1 Concepts of Linear Elasticity

In linear elasticity, one is concerned with the deformation of an elastic body & C R%,
d = 2,3, subjected to applied forces. Starting with the early works of Euler and Cauchy
in the 18. and 19. century, [Eul57, Eul71, Cau23, Cau27|, the theory of elasticity has
been extensively developed. Here, we only give a short introduction to the basic concepts
of linear elasticity and refer the reader to the monographs [dV79, MH94, Cia88, Gur81]
for details . In this section, we follow the lines of [Cia88] and [dV79].

As is standard in the literature on elasticity here and throughout this work, we use
boldface letters for vectors and tensors and normal typeface letters for scalar quantities.
We follow the summation convention, i.e., summation is implicitly taken over indices
occurring twice, and we assume Latin indices 4, j,k,[,... to be in the range from 1 to d,
where, d = 2,3 is the spatial dimension. The partial derivative is denoted by w ; = gTu;'
As we are concerned with tensors, we note that we do not distinguish between covariant
and contravariant quantities by using, e.g., upper and lower indices.

1.1 Kinematics and Strain

Three main ingredients are used within the theory of linear elasticity: kinematics, equi-
librium conditions and constitutive laws.

Let us start with some kinematical considerations. An elastic body in its undeformed
configuration might occupy the closure of the domain & C R?, d = 1,2, and we identify
every material particle of the elastic body with a point z = (z1,... ,xd)T € R?. That is,
we do not distinguish between the body and its particles and the set Z and the points
x € B C R, respectively. Subjected to volume and traction forces, the body will undergo
some deformation o,

o: B -—R, B>z p(x),

Denoting the final position of a particle z by 2% := (z), we can define the displacement
field uw = u;e; = (u;)1<i<a by

p=u-+id.

Here, {e;}1<i<q is the canonical basis of the linear space R?. Let us furthermore introduce
the deformation gradient

Ve = (‘Pi,j) 1<i,j<d

By physical considerations, the deformation ¢ is assumed to be injective and orientation
preserving and for all z € % we have det Vi (z) > 0.

For the remainder of this section, we only deal with the case of full linear elasticity and
set d = 3. Let us consider two particles = € #Z and x +dx € % with infinitesimal distance
dz, changing their position to p(z) € £ and (z) + dz¥ € B, respectively. Enforcing
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the summation convention, the square of the final distance dz¥ = dx + du is given by

(dz®)? = dafdz?
= (Oi + uik) (O + uiy) dogdry
= (OkiOi + Oriwiy + Opwi g + ;i pui) degda
= (ukvl +upk + uiykui,l) dxpdzr; + dz?.

(1.1)

Here, d;; denotes the Kronecker-symbol, i.e., d; = 1, if K = ¢, and 0 otherwise. These
considerations give rise to the definition of the Green St.—Venant strain tensor E,

1
Ei; = g(uj,k + Uik + Wi kU k) -

To give an interpretation of the tensor E, let us call a deformation rigid, if it can be
obtained as a combination of a rotation around the origin and a translation. Since the
tensor E can be seen to vanish iff the deformation is rigid (cf. see [Cia88, Theorem 1.8-1]
or [Gur81, Theorem, p.56]), we can interpret E as measure of the true deformation of the
body, that is, a deformation being orthogonal to the space of rigid deformations.

Correspondingly, the right Cauchy strain tensor C' defined by

Cij = 0ikPiik -

is the identity, if and only if the deformation is rigid and we have

C=id+2E =V V.

Introducing the 1-form dl = (dx1,dz2,dxs), i.e. the length element, the change of length
can be symbolically written as

(dz%)? = det' Cdx

see, e.g., [Cia88, Sect. 1.8]. Thus, the Cauchy strain tensor C' is describing the change of
length under the deformation ¢.

Remark 1.1 The change in the area element is governend by the first Piola—Kirchhoff
transformation, which will be described in the following.

Assuming the deformation ¢ to be sufficiently small, we can neglect the quadratic terms
of the derivatives of w in (1.1). This linearization is referred to as geometric linearization.
Now, retaining only linear terms, we can approximate in (1.1) the change of length by

(d:L“P)Q — d$2 — 2&?1‘]' dIZd.’E] . (12)
Here, the strain tensor € is defined by

1
gij = 5lujituig).

