
8 Related Work

This chapter compares the view–based approach to access control with the most closely re-
lated work. Section 8.1 compares the concept of views as defined in this thesis with earlier
definitions of the same term. Section 8.2 presents programming language based approaches
to protection. Policy languages are discussed in section 8.3; role–based access control is dis-
cussed in section 8.4. Section 8.5 compares the view–based approach with other related work.

8.1 Earlier View Concepts

The term view has been used for protection concepts before. None of these previous view
concepts supports negative authorizations, however, nor can views be systematically restricted
or combined in any of these models.

In the context of object–oriented programming languages, [Hailpern and Ossher, 1990]
propose views as a mechanism for specifying multiple different interfaces to objects for protec-
tion purposes. Access policies are sets of views, which group callers, targets, and operations.
This grouping is not restricted in any way, so neither the objects, nor the clients, nor the op-
erations in a single view must be related or structured in any way. Views are not defined in a
declarative language, nor can relationships between views be specified.

Views in [Coulouris and Dollimore, 1994a], [Coulouris and Dollimore, 1994b] are defined
as “a subset of the operations on an object that are considered together for the purpose of grant-
ing access rights” and used as entries in an access matrix. However, even though the benefits of
strong typing in a distributed object system are noted, no typed view language is proposed. An
issue identified but not addressed in [Coulouris and Dollimore, 1994b] is that “the correspon-
dence between the operations in user–level views and the operations on programming–level
objects must be specified in a notation that remains to be defined”. Such a notation is defined
in this thesis. Another requirement identified by [Coulouris and Dollimore, 1994b] is for a
declarative specification of “changes to the permissions for objects as tasks progress through
their various stages,” which can be achieved using schemas in our model.

In the Guide system [Hagimont, 1994], a view is “a restriction of a class interface which is
stored in the class”. Views are managed by a secure kernel and are not a specification language
construct. In [Hagimont et al., 1996], an extended interface definition language is proposed
that expresses how capabilities are exchanged as arguments of remote object invocations. In
[Hagimont et al., 1997], views are a language concept used to describe both a list of allowed

139



8 Related Work

operations and the per–operation exchange policy for capabilities. By recursively annotating
parameters of view operations with other view names in interface definitions, protection re-
quirements for arguments can be expressed. At run–time, access rights according to these
views are passed implicitly. Structural relations between views and negative rights are not
addressed.

Views are also used for protection in relational and object–oriented databases
[Scholl et al., 1991]. Their use for access control purposes resembles the use of type abstrac-
tion as a protection concept. Unlike database views that can span multiple types, a view in
our model is restricted to objects of a single IDL type. Joining views on different IDL types
T1, ..., Tn can, however, be modeled by specifying an additional IDL interface T that extends
T1, ..., Tn and by defining a view on T . Another difference is that database views may define
content–specific access controls, e.g., by stating that an attribute may only be read if its value
is above a certain threshold. While this is a possible extension to our model, it is not possible
in its current form.

8.2 Programming Language Approaches to Protection

Programming language approaches to protection relying on abstract data types have been know
since the 1970s. An important approach related to ours is [Jones and Liskov, 1978], which aims
at increasing software reliability by enabling compilers to statically prove that program texts
are access–correct. A program is access–correct if the accesses used in the program comply
with the access restrictions in program declarations. Restrictions on accesses to instances of an
abstract data type that can be declared in [Jones and Liskov, 1978] are based on rights rather
than on the coarser–grained notion of package–local accesses or accesses that originate from
within the type’s implementation or from subtypes, as in Java [Gosling et al., 1996]. Eiffel
[Meyer, 1992] supports finer–grained access restrictions than Java but without rights. In Eiffel,
each attribute and operation of a class can be exported to individual other classes, not just to
packages or descendants as in Java.

Access correctness relies on strong typing and on the notion of a qualified type. A qualified
type is a data type plus a set of rights. Access restrictions are declared by specifying qualified
types for variables and the formal parameters and return types of operations. At runtime,
variables hold capabilities, i.e., an object identifier and a set of rights. A qualified type can
thus also be regarded as the type of a capability. The compiler can check that assignments are
type–correct in the sense that the value of an expression that is assigned to a variable is of the
same data type and has at least as many rights as required by the qualified type of the target
variable. Thus, it is possible to prove access correctness by checking that any value passed as
an operation parameter has at least the set of rights required by the qualified type of the formal
parameter. A procedure is access correct if all assignments are legal and every value returned
by it is compatible with the qualified return type. Rights are created together with data objects.
When a new object is created, the creation expression returns all rights for accesses to that
type.

