct communication; the selection of accepted papers
itself is also not supported by the application.

113

6 An Application Case Study

114