We remark, that by definition the strain tensor e is symmetric in ¢ and 7, i.e.,

Eij = Eji, 1<4,5<3.
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Consequently, six degrees of freedom are necessary to describe the change of relative
length. By means of these degrees of freedom, the elastic deformation can be described
completely up to terms of higher order. The three missing degrees of freedom needed to
characterize the change of displacements are due to local rotations, which do not cause a
change of length. They can be described using the antisymmetric rotation tensor w,

wij = 5 (i —uiy),
leading to
ui’j = Sij + wij .

For details, we refer to, e.g.,[dV79, MH94, Cia88, Ant95].

1.2 Stress and the Equilibrium Conditions

Up to now, we have been concerned with only kinematical considerations. In this sec-
tion, we introduce the concept of stress and give the well-known Theorem of Cauchy, by
means of which the stresses are connected with the so called stress tensor. Stress itself
is introduced axiomatically as smooth a vectorfield. Since the equilibrium conditions are
formulated with respect to the deformed configuration %%, we additionally introduce
the Piola—Kirchhoff transformation, by means of which the equilibrium conditions are
transformed to the reference configuration. This is especially usefull for the numerical
simulation of elastic behaviour, since the final configuration %% is in general unknown.

To distinguish the quantities given with respect to the deformed configuration from
the ones given with respect to the undeformed configuration, all quantities associated with
the deformed configuration are attached with the superscript ¥.

In continuum mechanics, one assumes there are only two kinds of forces the body
might be subjected to, volume forces and surface forces. The volume forces are assumed
to be proportional to mass and act at a distance. They are identified with a vector field

f%: #¥ — R, which gives the density of volume force per unit volume. The surface
forces are assumed to have a short radius of action and are thus defined by a vector field
p¥: ' — R3, acting only on a subset I'% of the body’s boundary I'? := 0%%. The
vector field p¥, or the surface traction vector, gives the density of surface force per unit
area.

At this point the question arises, how to describe the forces caused by the deformation
(o, which are acting in the interior of the body. This is answered by the stress principle
of Euler and Cauchy, cf. [Cia88, Axiom 2.2-1]. It states the existence of a vector field,
the so called stress field t¥, which is given by

t?: %Y x S5 (2¥,n) - R, S2={veR: ||, =1}.

Moreover, it states the balance of momentum

/f“"(x) dx?® + / t?(z¥,m?®)dz¥ =0
Ae

0A¥
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and the balance of angular momentum

/.’B‘P X fP(x)dx?® + / ¥ x tP(z¥,n¥®)dz¥ =0
AP 0A®

for any subdomain A¥ of %%. Let us take a closer look at the stress principle. Defining
the stress vector T by

T = tf (2%, ny),

it can be regarded as a vector representing interior intermolecular forces acting on an
infinitesimal surface da¥ containing the point % and having outer normal n, see Figure
1.1. The stress principle now asserts the existence of the surface traction vector T and

n

<

Al

Figure 1.1: Surface traction vector T

it states, that the surface traction 7 depends on the outer normal of the surface da¥
only. Moreover, the stress principle asserts static equilibrium of the body in the deformed
configuration. Cauchy’s theorem now asserts that under the assumptions given above,
the surface traction vector T depends linearly on m. In addition, the balance of angular
momentum implies the symmetry of the Cauchy stress tensor o. We take the formulation
of Cauchy’s theorem from [Cia88, p. 62], see also [Gur81, dV79].

Theorem 1.2 (Cauchy’s Theorem) B
Assume that the applied body force density f¥: B9 — R® is continuous and that the
Cauchy stress vector field

t9: B x S% 5 (29, n) — tP(z¥,n) € R

1s continuously differentiable with respect to the variable x% € 56?‘9 for each n € S? and
continuous with respect to the variable n € S? for each ¥ € %¥. Then the azioms of
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force and momentum balance imply that there exists a continuously differentiable tensor

field
TY: B? 5 2% — T%(2%) € MP

such that the Cauchy stress vector satisfies

t?(x¥,n) =T%(2%)n, w?c B, ncS?,
and such that
—div T®(z¥) = f¥ ¥ € t@%,
T (z%) = T?¥) ' 2¥ecaB, (1.3)
T¢(z¥)n® = pP(¥) a®el%.