140



8.2 Programming Language Approaches to Protection

Like our own approach, [Jones and Liskov, 1978] propose to integrate access rights with
type–specific accesses and strong typing. Also, it is possible to statically describe dynamic
rights changes. Rights can be gained when objects are created and, through rights amplifica-
tion, when procedures are entered. Rights are lost when a capability is assigned to a variable
which is declared to hold fewer rights than the capability’s type. The access policies that can be
expressed in this model cannot refer to roles as principals, however. Access rights are granted
to individual variables. Also, access policies are part of the application and not described in a
separate declarative language. Another difference is that there are no other structural relations
between qualified types than assignment compatibility, i.e., it is not possible to combine types
or extend them. Moreover, it is not possible to explicitly describe denials or to dynamically
extend or restrict the rights of a running program through administrator activities.

Aspect–Oriented Programming

In contrast to [Jones and Liskov, 1978], Aspect–Oriented Programming (AOP)
[Kiczales et al., 1997] relies on separate aspect languages for the specification of non–
functional aspects of applications. These languages are processed by a tool called aspect
weaver which generates code for aspects such as concurrency and distribution, and performs
the integration of the functional code with the generated aspect code. The approach taken by
AOP focuses on software development and emphasizes reuse and modularity by separating
functional from non-functional code. Languages describing non–functional aspects can also
be regarded as describing policies that are later to be interpreted by aspect mechanisms, but
there is currently no aspect language in AOP that addresses access control. VPL can be seen
as such a language.

CACL

[Richardson et al., 1992] propose an ACL–based protection scheme called CACL for object–
oriented programming environments or database systems. CACL supports discretionary access
control where owners define ACLs for objects. Unlike in [Jones and Liskov, 1978], access
rights are not statically defined so accesses are checked dynamically. To control discretionary
transfer of ownership, the former owner of an object remains the object’s method principal until
the new owner accepts ownership and complete responsibility for the object by becoming the
new method principal, preferably after inspecting the object’s implementation and verifying
that the object is not a Trojan Horse. Objects always execute on behalf of their designated
method principal, so until the new owner accepts to also become the new method principal, the
object’s methods will still execute on behalf of the former owner.

The CACL model relies on a trusted runtime system and a trusted compiler and is not
immediately applicable to distributed systems. Moreover, access policies are not explicitly
represented but embedded within the application code. There are no language means to specify
denials, dynamic rights changes, and structural relations between access rights.

141



8 Related Work

The Java 2 Access Model

A different approach to securing a program running in a single address space is taken by the
Java 2 security model [Gong et al., 1997]. This approach relies on dynamic access checks
rather than static verification and focuses on providing flexible protection domains for applica-
tion code assembled from multiple, potentially untrusted sources. To ensure that untrusted code
can be restricted, the application code is partitioned into separate protection domains based on
the code source. Policies grant access permissions to domains and thus to code sources, which
are the principals in this model. Java supports the checking of digital signatures on code so
that principals can be authenticated. Policies can be specified either within a program by using
a special API, or using external textual descriptions.

Accesses to resources are controlled by inserting statements into the code that check for
permissions. The current principal and the protection domain is determined by inspecting the
call stack of the current thread of execution. Permissions are generic and need not correspond to
the attempted access in any way, but it is possible to structure permissions by defining subtypes
of the java.security.Permission class which is the base class for all permissions.
Still, there is no static typing of access rights that would ensure that only applicable permissions
are checked for a given access. Dynamic rights changes are based on the concept of rights
amplification [Wulf et al., 1974] and can occur when the execution passes the boundary to a
more privileged protection domain. Denials cannot be explicitly expressed.

This code–based access model is extended to also support principal–based authoriza-
tions with the Java Authentication and Authorization Standard (JAAS) [Lai et al., 1999],
[Sun Microsystems, 2001]. JAAS provides a pluggable architecture for authentication mod-
ules and extends the policy language such that the permissions described above can also be
granted to principals. Principals are abstract entities that are represented by names and are as-
sociated with the running program as a result of authentication. The JAAS framework supports
hierarchies of principals, so it is possible to use JAAS for role–based access control. The JAAS
file–based policy implementation can be replaced, so it is possible to integrate a VPL–based
policy module, for example. However, permissions must be represented by objects which are
checked by explicitly invoking a Java SecurityManager object. Thus, the application code
is still mixed with enforcement code. JAAS can be used by remotely accessible services to
authenticate a caller using a suitable authentication module. The service can then act on the
caller’s behalf when accessing protected local resources. The JAAS framework could thus be
used for an implementation of the CORBA security mechanisms.