We remark, that the symmetry of the Cauchy stress tensor is a consequence of the axiom
of angular momentum and that equations (1.3) are called the equations of equilibrium in
the deformed configuration.

For a geometrical interpretation of the Cauchy stress tensor see Figure 1.2. Stress
itself is the intensity of force per unit area and therefore has the character of a pressure.
Taking a closer look at equations (1.3), we see that they constitute a boundary value
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Figure 1.2: Geometric interpretation of the Cauchy stress Tensor
problem in divergence form. Naturally, the question arises, wether this boundary value

problem can be rewritten as a variational equation. This is possible and in linear elasticity
the resulting variational equations are referred to as principal of virtual work.

Theorem 1.3 (Virtual work) The equilibrium equations (1.3) can be equivalently writ-
ten as a variational problem:

/T‘P: VPI? dz¥ = /f"’-z?“’ dx"’—l—/p"’-ﬂ“" da® , (1.4)
B e T,
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where T® and 9% are elements of appropriate function spaces. Moreover, T¥ and 9%
have to satisfy suitable boundary conditions.

For a proof, we refer to [Cia88, Theorem2.4-1].

Within this setting, the test functions ¥ are often called virtual displacements, since
they are in essence mathematical objects and not to be viewed as real displacements the
body might undergo.

As a matter of fact, Cauchy’s theorem is given with respect to the deformed configu-
ration, i.e., with respect to the Euler variable 2¥. We now introduce the Piola—Kirchhoff
transformation, by means of which the boundary value problem (1.3) is transformed to the
reference configuration, i.e., the resulting boundary value problem is given with respect
to the Lagrangian variable x. To get the idea of the Piola—Kirchhoff transformation, let
us consider the transformed volume element

dz¥ = |V|dx.
Since f gives the density of volume force per unit volume dx, we get

f@) = (Vo) £(%),

if the volume forces f are dead loads, i.e., do not depend on the particular deformation
. Similarly, the stress tensor T¥ can be transformed to the reference configuration. We
define the first Piola—Kirchhoff stress T by

T(z) = |Vp(a)| T¢ Ve(z) ™"
and the symmetrized second Piola—Kirchhoff stress 3 by

B(x) = |Ve(a)| Vo(z) T T (2?) Ve(x) " (1.5)

1.3 Constitutive Equations

In the previous sections, we have been concerned with the definition of the stress and the
equilibrium conditions. Since the equilibrium conditions are designed to be valid regardless
of the macroscopic continuum under consideration, they cannot be employed to state any
mechanical properties of the material itself. Counting unknown functions, the equilibrium
conditions provide us with three equations, whereas, taking the symmetry of the stress
tensor into account, we have nine unknown functions, i.e., the displacements and the six
components of the stress tensor. The six remaining degrees of freedom are determined
by taking the specific properties of the material under consideration into account. This
is done by means of a constitutive equation and a response function, characterizing the
elastic media. In general, constitutive theory might by viewed as a way to construct well-
posed problems describing the behaviour of the specific medium under consideration. For
a detailed discussion of this topic, we refer to [MH94, Chapter 3].

In this section, we introduce both, the constitutive equation as well as the response
function for elastic materials. Adding the axiom of material frame indifference or objectiv-
ity, the class of possible response functions can be simplified considerably. If the response
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function is frame indifferent, i.e., if it does not depend on the chosen orthonormal basis,
it is determinend by its restriction to the set of symmetric, positive definite matrices.
The mathematical analysis of elastic materials is considerably simplified by the physical
requirements.

For convenience, let us introduce the subsets M2 | S? and O the set M? of all real square
matrices of order three. The set Mi consists of all matrices with positive determinant,
S? of all symmetric matrices and O of all rotations. We define what we understand to be
an elastic material.