Confined Types

The Java 2 access model controls access to Java objects using runtime checks placed at the
location in the code where an access is made. This technique does not protect against the
leaking of object references to untrusted code where no such access checks are placed. This
is essentially a problem of controlling aliasing because aliases can provide alternative and un-
controlled access paths to objects. [Vitek and Bokowski, 2001] propose a language extension

142



8.3 Policy Languages

called confined types that statically controls that references to sensitive objects are not leaked
to untrusted code outside the protection domain.

Here, protection domains are defined to be packages. The approach defines a new Java
keyword with which classes can be declared as confined. Additionally, a number of syntactic
restrictions are defined which must be enforced by an extended compiler and ensure that no
references to objects of a confined type can leave the package. No additional dynamic checks
are necessary. This approach does not define language means to declaratively express access
policies on a per method basis but rather complements the Java 2 access model.

8.3 Policy Languages

In the context of policy–based management, a number of general–purpose policy languages
have been proposed, e.g. [Sloman and Twidle, 1994], [Koch et al., 1996], [Tu et al., 1997].
These languages generally focus on the definition of management tasks and authorization poli-
cies. They are not, however, suitable for use by application developers, who have to provide an
initial policy design. The management information model underlying these languages typically
does not map easily to the application data model.

[Koch et al., 1996] propose the refinement of policies from general requirements down to
an operational level. The policy definition language can express obligations for managers as
well as permission or denials for operations. Because policy rules are triggered by events, it is
possible to describe dynamic rights changes. Policy rules cannot be combined or aggregated
and do not make use of object typing.

Ponder

Ponder [Damianou et al., 2001] is a declarative language designed for both management and
security policies. Ponder is much more general in scope than VPL and incorporates its own
event language. Since it is independent of any particular enforcement mechanisms, Ponder
policies are not operational policies in the sense used here or in [Koch et al., 1996] but must
eventually be translated into mechanism–specific formats.

A policy in Ponder is a single rule rather than a set of related rules. Ponder can express
both positive and negative authorization rules and can statically detect conflicts between these
modalities. The language supports policy types, which are parameterized templates for the
creation of policy instances that support factoring out common policy elements. To support
the combination of individual rules into larger sets, Ponder defines group and role concepts. A
group is a set of policies that has some inherent semantic relationship while a role is a set of
policies that are related to a position within an organisation. Ponder also supports inheritance
between policy types, but this notion is defined purely syntactically. Other concepts supported
by Ponder include meta–policies, delegation policies, constraints, content–specific filters, and
scripting.

143



8 Related Work

Because of the lack of a formal meta–model the semantics of most concepts is not precisely
defined and it is not clear how these concepts map to the different enforcement mechanisms.
While Ponder claims strong typing and static detection of specification errors, it is also unclear
which classes of errors can actually be detected. Ponder is therefore not suitable for developers
who need to define fine–grained access restrictions on application–level objects.

ASL

A general framework for defining arbitrary access control policies is proposed in
[Jajodia et al., 1997] where policies are formulated as a set of rules in a logic–based language
called Authorization Specification Language (ASL). This model leaves open design decisions
about how implicit authorizations are derived, how rights propagate in groups, which conflict
resolution strategies are used and how priorities are employed. Rules for these questions have
to be defined first as part of a policy library. The data model for protected objects is also
left open and has to be described separately. The protection state is extended with a history
component that logs all accesses as facts in a database in order to enable state–based poli-
cies like Chinese Wall. This model exhibits a more complex concrete syntax than ours, policy
specifications are less structured.

Trust Management

In [Blaze et al., 1996], a trust management system called PolicyMaker is presented that takes
a unified approach to the problem of describing policies, credentials, and trust relationships in
large–scale networked systems that cross organizational boundaries. The main proposition of
this approach is that authorization should not be based on access identities but on more general
trust relationships expressed through certificate chains. Moreover, decision rules should be
fully programmable and evaluated at runtime rather than predefined in ACLs. For this purpose,
PolicyMaker contains a generic skeleton language for policy assertions. Policy assertions de-
scribe what a given public key is trusted to do, which is expressed in a filter that is part of the
assertion. In principle, filters can be programmed in any interpreted language. PolicyMaker
directly supports a regular expression language, a safe version of the AWK pattern matching
language, and a special macro language. Applications perform access checks themselves by
querying the policy database which then interprets filter programs to make access decisions.

An important aspect of the PolicyMaker approach is that filters assign authorizations di-
rectly to keys, which must be known at the time filters are created. The only notion of a
principal is thus that of a key holder. This supports the flexible definition of interesting re-
lationships between keys, but it does not support imposing structure on policy specifications.
Semantic notions such as roles would need to be modeled separately. Aggregational concepts
that cater for scalability in large systems are not provided. Moreover, operation requests are
uninterpreted strings, and type checking of policy statements against targets is not supported.

The Simple Public Key Infrastructure (SPKI) [Ellison et al., 1999a] takes a similar ap-

144



8.3 Policy Languages

proach. However, access decision rules are not fully programmable. Rather, certificates di-
rectly contain authorization tokens. SPKI adds a local name space concept to the notion of
keys as global identifiers. While this certificate–based approach supports delegation in a man-
ner similar to capabilities, it results in a fully distributed representation of access policies,
which is undesirable as it does not allow centralized management of policies.

While trust management and SPKI aim to integrate authentication and access control,
[Herzberg et al., 2000] propose a separate trust establishment component as a complement to
a role–based access control component which is eventually responsible for making access de-
cisions. The central idea of trust establishment is to “assign roles to strangers”, i.e., to use a
specific policy that describes how potentially unknown and untrusted subjects can be mapped
to roles that are accepted by the RBAC component. For this purpose, [Herzberg et al., 2000]
define a Trust Policy Language that expresses rules how the subjects of X.503 certificates can
be mapped to roles based on other certificates, e.g., recommendations from trusted sources.
This approach is not directly related to the view–based access model but could be used as an
extension to the role server component in the VPL runtime infrastructure that was presented in
chapter 7.

Adage

The Adage toolkit [Zurko et al., 1999], [Simon and Zurko, 1997] is related to our approach in
a number of respects. First, usability is one of its main design goals, which corresponds to
our aim to enhance access control manageability. Special emphasis is placed on the design
of the human–computer interface. Second, Adage builds on a role–based access model that
supports RBAC3. As in our approach, users are represented as actors, although these actors do
not directly map to roles in Adage. Third, it supports a dedicated authorization language, and
fourth, it is designed as an authorization service for distributed applications and actually uses
CORBA as the internal communication mechanism between Adage clients and servers.

The differences between our approach and Adage are both conceptual and architectural.
The Adage authorization language (AL) is generic in the sense that it supports arbitrary ap-
plications and data models. AL supports a number of different separation of duty constraints
and is generally more expressive than VPL. Because there is no strongly typed data model
the language interpreter can only perform superficial consistency checks and cannot determine
whether the authorization descriptions actually match the protected resources. The authoriza-
tion language is derived from the Tcl scripting language and has a number of commands to
modify an authorization database, so it is not a declarative language. The main architectural
difference between our implementation and Adage is that access decisions in Adage are made
by a centralized authorization decision service. This contrasts with our approach of central
administration but decentralized, i.e., local enforcement, which generally delivers better per-
formance.

145



8 Related Work

8.4 Role–Based and Task–Based Models

View–based access control as introduced in this thesis relies on roles. Roles were defined
in chapter 4 as “a logical function of an initiator in the interaction with one or more tar-
gets.” This behavioral definition contrasts with, e.g., the general reference role models in
[Sandhu et al., 1996] and [Nyanchama and Osborn, 1999], which provide more abstract, struc-
tural definitions. In [Sandhu et al., 1996], roles are defined as “a collection of users on one side
and a collection of permissions on the other. The role serves as an intermediary to bring these
two collections together.” These intermediaries themselves are abstract entities so roles are
modeled as a given set and interpreted only through their relationships to users and permis-
sions. The definition of roles in [Nyanchama and Osborn, 1999] is slightly less abstract as
roles are defined directly in terms of privileges, but it also does not assign an inherent seman-
tics to roles.

As in the RBAC3 role model in [Sandhu et al., 1996], the role model used here relies on
role hierarchies and constraints. In both models, a role hierarchy is a partial order on roles,
and roles inherit their super roles’ authorizations. In [Sandhu et al., 1996], authorizations are
always permissions, so substitutability of a role for its super roles is implicit with regard to
allowed accesses. In our model, behavioral substitutability is explicitly defined as the semantics
of role inheritance. In [Nyanchama and Osborn, 1999], role inheritance is directly expressed
in terms of permissions.