Definition 1.4 A material is called elastic, if there exrists a mapping
T:BxM > (2,F)—T(z,F) € M?,
such that for the first Piola—Kirchhoff stress tensor T holds
T(z) = T(x, V() (1.6)
for any deformed configuration and any point x € B.

Using the Piola—Kirchhoff transformation, this can be written equivalently in terms of the
Cauchy stress tensor

T¢(2%) = T7 (2, Vip(z)), 2% =oplx),
where
T % x M > (2, F) — T(x, F) € S3.

Here, we have been attaching the superscript ”, indicating we are dealing with quanti-
ties being defined on the deformed configuration. The function T is called the response
function of the elastic material and relation (1.6) is called the constitutive equation of
the material. We remark, that the value of the response function depends only on the
deformation gradient V(x) and the point z, i.e., the stress is assumed to depend locally
on the strain. In addition, the response function depends on the chosen basis and on the
reference configuration.

If the value of the response function does not depend on the point x but only on the
deformation gradient, the material is said to be homogeneous and we can write

T (22, V(@) = T" (Vo(x)).

In contrast to the property of material frame indifference, homogeneity is not a physical
requirement but a property of the material. This is the same for isotropy, which states that
the stress response of the material should not depend on the direction, i.e., the material
has no preferential directions. To be precise, a material is said to be isotropic at a point
x, if its response function satisfies

T, FQ) =T"(x,F), FeM Qe0. (1.7)
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Let us note, that in contrast to homogeneity, isotropy is a property of the material given
with respect to the reference configuration. Before studying the implications of isotropy
for the response function T', we formulate the requirement of material frame indifference
in terms of the response function 7". This is also known as invariance under a change of
observer, see [Gur81, Section VII.21]. We say, the response function TD — B x M:j’r — 83
satisifes the axiom of material indifference if and only if

7(@.QF) = QT"(,F)Q, FeM!, Qe (18)

holds for all € 8. What makes this definition interesting is, that any material indifferent
response function is completely determined by its restriction to the set ST of symmetric
and positive definite matrices. More precisely, we have the following theorem, which we
formulate in terms of the symmetric second Piola—Kirchhoff stress (1.5).

Theorem 1.5 Let ¥ — 2 x Si — S3 be a response function for the second Piola—
Kirchhoff stress satisfying the aziom of material frame indifference. Then there ezists a
mapping X: B x S — S3 such that

Y(z,F) = X(z, F'F), FeM
holds for all x € 4.

Theorem 1.5 tells us the way rotations in the deformed configuration affect the stress
response of the material. Correspondingly, multiplying F' on the right by an orthogo-
nal transformation ) can be interpreted as transformation in the reference configuration.
Remembering that isotropy was defined as a property given in terms of rotations in the
reference configuration, we can reformulate (1.7) equivalently as follows, see [Cia88, The-

~D _

orem 3.4-1]: The response function T" is isotropic at = € 4, if and only if there exists a
mapping T (z,-): S3 — S3 such that

~D _

T (2,F)=T"(x, FF'), FeM QcO (1.9)
Up to now we have only been concerned with the behaviour of the response function
under orthogonal transformation, but we did not explicitely state any expression for the
response function. Combining material frame indifference (1.8) and isotropy (1.9), one

can show the following theorem, which can be found, e.g., in [Cia88, Theorem3.6-2] and
[Gur81, Theorem on p.170].

Theorem 1.6 (Constitutive equation for an isotropic material) Let there be given
an elastic material whose response function is isotropic and frame indifferent at a point

v € B. Then, the response function X(x,-): S2 — S3 for the second Piola-Kirchhoff
stress can be written in the form

3(z,C) = Bo(z, Z(C)I + pi(z, #(C))C + Ba(z, F(C))C?, cecs?, (110

where By(z.+), B1(x, ), P2(x,-) are scalar functions of the three principal invariants & (C')
of the matriz C.
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Here, the list of invariants #(A) of a matrix A is given by
J(A) = (F(A), I (A)2, 7 (A)3),

where, for any matrix A of order three, the invariants are defined to be the coefficients of
the characteristic polynomial of A,

det(A —\I) = =\ + F(A) N2 — (A + F(A);.
Alternatively, the invariants can be expressed in terms of the eigenvalues A1, A2, A3 of A

f(A)l = M+XAtl3=trA,
j(A)Q = M2+ )\2)\3 + )\3)\1 s
f(A)g = A1>\2A3 = det(A) .

As we have seen in Theorem 1.6, any frame indifferent response function for the second
Piola—Kirchhoff stress for an isotropic material is determined completely by the right
Cauchy—Green strain tensor. Unfortunately, the form of the response function given in
equation (1.10) involves quantities as the determinant, which are in general costly to
compute. For small deformations near the reference configuration we can make a Taylor
expansion of (1.10), provided the scalar functions [y, 51,52 given in Theorem 1.6 are
smooth enough. Assuming furthermore the reference configuration to be stress free or
in natural state and assuming homogeneity, we can express the response function of an
isotropic, homogeneous, elastic material, whose reference configuration is in a natural
state, by

S(E) = Atr E)I +2uE + o(E), (1.11)

where 33: Mi — S3. Here, X\ and p are two constants called the Lamé constants of the
material. Neglecting now the terms of higher order, we can define the so called St. Venant—
Kirchhoff materials, see also [MH94, Example 5.17], whose response function is simply
given by

S(E) = A(tr E)I +2uE.

Let us note, that all considerations made above are valid for the strain tensor E. In the
next section, we replace E by its linearization e, leading us to the linear equations of
linear elasticity.

1.4 The Equations of Linear Elasticity

The equations of linear elasticity can be regarded as the result of two linearizations. The
first one is the linearization of the response function, which gives rise to (1.11). The
second one is the linearization of the strain tensor E in (1.2). Replacing E by € and
inserting in (1.11), we find

o(e) = Atre)I +2pue. (1.12)

Here, we have written o for the resulting stress tensor, indicating that we are dealing
with a linearized object.

Let us recall, what kind of linearizations we have been introducing so far and what
quantities have been linearized
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Type of linearization ‘ Linearized quantity

geometric linearization (1.2) strain tensor
linearization of the constitutive equation (1.11) | response function.

We did not only assume small displacements, i.e., |u; ;| < 1, but also homogeneity
and isotropy of the material under consideration. As additional property of the material,
we required a linear stress-strain relation. Thus, from a nonlinear point of view, the term
"linearized equations of linearized elasticty" would be more suitbale than the term "linear
elasticity".

Nevertheless, linear stress response of many materials for small displacements is known
from experiments. In Figure 1.4, the stress response of steel is depicted, showing a linear
stress-strain relation of the material until some critical stress o is reached. In between
o. and o), the stress-strain relation of the material is nonlinear, but the material is still
elastic. If the critical yield stress o), is reached, the material is deformed plastically and
the stress response of the material is highly nonlinear. To summarize, the combination

Figure 1.3: Stress response of steel

of both linearizations seems to be a reasonable simplification of even nonlinear material
behaviour near a reference configuration of natural state.

1.5 Hyperelastic Materials

In this section, hyperelastic materials are defined to be materials, for which a smooth
stored energy function W(x F) exists, such that C = 8W/ OF'. Hyperelastic materials
are not only well understood from the point of mathematical analysis, but form also an
important class of materials for the numerical simulation of elastic materials. In particular,
we exploit the existence of the functional J of total energy when analyzing the monotone
multigrid method for contact problems presented in this work.

Despite the good theoretical properties of hyperelastic materials, there is also a more
mechanical interpretation of hyperelasticity connected to the work in so called closed
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processes. This is described in more detail at the end of this section.

Remark 1.7 Due to physical requirements, the stored energy function can be seen to be
nonconvex with respect to it’s argument F. To close the resulting gap in existence theory,
Ball has developed the theory of polyconvex stored energy functions. We will not discuss
this topic here and refer to the monograph [MH94] and the references cited therein.

An elastic material with response function T is said to be hyperelastic, if there exists
a stored energy function W: % x Mi — R such that

T(x,F):g—V;(x,F), x€B,FcM .