A role–based approach very similar to ours is Napoleon [Thomsen et al., 1998], which
also recognizes the need for collaboration between application developers and security admin-
istrators. [Thomsen et al., 1998] propose a framework that provides separate layers for the
specification of access policies. At the lowest level, objects need to be grouped for manage-
ment purposes, but no domain concept is defined. At the next higher level, object handles are
defined as a way of grouping access rights for operations. Object handles are created with
the assistance of graphical tools and correspond to views in VPL, but these handles do not
support the definition of constraints. Denials cannot be expressed; delegation, discretionary,
and implicit assignments of views are not addressed. Roles are called application keys for
application–specific roles and enterprise keys for application–independent roles and need to be
mapped to each other at deployment time. The layered approach suggests a temporal order
and functional dependencies between the tasks involved, but this is actually not the case since
object management does not predate the definition of object handles, nor does the definition of
enterprise “keys” happen only after applications are installed.

The general RBAC role models do not provide specific support for workflows that are
defined in terms of ordered, well–defined tasks. While roles in RBAC are sufficiently general
to model task–specific aspects of principals, there is no mechanism to automatically assign and
remove task–specific authorizations to and from principals participating in a workflow, i.e., for
“synchronizing the authorization flow with the workflow” [Atluri and Huang, 1996]. For this
purpose, [Atluri and Huang, 1996] introduce authorization templates with which task–specific
permissions can be specified that are only assigned to a subject during a time interval that is

146



8.5 Other Related Work

defined in the workflow definition. An authorization template is a triplet (s, T, p), where s is a
subject, T is an object type, and p is a permission. The authorization template is attached to a
task and used to dynamically grant the permission p to s on an object of type T during the time
the task is active. Authorization templates are similar to views in that they are statically defined
and contain type constraints. However, they do not group rights or permit the specification
of denials. Also, there are no relationships between them, such as extension or dependency
relationships. The mechanism for specifying the period during which authorizations can be
used is less general than schemas because these periods are bounded. Thus, for every implicit
assignment there will always be a matching removal. Discretionary access control is not part
of this model.

[Thomas and Sandhu, 1997] state a similar motivation as in [Atluri and Huang, 1996]
and propose the concept of an authorization step for defining rules for discretionary as-
signments of authorizations. These assignments have to be performed explicitly, however.
[Coulouris et al., 1998] propose the concept of task templates to statically assemble roles, ac-
cess rights, and object categories. Object categories are groupings of objects that are supposed
to be “user–level” rather than programming–level objects. When a task is instantiated, users
must be assigned to roles and objects to categories. Access rights are untyped, however, and
there is no mechanism to automatically instantiate or terminate tasks, so dynamic access rights
changes are still managed explicitly. Neither of the approaches in this section defines a declar-
ative policy language for design and management purposes.

8.5 Other Related Work

A general work on concepts for object–oriented specifications of access rights is
[Brüggemann, 1997], which explicitly introduces operation classes as a category in addition
to the usual subject and object classes. Views can be regarded as an extension of operation
classes. The model can express both permissions and denials and uses a more general and
more complex system of priorities, which can be any integer value. The model does not provide
means to describe dynamic rights changes, conditional rights cannot depend on the presence
of other rights. A concrete language syntax is not defined.

[Baldwin, 1990] argues that grouping privileges increases manageability of access rights
and proposes Named protection domains (NPDs) to enhance support for security management
in relational databases. NPDs are management abstractions that group privileges on objects and
form a privilege graph that contains paths from privileges to users. Named protection domains
inherently group not only privileges but also users and are thus very similar to the RBAC
notion of roles. Similar to the notion of protection domains in operating systems, however,
only one NPD can be active at any time for a given user. As with roles, it is possible to define
hierarchies of NPDs. Our approach is similar, but more fine–grained and more modular: Views
describe authorizations on individual objects and combine with more appropriate management
concepts for users and objects, viz. roles and domains. We believe that protection domains are
not applicable to the richer data models of distributed object systems.

147



8 Related Work

Products and Standards

An existing management product that supports security management in CORBA environments
is [Tivoli, 2001], which comprises a comprehensive suite of tools. Tivoli does not specifically
address access control management at the level of application objects, and provides no separate
specification language. The CORBA security service product by [Adiron, 2000] does provide
an access control language, but this language is not object–oriented and limited to the restricted
standard model of access control in CORBA.

The use of descriptor files that are processed by deployment tools is common in envi-
ronments such as EJB [Sun Microsystems, 2000] or the CORBA Component Model (CCM)
[OMG, 1999c], both of which also support the expression of simple access policies in descrip-
tors. Both descriptor languages do not provide adequate management abstractions, however,
and only support access control decisions at the granularity of types, not individual objects.

148