Here, for fixed x € 2 the derivative of W with respect to F' has to be understood as
a | function M3 — Z(M3 ,R), assigning the linear mapping %—VI‘,,/(:E,F) € Z(M3,R) to
W(x,-) at F.

To fix ideas, let us take the principle of virtual work and the asociated variational
equation (1.4) as starting point. Since the term

/ FE9% dz®
BP

can be regarded as a linear functional in ¥¥ we can assume for the moment, that there
exists a Gateaux differentiable functional F' with

/ Fe9° dz¥ = F'(p)0% .
B

This is possible for example for dead loads. Equally rewriting the surface forces, we end
up with the right hand side of (1.4) expressed as

F(@)9% + G ()%, (1.13)
where G is a suitable Gateaux differentiable functional representing the surface forces. To
be able to reformulate the left hand side of (1.4) as well, we assume the material under

consideration to be hyperelastic. Using the Piola—Kirchhoff transformation and defining
the linear functional of strain energy as

W) = [ We. V(o) do,
B

we can conclude by means of the differentiability properties of W that

W ()9 — /T(x,w;(x)): Vo(2)) dz.
B
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Putting everything together and setting J = W — (F' + G), we see that we can write
equation (1.4) as

T (p)9 =0 (1.14)

for 9: 4 — R being sufficiently smooth and vanishing on I'p. Equation (1.14) states
that for hyperelastic materials the solution of the boundary value problem (1.3) can be
found as stationary point of the functional J of total energy. Since stationary points are
closely connected to local minima, this corresponds to the physical interpretation, that
the deformation is such that some suitable measure of strain energy is minimized in the
equilibrium state of the body. To state things more precisely, we have the following

Theorem 1.8 (see also [Cia88, Theorem 4.1-2]) Assume the material under consid-
eration is hyperelastic and assume that the volume and surface forces can be written as in
(1.13). Let furthermore W be the stored energy function of the hyperelastic material and
let ® = {1p: B — R : 1 =, on Tp}. Then any smooth mapping @ satisfying

= inf 1.1
T(e) = Juf T() (1.15
for the functional J of total energy defined above solves the boundary value problem

“div W (2 Vo) = floe@) xcB,

 OF
%%(:c,ch(a:))n = p(z,Ve(z)),x €N,
p(x) = () z€lp.

Unfortunately, this theorem cannot be applied directly to nonlinear contact problems,
since in that case, the corresponding energy 7 functional turns out to be nondifferentiable.
We will overcome this difficulty by introducing the subdifferential of the functional J.
This enables us to generalize condition (1.14) for a stationary point of the total energy to
nondifferentiable energy functionals. In particular, the variational equation (1.4) becomes
a variational inclusion, see Chapter 2.

Remark 1.9 For a discussion of the relation between the stored energy functional and
the free energy functional used in thermodynamics, we refer to [MH94, Section 3.2].

It is now possible, to formulate frame indifference as well as isotropy in terms of the
stored energy function, as it has been done in Theorem (1.9). Here, concerning this
subject we do not go into detail, but present a more mechanical interpretation of the term
"hyperelasticity" with respect to closed processes, see [Gur81]. Let us define a motion
Py (): % x R — R3 to be a sufficiently smooth mapping, such that for any fixed ¢, o, (-)
is a deformation of %. Thus a motion is a family of deformations, the time ¢ being the
parameter. Then, by a dynamical process, we mean the pair (cp(,)(-),T(-,ch(,)(-))) and
we call the dynamical process closed during [to, 1], if

4 <Pt0 (m) = ﬁtl (SC) ’
i Pto (x) = a Pt (z),

where T is the first Pioal-Kirchhoff stress. Then, the following theorem holds.
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Theorem 1.10 (see [Gur81, Theorem p.186]) Let the work on any part A C % be
defined by

7 / T(x) %(V%(w)) dx dt .

to 0A:

Then, the body A is hyperelastic if and only if the work is nonnegative in closed processes,
i.e., if for any closed process there holds

j/T(I) %(VQOt(x))dxdt >0

to aAt

Hyperelasticity can now be interpreted as the ability of the body £ to store and release
energy regardless of the deformations it is undergoing. For example, this is not the case
if the material under consideration is plastic or even elastic.
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